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We study the thermodynamic phase transition of a quantum-corrected Schwarzschild black hole. The
modified metric affects the critical temperature which is slightly less than the conventional one. The
space without black holes is not the hot flat space but the hot curved space due to vacuum fluctuations
so that there appears a type of Gross–Perry–Yaffe phase transition even for the very small size of black
hole, which is impossible for the thermodynamics of the conventional Schwarzschild black hole. We
discuss physical consequences of the new phase transition in this framework.

© 2012 Elsevier B.V. Open access under CC BY license.
1. Introduction

Thanks to Hawking radiation based on a Bekenstein’s conjecture
[1,2], there has been much attention to the thermodynamics of a
black hole system [3]. If the black hole is regarded as a thermal
object in equilibrium, then it is natural to apply the thermodynam-
ics; however, a crucial difference from the other thermal systems
is that it is a gravitational object whose entropy is written by the
area law [4,5] which provides intriguing thermodynamic issues.

In particular, a hot flat space without black holes can decay
into a black hole state because thermal particles can be a source
of gravitational collapse and then the black hole resides in thermal
equilibrium with the Hawking radiation called Gross–Perry–Yaffe
(GPY) phase transition [6]. From the thermodynamic point of view
at the isothermal surface [7,8], one can get a small unstable black
hole with the mass M1 and a large stable black hole with the
mass M2 in the Schwarzschild black hole. In connection with the
GPY phase transition, the off-shell free energy of the hot flat space
without black holes shows that the GPY phase transition occurs
only in the large black hole. Actually, the thermodynamic phase
transition and behaviors have been well appreciated in terms of
various ways in the modified Schwarzschild black holes [9–15]. To
study quantum-mechanical aspects of thermodynamic phase tran-
sition, we have to consider the back reaction of the spacetime
due to quantum fluctuations. In particular, the deformation of the
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Schwarzschild metric has been studied in Ref. [16] for the spher-
ically symmetric quantum fluctuations of the metric in detail. It
may give some improved thermodynamic properties especially in
the UV region although they are expected to be the same with the
thermodynamic behaviors at the large black hole.

In this work, we will study the phase transition of the
quantum-corrected Schwarzschild black hole in order to uncover
quantum-mechanical aspects of thermodynamic behaviors. On
general grounds, the vacuum without black holes at a zero temper-
ature can be defined in terms of the Minkowski space. Then, the
hot thermal particles in the flat space can decay into black holes.
What it means is that the free energy of the black hole is lower
than the free energy of the hot flat space. Now, in this quantum-
corrected metric, the vacuum without black holes is non-trivial
since it is not Ricci flat due to quantum fluctuations even in the
absence of the black hole. Hence, it is natural to regard the hot
curved space as a counterpart of the hot flat space for the ordi-
nary Schwarzschild black hole. As expected, the hot curved space
can also decay into the large stable black hole. For convenience,
let us define a tiny black hole whose mass is less than the critical
mass, which will be shown in later. Then, even in the UV region,
we can show that the hot curved space collapses into the tiny
black hole. It can be interpreted as a type of GPY phase transition
in the UV region.

In Section 2, the quantum-corrected metric given in Ref. [16] is
recapitulated. The spherically symmetric reduction of the Einstein–
Hilbert action can be written in terms of a renormalizable two-
dimensional dilaton gravity [17,18], which yields the quantum-
corrected metric. In Section 3, the relevant thermodynamic quan-
tities will be calculated at a finite isothermal surface. In particular,

https://core.ac.uk/display/82241111?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.physletb.2012.11.017
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
mailto:wtkim@sogang.ac.kr
mailto:yongwan89@sogang.ac.kr
http://dx.doi.org/10.1016/j.physletb.2012.11.017
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


688 W. Kim, Y. Kim / Physics Letters B 718 (2012) 687–691
they vanish at the finite distance before r = 0 because of quan-
tum fluctuations. To study the phase transition of the quantum-
corrected Schwarzschild black hole, we construct the off-shell free
energy of the hot curved space and the black hole, and show that
the critical temperature to create the black hole is less than the
conventional critical temperature in Section 4. Moreover, it turns
out that the free energy of the quantum-corrected black hole is
negatively shifted near UV region, which lies in a lower state than
the free energy of the hot curved space. It is the essential ingre-
dient in the formation of the tiny black hole. Finally, the summary
and discussion are given in Section 5.

