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Thermal light sources can produce photons with strong spatial correlations. We study the role that these
correlations might potentially play in bacterial photosynthesis. Our findings show a relationship between
the transversal distance between consecutive absorptions and the efficiency of the photosynthetic pro-
cess. Furthermore, membranes where the clustering of core complexes (so-called RC-LH1) is high, display
a range where the organism profits maximally from the spatial correlation of the incoming light. By con-
trast, no maximum is found for membranes with low core-core clustering. We employ a detailed mem-
brane model with state-of-the-art empirical inputs. Our results suggest that the organization of the
membrane’s antenna complexes may be well-suited to the spatial correlations present in an natural light
source. Future experiments will be needed to test this prediction.

� 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

The harvesting of light by photosynthetic organisms constitutes
the main source of energy that sustains life on Earth [1–8]. Both the
intensity and statistics of light arriving to distant parts of the Uni-
verse may be quite different from our own Sun, particularly in
terms of the inherent correlations within the light. It has been
noted that thermal radiation from a distant source carries long-
range spatial correlations in intensity [9,10]. In addition, the area
of coherence associated with sunlight is estimated to be
DA � 3:67� 10�3 mm2 [11]. Therefore, one can reasonably postu-
late that photosynthetic organisms contained within this range
might be expected to experience the effects of spatial coherence
of natural sunlight. This raises the question of how bacteria might
cope with, or adapt to such correlations in the incident light. It is
this issue that we start to explore in this paper. While our results
have as yet no firm experimental support, we hope that they stim-
ulate future explorations along this line of research.

Among the wide variety and complexity of photosynthetic
organisms, bacterial photosynthesis constitutes an ideal focus for
research. It is arguably the oldest form of photosynthetic life
[12–14], while its structure is simpler than higher organisms like
plants and algae [2–4]. Advances in the study of bacterial photo-
synthesis through Atomic Force Microscopy (AFM) imaging have
helped clarify the structure and organization of the photosynthetic
apparatus [6,15]. The composition of harvesting structures has
been observed to vary depending on the light intensity conditions
in several purple bacteria species [16–18]. In addition, high resolu-
tion AFM images have discovered variations in core complex archi-
tectures across species. For example, it was discovered that species
like Rsp. Palustris express a monomeric core complex while for Rb.
blasticus and Rb. sphaeroides it is dimeric [19]. Although a single
transmembrane helix protein PufX may be responsible for inducing
dimerization of the core complex [20], it is still unclear what ben-
efits this development brings from the point of view of photon
absorption [21,22]. Furthermore, species like Rsp. photometricum
naturally express clusters of core complex. The samples analyzed
in Ref. [23] show that 73% of core complexes make a maximal
number of three core-core contacts. Potential benefits have been
studied from the point of view of photo-excitation migration [24]
but from the point of view of photon absorption, they still lack
quantification.

In this paper, we analyze the potential role of spatial correla-
tions in the photon absorption on the metabolism of the photosyn-
thetic organism. Such correlations will naturally be present in most
light sources but have been assumed to be too small to make an
impact. We examine the photosynthetic efficiency, which is the
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amount of solar energy absorbed by the antenna complexes that is
then transformed into chemical energy in the reaction center (RC).
Our theoretical model has already been shown to capture the chro-
matic adaptation of Ref. [17] in terms of the dynamic interplay
between the excitation kinetics and the RC cycling [25,26]. Specif-
ically, we show that spatial correlations in the statistics of photon
arrival and hence absorption, could yield an enhancement of the
efficiency of the photosynthetic process. Moreover, our results
show that the core-core clustering plays a fundamental role on
the degree of this enhancement. In particular, membranes with
high core-core clustering display higher sensibility to the spatial
correlations when compared with disordered membranes.
LH1
12

λ

Fig. 1. Schematic of our theoretical model for photon absorption and excitation
transfer. Radiation from a thermal source (as approximated by our Sun, for
example) is absorbed by LHC complexes 1 (blue rings) or 2 (green rings) at a
combined rate cA . The resulting excitation is transfered from complex i to complex j
at a specific rate tij or it is dissipated at a rate kD . At the reaction center, the double
excitation of the special pair P yields to the formation of quinol ðQBH2Þ molecule in
a cycle that lasts a few milliseconds. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
Photosynthetic membrane model

