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A~traet - -We present a powerful, enhanced multiquadrics (MQ) scheme developed for spatial approxi- 
mations. MQ is a true scattered data, grid free scheme for representing surfaces and bodies in an arbitrary 
number of dimensions. It is continuously differentiable and integrable and is capable of representing 
functions with steep gradients with very high accuracy. Monotonicity and convexity are observed 
properties as a result of such high accuracy. 

Numerical results show that our modified MQ scheme is an excellent method not only for very accurate 
interpolation, but also for partial derivative estimates. MQ is applied to a higher order arbitrary 
Lagrangian-Eulerian (ALE) rezoning. In the second paper of this series, MQ is applied to parabolic, 
hyperbolic and elliptic partial differential equations. The parabolic problem uses an implicit time-marching 
scheme whereas the hyperbolic problem uses an explicit time-marching scheme. We show that MQ is also 
exceptionally accurate and efficient. The theory of Madych and Nelson shows that the MQ interpolant 
belongs to a space of functions which minimizes a semi-norm and gives credence to our results. 

1. BACKGROUND 

The study of arbitrarily shaped curves, surfaces and bodies having arbitrary data orderings has 
immediate application to computational fluid-dynamics. The governing equations not only include 
source terms but gradients, divergences and Laplacians. In addition, many physical processes occur 
over a wide range of length scales. To obtain quantitatively accurate approximations of the physics, 
quantitatively accurate estimates of the spatial variations of such variables are required. In two 
and three dimensions, the range of such quantitatively accurate problems possible on current 
multiprocessing super computers using standard finite difference or finite element codes is limited. 
The question is whether there exist alternative techniques or combinations of techniques which can 
broaden the scope of problems to be solved by permitting steep gradients to be modelled using 
fewer data points. Toward that goal, our study consists of two parts. The first part will investigate 
a new numerical technique of curve, surface and body approximations of exceptional accuracy over 
an arbitrary data arrangement. The second part of this study will use such techniques to improve 
parabolic, hyperbolic or elliptic partial differential equations. We will demonstrate that the study 
of function approximations has a definite advantage to computational methods for partial 
differential equations. 

One very important use of computers is the simulation of multidimensional spatial processes. 
In this paper, we assumed that some finite physical quantity, F, is piecewise continuous in some 
finite domain. In many applications, F is known only at a finite number of locations, 
{xk: k = 1, 2 . . . . .  N} where xk = x~ for a univariate problem, and Xk = (x~,yk . . . .  )X for the 
multivariate problem. 

From a finite amount of information regarding F, we seek the best approximation which can 
not only supply accurate estimates of F at arbitrary locations on the domain, but will also provide 
accurate estimates of the partial derivatives and definite integrals of F anywhere on the domain. 
The domain of F will consist of points, {xk }, of arbitrary ordering and sub-clustering. A rectangular 
grid is a very special case of a data ordering. 

Let us assume that an interpolation function, f, approximates F in the sense that 

f(Xk)=F(Xk), k = l , 2  . . . . .  N. (1) 
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Given a finite number of data points, there is an infinite number of functions, f, which satisfy 
equation (1). There is no universally accepted "perfect" interpolating scheme, but we can restrict 
the class of interpolating functions to have certain desired properties. To restrict the class of 
functions we therefore require our "ideal" interpolating functions to be monotonic, i.e. not to 
introduce extraneous extrema, the interpolating functions to behave extremely accurately in flat as 
well as very steep regions, and to have very accurate estimates of derivative (partial derivatives) 
as well as definite integrals. We also expect the approximate interpolant to be robust; it should 
handle equally well any data arrangement and any surface shape. Finally, the "ideal" approxima- 
tion shceme should be easily extended from one spatial dimension to two and three spatial 
dimensions. 

2. SCATTERED DATA, GRID FREE APPROXIMATION SCHEMES 

2.1. Discussion of polynomial methods 

The oldest approximation scheme is an arbitrary polynomial expansion. This process will be 
briefly reviewed. Given N distinct points, Xk, and values, Fk, there exists a unique polynomial, PN- j ,  

such that 

PN- ~ (x,) -- F~, for i = 1, 2 . . . .  , N. (2) 

Approximation processes may be local or global. Such a process which depends on data points 
in the immediate vicinity of a test point is called a local interpolation. One assumes that a local 
Taylor series expansion about the point, Xk, is correct to a given order. On the other hand, the 
global approach assumes that the approximating function depends on all the data points. But the 
higher the order of a local interpolation, the more global it becomes because more data points are 
increasingly considered. For example, consider a scattered data set in two dimensions. A linear 
function requires at least three points, a quadratic function requires at least six points, a cubic 
requires at least 10 points, etc. 

Local methods have been used extensively in numerical schemes for several reasons. First, the 
interpolant can be readily evaluated with a minimal amount of effort, and second, integral and 
derivative approximations are relatively simple to obtain, especially if the data points are equally 
spaced. 

However, some of the drawbacks of the simple polynomial methods are: (1) polynomial snaking 
in higher order schemes which lead to poor derivative and integral estimates; (2) the lack of 
derivative continuity between consecutive local regions and (3) the slow convergence of low order 
polynomial approximations. 

Splines are improvements to the local polynomial approach in that a local low order (typically 
cubic) fit is made over a local patch, but chosen in a manner that derivative continuity between 
local fits is guaranteed. Carlson and Fritsch [1, 2] have extended the spline technique further by 
imposing monotonicity constraints by controlling the derivative estimates. Hyman [3] and 
Dougherty et al. [4] also have investigated the cubic and quintic Hermite interpolations of Carlson 
and Fritsch. They have found that monotonicity and convexity constraints are important in 
converting an unacceptable interpolant into an excellent one. 

Typically, the interpolation, derivative and integral estimate schemes which are based upon either 
polynomials, orthogonal polynomials or splines for higher spatial dimensions are formed as tensor 
products requiring a logically rectangular grid. Steep gradient regions can be treated by adaptive 
rectangular mesh refinement, see Berger and Oliger [5]. However, a logically rectangular mesh must 
be considered as a very restrictive type of data arrangement. In multidimensional Lagrangian and 
moving node fluid-dynamics, the original rectangular mesh usually tends to undergo a large amount 
of distortion. Low order interpolation techniques which are typically numerically diffusive are 
required to remap periodically the solution from the distorted grid onto a well-behaved rectangular 
grid. 

Additional truncation error related problems occurring in fluid-dynamic simulations are the 
restrictions placed on zoning to minimize signal dispersion and true higher order transport, 
especially corner transport, van Leer [6] has devised one-dimensional transport schemes which 
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improve accuracy and noise reduction. A fully two-dimensional transport algorithm which is at 
least of second order accuracy is very desirable. 

