All hereditary torsion theories are differential

Christian Lompa,*, John van den Bergb

a Departamento de Matemática Pura, Universidade do Porto, Portugal
b School of Mathematical Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa

\begin{abstract}
Let α and β be automorphisms on a ring R and $\delta : R \to R$ an (α, β)-derivation. It is shown that if \mathfrak{T} is a right Gabriel filter on R then \mathfrak{T} is δ-invariant if it is both α and β-invariant. A consequence of this result is that every hereditary torsion theory on the category of right R-modules is differential in the sense of Bland (2006). This answers in the affirmative a question posed by Vaš (2007) and strengthens a result due to Golan (1981) on the extendability of a derivation map from a module to its module of quotients at a hereditary torsion theory.
\end{abstract}

\section{Introduction}

In [4, Corollary 1] Golan proves that if R is a ring endowed with a derivation map $\delta : M \to M$, and τ a hereditary torsion theory on the category of right R-modules such that $d[\tau(M)] \subseteq \tau(M)$, then d extends to a δ-derivation map on the module of quotients $Q_{\mathfrak{T}}(M)$ of M at τ. This result is sharpened by Bland [3] who calls a hereditary torsion theory \textit{differential} if the aforementioned containment $d[\tau(M)] \subseteq \tau(M)$ holds for all M and δ-derivations $d : M \to M$, and then proves that the differential hereditary torsion theories are precisely those hereditary torsion theories τ for which all δ-derivation maps are extendable in the above sense [3, Proposition 2.3].

In a recent paper Vaš [9] identifies several classes of hereditary torsion theories that are differential and poses the question [9, page 852]: is every hereditary torsion theory differential? In this paper we shall answer this question in the affirmative by proving a slightly more general result on skew-derivations.

\section{Preliminaries}

Throughout this paper R will denote an associative ring with identity and $\text{Mod}-R$ the category of unital right R-modules. If $N, M \in \text{Mod}-R$ we write $N \subseteq M$ if N is a submodule of M. If X, Y are nonempty subsets of M we define $(X : Y) = \{ r \in R | yr \subseteq X\}$. If $X, Y \subseteq R$, then $(X : Y)$ will be taken as above with R interpreted as a right module over itself.

If $d : R \to R$ is an additive map, we say that a nonempty family \mathfrak{T} of right ideals of R is \textit{d-invariant} if, for any $I \in \mathfrak{T}$, there exists $J \in \mathfrak{T}$ such that $d[J] \subseteq I$.

A \textit{hereditary torsion theory} on $\text{Mod}-R$ is a pair $\tau = (\mathcal{T}, \mathcal{F})$ where \mathcal{T} is a class of right R-modules that is closed under submodules, homomorphic images, direct sums and module extensions, and \mathcal{F} comprises all $N \in \text{Mod}-R$ such that $\text{Hom}_R(M, E(N)) = 0$ for all $M \in \mathcal{T}$. The modules in \mathcal{T} are called τ-\textit{torsion} and those in \mathcal{F} τ-\textit{torsion-free}. For each $M \in \text{Mod}-R$ there is a largest τ-torsion submodule of M that we shall denote by $\tau(M)$.*

\begin{footnotesize}
* Corresponding author.
E-mail addresses: clomp@fc.up.pt (C. Lomp), vandenberg@ukzn.ac.za (J. van den Berg).
\end{footnotesize}

0022-4049/$-$ see front matter © 2008 Elsevier B.V. All rights reserved.

\textit{doi}:10.1016/j.jpaa.2008.07.018
A nonempty family \mathfrak{F} of right ideals of a ring R is called a right Gabriel filter on R if it satisfies the following two conditions:

(G1) if $I \in \mathfrak{F}$ then $(I : r) \in \mathfrak{F}$ for all $r \in R$;

(G2) if $I \in \mathfrak{F}$ and $J \subseteq R_\mathfrak{F}$ is such that $(J : a) \in \mathfrak{F}$ for all $a \in I$, then $J \in \mathfrak{F}$.

