Journal of Science: Advanced Materials and Devices 1 (2016) 527-530

Contents lists available at ScienceDirect

Journal of Science: Advanced Materials and Devices

journal homepage: www.elsevier.com/locate/jsamd

Original Article

Characterizing magnesium—silicon binaries in Al—Mg—Si supersaturated solid solution by first-principles calculations

ADVANCEI

Tran Doan Huan^{a,*}, Nam Ba Le^b

^a Department of Materials Science & Engineering and Institute of Materials Science, University of Connecticut, 97 North Eagleville Road, Unit 3136, Storrs, CT 06269-3136, USA

^b Institute of Engineering Physics, Hanoi University of Science and Technology, 1 Dai Co Viet Road, Hanoi 100000, Viet Nam

ARTICLE INFO

Article history: Received 19 August 2016 Received in revised form 13 September 2016 Accepted 15 September 2016 Available online 23 September 2016

Keywords: Al–Mg–Si solid solution Mg–Si binaries Stability Density functional theory

ABSTRACT

Magnesium silicide Mg₂Si is a well-studied binary of Mg and Si due to its potential technological applications like infrared photonic and thermoelectric. In many experimental scenarios, e.g., in supersaturated solid solution of Al–Mg–Si, some other Mg-Si binaries, e.g., Mg₉Si₅ and Mg₅Si₆, co-exist with Mg₂Si. It was then computationally found that Mg₉Si₅ and Mg₅Si₆ are thermodynamically favorable under some non-zero pressures. Other than this, very little is known about these two new binaries. This paper aims to unveil some structural, electronic, and vibrational properties of Mg₉Si₅ and Mg₅Si₆, providing some information that may be useful for further possible investigations on the Al–Mg–Si solid solution.

© 2016 The Authors. Publishing services by Elsevier B.V. on behalf of Vietnam National University, Hanoi. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

At ambient conditions, magnesium silicide Mg₂Si, which crystalizes in the cubic *Fm* $\overline{3}m$ structure, is a narrow-gap semiconductor before transforming to a variety of metallic phases at elevated pressures [1–5]. This binary is promising for a variety of applications, including infrared photonic and thermoelectric [6–10] Two relatives of Mg₂Si, namely Mg₉Si₅ and Mg₅Si₆, were experimentally observed as the β' and β'' in the supersaturated solid solution of Al–Mg–Si [11–15]. Unlike Mg₂Si, which has extensively been studied [1–10,16,17], litle was known about Mg₉Si₅ and Mg₅Si₆. The former, e.g., Mg₉Si₅, adopts the hexagonal *P*6₃/*m* symmetry and is higher in energy than the high-pressure hexagonal *P*6₃/*mmc* structure of Mg₂Si₆ was also resolved experimentally [14,15] to belong to the *C*2/*m* space group.

The phase diagram of Mg₂Si at \simeq 10 GPa and above is quite rich with a number of contradicting reports. In short, a variety of different structural phases have been reported for Mg₂Si at these elevated pressures [1–5,16–18]. Considering their convex hull, which is constructed from first-principles calculations, it was

* Corresponding author. E-mail address: huan.tran@uconn.edu (T.D. Huan).

Peer review under responsibility of Vietnam National University, Hanoi.

recently suggested [18] that between 6 GPa and 24 GPa, Mg_9Si_5 can transform to Mg_2Si_5 and vice versa, without energy cost. Furthermore, Mg_5Si_6 in their C2/m is thermodynamically stable at 12 GPa and above [18]. Presumably, some sorts of internal pressure in the Al–Mg–Si supersaturated solid solution may stabilize Mg_9Si_5 and Mg_5Si_6 . This may also be the reason behind the unclear picture of high-pressure structural phases of Mg_2Si_6 .

This paper is designed to characterize Mg_9Si_5 and Mg_5Si_6 by first-principles computations. Given that the phase diagram of Mg_2Si at high pressures remains largely unclear [18], we aim to some comparisons between the X-ray diffraction (XRD) patterns, the electronic structures, and the vibration-related properties of these binaries with those of Mg_2Si . We anticipate that the information provided by this work may help to identify the actual binaries of Mg and Si that are experimentally realized.