2.2. Review of scattered data interpolation techniques 

Franke [7] recently published an extensive article which evaluated 29 different algorithms for the 
scattered data interpolation problem on a variety of known data surfaces. Franke graded various 
scattered data interpolation schemes according to the following criteria: accuracy, visual aspect, 
sensitivity to parameters, execution time, storage requirements and ease of implementation. 

The methods he tested may be classified into the following groups: (1) inverse distance weighted 
methods; (2) rectangle based blending methods; (3) triangle based blending methods; (4) finite 
element based methods; (5) Foley's [8, 9] method and (6) global basis function methods. We shall 
summarize Franke's conclusions based on these methods. 

The inverse distance weighting or Shepard's method was found to very dependent upon the 
weight function, and typically leaves flat spots at a data point. Rectangular based blending 
methods, although fast, performed rather poorly. Triangular based blending methods were found 
to have problems when long slim triangles are involved which are symptomatic of ill-conditioned 
Jacobians and give surfaces with errors. 

In considering finite element based methods, Franke found that the C ~ (continuous first 
derivatives) based triangular elements were needed. However, very accurate estimates of the 
derivatives were necessary for both accuracy and the visual aspects of the surface. Again, poor 
results were due to long slim triangles. Franke claims such long slim triangles cannot be avoided 
without abandoning convexity or adding fictitious points. 

Foley's [8, 9] method uses a generalized Newton type interpolant to generate a grid on which 
product type approximations can be constructed, An iterative correction is then made to the 
original approximation. The best performance of this scheme was found by using the generalized 
Newton interpolant with natural splines. In general, the surfaces were quite smooth, but sometimes 
exhibited polynomial-like "snaking" on the surfaces. 

Of the class of methods tested, Franke found that global interpolation methods generally 
outperformed local interpolation methods. The principal disadvantage of global schemes is that 
the solution of set of N linear equations is required. The operation count increases at a rate of N 3 
for such methods. Franke stated that of all the methods tested, Hardy's multiquadric method gave 
the most accurate results tested. The second best interpolation method was the thin-plate spline 
of Duchon [10, 11]. 

2.3. Review of the multiquadric (MQ) scheme and its development 

Hardy [12, 13] first derived the two-dimensional multiquadric (MQ) scheme in 1968 to 
approximate geographical surfaces, and gravitational and magnetic anomalies. MQ was largely 
unknown to mathematicians until the publication of Franke's [7] review paper. Most mathemati- 
cians have not seriously studied this method because the mathematical analysis of MQ is very 
difficult, and it is not known why MQ performs so well (see Tarwater [14]). 

Hardy's basic scheme is very simple and easy to implement. It is assumed that any function, f, 
may be written as an expansion of N continuously differentiable translates basis functions, g: 

N 

f ( x )  = ~ a j g j ( x -  xj), (3) 
j = l  

where 

gj(x - xj) = [d~(x - xj) + r2] '/2, (4) 

r 2 is a non-zero input parameter, and 

d~(x - xj) = (x  - x j )  2 + (y + y j ) 2  + . . . .  (5) 
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Another commonly used form of MQ's is the reciprocal multiquadric (RMQ) discussed by 
Hardy [12, 13], Frank [7] and Tarwater [14]. The RMQ basis function, hi, is merely the reciprocal 
of equation (4) 

hj(x - xj) = 1/gj(x - xj). (6) 

The coefficients, {aj } are found by solving a set of linear equations in terms of the basis functions. 
For example, for traditional MQ we solve 

N 

ajgj(x,-  xj) = F(xj), i = 1, 2 . . . .  , N (7) 
j= l  

and f ( x J  = F(x~) which are given. 
Micchelli's[15] theoretical investigations have proved that the MQ interpolation is always 

solvable for distinct data. He has shown that MQ coefficient matrix of rank N has one positive 
real eigenvalue and (N - 1) negative real eigenvalues. Furthermore, he has shown that Duchon's 
thin plate spline is a positive definite interpolant which is related to Hardy's MQ interpolant which 
is conditionally positive definite [15]. The MQ interpolant can be positive definite by appending 
linear polynomials. 

Franke [7] has found MQ performed better than RMQ. At first, this observation seems 
counter-intuitive since it diverges linearly with increasing distance. On the other hand, RMQ 
converges to zero as the reciprocal distance. 

The asymptotic behavior of basis function of familiar expansions should guide us here in 
regarding MQ and RMQ bases functions. Legredre and Chebyshev functions are bounded in the 
interval ( -  1, 1). Laguerre and Hermite bases function of nth order diverge as x" in the intervals 
(0, ~ )  and ( - ~ ,  ~) ,  respectively, see Ref. [16]. The behavior of a function expanded in terms of 
the latter two basis functions in the asymptotic region is governed by the expansion coefficients. 
Note we demand that the weighted integral of the square of the basis functins over their respective 
domains must exist. The existence of similar integrals for the MQ basis functions will be discussed 
later. 

Tarwater [14] investigated MQ to determine the effect of varying the parameter, r 2, on the 
goodness of fit. Various experiments were tried to obtain increasingly more accurate interpolants. 
It was found that the r.m.s, error was a function of the magnitude of r2; for increasing r 2, the errors 
dropped to a minimum called the optimum r 2, and grew rapidly thereafter. She showed that for 
the several problems examined, the r.m.s, errors of the MQ interpolation compared favorably or 
even outperforms the monotonic cubic spline for accuracy. By adjusting the parameter r 2, she found 
that the accuracy could be considerably improved. The most difficult function to interpolate was 
the steep "cliff" function. She suggested that the shape of the surface to be fitted is a factor in 
optimizing the accuracy. Lancaster and Salkauskas [17] also noted that noisy surfaces correspond 
to the ill-conditioning of the MQ coefficient matrix can occur if r becomes large. 

Stead [18], like Franke [7], examined various methods for estimating partial derivatives on 
scattered data. She concluded that for surfaces with large curvature, MQ is excellent for obtaining 
very accurate derivative estimates, but that MQ behaves poorly on relatively fiat surfaces. She 
therefore recommended a combination of techniques in which MQ would be applied to steep 
surfaces and a quadratic fit would be used for relatively fiat surfaces without using transformations 
such as stretching functions which causes a change in geometry. 

2.4. Recent improvements to MQs 

In the effort to push the accuracy of MQ, we found MQ can be made exceptionally accurate 
by carefully modifying the scheme in such a way that MQ coefficient matrix is well-conditioned. 
We simultaneously improved the accuracy and reduced the condition number by permitting the 
parameter r 2 to vary, thus giving rise to nearly fiat sheet-like functions to very narrow cones. When 
necessary, we transformed the original data set to appear more scattered to reduce the condition 
number. Thirdly, and most importantly, we improve accuracy and reduce dramatically the 
computational effort by transforming a large global problem into many small quasi-local problems 
by domain decomposition. 
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We found that surfaces could be approximated to a very high degree of  accuracy by permitting 
r 2 to vary with basis function number. The value of r 2 controlled the shape of the basis function. 
large r: values gave rise to flat sheet-like basis functions, intermediate r 2 values gave rise to 
bowl-like basis functions; small r 2 values gave rise to narrow cone-like basis functions. By adding 
and subtracting a diverse collection of  different shaped basis functions, very accurate results have 
been obtained. 