If $\tau = (\mathcal{T}, \mathcal{F})$ is an arbitrary hereditary torsion theory on $\text{Mod}-R$, then

$$\mathfrak{T}_\tau := \{l \subseteq R_\mathfrak{F} \mid R/l \in \mathcal{T}\}$$

is a right Gabriel filter on $\text{Mod}-R$. If \mathfrak{F} is an arbitrary right Gabriel filter on R, then there is a (unique) hereditary torsion theory, denoted by $\tau_\mathfrak{F}$, whose torsion class \mathcal{T} is given by

$$\mathcal{T} = \{M \in \text{Mod}-R \mid (0 : x) \in \mathfrak{F} \text{ for all } x \in M\}.$$

For every ring R the maps $\tau \mapsto \mathfrak{T}_\tau$ and $\mathfrak{F} \mapsto \tau_\mathfrak{F}$ constitute a pair of mutually inverse maps between the sets of hereditary torsion theories on $\text{Mod}-R$ and right Gabriel filters on R (see [8, Theorem VI.5.1, page 146]).

We refer the reader to [1,5,8] for further background information on torsion theories and Gabriel filters.

2. Differential torsion theories

Let α and β be automorphisms on a ring R. An additive map $\delta : R \to R$ is called an (α, β)-derivation on R if

$$\delta(ab) = \delta(a)\alpha(b) + \beta(a)\delta(b) \quad \text{for all } a, b \in R.$$

If α and β coincide with the identity map on R, it is customary to omit the prefix (α, β) and speak simply of a derivation on R.

If δ is a derivation on R and $M \in \text{Mod}-R$, then an additive map $d : M \to M$ is called a δ-derivation on M if

$$d(xr) = d(x)r + x\delta(r) \quad \text{for all } x \in M \text{ and } r \in R.$$

The following result is due to Bland [3, Lemma 1.5].

Theorem 1. Let δ be a derivation on a ring R. The following conditions are equivalent for a hereditary torsion theory τ on $\text{Mod}-R$:

(i) for every $M \in \text{Mod}-R$ and δ-derivation d on M, $d[I_\tau(M)] \subseteq I_\tau(M)$;

(ii) \mathfrak{T}_τ is δ-invariant.

A hereditary torsion theory τ satisfying the equivalent conditions of Theorem 1 is called differential. Differential torsion theories have the important property that every δ-derivation on a module M extends uniquely to a derivation on the module of quotients of M at the given torsion theory, as shown in [4, Corollary 1] and [3, Proposition 2.1].

We refer the reader to [4,3,2,9] as sources of further information on torsion theories in the context of rings endowed with a derivation map.

We now prove our main theorem from which it shall follow that all hereditary torsion theories are differential thus answering in the affirmative a question posed by Vaš [9, page 852].

Theorem 2. Let α and β be automorphisms on a ring R and $\delta : R \to R$ an (α, β)-derivation on R. If \mathfrak{F} is a right Gabriel filter on R that is both α and β-invariant, then \mathfrak{F} is δ-invariant.

Proof. Let $I \in \mathfrak{F}$. We have to show that there exists $J \in \mathfrak{F}$ with $\delta[J] \subseteq I$. Since \mathfrak{F} is α and β-invariant, $L = \alpha^{-1}[I] \cap \beta^{-1}[I] \in \mathfrak{F}$.

Let

$$J = \{x \in L \mid \delta(x) \in I\}.$$

Since δ is additive, J is an additive subgroup of R. Take any $x \in J$ and $r \in R$. Then $\delta(xr) = \delta(x)\alpha(r) + \beta(x)\delta(r) \in I$, because $\beta(x) \in \beta[L] \subseteq I$ and $\delta(x) \in I$ by definition, whence $xr \in J$. We conclude that J is a right ideal.

For each $x \in L$ we claim that

$$(L : \alpha^{-1}(\delta(x))) \subseteq (J : x).$$

To prove (1) note that

$$y \in (L : \alpha^{-1}(\delta(x))) \iff \alpha^{-1}(\delta(x))y \in L \iff \delta(x)\alpha(y) \in \alpha[L] \subseteq I.$$

Since $x \in L$ we also have $\beta(x)\delta(y) \in I$, whence

$$\delta(xy) = \delta(x)\alpha(y) + \beta(x)\delta(y) \in I.$$

Inasmuch as $xy \in L$ and $\delta(xy) \in I$, we have $xy \in J$. This establishes (1).

Since $L \in \mathfrak{F}$, it follows from (G1) that $(L : \alpha^{-1}(\delta(x))) \in \mathfrak{F}$. Hence by (1), $(J : x) \in \mathfrak{F}$ for all $x \in L$. We conclude from (G2) that $J \in \mathfrak{F}$, as required. □
Since every nonempty family of right ideals of \(R \) is trivially invariant with respect to the identity map on \(R \), the following corollary follows immediately from the two previous theorems.