2. Calculation details

Calculations reported in this work were performed within the density functional theory (DFT) formalism [19,20] as implemented in *Vienna Ab Initio Simulation Package* (vASP) [21,22]. As described elsewhere [18], we used the semilocal Perdew–Burke–Ernzerhof functional [23] for the exchange-correlation energies, a $9 \times 9 \times 9$ Monkhorst-Pack mesh [24] for sampling the Brillouin zone, and an energy cutoff of 500 eV for the plane-wave basis set. For all the

http://dx.doi.org/10.1016/j.jsamd.2016.09.002

^{2468-2179/© 2016} The Authors. Publishing services by Elsevier B.V. on behalf of Vietnam National University, Hanoi. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

structures, the cell and the atomic degrees of freedoms were optimized until the residual forces become smaller than 10^{-2} eV/Å. This setting typically leads to a convergence of less than 1 meV/ atom in the DFT total energy E_{DFT} .

To examine the dynamical stability of the structures, their phonon band structures were prepared with PHONOPY [25,26]. Within the suppercell approach implemented in this package, atomic forces are calculated for the equilibrium structures with certain displacements introduced. The dynamical matrix was then constructed and diagonalized, returning the phonon dispersion cirves in the *k* space. The XRD results were generated using FULLPROF suite [27] while some fugures were rendered using VESTA [28].

3. Results and discussions

3.1. Materials structures and thermodynamic stability

According to Ref. [18], Mg₅Si₆ is thermodynamically stable at 12 GPa and above while Mg₉Si₅ and Mg₂Si can co-exist between 6 GPa and 24 GPa. This assessment was based upon the enthalpy calculated by DFT at zero temperature (T = 0). We strive to characterize Mg₅Si₆ and Mg₉Si₅ at finite temperatures by computing the Gibbs free energy as [29]

$$G(P,T) = E_{\text{DFT}} + F_{\text{vib}}(T) + PV.$$
(1)

here, *P* is the pressure and *V* is the volume of the simulation cell. $F_{\text{vib}}(T)$ is the vibrational free energy, which can be computed from the phonon density of states $g(\omega)$ as [29].

$$F_{\rm vib}(T) = 3Nk_{\rm B}T \int_{0}^{\infty} d\omega g(\omega) \ln\left[2\sinh\left(\frac{\hbar\omega}{2k_{\rm B}T}\right)\right].$$
 (2)

In this expression, 3N is the number of degrees of freedom, k_B the Boltzmann, and \hbar the reduced Planck constant. The phonon density of states $g(\omega)$ can be calculated when the phonon band structure is determined in Section 3.3. We consider the thermo-dynamic stability of the compounds at 0 GPa and 15 GPa. At 0 GPa, Mg₂Si is in the cubic *Fm* $\overline{3}m$ phase while at 15 GPa, it is in the orthorhombic *Pnma* phase [18]. The lattice parameters of Mg₅Si₆ and Mg₉Si₅ obtained by DFT calculations at both 0 and 15 GPa are also reported in Table 1.

We first show in Fig. 1 the convex hull constructed from the Gibbs free energy calculated, taking the $P6_3/mmc$ phase of Mg and the $Fd\overline{3}m$ phase of Si as the reference. Results at 0 K are consistent with those reported in Ref. [18]. At elevated temperatures (300 K and 500 K), Mg₂Si always lies on the straight line between Mg₉Si₅ and Si, indicating that even at finites temperatures, Mg₉Si₅ and Mg₂Si can transform from one to the other without energy cost.

Fig. 2 shows the simulated XRD patterns of Mg₂Si, Mg₉Si₅, and Mg₅Si₆ at 15 GPa, revealing a significant similarity within the region between 35° and 50°. Mg₂Si and Mg₉Si₅ have two major reflections at 37° and 39° while Mg₉Si₅ and Mg₅Si₆ share a reflection at 48°. However, there are also noticeable differences in other regions of the XRD patterns. Therefore, although Mg₂Si and Mg₉Si₅ are

Table 1 Structural parameters calculated for $Mg_{9}Si_{5}$ ($P6_{3}/m$ phase) and $Mg_{5}Si_{6}$ (C2/m phase) at 0 and 15 GPa.