The key factor in obtaining accurate results was the conditioning of the MQ coefficient matrix. 
The more distinct are the entries of  a full matrix, the lower is it condition number. Therefore, we 
permit only a monotonic variation of r 2. We have found no significant changes in accuracy whether 
the r 2 variation was monotonically increasing or decreasing with the basis function number, j. In 
addition, a random permutation of the r 2 parameter seemed to have little effect. Both linear and 
exponential variation worked very well, but exponential variations gave a better conditioned 
coefficient matrix: 

r2 rn in ( r2  /r2 ~(j-I)/(N-I) r2(J) . . . . . . .  ,-max,rain, , j = 1, 2 . . . . .  N, (8) 

and r max 2 and r min 2 are input parameters. Using equations (3)-(5) and (9), the MQ expansion 
is given as 

At 
f (x)  = ~ a j [ d 2 ( x  - xs) + r2(j)] '/2. (9) 

j= l  

Our numerical observations show that the more distinct the entries of the MQ coefficient matrix 
are, the lower MQ coefficient matrix condition number becomes, and the better is the accuracy. 
However, a wide variation in r 2 is not sufficient for high accuracy because the MQ basis functions 
also depend on distances. 

As with Foley [20], we observed that performance of MQ was sensitive to scaling. That is, it was 
important to the condition number whether distances were expressed in centimeters or meters. 
Likewise, Tarwater [14] and Foley [20] have shown that "track data", i.e. data which is closely 
spaced along one coordinate direction, and widely spaced along the orthogonal direction, gives MQ 
interpolants with very large errors. 

For consistent results, regardless of scale problems or track data problems, all data, even using 
subdomain decomposition, were mapped onto a unit line for one-dimensional problems and onto 
a unit square for two-dimensional problems. If three or more distance pairs on the unit square are 
nearly degenerate, then additional transformations are undertaken to deliberately make the 
transformed distances more distinct. We shall discuss this strategy when discussing an example 
problem. 

To summarize, two concurrent strategies were undertaken to obtain very accurate MQ results. 
First, we allowed the r: parameter to vary with basis function number allowing very flat to very 
conical shaped basis functions to represent the surface. Second, we scaled the independent 
coordinates to unity, and then introduced additional rotations and shear transformations to make 
the distance pairs sufficiently distinct, if necessary. 

The accuracy of the interpolants, partial derivative estimates and definite integrals is influenced 
by the condition number of the matrix and the gradients of the surface. In contrast to ordinary 
polynomial based methods of  a prescribed order, we observed that MQ is increasingly more 
accurate on steeper gradient surfaces with respect to analytic functions. The flat or gentle gradient 
surfaces are somewhat noisy with MQ with respect to analytic functions. 

The apparent reason why MQ is noisy on flat surfaces, and elsewhere is as follows. Flat surfaces 
are represented by linear combinations of  very large r 2 basis functions. But as r2(j) become large, 
so does the condition number. The resulting coefficients are very large in magnitude and vary in 
sign. On a computer with a finite word representation, the lack of word precision gives noisy results 
in flat regions, but excellent results in regions with modest to large gradients which are 
well-approximated by basis functions with small to intermediate values of r :. There does not appear 
to be any theoretical limit to MQ, but rather an implementation limit in shallow gradient regions 
which are handled excellently by traditional methods such as monotonic cubic splines [1, 2]. 

We performed an eigenvalue analysis on the non-symmetric MQ coefficient matrices, see 
equations (8) and (9). These matrices are typical of  those problems presented in the next section. 
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The results were similar to those reported by Micchelli [15] using the symmetric form. If the 
condition number of the coefficient matrix is within machine precision limits, then there is one large 
positive real eigenvalue; the remaining eigenvalues are real and negative. As the condition number 
is increased by increasing the magnitude of the r 2 parameters, the behavior is essentially the same 
as before, but very small complex eigenvalues appear in pairs. 

Another very important consideration for accuracy is the number of data points fitted. The larger 
the coefficient matrix, the larger its condition number becomes. It was very important to partition 
a domain into several subdomains for better accuracy, computational efficiency. For these surface 
with sufficiently non-zero gradients, the examples to be presented in the Results section are 
generally accurate from 6 to 10 significant digits of accuracy. In the common overlap regions 
between two subdomains, the fitted functions from either region have the same functional value 
at the data locations, but have different values in between. Hence the approximants could be 
mismatched away from data points. We could have calculated the partial derivatives at the data 
locations in common from the function in one subdomain, and required that the approximating 
function in the next subdomain sharing the common data points not only have the same functional 
values, but also the same partial derivatives, see equation (8). A few iterations over all the 
subdomains would insure that the approximations are C 1 continuous. This was found to be 
unnecessary since the approximants were mismatched in the 6-8th significant figure. So all 
appropriate quantities were blended by using weighted averages in the common overlapping 
regions. Although this simple blending scheme worked well in our studies, Franke's scheme is 
recommended since it guarantees continuity. 

Franke [21] has also discussed the process of blending approximants across overlapping 
subdomains to achieve a continuous surface using the method of Schiro and Williams [22]. This 
was done via Hermite cubics. The MQ method was used to fit the differences, data minus mean 
value, and this was observed to have a beneficial effect on the magnitude of the coefficients. Damon 
[23] also blended surfaces constructed from subdomain decomposition using the method of 
weighted averages. 

As stated previously, we observed that MQ is excellent in regions whose surfaces have gradients 
that are not too small. In thse regions, MQ is very accurate, convex and monotonic as observed 
in our computer experiments. Relatively shallow gradients can be treated by first applying a 
transformation to steepen the gradients, solving for the coefficients, interpolating or differentiating 
and then applying the inverse transformation. However, this steepening technique is not sufficiently 
general. We will recommend a hybrid scheme which is general and uses monotonic polynomials 
in relatively flat regions and MQ elsewhere. 

3. SOME JUSTIFICATIONS FOR THE SUCCESS OF THE HARDY MQ SCHEME 

Tarwater [14] stated that Hardy's MQ scheme has not been seriously studied by mathematicians 
other than Micchelli [15] because "its analysis is very difficult". Of the scattered data schemes, only 
the simplest form of local triangular interpolation has been analyzed. Foley [24] derived error 
bounds of his multistage methods which depends on h, the maximum distance from the nearest 
data point. This section will review the latest developments in the theory of MQ since Tarwater's 
work. 

