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How a committed cell can be reverted to an undifferentiated state is a central question in stem cell biology.
This process, called dedifferentiation, is likely to be important for replacing stem cells as they age or get dam-
aged. Tremendous progress has been made in understanding this fundamental process, but its mechanisms
are poorly understood. Here we demonstrate that the aberrant activation of Ras-ERK MAPK signaling pro-
motes cellular dedifferentiation in the Caenorhabditis elegans germline. To activate signaling, we removed
two negative regulators, the PUF-8 RNA-binding protein and LIP-1 dual specificity phosphatase. The removal
of both of these two regulators caused secondary spermatocytes to dedifferentiate and begin mitotic divi-
sions. Interestingly, reduction of Ras-ERK MAPK signaling, either by mutation or chemical inhibition, blocked
the initiation of dedifferentiation. By RNAi screening, we identified RSKN-1/P90RSK as a downstream effector
of MPK-1/ERK that is critical for dedifferentiation: rskn-1 RNAi suppressed spermatocyte dedifferentiation
and instead induced meiotic divisions. These regulators are broadly conserved, suggesting that similar molec-
ular circuitry may control cellular dedifferentiation in other organisms, including humans.

Published by Elsevier B.V.
1. Introduction

Cell fate reprogramming manipulates cellular differentiation and
allows its redirection, a process critical for regenerative medicine [1,2].
One mechanism often inherent to reprogramming is dedifferentiation.
In this process, a cell reverts from a differentiated and restricted state
to a more undifferentiated and multipotent state. Moreover, tumor-
initiating cells (sometimes called cancer stem cells) may arise from
the dedifferentiation of more differentiated cell types [3]. Although
cellular dedifferentiation has been observed in tissue culture cells and
in organisms [4–7], the mechanism is still poorly understood.

Normally, germ cells differentiate to produce either sperm or eggs,
which maintain the potential to create an entirely new organism. In
the nematode Caenorhabditis elegans (C. elegans), germ cells progress
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from germline stem cell (GSC) at the distal end, through meiotic pro-
phase as theymove proximally to differentiated gamete at the proximal
end (Fig. 1A); they rely on conserved regulators to control their state of
differentiation [8]. In particular, PUF (Pumilio and FBF) RNA-binding
proteins are required for GSC self-renewal in worms [9], flies [10,11],
and have been implicated in this role in mammals [12,13]. C. elegans
has multiple PUF proteins with specialized roles [14]. Among them,
FBF-1 and FBF-2 (collectively called FBF) and PUF-8 proteins regulate
GSC self-renewal [9,15] and cell fate specification [16–18]. Interestingly,
a previous report found that PUF-8 maintains commitment to the mei-
otic cell cycle and prevents dedifferentiation of spermatocytes into
germline tumors [19]. However, it has been unclear how PUF-8 inhibits
dedifferentiation.

Here we investigate the molecular and cellular bases of dediffer-
entiation in the nematode C. elegans germline. We demonstrate that
PUF-8 and LIP-1, a dual specificity phosphatase and inhibitor of MPK-1/
ERK MAPK signaling [20], work together in the C. elegans germline to
repress dedifferentiation and that they do so by inhibiting MPK-1/ERK
MAPK signaling. Moreover, activation of RSKN-1 (P90RSK, P90 Ribosomal
S6 Kinase homolog) byMPK-1/ERK in puf-8; lip-1mutant spermatocytes
disturbsmicrotubule organization and leads to germcell dedifferentiation
and formation of proximal germline tumors. Importantly, ERK2 MAPK
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Fig. 1. PUF-8 and LIP-1 normally repress proximal germline tumors. (A) Schematic of
normal adult hermaphrodite germline. This organization is typical of wild-type animals,
most puf-8 single mutants, and most lip-1 single mutants. Yellow, germ cells in mitotic
cell cycle, including germline stem cells (GSCs); green, germ cells progressing through
meiotic prophase I; mature sperm were made in larvae whereas oocytes are made in
adults. (B) Schematic of germ cell progression. Above, larval gametogenesis generates
sperm; below, adult gametogenesis generates oocytes. The switch from spermatogenesis
to oogenesis occurs during the fourth larval stage (L4). (C) Graph showing the percentage
of animals with proximal germline tumors. All strains were grown at 25 °C. Germline
tumors were determined by cellular morphology and DAPI staining of dissected gonads.
Standard deviation bars were calculated from at least three independent experiments.
(D and E) Adult hermaphrodite germlines were extruded and co-stained with SP56
(sperm-specific marker; green), RME2 (oocyte-specific marker; pink) and DAPI (DNA;
blue). (D) Wild-type. (E) puf-8; lip-1. Arrows indicate the distal end of the gonad arm.
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signaling has also been implicated in cellular dedifferentiation of
Sertoli cells [21], myoblasts [22], and islet cells [23] in mammals.
Therefore, the regulatory circuitry controlling C. elegans germ cell
dedifferentiation has important parallels with the control of cellular
dedifferentiation in other organisms, including humans.
2. Materials and methods

