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Valuated p-groups [RW] arose in the study of torsion abelian groups.
If 4 1s a subgroup of a finite p-group B, then 4 becomes a valuated group
by assigning to each element of A its height as an element of B. Classifying
such pairs (A4, B) is the same as classifying finite valuated p-groups with
values in the positive integers. Finite valuated p-groups give rise to finite-
dimensional representations of partially ordered sets over the p-element
field via the notion of v-height, and any such representation can be so
realized [A, Theorem 3.2].

A v-height 1s an equivalence class of valuated trees under the natural
quasi-ordering (reflexive and transitive) on valuated trees given in
[HRW1] and in Section 2 below. The v-heights form a distributive lattice
under this ordering. Each nonzero element x of a valuated p-group has a
v-height vi(x) given by the valuated tree {y | p”y =x for some n}. If P is
a set of v-heights, and G is a valuated p-group, then we get a representation
of P°P over the p-element field by considering G[ p] together with the sub-
spaces G(t)[pl={xeG[p]|vh(x)=1} for each te P. We will be more
concerned with the subrepresentation H,(G) whose underlying space is
Y e p G(1)[ p] rather than G[p].

Let ¥ be the category of finite valuated p-groups, and, for Q a finite
poset (partially ordered set), let Rep(Q) be the category of finite-dimen-
sional representations of Q over the p-clement field. The representations of
the form H,(G), for G in ¥, are not arbitrary, even in Repy(P)=
{UeRep(P)|U=3%,.p Uls)}, because G(t,v 1,)[p] = Gz,)[p]A

* Research supported, in part, by NSF Grant DMS-8802062.
' Research supported, in part, by NSF Grant DMS-8802833.

110
0021-8693/93 $5.00

Copyright 1: 1993 by Academic Press, Inc.
All rights of reproduction in any form reserved.



FINITE POSETS AND VALUATED GROUPS 11

G(1,)[p]- A necessary condition for the realization of all representations in
Repy(P) is that P be join-irreducible, that is, no element of P is the join of
a finite number of strictly smaller elements in the lattice generated by P.

For each positive integer » there is a join-irreducible poset P, consisting
of n poles (trees without branches), no two comparable, and each with n
nodes; this construction is a special case of Proposition 2.3, and is
llustrated in Example 2.4(a). If Q is a poset of cardinality », then any one-
to-one map from P,= P onto Q induces a functorial embedding of
Rep(Q) as a full subcategory of Rep(P;?). In [A, Theorem 3.2] a map
I, of Rep(P:®) into ¥ is constructed, preserving isomorphism and
indecomposability, so that U= H, I,(U) for each UeRep(P;?). Thus
classifying finite valuated p-groups is at least as difficult as classifying finite-
dimensional representations over the p-element ficld. The image of [, is
fairly small (see Section 3) and 7, is not a functor.

In this paper we initiate a study of ¥~ in terms of the functor
Hp: ¥ — Rep(P°?). The goal is to introduce ideas and techniques arising
from the extensive literature on representations of finite posets, a survey of
which is given in [A], to the subject of finite valuated p-groups. The theory
of Rep(P°P) could be applied directly to ¥~ if there were a full additive
functorial embedding of Rep(P°P) in ¥". But the image of any additive
functor from Rep(P°P) to ¥ consists of p-bounded finite valuated groups,
which are known to be direct sums of cychcs [HRW2]. As most finite
posets have wild representation type (see [A]), additive functorial
embeddings of Rep(P°?) in ¥ do not exist in general.

The problem of functoriality can be partially resolved by passing to
quotient categories. Let ¥7/o/ be the category whose objects are the objects
of ¥°, and whose maps are the maps in ¥ modulo those maps that
annihilate the p-socle of their domain. Isomorphism in ¥~ coincides with
isomorphism in ¥ /.o, and a valuated group is indecomposable in ¥ if and
only if it is indecomposable in ¥'/.o/ (Proposition 2.1). Note that H, is
naturally a functor on ¥/«/.

Let Rep,(Q) denote the full subcategory of Rep(Q) consisting of those
representations with no nonzero trivial summands; a representation U in
Rep(Q) is in Repo(Q) if and only if U=3%,_, U(s). The functor taking U
to X, .o U(s) is a retraction of Rep(Q) onto Repo(Q). Clearly H, takes
¥ /of to Repy(P°F).

We generalize and improve upon the splitting map /, in [A,
Theorem 3.2] for the functor Hp : ¥ /o — Repy(P:P) by constructing a
map F, which is an additive functor when the trees in P are poles, and
which splits H, when P is a join-irreducible weak antichain (defined just
before Theorem IT). The posets P, are join-irreducible weak antichains. The
construction of F, depends on a choice of representatives of the v-heights,
so we consider posets of valuated trees rather than posets of v-heights.

481:155/1-8



112 ARNOLD, RICHMAN, AND VINSONHALER

THeOREM 1. Let p be a prime and P a finite poset of finite valuated trees.

(a) There is a correspondence Fp:Repy(PP)— ¥ preserving
isomorphism and direct sums, and sending rank-1 representations to simply
presented valuated groups.