2. Quantum-corrected Schwarzschild metric

In this section, we would like to introduce the quantum-
corrected metric in a self-contained manner for our notations [16].
So, we start with the Einstein–Hilbert action with the matter ac-
tion given by

I =
∫

d4x
√

−g(4)

[
R

16πG N
+ Lmatter

]
, (1)

where G N is the Newton constant. From now on, we neglect the
classical matter contribution. Now, the spherically symmetric re-
duction of the four-dimensional metric can be performed by as-
suming

(ds)2
(4) = ds2

(2) + 2G N

π
e−2φ dΩ2, (2)

where we express the radial part in terms of the dilaton field φ

maintaining the two-dimensional diffeomorphism. Then, we get
the two-dimensional dilaton-gravity action [18]

I = 1

2π

∫
d2x

√
−g(2)

[
e−2φ R + 2e−2φ(∇φ)2 + π

G N

]
. (3)

We assume that the generally renormalizable action takes the fol-
lowing form

I = 1

2π

∫
d2x

√−g

[
e−2φ R + 2e−2φ(∇φ)2 + π

G N
U (φ)

]
, (4)

with a new general potential U (φ) for the renormalization. Next,
the divergences can be determined by the two-dimensional non-
linear σ -model as

I = − 1

2π

∫
d2 X

√
−ĝ(X)

[
Gαβ(X)∇̂ Xα∇̂ Xβ

+ 1

2
Φ(X)R̂ + T (X)

]
(5)

where ĝμν is a fiducial metric and Gαβ(X) is a target space met-
ric, respectively. After the identification of the coordinate Xα , the
dilaton Φ , the tachyon field T , and the target metric Gαβ(X), one
can choose the vanishing β-function [17]. Using the renormaliza-
tion group equation for the potential, βU = ∂t U , t = ln(μ/μ0) [16],
one can get the renormalized potential as

U (φ) = e−φ√
e−2φ − 4

π G R

(6)

where G R = G N ln(μ/μ0) and μ is a scale parameter. Then, solv-
ing the equations of motion for the action (4), one can obtain the
quantum-corrected Schwarzschild metric,

g(r) = −2N + 1
r∫

U (r)dr = −2M +
√

r2 − a2
, (7)
r r r r
Fig. 1. It shows that the modification of relation between the event horizon and the
mass. For a given mass M , the size of the classical black hole (a = 0) is smaller than
that of the quantum-corrected black hole (a = 1), which can be seen clearly in the
UV region.

where a2 ≡ 4G R/π . The radial coordinate is restricted to r > a and
the four-dimensional quantum-corrected metric is written as

(ds)2 = −g(r)dt2 + 1

g(r)
dr2 + r2 dΩ2, (8)

where the event horizon is located at rH = √
(2M)2 + a2. Note that

the size of the quantum-corrected black hole is slightly larger than
the classical one as seen from Fig. 1 because of quantum fluctua-
tions.

The metric (8) looks asymptotically like a Reissner–Nordstrom
metric g(r) ≈ 1 − 2M/r − a2/2r2, however, it gives completely dif-
ferent behavior because of the negative signature of the third term
in the metric. It is interesting to note that the spacetime is not
Ricci flat even in spite of the absence of the classical matter con-
tribution,

R(a) = 1

a2

[
2

(
a

r

)2(
1 − 1√

1 − (a
r )2

)
+

(
a

r

)4(
1 −

(
a

r

)2)− 3
2
]

=
{∞ r → a,

0 r → ∞ (9)

where the curvature scalar can be written as asymptotically R ≈
2a4/r6 	= 0. The reason why the mass parameter does not ap-
pear in the scalar curvature is that the original Schwarzschild
metric is Ricci flat. The parameter a appears in such a way that
the quantum-mechanical fluctuation breaks the Ricci flatness. Of
course, for the vanishing limit of a = 0, the curvature scalar is
zero as expected. Essentially, the vacuum fluctuation of the flat
spacetime induces the virtual particles, which are the source of
the present curved spacetime. It means that the vacuum geometry
is nontrivial even in spite of the absence of the black hole (M = 0).
The classical vacuum corresponding to the flat spacetime was de-
formed by the spherically symmetric quantum correction. After all,
the ground state is curved. From the thermodynamic point of view,
if one considers the hot particles in this background, then it is nat-
ural to consider the instability of the hot curved spacetime, which
is an extension of the Gross–Perry–Yaffe instability of the hot flat
spacetime.

3. Thermodynamic quantities

We shall calculate thermodynamic quantities in order to study
the phase transition from the hot curved space to black holes. Let
us first define the Hawking temperature,
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Fig. 2. Plot of the heat capacity for r = 10 at the UV region which is far from the
small black hole. The solid line for the quantum-mechanical one is slightly shifted
and the heat capacity approaches zero at the finite size.

TH(a) = 1

4π

[√−gtt grr
(−g′

tt

)]∣∣
r=rH

= 1

4π
√

r2
H − a2

. (10)

It blows up for rH = a. Next, the observer at the finite isothermal
surface sees the Tolman temperature [19,20] as

T loc(a) = TH√
g(r)

= 1

4π
√

r2
H − a2

√
r√√

r2 − a2 −
√

r2
H − a2

. (11)

Let us assume that the black hole entropy satisfies the area law,

S = A

4
= πr2

H, (12)

which is clear since the present quantum correction just modifies
the potential term in the action so that the area law is consistent
with the Wald entropy [21].