2.1. C. elegans strains

All strains were maintained at 25 °C as described unless otherwise
noted [24]. We used the wild-type Bristol strains N2 as well as the
following mutants: LGI: rrf-1(pk1417); LGII: fbf-1(ok91), fbf-2(q738),
puf-8(q725), puf-8(ok302); LGIII: glp-1(q224), mpk-1(ga111); and
LGIV: lip-1(zh15), let-60(n1046), let-60(ga89), fem-3(q20). All com-
pound mutants and their representative phenotypes are summarized
in Table S1.

2.2. RNA interference (RNAi)

RNAi experiments were performed by feeding bacteria expressing
double strand RNAs corresponding to the gene of interest [25]. Briefly,
five young adult worms were plated onto RNAi plates and allowed to
lay embryos for 1 day at 25 °C before removal. Germline phenotypes
of F1 progeny were determined by staining dissected gonads with
specific markers and DAPI. For mpk-1b isoform-specific RNAi, the
unique region (exon 1; 1–240 nt) of the mpk-1b gene was amplified
by PCR from C. elegans genomic DNA and cloned into the pPD129.36
(L4440) vector containing two convergent T7 polymerase promoters
in opposite orientations separated by a multi-cloning site. Other RNAi
bacteria were from C. elegans RNAi feeding library (Source Bioscience
LifeSciences) and C. elegans ORF-RNAi library (Open Biosystems).

2.3. Germine immunohistochemistry

For antibody staining, dissected gonadswere fixed in 3% paraform-
aldehyde with 100 mM K2HPO4 (pH 7.2) for 10–60 min at room
temperature followed by 100% cold methanol for 5 min at −20 °C
[26]. After blocking for 1 h with 0.5% BSA in 1× PBS (+0.1% Tween
20), fixed gonads were incubated for 2 h at room temperature with
primary antibodies followed by 1 h at room temperaturewith secondary
antibodies. SP56 (sperm marker—a gift from S Ward), RME-2 (oocyte
marker—a gift from B. Grant), REC-8 (mitosis marker—a gift from Josef
Loidl) and α-tubulin (Sigma) were used as primary antibodies. For
DP-MAPK (YT) antibody (Sigma) staining, all procedureswere performed
as described [27]. For Phospho-Histone H3 (Upstate Biotechnology)
staining, fixed gonads were incubated overnight at room temperature.
DAPI staining followed standard methods.

2.4. U0126 treatments

Small-molecule inhibitor (U0126) of MEK was performed using a
slightly modified method of the protocol previously described [18].
Briefly, puf-8; lip-1 double mutants were synchronized by the alkaline
hypochlorite method and arrested in M9media at the first larval or L1
stage. L1 larvae were then plated onto NGM plates containingmixture
of 100 μM U0126 and OP50 E. coli, and grown at 25 °C for 68 h,
corresponding to day one of adult life. Fertility was observed using a
dissecting microscope and germline phenotypes were determined
by staining dissected gonads with DAPI.

