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SUMMARY phosphorelay mechanism. In Arabidopsis, cytokinin receptors
Cytokinin is an important regulator of plant growth
and development. In Arabidopsis thaliana, the two-
component phosphorelay mediated through a family
of histidine kinases and response regulators is re-
cognized as the principal cytokinin signal transduc-
tion mechanism activating the complex transcrip-
tional response to control various developmental
processes. Here, we identified an alternative mode
of cytokinin action that uses endocytic trafficking
as a means to direct plant organogenesis. This ac-
tivity occurs downstream of known cytokinin recep-
tors but through a branch of the cytokinin signaling
pathway that does not involve transcriptional regula-
tion. We show that cytokinin regulates endocytic
recycling of the auxin efflux carrier PINFORMED1
(PIN1) by redirecting it for lytic degradation in vacu-
oles. Stimulation of the lytic PIN1 degradation is not
a default effect for general downregulation of pro-
teins from plasma membranes, but a specific mech-
anism to rapidly modulate the auxin distribution in
cytokinin-mediated developmental processes.

INTRODUCTION

Cytokinin is one of the key plant growth regulators that controls

many developmental processes, including branching (Ongaro

and Leyser, 2008), root growth (Dello Ioio et al., 2008), establish-

ment of root pole during early embryogenesis (Müller and Sheen,

2008), shoot apical meristem maintenance (Zhao et al., 2010),

and lateral root (LR) organogenesis (Laplaze et al., 2007). Over

the past decades, molecular components and signal transduc-

tion mechanism of the cytokinin pathway have been disclosed.

Cytokinin signal transduction is based on the two-component
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from the histidine kinase family activate the histidine phospho-

transfer proteins that transduce signals toward the B-type

response regulators in the nucleus. This transcriptional response

is responsible for controlling a variety of developmental pro-

cesses (Hwang and Sheen, 2001).

An important part of the cytokinin-mediated regulation of

development involves an interaction with the auxin pathway.

A specific developmental output is ensured by the crosstalk

between these two signaling pathways. Previous work has re-

vealed that the communication primarily occurs at the transcrip-

tional regulation level (Müller and Sheen, 2008; Dello Ioio et al.,

2008; Zhao et al., 2010). Here, we identify a different mode of

cytokinin action that uses endocytic trafficking as a means to

modulate the auxin activity and to direct plant organogenesis.

This cytokinin activity requires cytokinin receptors but does not

involve transcriptional regulation. We show that cytokinin regu-

lates recycling of the auxin efflux carrier PIN1 (Gälweiler et al.,

1998) to the plasmamembrane by redirecting it for lytic degrada-

tion in vacuoles. This rapid, nontranscriptional, regulation of the

PIN1 abundance enables a precise control of auxin fluxes and

distribution during LR organogenesis and might also contribute

to other cytokinin-mediated developmental regulations, such

as root meristem differentiation.
RESULTS

Cytokinin Rapidly Reduces PIN1 at Plasma Membranes
during LR Organogenesis
To follow the development of lateral root primordia (LRP) and to

monitor the impact of hormonal and genetic manipulations on

the progress of LRP through defined developmental stages,

we have established a real-time in vivo analysis. Within 8 hr,

LRP of untreated seedlings typically underwent several rounds

of anticlinal and periclinal divisions, progressing from the early

first-to-second developmental stage (Malamy and Benfey,

1997) (Figure 1A; see Figure S1A available online). As expected,
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treatment with cytokinin repressed the LRP development and no

additional divisions were observed (Figure 1B; Figure S1B). In

contrast, auxin promoted cell divisions that occurred during

the LRP organogenesis (Figure S1C) in agreement with its stim-

ulatory function.

LRP organogenesis has been shown to strictly depend on a

gradient of auxin distribution that elicits the relevant downstream

auxin signaling events, which are decisive for LRP organogen-

esis. Perturbations in either auxin distribution or signaling lead

to severe defects in LRP formation (Benková et al., 2003; Dhar-

masiri et al., 2005; Vanneste et al., 2005). Previous work has

revealed that normal LRP organogenesis correlates with DR5

auxin reporter expression maxima at the primordia tip (Benková

et al., 2003). In LRP treatedwith cytokinin, the expression pattern

of DR5 was dramatically changed, with no response maximum

at the primordia tips (Figure S1D). Real-time monitoring of

DR5::RFP expression revealed that auxin maxima decreased

dramatically within 12 hr of treatment (Figure S1E). These results

suggested that cytokinin might interfere with auxin-related regu-

lations, such as auxin signaling or distribution.