Material	P (GPa)	a (Å)	b (Å)	c (Å)	β (°)
Mg ₉ Si ₅	0	7.08	7.08	12.11	90
Mg ₉ Si ₅	15	6.71	6.71	11.44	90
Mg ₅ Si ₆	0	14.91	4.08	6.80	110.2
Mg ₅ Si ₆	15	14.26	3.87	6.39	109.1

Fig. 1. Convex hull constructed from the Gibbs free energy computed for Mg₂Si, Mg₉Si₅, and Mg₅Si₆ at 0 GPa (top row) and 15 GPa (bottom row). Three arrows placed at x = 0.455, 0.643, and 0.667 indicate the Mg composition of Mg₅Si₆, Mg₉Si₅, and Mg₂Si, respectively.

essentially similar in terms of free energy, they may still be identified based upon carefully examining the measured XRD data.

3.2. Electronic structures

At zero pressure, Mg₂Si is in its cubic $Fm\overline{3}m$ semiconducting phase with a band gap of ~0.7 eV [30]. Starting from about 6 GPa, Mg₂Si becomes metallic. It is therefore interesting to examine if Mg₉Si₅ and Mg₅Si₆ are semiconducting or metallic at the pressures that are expected to exist [18]. For this reason, we show in Fig. 3 the calculated the electronic densities of states of the *Pnma* phase of Mg₂Si, the *P*6₃/*m* phase of Mg₉Si₅, and the *C*2/*m* phase of Mg₅Si₆ at 15 GPa. Clearly, all of these binaries are metallic at this pressure. We anticipate that for the whole range of pressure in which Mg₉Si₅ and Mg₅Si₆ may exist, they are also metallic. Further examination on their transport properties may also be carried out by computations as performed for Mg₂Si in Ref. [18].

3.3. Vibrational properties

The lattice vibration of a crystal structure encodes some useful information that is related to material properties. By examining the phonon dispersions, one may access the dynamically stability of a

Fig. 3. Electronic density of states (DOS) of Mg₉Si₅, Mg₅Si₆, and Mg₂Si calculated at 15 GPa. The total DOS ρ_{tot} is also decomposed into ρ_{Mg} and ρ_{SI} , the projected DOS on the Mg and Si sites. Dashed lines indicate the Fermi level.

structural model. This step is now becoming increasingly relevant as a number of structure models proposed theoretically and/or experimentally are dynamically unstable [31]. While phonon dispersion cuves may be measured by inelastic neutron scattering, *state-of-the-art* computational techniques, especially those based from DFT calculations, are now capable to obtain such the information within the harmonic approximation. Although phonon calculations are typically expensive, they are a quite common practice, given that other important physical quantities, e.g., free energies and heat capacity, can also be estimated from the obtained results [18,29,31,32].

We show in Fig. 4 the phonon band structures calculated for Mg_9Si_5 ($P6_3/m$ phase) and Mg_5Si_6 (C2/m phase) at 0 and 15 GPa. Because no imaginary phonon mode could be found in the Brillouin zones, one can conclude that both the $P6_3/m$ phase of Mg_9Si_5 and the C2/m phase of Mg_5Si_6 are dynamically stable at the pressures

Fig. 4. Phonon band structures of $\rm Mg_{9}Si_{5}$ (P6_3/m phase, top row) and $\rm Mg_{5}Si_{6}$ (C2/m phase, bottom row) at 0 and 15 GPa.

Fig. 5. Constant volume heat capacity calculated for C_v of Mg₉Si₅, Mg₅Si₆, and Mg₂Si at 15 GPa.

examined. In other words, these structure models correspond to the minima of the potential energy surface, and therefore could be experimentally relevant. In addition, the expansion of the whole dispersion structure from 0 GPa to 15 GPa is a natural consequence of the structure compression under pressure.