Corollary 3. Let \(R \) be any ring endowed with a derivation map \(\delta : R \to R \). Then every hereditary torsion theory on \(\text{Mod}-R \) is differential.

Remark. The problem of extending derivations to rings of quotients of algebras over fields is a special case of extending Hopf algebra actions to rings of quotients. Let \(H \) be a Hopf algebra over a field \(k \) acting on a \(k \)-algebra \(A \) and let \(\mathfrak{g} \) be a right Gabriel filter on \(A \) with associated ring of quotients \(Q_\mathfrak{g}(A) \). Denote by \(\lambda_\mathfrak{g}(a) := h \cdot a \) the action of an element \(h \in H \) to \(a \in A \), which is an additive map. A necessary condition for extending the \(H \)-action on \(A \) to \(Q_\mathfrak{g}(A) \) is that \(H \) act \(\mathfrak{g} \)-continuously, i.e., \(\mathfrak{g} \) is \(\lambda_\mathfrak{g} \)-invariant for all \(h \in H \) (see [6]). The terminology is justified if \(A \) is considered a topological ring whose topology is induced by \(\mathfrak{g} \) and interpreting the condition \(\lambda_\mathfrak{g}^{-1}(l) \in \mathfrak{g} \) for any \(l \in \mathfrak{g} \) as continuity.

In [6] it is shown that if the Hopf algebra \(H \) is pointed, i.e., all simple subcoalgebras are one-dimensional, then \(H \) always acts \(\mathfrak{g} \)-continuously on an algebra \(A \). In the case of a derivation \(\delta \) of \(A \) one might consider the enveloping algebra \(H \) of the 1-dimensional Lie algebra which acts as \(\delta \) on \(A \). Here \(H = k[X] \) is a pointed Hopf algebra and hence the action extends to \(Q_\mathfrak{g}(A) \).

A purely coalgebraic version was given by Rumynin in [7]: a coalgebra \(C \) is said to measure an algebra \(A \) if there exists an action \(\cdot : C \otimes A \to A \) such that for all \(c \in C \) and \(a, b \in A \), \(c \cdot (ab) = \sum c(c_1 \cdot a)(c_2 \cdot b) \) and \(c \cdot 1 = \epsilon(c)1 \) where \(\Delta(c) = \sum c(c_1 \otimes c_2) \in C \otimes C \) denotes the comultiplication and \(\epsilon(c) \) the counit of \(c \). Rumynin proved that if every simple subcoalagebra of \(C \) is 1-dimensional and measures \(A \) \(\mathfrak{g} \)-continuously, then \(C \) also measures \(A \) \(\mathfrak{g} \)-continuously.

Let \(\alpha \) and \(\beta \) be automorphisms on \(A \) and \(\delta : A \to A \) an \((\alpha, \beta) \)-derivation. Let \(C \) be the 4-dimensional vector space over \(k \) with basis \(1, g, h \) and \(x \) which becomes a coalgebra with comultiplication

\[
\Delta(1) = 1 \otimes 1, \quad \Delta(g) = g \otimes g, \quad \Delta(h) = h \otimes h, \quad \Delta(x) = x \otimes g + h \otimes x
\]

and counit \(\epsilon(1) = \epsilon(g) = \epsilon(h) = 1 \) and \(\epsilon(x) = 0 \). Define the measuring \(\cdot : C \otimes A \to A \) by \(1 \cdot a = a, g \cdot a = \alpha(a), h \cdot a = \beta(a) \) and \(x \cdot a = \delta(a) \). The simple subcoalgebras of \(C \) are \(k1, k^2 \) and \(k^3h \) which are 1-dimensional. If \(\mathfrak{g} \) is \(\alpha \) and \(\beta \)-invariant, then by [7, Lemma 9], \(C \) acts \(\mathfrak{g} \)-continuously on \(A \), i.e., \(\mathfrak{g} \) is \(\delta \)-invariant. This yields another proof of Theorem 2 for the special case of algebras over fields.

Acknowledgements

This work was partially supported by Centro de Matemática da Universidade do Porto (CMUP), financed by FCT (Portugal) through the programs POCTI (Programa Operacional Ciência, Tecnologia, Inovação) and POSI (Programa Operacional Sociedade da Informação), with national and European community structural funds.

References