PIN1 has been identified as one of the principal auxin efflux

carriers controlling the auxin distribution during LRP organogen-

esis. PIN1 loss of function results in defective and often arrested

LRP (Benková et al., 2003). To investigate the effect of cytokinin

on PIN1, PIN1-GFP was monitored in cytokinin-treated LRP.

The active cytokinin derivatives N6-benzyladenine (BA) and

zeatin (ZA) rapidly decreased the PIN1-GFP signal on the plasma

membrane in a dose-dependentmanner (Figure 1C; Figures S1F,

S1I, andS1J). Also the endogenous PIN1 levelswere significantly

reduced in protein extracts from cytokinin-treated wild-type

(Col-0) roots (Figure 1E; representative western blot Figure S2C).

Within 1.5 hr of BA treatment, the membrane PIN1-GFP signal

was reduced by 45%–50% and almost completely absent within

5 hr (Figure 2A). These results indicate that, besides the previ-

ously shown transcriptional regulation (Dello Ioio et al., 2008;

R�u�zi�cka et al., 2009), an additional mode of cytokinin action

implying a rapid modulation of PIN1 protein levels might be

involved in the cytokinin-regulated LRP organogenesis.

Cytokinin Downregulates PIN1 Levels at the Plasma
Membrane Independently of Transcription
To determine whether the PIN1 decrease was either due to tran-

scriptional or to posttranscriptional regulation, we uncoupled

PIN1 from its natural transcriptional control by using the 35S

promoter. In the 35S::PIN1-GFP line, the cytokinin had the

same effect on PIN1-GFP in LRP as that observed with the

endogenous PIN1 promoter in PIN1::PIN1-GFP (Figure 1F). In

contrast, 35S promoter-driven expression of PIN2 was not

affected by the cytokinin treatment, demonstrating that cytokinin

did not interfere with the 35S promoter activity itself (Figure 1F).

Furthermore, the PIN1-GFP membrane signal was monitored in

the presence of cycloheximide (CHX), an inhibitor of protein

biosynthesis. Previously, incubation of roots in 50 mM CHX had

been shown to reduce the 35S-labeled methionine incorporation

into proteins to below 10% of the control value (Geldner et al.,

2001). Whereas CHX led to decrease of the PIN1-GFP mem-

brane signal by approximately 15% in 1.5 hr, the cytokinin treat-

ment resulted in a more than 40% reduction during the same

time (Figures 1C and 1D). Simultaneous application of cytokinin
Developm
and CHX did not interfere with the decrease in PIN1-GFP

(Figures 1C and 1D). Next we tested inhibitor of transcription

cordycepin (COR) (Holtorf et al., 1999). Pretreatment with

400 mM COR for 30 min fully prevented the BA-induced upregu-

lation of the ARABIDOPSIS RESPONSE REGULATOR15

(ARR15) expression and reduced the expression of ARR3 and

ARR5 by 75% (Figure S1G). Under these conditions of strongly

diminished transcription, PIN1-GFP plasma membrane signal

dropped by approximately 15% in 1.5 hr after COR treatment

alone, but the cytokinin-mediated downregulation of PIN1 was

not affected in presence of COR (Figure S1H). These findings

suggest that the cytokinin effect on PIN1 abundance does not

depend on transcription and new protein biosynthesis.

The plant hormone ethylene has been shown to accumulate

in response to cytokinin and to execute some of the cytokinin

functions in plant development (Cary et al., 1995). Modulation

of the ethylene level or response by using the ethylene precursor

1-aminocyclopropane-1-carboxylate (ACC), an ethylene biosyn-

thesis inhibitor 2-aminoethoxyvinylglycin (AVG), or the ein2

(ethylene insensitive2) mutant defective in ethylene signaling

(Roman et al., 1995) did not affect the cytokinin-induced PIN1

downregulation (Figures 1G and 1H; Figures S1I and S1J).

Thus, the posttranscriptional regulation of PIN1 by cytokinin

does not involve ethylene biosynthesis or signaling. This obser-

vation is also consistent with cytokinin regulation being indepen-

dent of ethylene for LR organogenesis (Laplaze et al., 2007).