From the obtained phonon dispersion curves, the constant volume heat capacity C_v can also be computed as

$$C_{\rm v}(T) = 3Nk_{\rm B} \int_{0}^{\infty} d\omega g(\omega) \left(\frac{\hbar\omega}{k_{\rm B}T}\right)^{2} \frac{\exp(\hbar\omega/k_{\rm B}T)}{\left[\exp(\hbar\omega/k_{\rm B}T) - 1\right]^{2}}.$$
(3)

In Fig. 5, C_{ν} calculated for Mg₉Si₅, Mg₅Si₆, and Mg₂Si at 15 GPa is shown. It turns out that for high temperature, the heat capacities of Mg₉Si₅, Mg₅Si₆, and Mg₂Si are essentially similar. At about 100 K and below, the specific heat C_{ν} of Mg₅Si₆ is higher than that of Mg₉Si₅ and Mg₂Si by roughly 2%, a detectable quantities from the experimental point of view.

4. Summary

We present a computational study on Mg_9Si_5 and Mg_5Si_6 , the binaries reported to co-exist with Mg_2Si in some experiments. At 0 GPa and 15 GPa, these binaries are found to be thermodynamically and dynamically stable. Especially, we confirm that within a wide range of finite pressure and temperature, Mg_2Si and Mg_9Si_5 are essentially equivalent in terms of free energy. Electronic structure calculations reveal that similar to Mg_2Si_5 both Mg_9Si_5 and Mg_5Si_6 are metallic at 15 GPa. Although the XRD patterns of Mg_9Si_5 and Mg_2Si share some noticeable reflections, we anticipate that the computational descriptions may supply useful information for the identification of these binaries in further experiments.

References

- E.Y. Tonkov, High Pressure Phase Transformations: A Handbook, Gordan and Breach Science, Philadelphia, US, 1992.
- [2] J.-H. Hao, Z.-G. Guo, Q.-H. Jin, First principles calculation of structural phase transformation in Mg₂ Si at high pressure, Solid State Commun. 150 (2010) 2299–2302.
- [3] F. Yu, J.-X. Sun, W. Yang, R.-G. Tian, G.-F. Ji, A study of the phase transitions, electronic structures and optical properties of Mg₂ Si under high pressure, Solid State Commun. 150 (2010) 620–624.
- [4] F. Zhu, X. Wu, S. Qin, J. Liu, A re-investigation on pressure-induced phase transition of Mg₂ Si, Solid State Commun. 152 (2012) 2160–2164.
- [5] W. Ren, Y. Han, C. Liu, N. Su, Y. Li, B. Ma, Y. Ma, C. Gao, Pressure-induced semiconductor-metal phase transition in Mg₂ Si, Solid State Commun. 152 (2012) 440–442.