2.5. Western blots

Blots were prepared by standard procedures. Protein samples
were separated on 4%–20% gradient gels (Cambrex), and the blot
was probed with 1:20,000 rabbit polyclonal anti-ERK-1/2 antibody
(Sc94; Santa Cruz Biotechnology), followed by washing and incubation
with 1:10,000 HRP-anti-Rabbit (Jackson ImmunoResearch). Blots were
re-blocked and re-probed with 1:10,000 Mouse monoclonal anti-α-
tubulin (Sigma-Aldrich) and 1:10,000 HRP-conjugated anti-mouse
(Jackson ImmunoResearch).
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3. Results

3.1. PUF-8 and LIP-1 normally repress the formation of germline tumors

Wild-type C. elegans hermaphrodites make sperm during larval
stages and switch to oogenesis as adults, which are therefore self-
fertile (Fig. 1A and B). Similar to wild-type, most hermaphrodites
homozygous for puf-8(q725), henceforth called puf-8(0), make sperm
and oocytes, and are self-fertile at permissive temperature (20 °C)
[17]. However, at restrictive temperature (25 °C), 9% of puf-8(0) mu-
tants develop germline tumors in the proximal gonad (Fig. 1C and
Table S1), as shown previously for a different allele [19]. Importantly,
a previous work showed that cells in puf-8 proximal germline tumors
derive from primary spermatocytes via dedifferentiation [19]. We
have found that the proximal germline tumor phenotype of puf-8 single
mutants is dramatically enhanced by the additional loss of LIP-1, a dual
specificity ERK/MAPK phosphatase (Fig. 1C and Table S1). On their own,
lip-1(RNAi) treated animals or lip-1(zh15) null mutants, henceforth
called lip-1(0), produce both sperm and oocytes at both 20 °C and
25 °C (Fig. 1C and Table S1) [28,29]. However all puf-8; lip-1 doublemu-
tants generate proximal germline tumors at 25 °C (Fig. 1C and Table
S1). This tumor phenotype differs from the puf-8; lip-1Mog (Masculin-
ization of Germline: no oocyte and excess of sperm) phenotype seen at
20 °C (Table S1) [18]. To visualize the puf-8; lip-1 defects, we used DAPI
to stain DNA in all cells and SP56 (sperm-specific marker) and RME-2
(oocyte-specific marker) to stain gametes. Wild-type germlines stained
positively for both gamete-specific markers (Fig. 1D), but the puf-8;
lip-1 mutant stained only with the SP56 sperm marker and also had a
proximal germline tumor (Fig. 1E). Immunohistochemistry using
anti-REC-8 (mitotic cell marker) [30] and Phospho-Histone H3 (meta-
phase marker) antibodies showed that germ cells in the proximal
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3.2. puf-8; lip-1 proximal germline tumors may arise from secondary
spermatocytes via dedifferentiation

A previous report showed that PUF-8 prevents primary spermato-
cytes from dedifferentiating and generating proximal germline tumors
[19]. To test if the proximal germline tumors of puf-8; lip-1 double
mutants are also derived from primary spermatocytes, we blocked
key steps of germline development by RNAi to specific genes (Fig. 2A).
In wild-type males or Mog mutants, spermatogenesis produces sperm
continuously from GSCs, a process tightly regulated by signaling
(e.g., MPK-1/ERK MAPK signaling) and a variety of RNA regulators
(Fig. 2A) [31]. Loss of these regulators arrests germ cells at the specific
stages of meiosis or spermatogenesis (Fig. 2B). As depicted in Fig. 2A,
mpk-1 (ERK homolog) RNAi arrests germ cells in pachytene [27]. Two
cytoplasmic polyadenylation element binding (CPEB) proteins, fog-1
and cpb-1, have distinct functions in spermatogenesis: fog-1 RNAi blocks
sperm specification [32] and cpb-1 RNAi arrests germ cells as primary
spermatocytes [33]. Last, RNAi directed against ife-1, one offiveC. elegans
mRNA cap-binding eIF4E proteins, arrests germ cells as secondary
spermatocytes [34]. For this study, RNAi treatment was started in syn-
chronized L1 larvae at 25 °C and germline phenotypes were analyzed
by DAPI staining of dissected gonads after they reached adulthood
(approximately 1.5 days after L4). Indeed, RNAi of either mpk-1, fog-1,
or cpb-1 dramatically suppressed puf-8; lip-1 germline tumors (Fig. 2C).
For example, no proximal germline tumors were found in puf-8; lip-1;
mpk-1(RNAi) germlines at 25 °C; insteadgermcells arrested in pachytene
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organization as seen in mpk-1(ga117) null mutants (not shown)
[27]. The fog-1(RNAi) and cpb-1(RNAi) also significantly suppressed
formation of puf-8; lip-1 germline tumors (Fig. 2C), indicating that
the proximal germline tumors arise after sperm fate specification and
after the primary spermatocyte stage. Therefore, the tumors likely
arise via dedifferentiation of secondary or later stage spermatocytes. To
test this idea, we blocked the transition from secondary spermatocytes
to spermatozoa using ife-1(RNAi). In contrast to the earlier blocks, all
puf-8; lip-1; ife-1(RNAi) animals generated proximal germline tumors
(Fig. 2C). Therefore, the puf-8; lip-1 germline tumors likely arise via
dedifferentiation of secondary spermatocytes.
3.3. MPK-1/ERKMAPK signaling promotes dedifferentiation in the germline