Altogether, our results reveal a mode of cytokinin activity

that, independently of transcription, regulates PIN1 levels at

the plasma membrane, presumably by stimulation of PIN1

degradation. This direct method of control might modulate the

PIN1 abundance at the plasma membrane more quickly than

the transcriptional regulation and, consequently, rapidly influ-

ence the auxin distribution, critical for the LRP organogenesis.

Cytokinin Affects Stability of Membrane Proteins
in a Protein-Specific Manner
To analyze whether cytokinin has a general effect on plasma

membrane protein turnover, we examined the cytokinin sensi-

tivity of several membrane proteins in LRP cells. Neither PIN7,

another member of the PIN auxin efflux carrier family (Friml

et al., 2003), nor AUX1, an auxin influx carrier (Bennett et al.,

1996) were influenced by cytokinin. PIN7-GFP typically remained

unchanged for the first 2 hr after cytokinin application and, from

3 hr on, the signal gradually increased (Figure 2A), most likely

following the onset of the cytokinin-mediated transcriptional

stimulation, as previously described for PIN7 (R�u�zi�cka et al.,

2009). Although the PIN3-GFP plasma membrane signal was

reduced upon cytokinin treatments, the kinetics of the signal

decrease were slower than those of PIN1 (Figure 2A). Western

blot analysis of endogenous PIN proteins in membrane protein

extracts fromwild-type roots confirmed that PINproteins differed

in their sensitivity to cytokinin and that cytokinin strongly

enhanced primarily the PIN1 depletion (Figure 1E; and represen-

tative western blot Figure S2C). Similarly, immunolocalization of

PIN1 and PIN2 in the root meristem treated for 1.5 hr with cyto-

kinin revealed a strong reduction in membrane PIN1 in the endo-

dermis, whereas PIN2 in epidermis remained unaffected (Figures

S2A and S2B). As PIN1 and PIN2 are not normally expressed in

the same cells, we compared the cytokinin effects on PIN1 and
ental Cell 21, 796–804, October 18, 2011 ª2011 Elsevier Inc. 797
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Figure 1. Cytokinin Inhibits LRP Development and Rapidly Depletes PIN1 from the Plasma Membranes

(A and B) Real-time monitoring of LRP development on control medium (A) and in the presence of 0.1 mM BA (B). WAVE138-YFP was used to visualize cell

membranes (Geldner et al., 2009). White arrows indicate anticlinal divisions in the early initiation stage of the LRP at time 0; red arrows mark new cell divisions.

Scale bar, 20 mm.

(C and D) Membrane PIN1-GFP signals decrease after BA or simultaneous BA and CHX treatment, but not with CHX alone (*p < 0.05, n = 10 LRP). Yellow arrows

indicate vacuoles with GFP accumulation. Scale bar, 5 mm.

(E) PIN1, but not PIN3 and PIN7 decreases in protein extract from BA-treated wild-type roots (*p < 0.01, n = 7).

Developmental Cell

Cytokinin-Mediated PIN1 Degradation

798 Developmental Cell 21, 796–804, October 18, 2011 ª2011 Elsevier Inc.



0

50

100

150

200

250 PIN1-GFP ø

PIN1-GFP BA

PIN3-GFP ø

PIN3-GFP  BA

PIN7-GFP ø

PIN7-GFP BA

AUX1-YFP

AUX1-YFP ø 

C

*
*

0

20

40

60

80

100

120

0 h 1.5 h 3 h

Re
la

�v
e 

flu
or

es
ce

nc
e 

(%
)

0.1 μM BA

PIN2-GFP

PIN1-GFP

BA
B
PIN2::PIN2-GFP

PIN2::PIN1-GFP

ø

BAø

Re
la

�v
e 

flu
or

es
ce

nc
e 

(%
)

A

Figure 2. PIN1 Exhibits High Sensitivity to Cytokinin

(A) Real-time monitoring of membrane proteins response to BA treatment. PIN-GFP and AUX1-YFP plasma membrane signals were measured in stage-I LRP

1.5 hr after 0.1 mM BA treatment (n = 10 LRP).

(B and C) PIN1-GFP, but not PIN2-GFP, decreases after 0.1 mM BA treatment in root epidermal cells (*p < 0.05, n = 10 roots, five cells per root). Yellow arrows

indicate vacuoles with GFP accumulation. FM4-64 used to visualize vacuoles. Scale bar, 10 mm. Error bars mark standard error of the mean. See also Figure S2.
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PIN2 proteins by expressing themboth under thePIN2 promoter.