- [6] H. Udono, H. Tajima, M. Uchikoshi, M. Itakura, Crystal growth and characterization of Mg₂ Si for IR-detectors and thermoelectric applications, Jpn. J. Appl. Phys. 54 (2015), 07JB06.
- [7] H. Udono, Y. Yamanaka, M. Uchikoshi, M. Itakura, Infrared photoresponse from pn-junction Mg₂ Si diodes fabricated by thermal diffusion, J. Phys. Chem. Solids 74 (2013) 311.
- [8] V.K. Zaitsev, M.I. Fedorov, E.A. Gurieva, I.S. Eremin, P.P. Konstantinov, A.Y. Samunin, M.V. Vedernikov, Highly effective Mg₂ 2Si_{1-x} Snx thermoelectrics, Phys. Rev. B 74 (2006) 045207.
- [9] W. Liu, X. Tan, K. Yin, H. Liu, X. Tang, J. Shi, Q. Zhang, C. Uher, Convergence of conduction bands as a means of enhancing thermoelectric performance of ntype Mg₂ 2Si_{1-x} Sn_x solid solutions, Phys. Rev. Lett. 108 (2012) 166601.
- [10] N.V. Morozova, S.V. Ovsyannikov, I.V. Korobeinikov, A.E. Karkin, K. Takarabe, Y. Mori, S. Nakamura, V.V. Shchennikov, Significant enhancement of thermoelectric properties and metallization of al-doped Mg₂ Si under pressure, J. Appl. Phys. 115 (2014) 213705.
- [11] M.A. van Huis, J.H. Chen, H.W. Zandbergen, M.H.F. Sluiter, Phase stability and structural relations of nanometer-sized, matrix-embedded precipitate phases in Al-Mg-Si alloys in the late stages of evolution, Acta Mater 54 (11) (2006) 2945–2955.
- [12] R. Vissers, M.A. van Huis, J. Jansen, H.W. Zandbergen, C.D. Marioara, S.J. Andersen, The crystal structure of the β' phase in Al-Mg-Si alloys, Acta Mater 55 (11) (2007) 3815–3823.
- **[13]** S. Ji, M. Tanaka, S. Zhang, S. Yamanaka, High pressure synthesis and superconductivity of the ternary compounds $Mg(Mg_{1-x} Al_x)Si$ with the anticotunnite structure, Inorg. Chem. 51 (19) (2012) 10300–10305.
- [14] H.W. Zandbergen, S.J. Andersen, J. Jansen, Structure determination of Mg₅ Si₆ particles in Al by dynamic electron diffraction studies, Science 277 (1997) 1221.
- [15] S.J. Andersen, H.W. Zandbergen, J. Jansen, C. Traeholt, U. Tundal, O. Reiso, The crystal structure of the β" phase in al-mg-si alloys, Acta Mater 46 (9) (1998) 3283–3298, http://dx.doi.org/10.1016/S1359-6454(97)00493-X.
- [16] P. Cannon, E.T. Conlin, Magnesium compounds: new dense phases, Science 145 (1964) 487–489.
- [17] T. Peun, J. Lauterjung, E. Hinze, High pressure and high temperature investigations on intermetallic compounds using energy-dispersive x-ray

powder diffraction, Nucl. Instr. Methods Phys. Res. B 97 (1-4) (1995) 483-486.

- [18] T.D. Huan, V.N. Tuoc, N.B. Le, V.N. Minh, L.M. Woods, High-pressure phases of Mg₂ Si from first principles, Phys. Rev. B 93 (2016) 094109.
- [19] P. Hohenberg, W. Kohn, Inhomogeneous electron gas, Phys. Rev. 136 (1964). B864.
- [20] W. Kohn, L. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140 (1965). A1133.
- [21] G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals, Phys. Rev. B 47 (1993) 558.
- [22] G. Kresse, Ab initio molekular dynamik f
 ür fl
 üssige metalle (Ph.D. thesis), Technische Universit
 ät Wien, 1993.
- [23] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996) 3865.
- [24] H.J. Monkhorst, J.D. Pack, Special points for brillouin-zone integrations, Phys. Rev. B 13 (1976) 5188.
- [25] A. Togo, F. Oba, I. Tanaka, First-principles calculations of the ferroelastic transition between rutile-type and cacl2-type sio2 at high pressures, Phys. Rev. B 78 (2008) 134106.
- [26] K. Parlinski, Z.Q. Li, Y. Kawazoe, First-principles determination of the soft mode in cubic zro2, Phys. Rev. Lett. 78 (1997) 4063.
- [27] J. Rodríguez-Carvajal, Recent advances in magnetic structure determination by neutron powder diffraction, Physica B 192 (1993) 55.
- [28] K. Momma, F. Izumi, VESTA: a three-dimensional visualization system for electronic and structural analysis, J. Appl. Crystallogr. 41 (2008) 653.
- [29] T.D. Huan, Evaluation of Crystal Free Energy with Lattice Dynamics, arXiv Preprint, 2015 arXiv:1506.09189.
- [30] D.M. Rowe, CRC Handbook of Thermoelectrics, CRC Press, USA, 1995.
- [31] H.D. Tran, M. Amsler, S. Botti, M.A.L. Marques, S. Goedecker, First-principles predicted low-energy structures of NaSc(BH₄)₄, J. Chem. Phys. 140 (2014) 124708.
- [32] T.D. Huan, M. Amsler, R. Sabatini, V.N. Tuoc, N.B. Le, L.M. Woods, N. Marzari, S. Goedecker, Thermodynamic stability of alkali metal/zinc double-cation borohydrides at low temperatures, Phys. Rev. B 88 (2013) 024108.