(b)Y If each tree in P is a pole, then Fp is an additive functor to ¥ /.o .

The next theorem provides a necessary and sufficient condition for F, to
split Hp. If 7, and T, are finite valuated trees, then write 7', € T, if there
is a map of valuated trees 7, — T, that does not take root T, to root T,
[HRWI1]. We say that a set P of trees us a weak antichain if T < T, does
not hold for any 7|, 7, in P.

THEOREM 1. Let P be a join-irreducible poset of finite valuated trees.
Then HpFp(U)= U for each U in Repy(P°P) if and onlv if P is a weak
antichain.

If P is a weak antichain, then the groups in ¥ of the form F,(U), for
U in Repy(P°?), are classified in terms of the v-height structure of their
p-socles. If U is indecomposable, then F,(U)=K@® L for some indecom-
posable K with H,F,(U)= Hp(K). Moreover, if U has rank 1, then X is
indecomposable, simply presented, and isomorphic to S(7) for T the
unique irretractable tree equivalent to the join of {T"eP | U(T')#0}
(Proposition 3.1).

The correspondence F, need not be split by H,, even when P consists
of poles (Example2.5). However, for each finite poset Q, there is a poset of
valuated poles anti-isomorphic to @ that is a join-irreducible weak
antichain (Proposition 2.3). This together with Theorem I demonstrates the
complexity of 7 :

CorOLLARY IIl.  Let Q be a finite poser. Then Repy(Q) is an additive
retract of ¥ /.. ,

Valuated p-groups of the form F,(U), for U a representation of rank
greater than 1, need not be simply presented, so they constitute a class of
finite valuated p-groups that have not been studied in depth. In view of
Corollary I, constructions and classifications in Rep(Q) can be carried
over to ¥ via ¥ /of. In particular, duality, Coxeter correspondences,
classification of preinjectives and preprojectives, and classification of
indecomposable representations of the form G(X,, ..., X,,) and G[ X, .., X, ],
for an n-tuple (X, ..., X,,) of rank-1 representations (as described in [AV]
have direct analogs in ¥ /.o and ¥,

This leads to the problem, addressed in Corollary 3.2, of finding a group-
theoretic description of those groups in ¥ that are in the image of F, for
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some finite P. Such a group is an extension of a p-bounded valuated group
by a simply presented valuated group (Corollary 3.2). We include an
unpublished example, due to L. Hughes, of a group in ¥ that is not in the
image of F, for any finite P (Example 3.3).

Given a finite poset Q, there are complete sets of invariants for finite
direct sums of rank-1 representations (Corollary 1.6(b)). We call these
invariants “Baer invariants” because of their close relationship to the
classical invariants of R. Baer for direct sums of rank-1 torsion-free abelian
groups.

The final corollary demonstrates a correspondence between Baer
invariants for representations and Ulm invariants for valuated p-groups.
Given a valuated group G and a valuated tree T, the T™ Ulm invariant of
G is the dimension of

G(N)lpr]
G(DplnG(T*[p])’

where G(T*)=Y {G(T')| 7(T'<T)}. Clearly the T" Ulm invariant
depends only on the equivalence class of 7. For a poset P of valuated trees,
the T™ Ulm invariant of G relative to P is as defined above, replacing
G(T*) by X {G(T")| T" is a join of trees in P, and —1(7' < T)}.

COROLLARY 1V. Let P be a finite join-irreducible poset of finite valuated
trees that is a weak antichain. There is a correspondence F.: Repo(P°P) — ¥~
such that:

(a) F} preserves isomorphism, indecomposables, and direct sums.

(b) If X is a rank-1 representation, then Fo(X)=S(T) is simply
presented and indecomposable for T the unique irretractable tree equivalent
to the join of {T'e P| X(T')#0}.

(c) HyFU)=U for each U in Rep(P°P).

(d) If Uis in Repo(P°F), X is a rank-1 representation of type 1, and
Fo(X)=S(T), then the t™ Baer invariant of U is equal to the T" Ulm
invariant of F(U) relative to P.

The 7' Ulm invariant relative to a poset is at least as big as the 7" Ulm
invariant. Let G be a finite valuated p-group, let L be the lattice generated
by the v-heights of nonzero elements of G, let P’ be the join-irreducible
elements of L, and let P consist of one representative from each v-height in
P’. Then P is a finite join-irreducible poset of finite valuated trees and the
Ulm invariants of G coincide with the Ulm invariants of G relative to P.
The existence of a nonzero Baer invariant for a representation guaran-
tees the existence of a rank-1 summand determined by that invariant
(Corollary 1.6(a)). It follows from Corollary IV that valuated groups in the
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image of Fp, for P a join-irreducible weak antichain, have a simply
presented summand if there is a corresponding nonzero Ulm invariant.
This extends [HRW1, Theorem 3.47, wherein it is shown that if a valuated
p-group has a nonzero Ulm invariant determined by a pole T, then the
group has a cyclic summand isomorphic to S(7). L. Hughes has shown
that the group in Example 3.3 has a nonzero T'" Ulm invariant but does
not have a summand isomorphic to S(7). This provides an alternate proof
of the fact that this group cannot be in the image of F, for any join-
irreducible finite poset P which is a weak antichain.