Hardy and Nelson [25] have given a physical reason why MQ performs so well. If we regard 
a surface or body to be generated by a potential function which satisfies Laplace's equation, such 
harmonic functions share a common difficulty. These potentials have singularities at the source 
point and cannot be easily evaluated at or near sources which induce the potential. They have found 
an alternative form for representing a disturbing potential which is biharmonic in nature and which 
can be used for evaluations at points collocated with sources. Although the MQ basis functions 
are unbounded at infinity, they have shown that the potential function vanishes at infinity only 
if the sum of the expansion coefficients vanishes. 

Hardy [26] showed that MQ is an appropriate approximation to biharmonic representations and 
RMQ is the appropriate approximation to a harmonic representation of the disturbing potential. 
Thus the multiquadric-biharmonic representations and approximations have the advantage over 
other methods since data points do not need to be separated from source points. 
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Another explanation of why MQ works so well will be advanced here. The best MQ results were 
found to occur for large variations of r 2 terms which give large variations in the coefficient matrix. 
Given that {d}}~ax < 2  {r~ }~i~, then the following infinite Taylor series expansion holds over the N 
data points: 

f(x) = air(j) [(dj)/r(j)l~/(2mm[) (I - 2k) , (10) 

where d(j)---[(x - x j ) 2 +  (y _ y  j)2+...]1/5. A similar series expansion exists for the asymptotic 
region where {r~}r, ax < {d}}mi,. 

The MQ Taylor series expansions, equation (10), is an infinite order expansion of all even terms 
of the distances, dj. Unlike the finite polynomial expansions, the MQ expansion is an infinite order 
multivariant polynomial expansion in terms of a finite number of data points. Because r 2 can vary 
many orders of magnitude, the effective expansion is very high order up to the remaining terms 
which have become truncated in a finite precision computer. Furthermore, unlike the tensor 
product formulations, the MQ expansions contain contributions from not only the direct terms, 
but all cross product contributions. Since the r(j) terms differ vastly by orders of magnitude, 
the contributions range from locally constant to very high order multivariate polynomial 
expansions. 

Madych and Nelson [27] consider a general class of interpolants which includes a polynomial 
of degree less than some fixed integer m given by 

N 

f ( x ) =  ~ ajg(x--xy)+ ~ k~x ~, ( l l)  
n= I I~[<m 

where aj and k~ must satisfy 

N 

ayg(x~-xy)+ ~ k ,x~=f , (x , )=F, ,  i = { 1 , 2  . . . . .  N}, (12a) 
j~ 1 I~1 <r~ 

N 

Z ayx;=0, I l<m. (lmb) 
j ~ l  

A sufficient condition which makes equation (1 l) solvable for all f, is that g be conditionally 
positive definite 

N 

a~ajg(x,- xj)/> 0, (13) 
i , j= 1 

for all distinct points xl, x 2 , . . . , x s  in R", and for all complex number a~#0 satisfying 
equation (12b). The class of all conditionally positive definite functions of order m on R" is denoted 
as am. 

They have shown for distinct points, xl, • . . ,  xN satisfying the interpolation problem, equation 
(11), and for the class of interpolants in Qm satisfying equation (13), that a semi-norm exists which 
is minimized by such interpolants. They show that the following functions are conditionally positive 
definite: 

h(x) = 1 + clx[2) t2k+ 0/2, for k = - 1, 0, 1, 2 , . . . ,  (generalized MQ) 

h ( x )  = ( -  1) k+ 1(1 + clx{2) k log(1 + clxl2), (Duchon's thin plate splines) 

h ( x )  = e x p ( -  clx[2), (rotating Gaussians) 

(14) 

(15) 

(16) 

for all c > 0. 

Further, many types of interpolation conditions are allowed such as derivatives and integrals of 
the interpolating functions. 
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4. COMPUTATIONAL RESULTS 

In this section, we shall present the results of the basis MQ scheme applied to a suite of problems. 
Among the application whose reuslts will be examined are: 

1. The two-dimensional interpolation from a coarse regular grid onto a finer regular 
grid. One immediate application of this problem is in mesh refinement and 
dynamic multigrid methods. 

2. The two-dimensional interpolation from a scattered data set onto a fine regular 
grid. 

3. Two-dimensional derivative estimates of functions over a regular grid and an 
arbitrary data set. 

4. Two-dimensional interpolation over a scattered data set using the 
Madych-Nelson MQ approximation. 

5. The dynamic arbitrary Lagrangian-Eulerian (ALE) remapping procedure used in 
Lagrangian fluid dynamics codes. 

In each example, domain decomposition was used. Subsets of 16-25 points were partitioned from 
the domain of all independent positions. To ensure continuity of the function and its derivatives 
at the subdomains, overlapping contiguous neighboring subdomains were constructed so the 
method of weighted averages could blend the solutions over the overlapping subset regions. 

4. I. Two-dimensional interpolation from a coarse grid onto a fine grid 

Two test functions, fi = exp(2x + 3y) and f2 = exp[-(2x + 3y) 2] were evaluated on the vertices 
of a uniform 5 x 5 grid, see grid A, Fig. 1. There were 36 values of each function stored at these 
vertices. 

The domain was decomposed into two overlapping subdomains containing 24 points each. The 
first subdomain contained 24 points from points 1-24 where the first point is on the lower left hand 
corner. The numbering is ordered by rows. The second subdomain contained 24 points from points 
18-36. 

We note that the MQ coefficient matrix and its inverse are independent of the function. The 
expansion coefficients for each function on each subdomain were calculated and stored. Then the 
interpolated function was calculated on grid B. There were a total of 96 interpolants. 

The overlap regions which contain the results of the interpolants from the two subdomains were 
blended by the method of weighted averages. The results of the interpolated results for function 
f~ is given in Table 1. Table 2 gives the exact results calculated at the same positions. The results 
in Table 1 are remarkably close. However, the interpolants off2 were poor and noisy. The reason 
for this poor behavior is that function f2 becomes flat very rapidly away from the point (0, 0). 