The photosynthetic purple bacteria use light harvesting com-
plexes (LHC) that are spatially distributed on the cytoplasmic
membrane [3,7,27,28] to capture incoming photons within a speci-
fic range of the spectra. The complex referred to as Light Harvest-
ing 1 (LH1) generally absorbs maximally at 875 nm while the
complex Light Harvesting 2 absorbs maximally at 800 nm and
850 nm [3,29,30]. The absorbed photo-excitation is then trans-
ferred to the photosynthetic reaction center (RC) or dissipated at
specific transfer and dissipation rates, respectively. A set of pig-
ments in the RC undergo a reduction after electronic excitation.
Two of these electrons are necessary to form a molecule of Quinol
(QBH2), therefore two photo-excitations are required. Once a RC
receives the second photo-excitation it takes a few milliseconds
to produce Quinol, undock the new molecule and be substituted
by a new Quinone (QB). Absorption rates have been calculated
for LH1 and LH2 and normalized to a light intensity of 1 W/m2

resulting in c1 ¼ 1 s�1 for LH1 and c2 ¼ 0:55 s�1 for LH2 [25,31].
In this way, a membrane with N1 LH1 complexes and N2 LH2 com-
plexes has an absorption rate cA ¼ Iðc1N1 þ c2N2Þ for a given light
intensity I. The transfer rates measured from pump–probe experi-
ments are in good agreement with generalized Föster calculations
[32], assuming intra-complex delocalization. LH2!LH2 transfer
rate has been calculated as t22 ¼ 10 ps [32], while LH2? LH1 trans-
fer has been measured for R. Sphaeroides as t21 ¼ 3:3 ps [33]. Back-
transfer LH1! LH2 is approximately t12 ¼ 15:5ps while the LH1!
LH1 mean transfer time t11 has been calculated using a generalized
Förster interaction [5] as 20 ps. Second and third lowest exciton
lying states cause LH1! RC transfer [34], consistent with a transfer
time of 35� 37 ps found experimentally at 77 K [35,36]. As pro-
posed in Ref. [27], increased spectral overlap at room temperature
improves the transfer time to t1;RC ¼ 25 ps. The back-transfer from
an RC’s fully populated lowest exciton state to higher-lying LH1
states occurs in a calculated time of tRC;1 ¼ 8:1 ps [34], which is
close to the experimentally measured 7–9 ps estimated from decay
kinetics after RC excitation [37]. The subsequent passage through
the RC complex depends on whether the RC is neutral (i.e. the RC
is in an open state), and typically occurs within tþ ¼ 3 ps. The dis-
sipation rate cD resulting from fluorescence and internal conver-
sion mechanisms, has been estimated to be cD ¼ 1 ns�1 [5]. Our
model adopts a stochastic approach to the classical rate equations
for a large number of LHC (�400). It accounts for photon absorp-
tion, photo-excitation transfer, dissipation and RC cycling for a
given architecture and light statistics.

Fig. 1 illustrates schematically our theoretical model. At each
time step (dt � 0:025 ps) incoming photons are absorbed at a com-
bined rate cA by complexes LH1 and LH2. Our semiclassical model
places consecutive absorptions within a correlation radius r in
order to simulate the spatial bunching of thermal light. When r is
large enough to cover the whole membrane, we recover the limit
of random absorption (no correlation). This simple mechanism
allows us to model the grouping effect present in pairs of photons,
where the bunching degree is related to the inverse of the param-
eter r. Consequently, the absorbed photo-excitation diffuses
throughout the membrane in search for an open RC according to
transfer rates for a given membrane architecture. Once an open
RC has received two photo-excitations, it is set closed and no other
photo-excitation is allowed to enter. After a time sRC has elapsed
from the moment in which the second photo-excitation has
entered, the RC is set open and the cycle starts from the beginning.
This open/close mechanism accounts for the time where two elec-
trons produce QBH2 before it undocks and a new QB substitutes it.
This cycling process lasts a few milliseconds and successfully
explains structural preferences in adaptation of purple bacteria
[16–18,25,26].
Results and discussion