We previous reported that manipulation of MPK-1/ERK MAPK sig-
naling can reprogram germ cell fate in puf-8; lip-1 mutants at 20 °C
[18]. To test whether the process of dedifferentiation also depends
on MPK-1/ERK MAPK signaling in the C. elegans germline, we depleted
expression of core MPK-1/ERK MAPK signaling genes using RNAi
in puf-8; lip-1 mutant at 25 °C. The mpk-1 gene encodes two major
transcripts, mpk-1a and mpk-1b, which produce MPK-1A and MPK-1B
proteins, respectively (Fig. 3A) [35]. mpk-1a mRNA accumulates pre-
dominantly in somatic cells and mpk-1b is expressed specifically in
the germline [27,36]. We usedWestern blot analysis to assay depletion
of these mpk-1 isoforms (Fig. 3B). Depletion of both isoforms, hence-
forth called mpk-1a/b(RNAi), caused a defect in pachytene exit (Pex)
and massive disruption of membrane organization in puf-8; lip-1 mu-
tants at 25 °C (Fig. 3C,E and S2A). However, depletion of the germline-
specific mpk-1b isoform using mpk-1b(RNAi) rescued puf-8; lip-1
germline tumors (Fig. 3C,F and S2A). To test the possibility that the
mpk-1b RNAi represents partial mpk-1 suppression rather than
mpk-1b-specific suppression, puf-8; lip-1 mutants were placed on
RNAi plates with serially diluted mpk-1a/b(RNAi) bacteria. However,
weak mpk-1a/b(RNAi) failed to rescue puf-8; lip-1 germline tumors.
Next, to ask if MPK-1/ERK MAPK signaling acts within the germline to
drive dedifferentiation, we performed germline-specific RNAi using an
rrf-1(pk1417) mutant, which is largely defective for somatic but not
germline RNAi [37]. Indeed, RNAi directed against either mpk-1b or
mpk-1a/b dramatically suppressed generation of germline tumors in
puf-8; lip-1; rrf-1 triple mutants (Fig. S3) as in puf-8; lip-1 double mu-
tants (Fig. 3E and F). This suggests that MPK-1/ERK MAPK signaling is
required in the germline tissue to promote the dedifferentiation in
puf-8; lip-1mutants. To confirm the role of MPK-1 on dedifferentiation,
we took advantage of an mpk-1(ga111) temperature-sensitive (ts)
mutant, henceforth called mpk-1(ts), that only has germline defects
(Table S1) [35]. Consistent with RNAi results, the inactivation of
MPK-1 in mpk-1(ts) mutants rescued the puf-8; lip-1 germline tumor
phenotype (Fig. 3C, G and Table S1). In addition, RNAi of either lin-45
(a Raf homolog) or let-60 (a Ras homolog) also dramatically suppressed
puf-8; lip-1 germline tumors (Fig. 3C and Fig. S2). Importantly, the ste-
rility typical of puf-8; lip-1 germline tumor mutants was also rescued
by lin-45(RNAi) by 50% (Fig. S2A, S2B). Using the SP56 and RME2
markers, these puf-8; lip-1; mpk-1(ts) germlines made both sperm
and oocytes. Moreover, whereas puf-8; lip-1 animals were sterile with
germline tumors (Fig. 3H), puf-8; lip-1; mpk-1(ts) animals were fertile
with both spermand oocytes (Fig. 3I). The importance ofMPK-1/ERKac-
tivity in dedifferentiationwas further confirmed using a small-molecule
MEK inhibitor (U0126). U0126 inhibited puf-8; lip-1 germline tumors
sufficiently to render them fertile. Finally, we tested whether the
aberrant activation of MPK-1/ERK MAPK signaling is sufficient to pro-
mote dedifferentiation using let-60(n1046) and let-60(ga89), two gain-
of-function (gf) mutants henceforth, called let-60(gf), which have much
higher MPK-1/ERK activity than wild-type [27]. Neither let-60(gf)
mutants generated proximal germline tumors in males (XO) or
hermaphrodites (XX) at either 20 °C or 25 °C (not shown, Fig. 3C).
However, dedifferentiation was induced in 67% of the let-60(gf)
mutants using RNAi against puf-8. To confirm this, we generated
puf-8(0); let-60(ga89gf) double mutants and assayed their germlines
by DAPI staining of dissected gonads. Remarkably, 92% of puf-8;
let-60(gf) mutants had germline tumors (Fig. 3C). All together, we
conclude that activation of MPK-1/ERK in the puf-8 mutant is critical
for dedifferentiation in the C. elegans germline.