The thermodynamic local energy can be derived from the ther-
modynamic first law,

dE = T dS, (13)

which is explicitly calculated as

E(a) = E0 +
S∫

S0

T loc(r)dS

= E0 + √
r
[√√

r2 − a2 −
√√

r2 − a2 −
√

r2
H − a2

]
, (14)

using dS = 2πrH drH in Eq. (14). Note that for a = 0, it recovers the
well-known local energy of the Schwarzschild black hole. Specify-
ing the boundary condition of E0 = 0, we get E = M for the infinite
cavity. In this case, the thermodynamic energy is nothing but the
ADM mass along with the Hawking temperature so that the ther-
modynamic first law dM = dS/TH is trivially satisfied.

For the thermodynamic stability, one can calculate the heat ca-
pacity at the finite boundary,

C(a) =
(

dE

dT loc

)
r
= 4π

3

(r2
H − a2)[√r2 − a2 −

√
r2

H − a2 ]
3
√

r2
H − a2 − 2

√
r2 − a2

. (15)

The small black hole is unstable for rH < (2r/3)
√

1 + 5a2/4r2 while
the large black hole is stable for rH > (2r/3)

√
1 + 5a2/4r2, which
is very similar to the conventional Schwarzschild black hole in the
box. The difference comes from the heat capacity in the UV re-
gion so that the vanishing heat capacity for the quantum-corrected
Schwarzschild black hole appears at the finite size as seen from
Fig. 2.

As for the Tolman temperature (11) and the heat capac-
ity (15) in connection with the stability of the black hole, the
Schwarzschild black hole without the box gives rise to thermal in-
stability. The essential reason is that Hawking temperature which
is measured at the infinity is proportional to the inverse mass, so
that the Hawking temperature decreases if the black hole absorbs
a small amount of radiation. In other words, it yields the negative
heat capacity irrespective of the size of the black hole. Moreover,
the density of states for the canonical ensemble is pathological
because it is not well-defined in this black hole system of the
negative heat capacity [22]. To overcome these difficulties, one can
take the advantage of the Tolman temperature by introducing finite
thermal bath instead of the infinite thermal bath characterized by
the Hawing temperature. The Tolman temperature is defined at the
surface gravity in terms of the Killing vectors at the finite surface
so that it contains the red-shift factor of the metric g(r). Then, it
gives interesting feature that the black hole temperature increases
with respect to the mass in the large black hole for the given size
of the cavity, and the heat capacity is eventually positive and then
the large black hole can be stable. Moreover, the canonical ensem-
ble with the Tolman temperature can be well-defined.

4. Free energy and phase transition

We are going to obtain the off-shell free energy to find the
critical temperature of the black hole formation. Then, the phase
transition from the hot curved space to the black hole system is
studied. Now, the off-shell free energy can be defined as

F BH
off (a) = E(a) − T S

= √
r
[√√

r2 − a2 −
√√

r2 − a2 − 2M
] − π

(
4M2 + a2)T .

(16)

For a = 0, it is reduced to the free energy for the Schwarzschild
black hole. However, the free energy (16) for M = 0 is not zero at
any temperatures, which is in contrast to the conventional one. It
will affect the phase transition from the hot curved space to the
black hole.

By the way, the critical temperature can be calculated as

Tc(a) = 3
√

3

8πr

(
1 +

(
a

r

)2)− 3
4

(17)

from extrema of the off-shell free energy, dF BH
off (a)/dM|T =Tc = 0.

Among three extrema, the physically meaningful two extrema in
thermal equilibrium appear at the positive mass region. The small
root defined by M1(a) is for the small unstable black hole and the
other one defined by M2(a) is for the large stable black hole. Note
that they are equal root M1(a) = M2(a) at the critical temperature.
The large black hole can be nucleated above the critical tempera-
ture as seen from Fig. 3. After some calculations, we can find the
small black hole is less than the conventional one while the large
black hole is larger than the conventional one, i.e., M1(a) < M1(0)

and M2(a) > M2(0), where M1(0) and M2(0) are just small and
large masses for a = 0. In particular, the quantum-corrected criti-
cal temperature is less than the conventional critical temperature,
which means that the large stable black hole can be nucleated in
equilibrium at a slightly small temperature compared to the clas-
sically expected temperature.
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Fig. 3. For a = 1, r = 10, T = 0.0350 and Tc(1) = 0.0205, the large black hole of
mass M2 = 4.680 can be nucleated in stable equilibrium and the small black hole
of the mass M1 = 1.330 can decay into either the large black hole or massless black
hole state. Overall behaviors are the same with conventional ones except the UV
region. Intriguing thermodynamic properties in the UV region for this tiny black
hole will be given in Fig. 4.