Theorem I(b) and Corollary I1l, for which F, is an additive functor,
suggest that valuated cyclics are the analogs of rank-1 representations.
However, as demonstrated in Corollary IV, if one does not insist on a
functor, indecomposable simply presented groups in ¥ can be thought of
as analogous to rank-1 representations.

There are other choices for embeddings. For P join-irreducible [ARV,
Theorem 5.1 and 4.1] provides the construction of a functor 4:
Repy(PP) — ¢ that splits H,. As noted above, 1 cannot be additive; it
takes values in 7 " instead of ¥'/.</, and it sends rank-1 representations to
simply presented groups. The functor 4 has yet to be examined carefully for
the special case of finite-dimensional representations and finite valuated
groups.

In this paper, attention is restricted to finite valuated p-groups and finite-
dimensional representations, even though some of the definitions and
results hold in greater generality. This restriction is predicated on the
assumptions that finite-dimensional representations of finite posets are
better understood, and that finite valuated p-groups need to be considered
n detail before attempting the more general case.

1. REPRESENTATIONS OF POSETS

Let k¥ be a field and Q a finite poset. The objects in the category
Rep(k, Q) of representations of Q, are finite-dimensional k-vector spaces U,
together with subspaces U(s) for each s e @, such that U(s) < U(¢) whenever
s<t. The maps in Rep(k, Q) are k-linear transformations f: U — V such
that f(U(s)) < V(s) for each s e Q. Finite direct sums in Rep(k, Q) are given
by U V with (U® V)(s) = U(s)® W(s).

The category Rep(k, Q) is a Krull-Schmidt category: each object has a
finite direct sum decomposition into indecomposables unique up to order
and isomorphism. This is a consequence of the Krull-Schmidt theorem for
additive categories [B, Theorem 3.6], since the endomorphism ring of an
indecomposable representation is a finite-dimensional k-algebra with no
nontrivial idempotents, hence local, and idempotents split in Rep(k, Q).
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The category Rep(k, Q) has kernels and cokernels. If /- U — V., then the
kernel of fis K=f"'(0), with K(s)=Kn U(s) for se Q, and the cokernel
of f1s C=V/f(U), with C(s)=(V(s)+f(U))/f(U) for se Q. Consequently,
0-U—-V—->W->0 is exact in Rep(k, Q) if and only if it is an exact
sequence of vector spaces, and 0— U(s)— V(s)— W(s)—0 is exact for
each se Q.

The rank of a representation U is defined to be dim, U. Note that
rank U=0 if and only if U is the zero object in Rep(k, Q). A trivial
representation 1s a representation U with U(s) =0 for each se Q.

Define Rep,(k, Q) to be the full subcategory of Rep(k, Q) consisting of
those objects U such that 3° _, U(s)= U. We can also think of Rep,(k. Q)
as a quotient category of Rep(k, Q) constructed by dividing out by the
subspaces A(U, V)= {feHom(U, V)| f(¥,., U(s))=0}.

ProproSITION 1.1.  The following are equivalent for U and V in Rep(k, Q).

(a) U=V modulo A,
(b) X..oUs)=3, , Vis) as representations,
(c) UBX=V®Y for some trivial representations X and Y.

Proof. 1f f:U—V represents an isomorphism modulo A, or
U X > V@Y is an isomorphism with X and Y trivial representations,
then f restricts to an isomorphism from 3, U(s) to 3., V(s), thus (a)
or (c) implies (b). Let U, and ¥V, be complementary vector space
summands of } ., U(s) and 3 _, V(s) in U and V; then these are
complementary trivial summands in Rep(k, Q). If (b) holds, let f be an
isomorphism from 3 _, U(s) to 2, ., V(s). Then U V,=VaU,,
whence (c¢) holds, and extending f to U by setting f(U,)=0 gives an
isomorphism from U to V in Repy(k, Q), whence (a) holds. |

A representation U is a subrepresentation of V if U is a subspace of V
and U(s)=Un V(s) for each se Q. If U is a subrepresentation of V,
then 0> U—- V- V/U—0 is exact in Rep(k, @), where (V/U)}s)=
(V(s)+ U)/U for each se Q. Any subspace U of V becomes a subrepresen-
tation by setting U(s)= Un V(s) for each se Q.

A type T in Q is a subset 1 (possibly empty) of Q such that set and
s<tin Q imply ret. The set of types in Q forms a distributive lattice
under inclusion. The rvpe of a rank-1 representation X is type X =
s Q| X(s)#0}; note that X(s)=X or 0 for each s if rank X'=1. The
type function gives a 1-1 correspondence between isomorphism classes of
rank-1 representations and types.

Let U be a representation of ¢ and t a type in Q. Define the sub-
representations U(r)={),.. U(s) and U[t]=2, Uls)



116 ARNOLD, RICHMAN, AND VINSONHALER

LEMMA 1.2, Let U, V be in Rep(k, Q), and t a type in Q.