When expressed in root epidermal cells, PIN1-GFPwas downre-

gulated, in contrast to PIN2-GFP that was cytokinin insensitive

(Figures 2B and 2C). To further test whether differential control

of PIN degradation is determined by cell type, PIN cytokinin

sensitivity in culturedcells of tobacco (Nicotiana tabacumVirginia

Bright Italia [VBI-0]) was examined. Accordingly, in the stably

transformed tobacco cell line VBI-0, PIN1-GFP, but not PIN7-

GFP, was reduced after cytokinin treatment (Figures S2D–S2F).

Our data demonstrate that cytokinin effect on the stability of

membrane proteins has a pronounced protein specificity and

that it is not a default mechanism for general depletion of pro-

teins from membranes. Furthermore, we show that PIN1 is re-

sponsive to cytokinin treatments in different cell types, including

LRP, root stele/epidermal cells, and suspension culture cells.

CytokininDirects PIN1 to Lytic Vacuoles for Degradation
Next, we assessed the cellular mechanism by which cytokinin

regulates PIN1 levels at the plasma membrane. A strongly in-

creased GFP vacuolar signal that coincided with the membrane

PIN1-GFP depletion (Figures 1D and 2B; Figure S2E) suggested

that cytokinin regulates the vacuolar targeting or sorting of PIN1
(F) PIN1-GFP, but not PIN2-GFP, expressed under the control of the 35S promo

(*p < 0.05, n = 10).

(G and H) BA stimulates the PIN1-GFP degradation in the ein2mutant (*p < 0.05, n

and G) and root epidermal cell (EP) 1.5 hr after BA treatment (F). Error bars mark

Developm
for lytic degradation. Therefore, we tested the cellular processes

that are required for PIN vacuolar trafficking. PIN1 undergoes

complex subcellular dynamics. It constitutively recycles between

the plasma membrane and endosomal compartments (Geldner

et al., 2001) or alternatively, it might be targeted to vacuoles

(Abas et al., 2006). The trafficking occurs along actin filaments

and requires the brefeldin A (BFA)-sensitive ARF-GEF activity

(Kleine-Vehn et al., 2008). Indeed, depolymerization of actin fila-

ments by treatment with latrunculin B (LatB) (Figure 3A; Fig-

ure S3A) prevented PIN1 trafficking into the vacuoles in response

to cytokinin, while depolymerization ofmicrotubuleswith oryzalin

(Oryz) did not (Figure 3A; Figure S3A). As expected, the treatment

of roots or VBI-0 tobacco cells with BFA reduced the PIN1-GFP

signal at the plasma membrane and enhanced its intracellular

accumulation (Figure 3A; Figures S3A–S3C). BFA prevented the

PIN1 targeting to the vacuoles in response to cytokinin without

additional decrease of the membrane PIN1-GFP signal (Figures

S3B and S3C). The PIN1 membrane signal fully recovered after

the removal of BFA. This recovery was diminished by cytokinin

indicating that PIN1 recycling is affected by cytokinin (Figures

S3B and S3C). Thus, the cytokinin effect on the PIN1 plasma

membrane levels involves both actin and ARF-GEF activity.
ter is downregulated after BA treatment in both LRP and root epidermal cells

= 10 LRP). The PIN-GFPmembrane signal was measured in stage-I LRP (C, F,

standard error of the mean. See also Figure S1.
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Figure 3. Cytokinin Activity Depends on the Functional Endocytic Trafficking

(A) In VBI-0 tobacco suspension cells, depolymerisation of actin by LatB, but not of microtubules by Oryz, interferes with PIN1-GFP trafficking to vacuoles in

response to BA. Inhibition of exocytosis/vacuolar trafficking by BFA and vacuolar trafficking byWm prevent PIN1-GFP accumulation in vacuoles. CHX treatment

does not affect PIN1-GFP accumulation in vacuoles. Yellow and red arrows indicate PIN1-GFP accumulation in vacuoles and BFA bodies, respectively. Scale

bar, 20 mm.

(B) Themembrane PIN1-GFP is insensitive to BA in ben1 and ben2mutants (*p < 0.05, n = 10 LRP). The PIN1-GFPmembrane signal wasmeasured in stage-I LRP.