Experience has shown MQ appears to be excellent on shallow to steep gradient surfaces. 
Therefore we formed a new function, l/f2. The expansion coefficients were formed using the inverse 

I I I l l  I I i I I i I '. 
t"-'-t'-t--t- "+" ~ -+ -4- "~- -4" "+ -I--4 
I I I I I I I i I I i I I 
I -4-- t - - t - - t - - I - - I - -4--4-- t - - I -  4- -I 
1 1 1 1 1 ! 1 1 1 1 1 1 1  

I i i o I I ! I I I I I I 

i I I t i I ! i i I I I I 

l i i i ! I I I I III I 

i iii i I I I I I I i I 

! IIII I! ,II I I I 

Grid A Grid B 

Fig. l. Interpolation of functions from a coarse grid onto a finer grid. 
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Table 1. Interpolation of  exp(2x + 3y) over grid B Table 2. Exact solution o f  exp(2x + 3y) over grid B 

1.000000 1.054041 I . I I1003 1.171043 1.000000 1.054041 1.111003 1.171043 
1.234328 1.301032 1.371342 1.445451 1.234328 1.301032 1.371342 1.445451 
1.523564 1.605900 1.692685 1.784159 1.523564 1.605900 1.692685 1.784159 
1.880578 1.982206 2.089327 2.202237 1.880578 1.982206 2.089327 2.202237 
2.321249 2.446692 2.578914 2.718282 2.321249 2.446692 2.578914 2.718282 
2.865181 3,020019 3.183225 3.355250 2.865181 3.020019 3.183225 3.355250 
3.536572 3,727693 3.929142 4.141478 3.536572 3.727693 3.929142 4.141478 
4.365288 4.601194 4.849848 5,111940 4.365288 4.601194 4.849848 5.111940 
5.388195 5.679380 5.986301 6.309808 5.388195 5.679380 5.986301 6.309808 
6.650798 7.010215 7.389056 7.788370 6.650798 7.010215 7.389056 7.788370 
8.209263 8.652902 9.120515 9.613399 8.209263 8.652902 9.120515 9.613399 

10.13292 10.68051 11.25770 11.86608 10.13292 10.68051 11.25778 11.86608 
12.50734 13.18325 13.89569 14.64663 12.50734 13.18325 13.89569 14.64663 
15.43816 16.27245 17.15184 18.07874 15.43816 16.27245 17.15184 18.07874 
19.05574 20.08554 21.17098 22.31509 19.05574 20.08554 21.17098 22.31509 
23.52103 24.79213 26.13193 27.54413 23.52103 24.79213 26.13193 27.54413 
29.03265 30.60191 32.25536 33.99848 29.03265 30.60161 32.25536 30.99848 
35.83580 37.77214 39.81368 41.96526 35.83580 37.77241 39.81368 41.96526 
44.23311 46.62353 49.14312 51,79887 44.23311 46.62353 49.14312 51.79887 
54.59815 57.54870 60.65871 63.93678 54.59815 57.54870 60.65871 63.93678 
67.39200 71.03395 74.87271 78.91890 67.39200 71.03395 74.87271 78.91892 
83.18379 87.67916 92.41743 97.41179 83.18380 87.67916 92.41745 97.41180 

102.6760 108.2248 114.0733 120.2380 102.6761 108.2248 114.0734 120.2381 
126.7359 133.5849 140.8039 148.4132 126.7359 133.5858 140.8039 148.4132 

in each subdomain, and interpolated onto the fine grid. Afterwards, the inverse of the inverse which 
is f2 was taken again and presented on Table 3. The exact solution at the same locations is presented 
in Table 4. 

4.2. Two-dimensional interpolation from a scattered data set using domain decomposition onto a very 
fine regular grid 

The next set of experiments deal with the scattered data problem. Figure 2 shows the x - y  data 
distribution on a unit square containing 60 points. The domain of 60 points was decomposed into 
patches each containing a minimum of 16 points. Some of the points may be contained in the 
overlap of previous patches. Because smaller systems of equations were involved in finding the 
expansion coefficients and the distances are more scattered, the numerical results were even better 
than the previous examples. Accuracy from 7 to 10 significant digits was obtained. There is no 
visual difference between the plots of the exact solution and the MQ generated solution. Our results 
in these problems are better than the previous examples becuase 60 data points rather then 36 were 
used to define the initial distribution. Franke [7] also showed that his test functions were better 
with 100 points than with 33 or 25 points, since the denser point set gave more sample points to 
be fitted. 

Table 3. MQ interpolation o f  e x p [ - ( 2 x  - 3y)**2]over grid B Table 4. Exact solution o f  exp [ ( - (2x  + 3y)*'2] over grid B 

1.0000 0.99723 0.98898 0.97538 1.0000 0.99723 0.98898 0.97538 
0.95665 0.93309 0.90509 0.87307 0.95665 0.93309 0.90509 0.87307 
0.83754 0.79901 0.75805 0.71521 0.83754 0.79901 0.75805 0.71521 
0.67106 0.62616 0.58104 0.53619 0.67106 0.62616 0.58104 0.53619 
0.49207 0.44908 0.40758 0.36788 0.49207 0.44908 0.40758 0.36788 
0.33021 0.29476 0.26166 0.23099 0.33021 0.29476 0.26166 0.23099 
0.20279 0.17705 0.15373 0.13274 0.20279 0.17705 0.15373 0.13274 
0.11398 9.73308e - 02 8.26554e - 02 6.98050e - 02 0.11398 9.73308e - 02 8.26554e - 02 6.98050e - 02 
5.86268e - 02 4.89664e - 02 4.06718e - 02 3.35958e - 02 5.86267e - 02 4.89604e - 03 4.06720e - 03 3.35959e - 03 
2.75976e - 02 2.25450e - 02 1.83157e - 02 1.47975e - 02 2.75976e - 02 2.25450e - 02 1.83156e - 02 1.47975e - 02 
1 .18891e -02  9 . 4 9 9 4 9 e - 0 2  7 . 5 4 8 3 1 e - 0 2  5 ,964S0e -02  1 .18891e -02  9 . 4 9 9 5 6 e - 0 3  7 .54835e -03  5 , 9 6 4 7 8 e - 0 3  
4.68744e - 03 3.66324e - 03 2.84698e - 03 2.20037e - 03 4.68738e - 03 3.66320e - 03 2.84698e - 03 2.20041e - 03 
1.69124e - 03 1.29276e - 03 9.82720e - 04 7.42896e - 04 1.69128e - 03 1.29277e - 03 9.82699e - 04 7.42872e - 04 
5 . 5 8 4 8 0 e - 0 4  4 . 1 7 5 1 9 e - 0 4  3 . 1 0 4 2 0 e - 0 4  2 . 2 9 5 2 4 e - 0 4  5 . 5 8 4 7 3 e - 0 4  4 . 1 7 5 2 6 e - 0 4  3 . 1 0 4 2 7 e - 0 4  2 . 2 9 5 2 4 e - 0 4  
1.68767e - 04 1.23397e - 04 8.97280e - 05 6.49010e - 05 1.68769e - 04 1.23410e - 04 8.97431e - 05 6.49002e - 05 
4.66970e - 05 3.34066e - 05 2.37487e - 05 1.67836e - 05 4.66751e - 05 3.33825e - 05 2.37436e - 05 1.67945e - 05 
1.18056e - 05 8.26427e - 06 5.74577e - 06 3.96694e - 06 1.18136e - 05 8.26401e - 06 5.74902e - 06 3.97732e - 06 
2.72960e - 06 1.87355e - 06 1.27624e -- 06 8.61616e -- 07 2.73641e - 06 1.87226e -- 06 1.27393e - 06 8.62019e - 07 
5.79948e - 07 3.89907e -- 07 2.60327e - 07 1.71518e - 07 5.80074e - 07 3.88189e -- 07 2.58344e - 07 1.70980e - 07 
1 .12087e -07  7 . 3 9 6 0 8 e - 0 8  4.85813e--08 3 . 0 6 1 8 2 e - 0 8  1 .12535e-07  7,36588e--08 4 . 7 9 4 6 2 e - 0 8  3 . 1 0 3 6 9 e - 0 8  
1.95095e - 08 1.29288e - 08 8.08278e - 09 4.8278 le - 09 1.99800e - 08 1.2791 le - 08 8.14356e - 09 5.15601e - 09 
3.16772e - 0 9  2.06205e - 0 9  1.14387e - 0 9  7.19099e - lO 3 .24644e-  09 2 .03280e-  09 1.26583e - 0 9  5,15601e - lO 
4 . 8 9 6 5 9 e -  IO 2.64501e - IO 1 .54074e-  10 1 .05250e-  10 4.82749e - IO 2.95655e - IO 1 .80070e-  lO 7 .83885e-  10 
6.08194e - I I 3.16446e - I I 2,09348e - I l 1.38879e - I l 6.56960e - I I 3.93530e - I I 2.34429e - 11 1.38879e - 11 