3.4. Active MPK-1/ERK may control initiation of dedifferentiation, but not
maintenance of proximal germline tumors

To investigatewhetherMPK-1/ERK is activated in puf-8; lip-1mutant
germlines, we stained dissected gonads with MAPK (YT) monoclonal
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antibody, which recognizes the dual-phosphorylated, active form of
C. elegans MPK-1/ERK MAPK (Fig. 4) [27,36], and we quantitated levels
with ImageJ software (Fig. S4D). In wild-type germlines, activated
MPK-1/ERK was not detected in the distal mitotic region (Fig. S4A, B),
but became abundant in the proximal pachytene region and inmaturing
oocytes (Fig. 4A–C), as seen before [27]. A similar distribution was seen
in both puf-8 and lip-1 single mutants. In contrast, activatedMPK-1/ERK
was detected in the proximal part of the mitotic region and in the early
meiotic region of puf-8; lip-1 at 20 °C (Fig. 4D–F and S4C, D). Also in
these puf-8; lip-1mutants at 25 °C, activated MPK-1/ERK was abundant
in both nuclei and cytoplasmof proximal germ cells (Fig. 4G–I). Interest-
ingly, after thededifferentiated germ cells began theirmitotic cell cycles,
activated MPK-1/ERK was only present at a very low level (Yellow line
in Fig. 4H). Based on this result, we hypothesized that MPK-1/ERK
MAPK signaling may not be required for the maintenance of germline
tumors once germ cells had dedifferentiated. To test this idea, puf-8;
lip-1 animals were grown at 25 °C on a normal NGM plate until adult-
hood (1 day after L4), and then transferred to either vector(RNAi),
mpk-1b(RNAi) or mpk-1a/b(RNAi) plates after verifying that their sib-
lings all had proximal germline tumors (Fig. 5A). Remarkably, these
germlines retained their proximal germline tumors, as assayed using
DAPI staining (Fig. 5C–E). We confirmed loss of MPK-1 activity with
the MAPK (YT) monoclonal antibody (Fig. 5F–H): 68% ofmpk-1b(RNAi)
and 89% of mpk-1a/b(RNAi) animals showed very weak or no activated
MPK-1/ERK in their germlines. Therefore, depletion of either mpk-1b
ormpk-1a/bwas no longer able to suppress puf-8; lip-1 germline tumors
once established (Fig. 5B). We suggest that MPK-1/ERK activity initiates
dedifferentiation and tumor formation, but that it is not required for
the maintenance of the tumorous state. Which factors are required to
maintain proximal germline tumors? We do not know but suggest
that GLP-1/Notch signaling may be involved, because the GLP-1/Notch
receptor was expressed in proximal germline tumors ([19], not shown).