(a) Un)y=X {YcU|rank Y=1 and 1 <type Y}.

(b) Ult]l=X{YcU|rank Y=1and " (t=type Y)}.
(

(

~—

¢c) (UdV)r)=U()@ V()
d) (Ve Witl=Ul]eV[r]

Proof. This is a routine consequence of the definitions. ||

A representation U is 1-homogeneous for a type 1 if U(s)=U for ser,
and U(s)=0 for s¢ .

PROPOSITION 1.3. Suppose that U is a t-homogeneous subrepresentation
of V.

(a) If V=U@W is a vector space decomposition with V[t]S W,
then V=U@®@ W as representations.

(b) U is a summand of V if and only if Un V[1]=0.

Proof. (a) If ser, then U=U(s)c VF(s). If s¢z1, then V(s)<
Vit W. In either case, V(s)=U(s)® (W V(s))=U(s)® W(s), as
desired.

(b) If V=U® W as representations, then V[t]=U[z]@ W[1]=
W{1]< W, because U is t-homogeneous. The converse follows from (a) by
choosing a vector space decomposition V=U® W with V1]l W. |}

CoRrOLLARY 1.4. Suppose VeRep(k, Q) and 1 is a type in Q.

(a) If V is t-homogeneous, then V is isomorphic to a direct sum of
rank-1 representations of type T. )

(by V=U®W in Replk,Q), where Uzx=V()/(V(t)nV[t] is
T-homogencous and W has no t-homogeneous summands.

Proof. (a) As V is t-homogeneous, V[ t] =0, and each subrepresen-
tation of ¥V is t-homogeneous. Therefore, by Proposition 1.3(b), each
subrepresentation of V is a summand.

(b)y Write V(t)=U® (V(t)n V[t]) as vector spaces. Then U is
a t-homogeneous representation, since if set, then U(s)=U because
Uc V(1), and if s¢ 1, then U(s)=0 because Un V[t]=0. Let W be a
complementary vector-space summand of U containing V[r]. That
V=U®W in Rep(k, Q) follows from Proposition 1.3(b). As V(r)=
UdWr)=U®(V(t)n V[z]), and V[t] < W[1], it follows that W(r)=
Vit)nV[t]c W[t], so W has no rt-homogeneous summands by
Proposition 1.3(b). |
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COROLLARY 1.5. Let U and X be in Reptk, Q) with X rank 1 of type 1.
Then

Uftl=N{Kernel f| f: U X}.

Proof. Note that U[t] is in the kernel of each f:U— X, as
Sf(U(s))< X(s) =0 for each s¢ 1. Conversely, suppose ye U\U[t]. Let f be
a linear transformation from U to X such that f(U[7t])=0 and f(y)#0.
It suffices to show that / is a map in Rep(k, Q). If ser, then
SUGs)HY S X=X(s). If s¢1, then U(s)c U[1], so f(U(s))=0<= X(s5). |}

Given U in Rep(k, Q), and a type 1, define the ™ Baer invariant B(U, 1)
to be dim, (U(t)/(U(t)n U[t])). Note that if U 1s a direct sum of rank-1
representations, then B(U, 1) is the number of rank-1 summands of type t.
The following corollary summarizes the preceding discussion.

COROLLARY 1.6. Let U be in Rep(k, Q) and 1 a type in Q.
(a) There is a decomposition U=V @ W, where V is 1-homogeneous,
dim, V' = B(U, 1), and W has no t-homogeneous summands.

(b) If UandV are direct sums of rank-1 representations, then U and
V are isomorphic if and only if B(U, t)= B(V, 1) for each type T in Q. |

2. FINITE VALUATED p-GROUPS

We summarize some of the definitions and properties of finite valuated
p-groups, as found in [RW, HRWI1, HRW2]. A valuated p-group, for a
prime p, is an abelian p-group together with a function v: G — ordinals
v {2} such that

(1) v{px)>v(x)if v(x)<oc,
(ii) v(x+ )= min(v(x), v(y)), and
(iit) v(nx)=v(x) if n is an integer relatively prime to p.

Condition (iii} can be shown to be redundant. Define ¥~ to be the category
with objects finite valuated p-groups, and morphisms

¥(G, H)={fe Hom, (G, H) | v(f(x)) = v(x) for each xe G}.

A subgroup H of a valuated group G is a valuated group under the
induced valuation: the value of each element x of H is its value in G.
A direct sum of valuated groups becomes a valuated group upon assigning
to each element the minimum of the values of its coordinates; this is
the categorical coproduct.
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The p-socle G[ p] of a group G is the subgroup {xe G | px=0}. Define
the quotient category ¥ /.«/ by letting the objects of ¥/.o/ be the objects of
¥, and letting the set of maps from G to H be v (G, H)/</(G, H), where
A (G, H)={fe (G, H)| f(G[p])=0}.