136 E.J .  KANSA 

"I 0.5 

1.0 

0.0 
0.0 

I | I I I I 

! 

@ 

I 

I 

O 

! 

I 

I 

0 

$ 
! 

I 

i ' 

0.5 1.0 

x axis 

Fig. 2. Plot of  60 scattered data points over a unit square. 

The following two-dimensional functions, f3-f6, inclusively, were used as input at the location 
positions shown in Fig. 2. These functions arc: 

f 3 -  °J'0"75 e x p [ - ( x  - 3)2/4 - (y(-~ 3)2/41 + 0.75 e x p ( -  x /49  - y / 1 0 0 )  } (17) 
- ~']. - 0 . 7 5  e x p [ - ( x  - 3)2/4 - - 4 ) 2 / 4 ] - 0 . 2  e x p [ - ( x  - 5) 2 - (y  - 8)21 ' (18) 

f4 = e x p [ - 9 ( x  - 0.5) 2 - 9 (y  - 0.25)2], (19) 

f5 = cosh(x  - 0.5) c o sh (y  - 0.5), (20) 

f6 = 2x + 3y. (21) 

The x, y data set o f  60 points  were scattered on  the space [0, 1] x [0. 1]. At these locations,  the 
exact quantities f(xi, y~) were calculated and stored. The same x, y data set was used in each o f  
the surfaces to be presented. Starting from a corner, a domain  o f  16 x, y points  was chosen,  fitted 
by MQ,  and interpolated onto  a new mesh of  1225 points  consist ing o f  35 points  in both the x 
and y directions. The exact surface and the M Q  surface are indistinguishable from one another,  
see Figs 3-6.  

::.'.': :':':.:.:" :: .':;~:" ""...~ ".'."~';:A 
.....g..:: ::::..'....:.,::..~" ;:..:;.~. ...... 

/, 
::...~.. ........:- .... 

.::~:~!:iii:": 
.::.".i~'~i." " .~. 

Fig. 3. MQ fit of functions f3 from a scattered data distribu- Fig. 4. MQ fit of function f4 from a scattered data distribu- 
tion onto a 35 x 35 fine grid. tion onto a 35 x 35 fine grid. 
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Fig .  5. M Q  fit o f  funct ion  f5 f r o m  a scattered data  distribu- Fig .  6. M Q  fit o f  funct ion  f6 f rom a scattered data  distribu- 
t ion o n t o  a 35 x 35 fine g r id .  t ion onto  a 35 x 35 f ine g r id .  

4.3. Partial derivative estimates obtained form two-dimensional regular and scattered data 

In this subsection, we shall present the results of partial derivative estimates obtained from 
functionsf~-f6, inclusively. In some instances we chose locations at which these functions had local 
extrema. Because of machine round-off, the MQ estimates were not exactly zero, but tended to be 
less than 10 -7 in magnitude. We shall denote the MQ zero as 0.0". Other examples of derivative 
calculations are found in Ref. [19]. 

For convenience, we shall present in tabular form the derivative estimates of these functions at 
three different spatial locations: (0, 0), (1/4, 1/2) and (1/2, 1/2) in Tables 5-7. As we will show, the 
derivative estimates as well as interpolations are excellent in regions with modest to very steep 
gradients. 

4.4. Results with the Madych-Nelson MQ scheme 

In our previous investigations using only the expansion of MQ basis functions, we found that 
such function approximations are excellent in regions which have moderate to steep gradients. In 
an effort to generalize MQ, we used Madych and Nelson's generalization [27], see equation (11) 
and appended a constant to the MQ expansion yielding 

N 

f ( x )  = k0 + ~ a j [g(x - xj) - g ( x  - xt)]. (22) 
j = 2  

We investigated the goodness of five functions using the scattered data configuration shown in 
Fig. 2. These functions are 

fT(x, y )  = [5/4 + cos(5.4y)] /[6 + 6(3x - 1)2], 

f s (x ,  y )  = {64 -- 81[(x -- 1/2) 2 + (y  --  1/2)2]}'/2/9 --  1/2, 

fg(x ,  y )  = exp{ - ( 8 1 / 1 6 ) [ ( x  - 1/2) 2 + (y  - 1/2)2]}/3, 

(23) 

(24) 

(25) 

Table 5. Location (0, O) 

Function MQ (df,/~x) Exact (df,/0x) MQ (df /dy)  Exact (df,/dy) 

1 1,9999 2.0000 3,0000 3,0000 
2 0,0" 0.0000 0.0" 0.0000 
3 - 330,65 " - 330.65 0.276 0.0276 
4 0,0998 0.0998 0.0998 0.0998 
5 -0 .5875  -0 .5876  0.0" 0.0000 
6 2.0000 2.0000 3.0000 3.0000 

CAMWA 19-8/9~J 
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Table 6. Locat ion (1/4, 1/2) 

Function M Q  (OfdOx) Exact (Ofl/Ox) M Q  (Ofj/ay) M Q  (afdOy) 
I 14.778 14.778 22.167 22.167 
2 -0 .1465  -0 .1465  - 0 .2198  - 0 .2198  
3 -327 .18  -327 .18  0.1446 0.1446 
4 2.5640 2.5640 0.0" 0.0000 
5 - 0.2605 - 0.2605 - 0.2605 - 0.2605 
6 2.0000 2.0000 3.0000 3.0000 

f~0(x, y) = exp{ -(81/4)[(x -- 1/2) z + y - 1/2)2]}/3, (26) 

fN(x,y) = 1 + tanh(9y + 9x). (27) 

Table 8 shows the 12 and l~ norm errors for the interpolants using equation (22) over a 35 x 35 
(1225) refined grid. The definition of 12 error used is 

N 

(z~ Q - z~xac,),/z/U" 
i = 1  

We see that equation (22) (MQ expansion with an appended constant) gives very good 
approximations as long as we have no flat regions. Functions f~0 and fN are much improved using 
equation (22) rather than equation (9), but the fact is that such approximations are slightly 
non-monotonic in flat regions. 