The membrane’s performance is quantified by its efficiency g,
defined as the ratio of photo-excitations that produce charge sep-
aration in the RCs, to the total number of absorbed photons. Simi-
larly we define the relative efficiency g=gRA, to compare the
efficiency g of correlated photons and the efficiency gRA for the sce-
nario where spatial correlations are not accounted for. We study
membranes which have the same number of LH1 and LH2 com-
plexes (N ¼ 400), but differ in the specific architecture/configura-
tion of complexes; in particular, the RC-LH1 core-core clustering.
Hence the contrasting situations of high core-core clustering
(HCC, Fig. 2(a)) and sparse low core-core clustering (LCC, Fig. 2
(b)), differ in terms of the mean number of RC-LH1 which encircle
any RC-LH1 core-complex. Fig. 2(a) represents well the maximal
core-core clustering that is observed in Rsp. photometricum for
low-light intensity growth [23] with a linear core arrangement
similar to Rb. sphaeroides [38], while Fig. 2(b) resembles the vesi-
cles grown under high-light intensity in Rsp. photometricum [23].

Fig. 2(c) shows the striking result that HCC membranes benefit
from the spatial correlations present in the incident sunlight. Our
model captures a peak enhancement in the photosynthetic
efficiency for membranes with HCC clustering (blue triangles),
which is however absent in the LCC (red circles). Our simulations
reveal that HCC presents a reduction in the number of complexes
visited before charge separation takes place, when consecutive
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Fig. 2. Effects of light correlations on photosynthetic relative efficiency according to their core-core clustering. Architectures of the antenna complexes (a) HCC and (b) LCC.
They are obtained as local minima in a large-scale Monte Carlo energy minimization, and are hence realistic as (locally stable) minimum energy structures. Blue rings
represent LH2 antennae and green rings are core RC-LH1 complexes. (c) Photosynthetic relative efficiency as a function of the correlation parameter r for architectures HCC
(triangles) and LCC (circles). Dashed black line illustrates the result without light correlation. Symbols represent the result from our model while lines correspond to the
fitting of our simulation points. (d) Analogous to (c) but for negative correlation. The RC closure time is sRC ¼ 12:5 ms. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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absorptions occur within radii compatible with the core clusters
size. This can be understood as a benefit of placing clustered cores
in the presence of the incident thermal light which is spatially
bunched. Therefore it is desirable to envision clustered charge sep-
aration units for efficient conversion in artificial devices subject to
sunlight excitation. Our simulation shows the output for a RC
closed time of 12:5 ms in agreement with the average time for qui-
none release [39,40], however values of closed times up to 50 ms
have proven to preserve the observed effect. By contrast, for nega-
tive spatial correlation in the incident light (i.e. opposite of natural
sunlight), the peak disappears as shown in Fig. 2(d).

While other energetic and metabolic factors (e.g. complexes
affinity and charge carrier diffusion) may ultimately dictate a given
membrane’s architecture in a given environment, our results also
speak to open questions about the purpose of membrane organiza-
tion [38,41], showing that it allows the system to harvest not only
the light’s energy, but also to profit from its spatial correlations.
The increment in efficiency shown in Fig.2(c) should not be
regarded as negligible: It has been demonstrated that for these
organisms, large structural variations occur as a result of seemingly
modest metabolic benefits. For example, Rsp. acidophilia develops
an expensive structural adaptation under low intensity illumina-
tion that gradually replaces LH2 by LH3 complexes which, due to
a red shifted maximum, improves the transfer to the LH1 which
in turn improves the membrane’s efficiency by 3–4% [30].
Conclusions

We have used a simple yet empirically grounded model to
study the potential effects of spatial correlations on bacterial
photosynthesis, for membrane architectures with contrasting
core-core clustering. We have shown that clustering of charge sep-
aration units might in principle be used to exploit the spatial cor-
relation of thermal light by reducing the mean free path required
for absorbed excitations to reach a charge separation unit. These
results suggest that the photosynthetic organism may be able to
profit from the incident light’s implicit spatial bunching in order
to satisfy its metabolic needs.
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[32] Hu X, Ritz T, Damjanović A, Autenrieth F, Schulten K. Photosynthetic apparatus
of purple bacteria. Q. Rev. Biophys. 2002;35(1). http://dx.doi.org/10.1017/
S0033583501003754.

[33] Hess S, Chachisvilis M, Timpmann K, Jones MR, Fowler GJ, Hunter CN,
Sundström V. Temporally and spectrally resolved subpicosecond energy
transfer within the peripheral antenna complex (LH2) and from LH2 to the
core antenna complex in photosynthetic purple bacteria. Proc. Natl. Acad. Sci.
USA 1995;92:12333.