ProrosiTION 2.1. (a) ¥ and v/ are additive Krull-Schmidt
categories,
(b) Objects in ¥ are isomorphic if and only if they are isomorphic in
in v/,
(c) A=A, @A, in¥ ifandonly if A=A @A, in ¥ /.

Proof. Each group in either category, being finite, is a finite direct sum
of indecomposables. The categories are Krull-Schmidt because the
endomorphism ring of any indecomposable is finite with no nontrivial
idempotents, hence local.

Taking 4,=0 in (c), we see that (b) follows from (c). Half of (c) is
trivial, so suppose A=~A4,®A4, in ¥ /<. Let 1,, 1,, n,, and 7n, be
representatives of the injections and projections of the direct sum. First
note that if Ge ¥, then .&/(G, G) is a nilpotent ideal in the endomorphism
ring of G because endomorphisms in .&/(G, G) strictly decrease the order of
nonzero elements of G, and G is bounded. So m,1,—le.o/(A4,,4,) is
nilpotent, whence there is an automorphism x, of 4, such that n,;1,¢, = 1.
As 7mo(t —1om)1,61 —o/(A,, 4,), there is an automorphism x, of 4,
such that n,(1 —10,m,)i,0, = 1. Let

h=5%y, iy =103, Ty =my(l =i my), Ty =n(l —1,7;).

It is readily checked that this exhibits 4 as the direct sum of 4, and 4,
in7?. |

A rooted tree is a set T of nodes, a partial function p: T— T, and a
distinguished node r called the root of T, such that the domain of definition
of pis T\ {r}, and for each x e T" {r} there is a positive integer n such that
p"x =r. The node px is the parent of x. A tree T is partially ordered by
setting y < x if y=p"x for some n>0. A valuation on T is a function
v: T—ordinals © {oc} with v(px) > v(x) whenever px is defined. If G is a
valuated p-group, and xeG is nonzero, then the free on x is
T(x)={yeG | p"y=x for some n =0} with each node given its value in G
(the partial function p is multiplication by p); we let T(0) be the infinite
rooted pole with each node valued by x. A map of valuated trees is a
function f: T, — T, such that f( p(x)) = pf(x) whenever p(x) is defined and
v( f(x)) = v(x) for each xe T,.

Associated with each valuated rooted tree is a valuated p-group
S(T)=F/R, where F is the free group on the nodes of 7, and R is
generated by the relations px = px if px is defined, and px =0 if px 1s not
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defined. The valuation on S(T) is given as follows [HRW2]: Each element
x of S(T) has a unique representative 3 u,x;, in F with x,e T and
u;e{l,..,p—1}; define ¢(x}=min{v(x,} }. Note that if 7 is a finite pole
(linearly ordered) with »n elements, then S(7T) is a cyclic valuated group
with p" elements. The valuated group S(7) is indecomposable in ¥ " if and
only if T is irretractable {any idempotent map from 7 to T is the identity)
(HRW2, Theorem 7]. A group G in ¥ s called simply presented if
G=@7_, S(T,), where each T, is a finite valuated tree.

Given two valuated trees 7, and T,, define T, < T, if there is a map of
valuated trees T, — T,. This quasi-orders the collection of valuated trees.
Two valuated trees T, and 7, are equivalent if T\ < T, and T, < T,; the
equivalence classes are called v-heights, the equivalence class of T is
denoted by [ 7). Each finite valuated tree is equivalent to a unique irretrac-
table tree. The v-heights form a complete distributive lattice as follows. Let
{T;};., be a family of valuated trees. Then sup, T’ is the disjoint union of
the trees T, with the roots of the 7, identified to form the root of sup, 7;
and the value of this root set equal to the supremum of the values of the
roots of the T, the values of all other nodes being left unchanged. The
infimum, inf; T, is constructed by forming the product I]; T,, valuating each
element by the minimum of the values of its coordinates, and passing to the
subtree consisting of those (¢,)e ], T, for which there is a nonnegative
integer n such that p"t,=root 7, for all i. Finally, define T, < T, if there is
a map T, —» T, of valuated trees that sends root 7, into T, {root T,}.

If x is an element of a valuated p-group G, then the v-height of x in G,
written vh(x), is the equivalence class of T(x), the tree on x. Now
vh(px)>vh(x) if x#0, and vh(x+y)=vh(x) A vh(y) for each x,y in G
[HRWI1, Theorem 3.2]. Consequently, if t is a v-height, then G(z)=
{xeGlvh(x)=21t} is a subgroup of G. If Ter, let G(T)=G(t)=
{xeG | T(x)=T}. A subgroup H of a group G in ¥  is v-nice if
fvh(x+))| ye H} contains a greatest element for each xe G [HRWI].