We attempted to improve the approximation to function f~ by appending a linear polynomial 
to the MQ expansion. The results were disappointing in that the max error increased by a factor 
of 20 over the results in Table 8. 

These experiments show that MQ or MQ with an appended constant give excellent results for 
regions with moderate to steep gradients where traditional polynomial expansions fail. But MQ 
performed poorly on flat regions where traditional methods work well. Our strategy will be to use 
a hybrid scheme over all cases. 

4.5. Dynamic ALE Remapping of the two-dimensional Blake problem 

Figure 7 illustrates the setup of the Blake problem [28]. The solid wedge is composed of an elastic 
solid whose density is 2000.00. At the bottom boundary a pressure pulse is applied for a duration 
of 3.873 • 10 -~. Profiles will be presented along the dashed line AB. 

The objective of this exercise is to freeze the solid time-marching fluid dynamics, but permit the 
underlying mesh to move. In the ideal case, the surfaces of the dependent variables are independent 
and invariant under changes of the underlying mesh. 

Figure 8 shows the mesh as it evolves during the ALE remapping. The middle mesh has opened 
to its greatest extent after 180 ALE cycles. The lower mesh closes back to the original configuration 
after a total of 360 ALE cycles. 

Figures 9-12 show the internal energy, solid density and pressure at 0, 180 and 360 ALE cycles. 
Both the contours and the profiles at the line AB of Fig. 7 are displayed. 

The computational domain was subdivided into 15 patches to find the two-dimensional density, 
pressure and internal energy surface on the next mesh increment configuration. Because MQ is not 
accurate in very flat regions, the calculations reverted to a quadratic approximation if the 
(z m a x -  z min)< 0.05 within a patch. The parameters for r 2 were preset, and the local patch 
coefficient matrix condition number was kept within prescribed bounds by scaling the r 2 column 
variation. The remapping process is totally conservative whether the interpolation process is done 
by a first order interpolation or by MQ interpolation. The sum of all the masses in the zones was 
found to be a constant at all stages of the remapping process. The matrix inverse was found on 

Table 7. Locat ion (1/2, 1/2) 

Function M Q  (afl/Ox) Exact (Ofi/Ox) M Q  (OfdOy) Exact (OfJOy) 
1 24.365 24.365 36.547 36.547 
2 - 0.0192 --0.0193 - 0 .2895  - 0.2895 
3 - 325.44 - 325.44 0.2771 0.2270 
4 0.0" 0.0000 0.00001 0.0000 
5 0.0" 0.0000 0.0" 0.0000 
6 2.0000 2.0000 3.0000 3.0000 
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Tab le  8. The  12 and I:~ e r rors  for  func t ionsf r - - f l l  using equation (22) 
a s  the approximation 

Function I 2 norm error I~ norm error 
1"7 4"  10 -7 1 ' 10 -4 
f~ 1 ' 10 -9 8 '  10 -7 
t"9 I ' 10 -9 6"  10 -7 
fl0 6"  10 -7 6"  10 -4 
f,, 3"  10 -~ I"  10 -2 

a sub-domain. All other coefficients of the dependent variable expansion coefficients were found 
by a simple matrix-vector multiply. 

The higher order ALE scheme using MQ as the interpolant was implemented in an existing 
two-dimensional code. At each ALE cycle in which a new mesh is formed from an old mesh, six 
ALE sybcycles were used. At each subcycle, alternating sets of nodes were moved to the new 
locations so that the overlap between the old and new partial mesh form triangles. At each subcycle, 
MQ is used as the interpolant, and the appropriate densities were interpolated at the centroids of 
the triangles, and integrated. The integrated quantities were added to the new mesh and subtracted 
from the old mesh insuring rigorous conservation. The relaxation subcycling continued until all 
nodes were moved to the new mesh location. Thus MQ was applied in this remapping problem 
a total of 2160 times during the 360 ALE cycles. 

We note that the MQ interpolation scheme preserved the basic shape of the surface even after 
180 and 360 ALE cycles, except for some distortion in the flat tail region. 

Dukowicz and Kodis [29] have recently developed second order accurate, conservative rezoning 
scheme for ALE computations. They assumed that the density distribution within each cell is linear, 
and limited the gradients to preserve monotonicity. They have emphasized the need for the 
interpolation process to be monotonic and conservative so that no non-physical negative densities 
or energies are created in the remapping process. 

As demonstrated, the application of the ALE technique is both conservative and monotonic 
when MQ is the interpolant. Furthermore, MQ preserves the proper symmetry at the boundaries 
of the pie-shaped mesh. After 360 ALE remaps, the original contour and profiles are very 
well-preserved. 

We note that the zone center in this ALE remapping problem, see Fig. 8, appears to behave very 
similarly to the "track" data problem described by Tarwater [14] and Foley [20]. Track data are 
data which are closely spaced along one coordinate axis, and which are widely spaced along another 
coordinate axis. Note, in Fig. 8, that the zones especially at 180 ALE cycles have very poor aspect 
ratios. 

Fig. 7. Schematic of Blake's problem. A pressure pulse applied to a linear elastic solid. 
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Fig. 8. Distortion of a cylindrically symmetric mesh as it undergoes mesh distortion. 
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Fig. 9. Contour and profile plots of the solid density at 0, 180 and 360 major ALE cycles. 
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Fig. 10. Contour and profile plots of the solid pressure at 0, 180 and 360 major ALE cycles. 

141 

We have conjectured that the reason why "track" data does not yield accurate MQ approximates 
is that too many of the distances in the MQ expansion are similar. We counteracted the "track" 
data problem by introducing a transformed coordinate system in which the transformed distances 
appeared to be uniformly scattered. This was done by scaling, rotating and adding shear terms. 

We first found min(xi - xj) and m i n ( y i -  yj), i ~ j ,  and introduced new independent variables for 
each data point i: 

sj = ( x  - X y ) / m i n ( x , -  x j ) ,  i # j ,  (28) 
= 0 ,  t = j  

tj = ( y  - y j ) / m i n ( y i -  y j ) ,  i v~j,  (29) 
---0 i = j .  