[34] Damjanovic A, Ritz T, Schulten K. Excitation energy trapping by the reaction
center of Rhodobacter Sphaeroides. Int. J. Quantum Chem 2000;77:139–51.

[35] Bergström H, van Grondelle R, Sunsdström V. Characterization of excitation
energy trapping in photosynthetic purple bacteria at 77 K. FEBS Lett.
1989;250:503–8.

[36] Visscher KJ, Bergström H, Sunsdtröm V, Hunter CN, van Grondelle R.
Temperature dependence of energy transfer from the long wavelength
antenna BChl-896 to the reaction center in Rhodospirillum rubrum,
Rhodobacter sphaeroides (w.t. and M21 mutant) from 77 to 177 K, studied
by picosecond absorption spectroscopy. Photosynth. Res. 1989;22:211–7.

[37] Timpmann K, Zhang FG, Freiberg A, Sundström V. Detrapping of excitation
energy from the reaction centre in the photosynthetic purple bacterium
Rhodospirillum rubrum. Biochim. Biophys. Acta 1993;1183:185.

[38] Bahatyrova S, Frese ON, Siebert CA, Olsen JD, van der Werf KO, van Grondelle R,
Niederman RA, Bullough PA, Otto C, Hunter CN. The native architecture of a
photosynthetic membrane. Nature 2004;430:1058–62.

[39] Agostiano A, Milano F, Trotta M. NMR studies of quinone binding to reaction
centres from Rb. Phaeroides. Biophys. J. 1992;61:A101.

[40] Milano F, Agostiano A, Mavelli F, Trotta M. Kinetics of the quinone binding
reaction at the QB site of reaction centers from the purple bacteria
Rhodobacter sphaeroides reconstituted in liposomes. Eur. J. Biochem.
2003;270:4595–605.

[41] Simon Scheuring S, Sturgis JN. Dynamics and diffusion in photosynthetic
membranes from Rhodospirillum photometricum. biophys. J.
2006;91:3707–17.