ProoF OF THEOREM 1. Let U be in Repy(P°"). There is an exact
sequence
0—-K- @ UT)-U~0
TeP
of vector spaces induced by inclusion of the U(T)s in U. For Te P, let C7
be the direct sum of dim U(T) copies of the indecomposable valuated
group S(7). Then U(T) may be identified with the subgroup of C'[p]
generated by the roots of the T”s. Under this identification, the vector space
K is a p-bounded subgroup of C=@,.,C’. Define F,(U)=C/K
Note that U=(@ ., U(T))/K is contained in Fp(U)[p]. As any
automorphism of U(T) extends to an automorphism of €7, isomorphism
and direct sums are preserved by Fp.
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If each T is a pole, then C[p]= & ;. U(T); we can define F, on maps
in this case. If /= U, — U, is a map of representation, then f induces a map
@ 7cpUT)> @ pUy(T), resulting in a commutative diagram of
vector spaces with exact rows:

e v(r)y—>U,—0

Im l"

@ UydT)—— Upy——0

I'e P

0—— K, —Ci[p]

0——K,—— ([ p]

Extend /' to a homomorphism h:C, — C,, by extending each map
U(T)—> U,(T) to a map C] - CJ. Such extensions exist because C
is a direct sum of copies of the cyclic valuated group S(7T), and
CT(p]l=U,(T). The extension A is unique modulo .«/(C,, C,) because the
difference of any two extensions of f' annihilates C,[p]. As T is a pole
SCT,CTy=p¥(C],CT), so h+ «/(C, C,) induces a unique map from
C,/K, to C,/K, in ¥'/gf, which we define to be Fp(f). It follows that
Fp:Rep(P°®)— ¥/ is a well-defined additive functor.

Returning to the general case, let X be a rank-1 representation, so that
each X(T) is either X or 0. Then Fp(X)= (D rcyper S(T)/K=
S(supzcype v T'), noting that K is generated by elements of the form
©,..0,vs,0,..,0, —v4,0,..,0) with v=v,=v,- a basis element of
X=X(TY=Xx(T")for T, T'etype X. |

Given a poset P of finite valuated trees, the functor H,: 7 /o —
Rep,( P°P) is defined by setting Hp(G) = (X 7. » G(T)[p], G(T)[p]] Te P),
and letting H p(f) be f restricted to X ., G(T)[ p] for fe ¥ (G, H).

The proof of Theorem I1 uses the following theorem which we state and
prove for arbitrary valuated p-groups.

THEOREM 2.2. Let C be a valuated p-group, K' a v-nice subgroup of C,
and K a subgroup of K' such that K'/K is p-bounded. If xe C/K, then

vh(x)=supivh(c)| c+ K=x}.

Proof. Let n:C—->C/K be the natural map and o¢(x)=
sup{vh(c) | m(c) = x}. In order to show that ¢(x)=vh(x), it is sufficient, by
[HRWI1, Lemma 7.1], to verify:

(1) v(root @(x))=uv(x),
(i) @(x)<o(px),
)

(1) If T is a valuated tree with 7T < ¢(x), then there is ye C/K with
pr=xand T<vh(y).
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Given c¢eC with #n(c)=x, there is k'eK with vh(c+k')=
Sups . x vh(c + k), since K is v-nice in C. In particular, K< K’ implies
e(x)<vh(c+k’). Now K'/K is p-bounded so that vh(pc+ pk') < o(px).
Therefore ¢(x) <vh(c+ k') <€ vh(pc+ pk') < @(px) proves (ii).

To show (i), it suffices to show that y(x)= v(root ¢(x)) is a valuation on
C/K, in which case § = v is the valuation on C/K induced by the valuation
of C [RW]. In view of the definitions of ¢ and ¢, the only problem is
verifying that ¢ (px)>y(x). But this is a consequence of (ii), since
p(root @(x))=root ¢(px) for some i> 1.

Finally, suppose T < ¢(x). As K’ is v-nice in C, and K'/K is p-bounded,
there is ce C with n(c)=x and T <vh(c). Now (iii) follows from the
definition of <. |

PROOF OF THEOREM II. Let U be in Repy(PP). Write Fp(U)=C/K,
with C=@ ;cp S(T)"™ ') and K the kernel of @ ;. U(T) - U, as in
the proof of Theorem I. Then K is a subgroup of K'= @ ;. U(T) and X'
is generated by the roots of the various T’s. Thus, K’ is a v-nice subgroup
of C by [HRW2], Theorem 7.3]. As K’ is p-bounded, Theorem 2.2 applies.

{—) Suppose that T, <7, for T,,T,eP. Define a rank-1 U in
Repo(PP)by U=2/pZ, U{T)=U I T<T,, and U(T)=0 otherwise. Then
dim U(T,)=1 but dim FAU)T,)[pl=2, since T,<T implies that
((S(T,)® S(T,))/K)[ p] has at least two independent elements (one from
root T, and one from some power of p times the image of root T, in T,)
and is contained in F,(U)T,)[ p]. This contradicts the assumption that
H ,Fp(U) is isomorphic to U in Repy{ P°P).

(«) As Ux=K'/K, it suffices to show that (K'/KNT)=F(UNT){p]
for each Te P. Accordingly, let xe F(UNT) pl. so vh(x)2zt=[T]. As P
is a weak antichain, C(T)=C(T)[p]l=@ ;. +U(T')< K. In particular,
C(T) K= (K/KNT)s Fp(U)[ p]. By Theorem 2.2,

vh(x)=sup{vh(c) | c+ K=x}.
Since v-heights form a distributive lattice, it follows that
t=sup{t A vh(c)|c+ K=x}.