3.5. fbf-1 and fbf-2 mutants enhance puf-8 dedifferentiation

We reported previously that FBF-1 and FBF-2 bind thempk-1 3′UTR
and repress mpk-1 expression in the distal germlines [36]. Moreover,
mitotic
region

pachyte

region

wild-type puf-8; li

mitoticregion

pachytene region

sperm oocytesD
A

P
I

M
A

P
K

(Y
T

)
M

E
R

G
E

A

F

E

D

C

B
mitoticregion

pachytene region

sperm oocytes

mitoticregion

pachytene region

sperm oocytes

mitotic
region

tz

tz

tz

tz

tz

tz

pachyte

region

pachyte

region

mitotic
region

Fig. 4. Localization of activated MPK-1/ERK in puf-8; lip-1 germlines at 20 °C and 25 °C. Disse
merge images (C,F,I). Wild-type (A–C). puf-8; lip-1 grown at either 20 °C (D–F) or 25 °C (G
region and oocytes of the wild-type germline (B); it is found in the proximal part of the m
is found throughout the puf-8; lip-1 germline at 25 °C but decreases most proximally (yello
pachytene region, and gametogenesis (white in A–F) as well as sperm (green), oocytes (pi
MPK-1 is activated in the distal germline of fbf-1; lip-1 double mutants
as it is in puf-8; lip-1 at 20 °C (not shown) [36]. To ask whether the
aberrant activation of MPK-1 in an fbf-1 and/or fbf-2 background pro-
motes dedifferentiation, we examined the germlines of (1) fbf-1 and
fbf-2 single mutants, (2) fbf-1 fbf-2, fbf-1; lip-1 and fbf-2; lip-1 double
mutants and (3) fbf-1 fbf-2; lip-1 triple mutants, all grown at 25 °C and
all assayed by staining with mitosis markers and DAPI. None of these
strains showed any proximal germline tumors (Fig. 6A and Table S1),
suggesting thatMPK-1/ERKactivation alone does not initiate dedifferen-
tiation. We next tested whether fbfmutations enhance dedifferentiation
of puf-8 mutants at 25 °C. To this end, we examined dissected adult
gonads of puf-8 fbf-1 double mutants, puf-8 fbf-2 double mutants, and
puf-8 fbf-1 fbf-2 triple mutants. Indeed, 71% of puf-8 fbf-1 and 76% of
puf-8 fbf-2 animals had proximal germline tumors, which are likely to de-
rive from dedifferentiation (Fig. 6A–C and Table S1). However no puf-8
fbf-1 fbf-2 triple mutants had germline tumors (Fig. 6A, D and Table S1).

Why do puf-8 fbf-1 fbf-2 triple mutants fail to develop proximal
germline tumors?We do not know, but suggest two possibilities. Per-
haps dedifferentiation must be programmed at a stage of germline
development lacking in fbf-1 fbf-2mutants (e.g. adult GSCs) [17]. Alterna-
tively dedifferentiation may be repressed by the aberrant de-repression
of meiosis-promoting genes in fbf-1 fbf-2 mutants (e.g., gld-1 [9]).
Distinguishing between these possibilities is beyond the scope of this
work but will be an important challenge for the future.

The three strains that induced dedifferentiation at 25 °C (puf-8;
lip-1, puf-8 fbf-1, and puf-8 fbf-2) have no proximal germline tumors
at 20 °C, but instead produce excess sperm and no oocytes, the Mog
phenotype (Table S1) [17].We therefore testedwhether a differentmu-
tant driving excess sperm production might enhance dedifferentiation
when placed in the puf-8 mutant background. To this end, we used a
fem-3(q20) gain-of-function (gf) mutant, henceforth called fem-3(gf),
which makes sperm continuously as an adult and fails to switch
into oogenesis at both 20 °C and 25 °C (Fig. 6E, F and Table S1) [16]. We
first treated fem-3(gf) with puf-8(RNAi), but generated no germline tu-
mors in the fem-3(gf); puf-8(RNAi) animals (Fig. 6E and Table S1). To con-
firm this result, we scored both puf-8(q725); fem-3(gf) and puf-8(ok302);
fem-3(gf) double mutants for germline tumors at 25 °C. Consistent
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with the RNAi results, only a low percentage of the double mutants
produced germline tumors, which was also typical of puf-8 single
mutants (Fig. 6E, G and Table S1). Therefore, excess sperm does not
necessarily lead to dedifferentiation. We conclude that PUF-8 and
the two FBFs work together to inhibit germline dedifferentiation.