http://refhub.elsevier.com/S2211-3797(16)30409-0/h0065
http://refhub.elsevier.com/S2211-3797(16)30409-0/h0065
http://refhub.elsevier.com/S2211-3797(16)30409-0/h0070
http://refhub.elsevier.com/S2211-3797(16)30409-0/h0070
http://refhub.elsevier.com/S2211-3797(16)30409-0/h0075
http://refhub.elsevier.com/S2211-3797(16)30409-0/h0075
http://refhub.elsevier.com/S2211-3797(16)30409-0/h0075
http://refhub.elsevier.com/S2211-3797(16)30409-0/h0080
http://refhub.elsevier.com/S2211-3797(16)30409-0/h0080
http://refhub.elsevier.com/S2211-3797(16)30409-0/h0085
http://refhub.elsevier.com/S2211-3797(16)30409-0/h0085
http://refhub.elsevier.com/S2211-3797(16)30409-0/h0085
http://refhub.elsevier.com/S2211-3797(16)30409-0/h0090
http://refhub.elsevier.com/S2211-3797(16)30409-0/h0090
http://refhub.elsevier.com/S2211-3797(16)30409-0/h0090
http://refhub.elsevier.com/S2211-3797(16)30409-0/h0095
http://refhub.elsevier.com/S2211-3797(16)30409-0/h0095
http://refhub.elsevier.com/S2211-3797(16)30409-0/h0100
http://refhub.elsevier.com/S2211-3797(16)30409-0/h0100
http://refhub.elsevier.com/S2211-3797(16)30409-0/h0100
http://refhub.elsevier.com/S2211-3797(16)30409-0/h0100
http://refhub.elsevier.com/S2211-3797(16)30409-0/h0105
http://refhub.elsevier.com/S2211-3797(16)30409-0/h0105
http://refhub.elsevier.com/S2211-3797(16)30409-0/h0110
http://refhub.elsevier.com/S2211-3797(16)30409-0/h0110
http://refhub.elsevier.com/S2211-3797(16)30409-0/h0115
http://refhub.elsevier.com/S2211-3797(16)30409-0/h0115
http://refhub.elsevier.com/S2211-3797(16)30409-0/h0115
http://refhub.elsevier.com/S2211-3797(16)30409-0/h0120
http://refhub.elsevier.com/S2211-3797(16)30409-0/h0120
http://refhub.elsevier.com/S2211-3797(16)30409-0/h0120
http://refhub.elsevier.com/S2211-3797(16)30409-0/h0125
http://refhub.elsevier.com/S2211-3797(16)30409-0/h0125
http://refhub.elsevier.com/S2211-3797(16)30409-0/h0125
http://refhub.elsevier.com/S2211-3797(16)30409-0/h0130
http://refhub.elsevier.com/S2211-3797(16)30409-0/h0130
http://refhub.elsevier.com/S2211-3797(16)30409-0/h0130
http://refhub.elsevier.com/S2211-3797(16)30409-0/h0135
http://refhub.elsevier.com/S2211-3797(16)30409-0/h0135
http://refhub.elsevier.com/S2211-3797(16)30409-0/h0140
http://refhub.elsevier.com/S2211-3797(16)30409-0/h0140
http://refhub.elsevier.com/S2211-3797(16)30409-0/h0145
http://refhub.elsevier.com/S2211-3797(16)30409-0/h0145
http://refhub.elsevier.com/S2211-3797(16)30409-0/h0145
http://refhub.elsevier.com/S2211-3797(16)30409-0/h0150
http://refhub.elsevier.com/S2211-3797(16)30409-0/h0150
http://refhub.elsevier.com/S2211-3797(16)30409-0/h0155
http://refhub.elsevier.com/S2211-3797(16)30409-0/h0155
http://refhub.elsevier.com/S2211-3797(16)30409-0/h0155
http://dx.doi.org/10.1017/S0033583501003754
http://dx.doi.org/10.1017/S0033583501003754
http://refhub.elsevier.com/S2211-3797(16)30409-0/h0165
http://refhub.elsevier.com/S2211-3797(16)30409-0/h0165
http://refhub.elsevier.com/S2211-3797(16)30409-0/h0165
http://refhub.elsevier.com/S2211-3797(16)30409-0/h0165
http://refhub.elsevier.com/S2211-3797(16)30409-0/h0165
http://refhub.elsevier.com/S2211-3797(16)30409-0/h0170
http://refhub.elsevier.com/S2211-3797(16)30409-0/h0170
http://refhub.elsevier.com/S2211-3797(16)30409-0/h0175
http://refhub.elsevier.com/S2211-3797(16)30409-0/h0175
http://refhub.elsevier.com/S2211-3797(16)30409-0/h0175
http://refhub.elsevier.com/S2211-3797(16)30409-0/h0175
http://refhub.elsevier.com/S2211-3797(16)30409-0/h0180
http://refhub.elsevier.com/S2211-3797(16)30409-0/h0180
http://refhub.elsevier.com/S2211-3797(16)30409-0/h0180
http://refhub.elsevier.com/S2211-3797(16)30409-0/h0180
http://refhub.elsevier.com/S2211-3797(16)30409-0/h0180
http://refhub.elsevier.com/S2211-3797(16)30409-0/h0180
http://refhub.elsevier.com/S2211-3797(16)30409-0/h0185
http://refhub.elsevier.com/S2211-3797(16)30409-0/h0185
http://refhub.elsevier.com/S2211-3797(16)30409-0/h0185
http://refhub.elsevier.com/S2211-3797(16)30409-0/h0190
http://refhub.elsevier.com/S2211-3797(16)30409-0/h0190
http://refhub.elsevier.com/S2211-3797(16)30409-0/h0190
http://refhub.elsevier.com/S2211-3797(16)30409-0/h0195
http://refhub.elsevier.com/S2211-3797(16)30409-0/h0195
http://refhub.elsevier.com/S2211-3797(16)30409-0/h0200
http://refhub.elsevier.com/S2211-3797(16)30409-0/h0200
http://refhub.elsevier.com/S2211-3797(16)30409-0/h0200
http://refhub.elsevier.com/S2211-3797(16)30409-0/h0200
http://refhub.elsevier.com/S2211-3797(16)30409-0/h0200
http://refhub.elsevier.com/S2211-3797(16)30409-0/h0205
http://refhub.elsevier.com/S2211-3797(16)30409-0/h0205
http://refhub.elsevier.com/S2211-3797(16)30409-0/h0205

	Exploring the effects of photon correlations from thermal sources on bacterial photosynthesis
	Introduction
	Photosynthetic membrane model
	Results and discussion
	Conclusions
	Acknowledgement
	References