Each 7 A vh(c) is in the lattice of v-heights generated by P. To see this,
observe that K' v-nice in C implies that (C/K')(T)=(C(T)+ K')/K' =0,
since ((T)< K'. In particular, ¢ is in K’ so that vA(c) is the meet of the
v-heights of elements of P corresponding to nonzero coordinates of ¢ in K.
But P is join-irreducible, so t A vh(c¢) =1 for some ¢ with ¢ + K= x. Thus
vh(c)=zt, and xe C(T)/ K< (K'/K)NT), as desired. }
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PROPOSITION 2.3, Let Q be ua finite poset. There is a poset of valuated
poles anti-isomorphic to Q that is ua join-irreducible weak antichain.

Proof. Let Q be {4y,4¢,....q,;. For ief{0,1,.,n}, define a pole
T,=1{12, ., t") with p(t/)=¢/"" for 0<j<n, and valuate T, by
v(tt)=2j+1 if q,<q,, and v(r})=2j otherwise. If ¢,<g,, then v(t))=
2j+ 1 whenever v(1})=2j+1, so T,<T, Conversely, if T,<T, then
2i+ 1 =v(r)<u(r}) so ¢;<g,. It follows that P={T,{¢,e Q) is a poset
anti-isomorphic to Q.

Clearly P i1s a weak antichain; it remains to show that P is join-
irreducible. Suppose T,<sup,., T, for some /< {0, 1,.,n} Then, by
definition of supremum, there exists k €7 such that v(r})<v(r}) for each
j<n Hi<n, then 2i+ 1 =0v(t)<u(1}), s0 gy < ¢, whence T,<T,. If i=n
then either ¢, <g, whence T, < T,, or v(£;)=2nso T,< T, by the choice
of k. |}

We give examples of the construction of the poles in Proposition 2.3.

ExaMPLE 2.4. (a) Suppose that Q is a poset of S pairwise incom-
parable elements. Then

i 0 0 0 0
2 3 2 2 2
To=4 T,=4 T,=5 T,=4 T,=4.
6 6 6 7 6
8 8 8 8 9

(b) Suppose that Q is the poset with Hasse diagram

q. q>
NS
q4

i
o q3

Then
1 0 0 0 0
3 3 2 2 3
Ty=S5 T,=4 T,=5 T,=4 T,=5.
6 6 6 7 6
9 8 8 8 9
The following example shows that H,F,(U) need not be isomorphic to

U in Repy( P°P), even for valuated poles. These poles form a weak antichain
but are not join-irreducible.
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ExampLE 2.5. Let Q= {1,2,3} be a poset of three pairwise incom-
parable elements and

U= (kx@®ky, Ul)=kx, U22) = ky, U(3) = k(x + v)) € Rep(Q).

Define a poset P of valuated poles { T, T,, T,} anti-isomorphic to @ b
1 s y

2 2 2
T,=6 T,=5 T,=4.
7 8 9

Let C=S(T)@®S(T,)@®8(T,) and G=F,(U)=C/K, where K is the
kernel of the map U(1)@ U(2)® U(3) - U and S(T,)[ p] = U(i). Choose a
generator «; for each cyclic group S(7,). A routine computation of
v-heights shows that the v-heights of the respective elements are

2 2 2 2 2
pla,+K=6 pla,+K=5 pla,+K= 4 5 =5
8 8 9 9

observing that K is the subgroup of C generated by (pZa,, p’a,, —pas).
Thus, G(T,)[ p] has dimension greater than 1 while C(T,)[ p] = U(2) has
dimension 1.

3. EXAMPLES AND APPLICATIONS

We give a simplified and corrected version of the construction of
G=1,U)in [A]. Construct P,={T, .., T,} by applying Proposition 2.3
to a poset 2 of n mutually incomparable elements (see Example 2.4(a)). Let
Ue Rep(P,) be of dimension k. Set G=(Z/p"Z)* with U=G[p]. If xeG
1s nonzero of height m, let v(x)=142m if Zx~ U(T,)#0, and v(x)=2m
otherwise. If UeRepy(P,), then H, I (U)=U. As U=G[p], if U is
indecomposable then so is G.

Let P be a finite join-irreducible poset of valuated trees that is a weak
antichain. Proposition 2.3 shows that we can realize any abstract finite
poset by such a P. Then H,Fp(U)= U for each U in Repy(P""). For each
Te P, the valuated group S(7) is simply presented, and F,(U)= C/K,
where C=@ ;. S(T)"™ Y7 and K is the kernel of the map
@D ;ep U(Ty— U. In general, G = Fp(U) is decomposable for an indecom-
posable U, and U is properly contained in G[p]. However, as a special
case of the following proposition, G = Fy(U) has an indecomposable
summand 4 with Hp(4)= H,(G) modulo A.
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PROPOSITION 3.1.  Let P be a join-irreducible poset of finite valuated trees
such that P is a weak antichain, and let U=3,_p, U(T) be indecomposable
in Rep(P°P).