3.6. RSKN-1/P90RSK, a downstream effector of MPK-1/ERK, is critical for
germline dedifferentiation

Which ERK/MAPK targets are required for dedifferentiation in puf-8;
lip-1 germline? Recently, Schedl and colleagues identified about 30
conserved ERK/MAPK substrates by an integrated bioinformatics, genet-
ic, and biochemical analysis [38]. Based on this report and our ideas of
other possible substrates, we conducted an RNAi-based genetic screen
to identify candidate genes that promote dedifferentiation in the puf-8;
lip-1 germline at 25 °C (Fig. S5). 26 out of 28 genes affected puf-8; lip-1
germline tumors at 25 °C (Fig. S5). Interestingly, three genes (rskn-1,
ttbk-2, and toe-3) significantly suppressed the puf-8; lip-1 germline
tumor and reverted it to aMog (excess sperm) germlinewithnodramatic
proliferation defects (Fig. 7A and S5B, 5G). These three genes therefore
likely promote dedifferentiation in the puf-8; lip-1 germlines at 25 °C.

Among them, we focus on rskn-1 for two reasons: vertebrate P90RSK
(P90 Ribosomal S6 Kinase) has been identified as a direct ERK substrate
and it also appears to be an effector of ERK-induced transition through
meiotic cell division [39,40]. We therefore investigated the effect of
RSKN-1 on nematodemeiotic cell divisions by staining dissected gonads
with an anti-α-tubulin antibody and DAPI. In wild-type L4 hermaphro-
dite and adult male germlines, primary and secondary spermatocytes
stain for α-tubulin during meiotic cell divisions (not shown). By con-
trast, the vast majority (96%) of spermatocytes in puf-8; lip-1 mutants
grown at 25 °C displayed no α-tubulin staining (Fig. 7C, F, I and K),
although mitotic germ cells still stained for α-tubulin (not shown). To
test whether RSKN-1 might be required for meiotic cell divisions and
microtubule organization, we used RNAi to deplete rskn-1 from puf-8;
lip-1mutants, starting at the L1 stage, and stained their adult germlines
with the α-tubulin antibody. Remarkably, rskn-1(RNAi) in puf-8; lip-1
at 25 °C restored α-tubulin staining and allowed meiotic divisions
(Fig. 7D, G, J and K); the staining and divisions were comparable to
those in wild-type males (not shown) and puf-8; lip-1 Mog germlines
at 20 °C (Fig. 7B, E, H and K). From this result, we suggest that the aber-
rant RSKN-1 activation by MPK-1/ERK in puf-8; lip-1 mutants prevents
meiotic divisions and promotes germ cell dedifferentiation. Consistent
with that idea, mammalian P90RSK activation by ERK/MAPK affects
meiotic cell cycle progression and disturbs microtubule organization
in mouse oocytes [41].

3.7. Conclusion

In this report,wedemonstrate that PUFRNA-bindingproteins (PUF-8
and FBFs) andRas-ERKMAPK signaling regulates dedifferentiation in the



E

B puf-8 fbf-1

sperm
proximal germline tumor

C puf-8 fbf-2
sperm

proximal germline tumor

puf-8 fbf-1fbf-2D

E
meiotic cells

no 
GSC

100

sperm

puf-8; fem-3gfG

sperm

fem-3gfF mitotic
region pachytene

region

DAPI (DNA)

DAPI (DNA)

DAPI (DNA)

SP56 
(sperm marker)
DAPI (DNA)

SP56 
(sperm marker)
DAPI (DNA)

% Germline Tumors

puf-8(RNAi)
fem-3(q20gf)

puf-8(RNAi); fem-3(gf)
puf-8(q725); fem-3(gf)