Next, we introduced shear transformations of the form 

uj = o~sj + fltj + rsjt j ,  

vj = 6sj + Etj + ~sj t j ,  

(30) 

(31) 
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Fig. I 1. Contour  and profile plots of  the internal energy at 0, 180 and 360 major ALE cycles. 

where for the ALE problem we choose ~t = 1.1, fl = - 0 . 2 ,  ~ = 0.07, • = 0.1, E = 0.95 and ~ = 0.05. 
The last step was to introduce a basis function in this transformed system: 

gj = (d] + r~) '/2, (32) 

where 

2 2 2 dj = uj + v j .  (33) 

Such transformations greatly improved the accuracy, especially at 180 ALE cycles which is an 
extreme case of  " t rack"  data, see Fig. 8. 

5. A P R O P O S E D  H Y B R I D  S C H E M E  

We propose to use a general hybrid scheme for scattered data in which MQ will be the initial 
interpolant over steep as well as shallow regions. MQ does not represent well relatively flat 
functions since the expansion requires very flat basis functions requiring very large r 2 parameters 



MQ: a scattered data approximation scheme--I 143 

which leads to severe ill-conditioning of the MQ coefficient matrices. Carlson's [30] adaptation of 
Foley's [20, 24] multistage scheme will be used as a corrector in the shallow gradient regions. 

The Foley-Carlson scheme will be described. A scattered data interpolant is used to obtain an 
initial estimate on a rectangular grid. Using Carlson's bivariate monotonic cubic Hermite splines, 
local monotonicity errors will be corrected. The function over the rectangular grid is called Ft. 

The next stage deals with the original scattered data at the locations, xk and the function values, 
Z(Xk). Then a new set of values, F2, at x k is formed as 

F2(xk) = FL (Xk) -- Z(Xk). (34) 

F2 will be a new scattered data interpolant which deals with errors between F~ and z, such as 
Duchon's [10, 11] or Franke's [7] thin plate splines. This new interpolant is added to FI. The new 
interpolant F is given by 

F(xk) = Fl (xk) + F2(xk), (35) 

where F2 is a small correction function. 
Fl is made monotonic, and the process is repeated until the errors are sufficiently small. Thus 

one has a hybrid interpolation scheme which is monotonic and accurate for all surfaces, ranging 
to the very fiat to the very steep. 

We have found the MQ coefficient matrices can have large condition numbers from two primary 
sources. The first source is too many similar entries from similar distances and large r 2 parameters. 
The second source is due to the fact that the condition number of a full matrix increases as N 
increases. For this reason, we have advocated domain decomposition to not only reduce the 
condition number, but to greatly reduce the computational effort. 

Dyn and Levin [31] and Dyn et aL [32] have used both MQ and thin plate splates as a global 
scheme containing up to 121 points. They developed an iterative scheme based on preconditioning 
the coefficient matrix. The conditioning matrix is constructed from triangulation of the data points 
which annihilate all polynomials of degree <m on the data set. They were able to decrease the 
MQ coefficient matrix of size 121 x 121 by a factor of 200. 

6. SUMMARY 

One of the basic assumptions in fluid-dynamics is that the conservative form densities (mass, 
momentum components and energy) are represented by some unknown piecewise continuous 
functions. In either physical measurements or numerical simulations, our information about such 
variables is discrete and finite. From this limited discrete information, we hope to uncover the 
underlying unknown piecewise continuous behavior so we may predict the vlaues of a variable 
anywhere in the domain. In addition, we are able to deduce their appropriate partial derivatives, 
divergences, or integrals. 

We have focused upon a very promising method of approximating functions in R", called 
multiquadric (MQ) developed by Hardy [12, 13]. MQ is a general, grid-free, scattered data 
approximation given by an expansion in terms of upper hyperboloids, each of which is continuously 
differentiable. The basis functions depend only upon distances between pairs of points. 

Madych and Nelson [27] have proved the theoretical justification for MQ's performance. They 
show for all conditionally positive definite interpolating functions (such as the MQ basis functions), 
there exists a semi-norm which is minimized by all such interpolating functions for distinct data 
points, xt, x2 , . . . ,xN in R". 

In this paper, we have extended the original Hardy scheme in three areas. First, we permit the 
basis function shape parameter, r 2, to vary monotonically. This gives a set of basis functions whose 
shapes vary from flat sheets to rounded cones in R". Second, we use domain decomposition and 
blending to change a global surface fitting problem into overlapping quasi-local problems. Such 
decomposition has the additional benefit of rendering the quasi-local MQ coefficient matrix better 
conditioned with smaller rank. Third, we found that the "track" data problem (data which is closely 
spaced in one direction and widely spaced in the orthogonal direction) can be treated accurately 
by transformations which "randomize" the transformed independent variables. 
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We have demonstrated in several two-dimensional examples over both gridded and scattered 
data that MQ is an exceptionally accurate interpolation scheme, as compared to exact solutions, 
expecially in regions where the gradients are rather steep. With such approximate functions, partial 
derivatives were calculated and found to agree very well with exact solutions. Foley [20] used Mq 
on three- and four-dimensional data problems also with satisfaction. 

MQ has been also used in a dynamic example without significant degradation of  its performance. 
In one example, MQ was used as a spatial interpolant to remap dependent variable to different 
locations as an underlying mesh underwent distortion in an arbitrary Lagrangian-Eulerian (ALE) 
remapping scheme. At maximum grid distortion the zone centers were arranged in a typical " t rack"  
data configuration or zones having very poor  cell aspect ratios. We have found that after 360 major 
(2160 minor) remappings the contours and profiles were essentially preserved. MQ was also used 
to solve parabolic, hyperbolic and elliptic partial differential equations. These results are presented 
in a separate paper. 

Accuracy and computat ional  expense are important  considerations in choosing one scheme over 
another. Just because its operation count per node is relatively small, low order finite difference 
schemes can become prohibitive in two and three dimensions. Such schemes converge very slowly 
and the truncation errors are reduced only be refining the grid, thereby rapidly increasing the total 
number  of  nodes required. 

Further research using MQ as a tool for computat ional  fluid-dynamics is advocated for several 
reasons. MQ is a very high order continuously differentiable spatial discretization scheme which 
performs well on scattered and gridded data. Fewer points are required in MQ than in low order 
finite difference or element schemes. Tensor product meshes are not required in higher dimensions, 
thus simplifying problems with irregular physical boundaries. MQ does not have the connectivity 
restrictions associated with local finite difference or element schemes. Moving node and Lagrangian 
schemes based on such local methods with a specific connectivity may give problems with tangled 
zones or negative areas and volumes. Points may be added or deleted simply using MQ since 
connectivity is not a problem. 

Research is still required to determine the optimal strategy using MQ in applications problems. 
We do not have the years of  collective wisdom to make informed judgments as with finite element 
schemes. 
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