(a) There is an indecomposable summand of Fp(U) in ¥, unique up to
isomorphism, containing U= ,_p Fo(UNT)[ p].

(b) If U has rank 1, then this summand is isomorphic to S(T,), for T,
the unique irretractable tree equivalent to sup{T| U(T)#0}.

Proof. (a) By Theorem Il we can identify U with ¥ ,_, F(U)XT)[ p].
Write F,(U) as a direct sum of indecomposables in ¥". As U is indecom-
posable, and fully invariant in Fp(U), one of the summands contains U.
Because ¥ is a Krull-Schmidt category, this summand is unique up to
isomorphism.

(b) Let T"=sup{TeP | U(T)#0}. By construction, F(U)= S(T").
As T, is a retract of T’, and is irretractable, S(T,) is a summand of S(T)
and is indecomposable [HRW2]. Clearly S(7,) contains U. ]

The following is a description of the groups in ¥ that are in the image
of F, for some finite poset P.

COROLLARY 3.2. Let G be in 4, and P a finite poset of finite valuated
trees. Then there is U in Rep(P°P) with Fp(U)= G if and only if G = C/K,
where C=@ 3. p S(T), and KS K'= @ . p W, where W, is the subgroup
of C generated by the copies of the root of T in S(T)".

In this case there is an exact sequence 0 > A —-+G—B—-0in ¥ with A
p-bounded and B simply presented.

Proof. ( — ) This is just the construction of F.

(<) If KnW;#0, then it is a valuated summand of both of the
p-bounded valuated groups K and W,. Thus, we may assume that each
Kn W,=0, since S(T) modulo the subgroup generated by the root of T
1s again simply presented.

Define U in Rep(P°") by letting U(T) be the image of W, in G, and
U=%,.pU(T) The assumption that Kn W,=0 guarantees that
W, U(T), whence Fp(U)= G by the construction of F.

For the last statement of the corollary, let 4 = K'/K, a p-bounded group
and B= C/K', a simply presented group. ||

ExampLe 3.3 (L. Hughes). Let G=(Z/p*Z)a® (Z/p*Z)c and valuate G
by setting

0
values of p'c =2 values of p'b =
5

.

values of p'a =

[ R S

0
3
4
6
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where h=a—¢. Then G is not in the image of F for any finite poset P of
finite valuated trees.

Proof. The group G can be represented by a hang diagram,

a b
0 1
3 2
4—5—4
NS

where p’c = p’a— p’b has value 5 while v(p2a) = v(p*b) = 4. Moreover, G is
indecomposable and not simply presented. Note that G[pl=<{p’ad®
{pc) with

&~ w O

1
5 0
T,=T(pa, G)=T(p’h, G)= 4 and T.=T(p*c, G)=2.
5

6

Since T, > T,, [T,] and [T,] are the only v-heights of elements in G[ p].

It now follows that G cannot be of the form C/K for C= @, S(T;)" and
K a subgroup of the subgroup K’ generated by the roots of the various
T.s, as required by Corollary 3.2. The difficulty is that while p2a — p°h has
order p, it has value greater than v( p*a) = v(p’h) but is not in the subgroup
of G generated by the roots of 7, and 7,. |

Proor OF COROLLARY IV. Parts (a), (b), and (c) follow directly from
Proposition 3.1 and Theorem II. If U is indecomposable, then define
Fp(U) to be an indecomposable summand of F,(U) with HpFp(U)=
H Fp(U)=U in Repy(P) as given by Proposition 3.1. Using the fact that
Rep,(P) is a Krull-Schmidt category guarantees that F; may be extended
to a well-defined correspondence satisfying (a), (b), and (c).

(d) Let G=Fu(U). Then U(T')=G(T')[ p] for each T' in P by (c).
Since [T]=[sup{T'eP| T ez}], we have N, .. G(TH[p]=G(T)[p].
Thus, the identity map induces a vector space epimorphism

UR)/(U)nULt]) = G(Dp)(G(D[p] o GIT*) p])

noting that U(t)= Ny ., U(T)=G(T)[p] and U[t]=3 . ., Ult") by
Lemma 1.2. This proves that B(U, t) = U,{(G).
Conversely, note that the image of U(t)n U[t] in G(T)[p] is
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G(T)[p] N Gp(T*), where Gp(T*)=3 {G(T")[p]!| T is a join of trees in
P. and —(T'< T)}. On the other hand,

Gp(T*)=Y {G(T')| T"isajoin of treesin P, and (T’ < T)}
=Y {G(T")| T"e Pand ~(T" < T)},

since if 7' is a join of trees in P, and (7' < T), then G(T')= G(T") for
some 7" in P such that (7" < T). Consequently, G(7T*) is p-bounded,
as in the proof of Theorem II. Thus

image U(t)n Ult]=G(T)[p]nGT*){ p],
Ury(U(t) n Ul =G(Tpl/G(Tp]1nGo(T*)[p],

as desired.
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