For the completeness of the phase transition, we consider the
free energy of the hot curved space at a temperature. For simplic-
ity, the free energy for a single scalar field on the curved space
without black holes is given by

F HS
off (a) = − 2

3π

r∫
a

dr
r2

g(r)

∞∫
0

dE
[E2 − g(r)m2] 3

2

(eβE − 1)

= −2π3

135

√
r2 − a2

(
r2 + 2a2)T 4 + O

(
m2). (18)

For a massless limit, it can be regarded as the free energy for
gravitons by adding spin degrees of freedom. Note that the free
energy of the hot flat space is greater than that of the hot curved
space. The reason why we consider the hot curved space rather
than the hot flat space is that our spacetime is already curved due
to the quantum fluctuation, which has something to do with the
non-Ricci flatness of the quantum-corrected Schwarzschild black
hole as shown in the previous section. In other words, the space-
time without black holes is essentially curved because of vacuum
fluctuations. The free energy difference between the hot flat space
without black hole F HS

off (0) and the hot curved space without black
hole F HS

off (a) is explicitly given as

F HS
off (0) − F HS

off (a) = −2π3

135
r3T 4

[
1 −

√
1 − a2

r2

(
1 + 2a2

r2

)]
, (19)

which is positive for a2/r2 <
√

3/4. If the size of the cavity is prop-
erly large compared to the parameter a, the free energy of the hot
flat space is greater than the free energy of the hot curved space.
So, one can naturally imagine that the transition from the hot flat
space to the hot curved space F HS

off (0) → F HS
off (a) is possible.

We are now in a position to mention the possibility of phase
transition using the off-shell free energies of the hot curved space
and the black hole. In fact, the GPY phase transition for the
Schwarzschild black hole appears only for the large black hole,
F HS

off (0) > F BH
off (0). In our case also, the same GPY phase transi-

tion occurs for the large black hole, F HS
off (a) > F BH

off (a). Moreover,
the free energy of the black hole is still lower than the free energy
of the hot curved space even in the UV region, F HS

off (a) > F BH
off (a) as

long as Tc(a) < T < [135a2/{2π2
√

r2 − a2(r2 + 2a2)}]1/3 whereas
F HS

off (0) < F BH
off (0) for the conventional case. This is plotted in Fig. 4

at a temperature greater than the critical temperature. Note that
Fig. 4. Plot of the off-shell free energy at r = 10, T = 0.0350 and Tc(1) = 0.0205.
The horizontal bold line describes the free energy of the hot curved space which is
actually negative. The solid curve is for the off-shell free energy of the quantum-
corrected one F BH

off (1), which is lower than the dotted curve of the classical off-shell
free energy F BH

off (0). M∗ = 0.114 is a critical mass to form a tiny black hole.

the mass of the tiny black hole should be less than the critical
mass M∗ = 0.114 in Fig. 4, which is very small compared to the
mass of the small black hole M1 = 1.330 in Fig. 3. Therefore, one
can see that the hot curved space can be nucleated into the tiny
black hole; however, it is unstable and loses its mass eventually.

5. Discussions

We have shown that the phase transition of the quantum-
corrected Schwarzschild black hole is almost the same with the
conventional one for the large black hole, which is just the Gross–
Perry–Yaffe phase transition; however, the critical temperature is
less than that of the Schwarzschild black hole on account of the
quantum correction. In the UV region, the hot curved space with-
out black holes can also decay into the tiny black hole, which
means that the GPY phase transition occurs with the help of the
quantum correction so that the tiny black hole state is more stable
than the hot curved space. This tiny black hole is not in thermal
equilibrium and subsequently can decay into much lower free en-
ergy state.

In connection with this state, we would like to mention the
end state of the black hole for M = 0. Following the conventional
thermodynamic analysis for T > Tc , the energy is zero so that the
entropy is naturally zero, which yields F BH

off = 0. However, the free
energy of the hot flat space is F HS

off (0) < 0. It means that there does
not appear the GPY phase transition. However, from the beginning,
we have considered the quantum-mechanical deformation of the
metric to explore the UV region because the small size of black
holes will receive quantum corrections significantly. In this case,
the black hole has a minimum size of rH = a and it has a non-
vanishing entropy S = πa2 with E = 0. Then, the free energy of the
black hole becomes negative as F BH

off (a) = −πa2T < 0. Of course, it
is lower than the free energy of the hot curved space. As a result,
it happens that F HS

off (a) → F BH
off (a) → remnant at M = 0. Although it

suggests that there may be some object which has some degrees
of freedom but it is not clear at this stage in the absence of the
full quantized theory.
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