0 20 806040

A wild-type
fbf-1(ok91)
fbf-2(q738)
puf-8(q725)
lip-1(zh15)
fbf-1 fbf-2
fbf-1; lip-1
fbf-2; lip-1
puf-8; lip-1

fbf-1 fbf-2; lip-1
puf-8 fbf-1
puf-8 fbf-2

puf-8 fbf-1 fbf-2

0
0
0
9
0
0
0
0

100
0

71
76

0
0 20 806040 100
% Germline Tumors

25°C

25°C4
0
3
2

mito
tic

region
pachytene

region

tz

tz

Fig. 6. Redundant control of dedifferentiation in C. elegans germline. (A,E) Graph showing the percentage of animals with proximal germline tumors. Standard deviation bars were
calculated from at least three independent experiments. All animals were grown at 25 °C. Germline phenotypes were determined by cellular morphology and DAPI staining of
dissected gonads. (B) puf-8 fbf-1 germline. (C) puf-8 fbf-2 germline. (D) puf-8 fbf-1 fbf-2 germline. Dashed lines mark sperm (green) and proximal germline tumors via dedifferen-
tiation (red) in B and C. puf-8 fbf-1 fbf-2 germline has only a few meiotic cells (dashed white line in D) and does not maintain GSCs [17]. (F,G) Adult hermaphrodite germlines were
extruded and co-stained with SP56 (sperm-specific marker; green) and DAPI (DNA; blue). (F) fem-3(q20gf) and (G) puf-8(q720); fem-3(q20gf) germlines at 25 °C. Arrows indicate
the distal end of the gonad arm.

1853D.S. Cha et al. / Biochimica et Biophysica Acta 1823 (2012) 1847–1855
C. elegans germline (Fig. 8). Specifically, the combination of puf-8 loss
and MPK-1/ERK activation by the removal of negative regulators (e.g.,
fbf-1, fbf-2, or lip-1) induces germcell dedifferentiation in spermatocytes,
probably as a result of abnormal meiotic cell divisions (Figs. 3, 6, and 8).
Importantly, RSKN-1/P90RSK, a putative MPK-1/ERK target [38], func-
tions as a key regulator for dedifferentiation in the puf-8; lip-1 germlines
(Figs. 7 and 8).

We previously reported that the LIP-1 dual specificity phosphatase
normally promotes germline mitoses by inhibiting MPK-1/ERK MAPK
signaling [28,36]. In addition, Ariz and colleagues reported that PUF-8
functions redundantly with MEX-3 to promote GSCmitoses [15]. Here
we show that PUF-8 and LIP-1 proteins also promote meiotic cell divi-
sions, in this case by inhibitingMPK-1/ERKMAPK signaling after GSC dif-
ferentiation. Importantly, their roles in mitotic germ cells appear to be
coupled to differentiation, whereas their role in meiotic divisions is
coupled to dedifferentiation. How do we explain these opposite effects?
This is not the first case of opposite effects: C. elegans FOG-3 (Tob/BTG
ortholog) can either promote or inhibit germline proliferation, depending
on gene dosage and genetic context [42]. Similarly, the various effects of
MPK-1/ERK signaling depend on genetic and cellular context. For ex-
ample, MPK-1/ERK MAPK signaling promotes differentiation in mitotic
region [28], meiotic progression in pachytene region [27], oocyte matu-
ration during oogenesis [27]. In addition, it promotes sperm fate specifi-
cation in male and puf-8; lip-1 Mog germlines at 20 °C [18,27], and
dedifferentiation in puf-8; lip-1 proximal germline at 25 °C (this work).
In mammals, activated ERK2 MAPK signaling promotes differentiation
of embryonic stem cells [43], but in differentiated cells such as Sertoli
cells [21], myoblasts [22], and islet cells [23], activated ERK2 MAPK sig-
naling promotes dedifferentiation and proliferation [44,45]. Therefore,
our findings have striking parallels in vertebrates. C. elegans provides a
powerful model for analysis of molecular mechanisms controlling cellu-
lar dedifferentiation in vivo. These findings may also have implications
for regenerative medicine and cancer therapy in humans, since all regu-
lators studied here are highly conserved in all eukaryotes.
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