(C and D) ben1 and ben2 exhibit cytokinin-insensitive LR initiation (C) and LRP development (D) when grown on BA containing media for 8 days (*p < 0.05, n = 14

roots). EM emerged LRP. Error bars mark standard error of the mean. See also Figure S3.
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Next we interfered with the vacuolar targeting by wortmannin

(Wm), an inhibitor of phosphatidylinositol-3-kinase (PI3K) and

phosphatidylinositol-4-kinase (PI4K) that affects recycling of

vacuolar sorting receptors between the prevacuolar compart-

ments/multivesicular bodies and the trans-Golgi network, thus

interfering with the targeting of proteins to the lytic vacuoles

(Kleine-Vehn et al., 2008). In the presence ofWm, cytokinin could

not mediate any decrease in the PIN1-GFP signal at the plasma

membrane or any increase in the vacuoles (Figure 3A). This

pharmacological approach showed that perturbations of cellular

processes that are required for protein trafficking into lytic

vacuoles interfere with the cytokinin effect on PIN1 degradation.

This strongly supports hypothesis that cytokinin might regulate
800 Developmental Cell 21, 796–804, October 18, 2011 ª2011 Elsev
constitutive cycling of PIN1 by its alternative sorting to lytic vacu-

oles and degradation.

Cytokinin Requires Functional Endocytic Trafficking
to Regulate PIN1 Degradation
To further dissect the role of endocytic trafficking in the cyto-

kinin-controlled PIN1 degradation, we analyzed mutants af-

fected in PIN1 endocytosis. Previously, ben1 (BFA-visualized

endocytic trafficking defective1) and ben2 were identified in

a screen for mutants defective in PIN1 endocytosis. BEN1

encodes an ARF-GEF regulator of PIN1 endocytosis, while

the identity of BEN2 is unknown (Tanaka et al., 2009). Both

ben1 and ben2 mutants exhibited a strong resistance to the
ier Inc.
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cytokinin-stimulated PIN1 targeting to vacuoles and PIN1-GFP

membrane signal did not decrease after cytokinin treatments

(Figure 3B). Thus, genetic perturbations of the PIN1 endocytic

trafficking had a severe impact on the targeting of PIN1 to vacu-

oles by cytokinin treatment.

To examine the developmental consequences of the modified

cytokinin sensitivity toward the regulation of the PIN1 degrada-

tion, the effect of cytokinin on LR organogenesis was studied

in mutants defective in endocytosis. In both ben1 and ben2,

LRP initiation and development were cytokinin resistant (Figures

3C and 3D). These results reveal a correlation between cytokinin-

mediated PIN1 lytic degradation and LR organogenesis.

To corroborate on the notion that cytokinin regulates plant

growth and development at least in part through its effect on

PIN degradation, we assessed the cytokinin effect on the

primary root meristem. Root meristem differentiation had been

previously shown to be strongly enhanced by cytokinin, suppos-

edly by crosstalk with auxin signaling at the transcriptional level

(Dello Ioio et al., 2008). Consistently with the results of LRP, the

meristem differentiation (as inferred from meristem size and

onset of cell differentiation) in ben1 and ben2 primary roots

was cytokinin insensitive (Figures S3G and S3F). In contrast,

the overall root elongation, which is primarily under the control

of ethylene overproduced in response to cytokinin (Cary et al.,

1995), remained unaffected in ben1 and ben2 mutants, display-

ing sensitivity as in control seedlings (Figures S3D and S3E).

These results show that cytokinin requires a functional endo-

cytic trafficking to efficiently modulate the amount of mem-

brane-located PIN1. The data indicate that cytokinin-mediated

regulation of PIN1 degradation underlies the cytokinin effect on

different developmental processes, such as LRP organogenesis

and root meristem differentiation. Altogether, our experiments

revealed a role for endocytic trafficking in cytokinin-controlled

plant development.

AHK-Based Cytokinin Perception Is Required
for Cytokinin-Mediated PIN1 Lytic Degradation
Cytokinin is perceived by cytokinin receptors belonging to a

family of histidine kinase receptors. Three of these, AHK2

(ARABIDOPSIS HISTIDINE KINASE2), AHK3, and AHK4, have

been confirmed to act in cytokinin perception (Higuchi et al.,

2004). To test whether known cytokinin perception mechanisms

are required for the PIN1 lytic degradation in response to cyto-

kinin, we examined the ahk2, ahk3, and cre1/ahk4 single and

multiple loss-of-function mutants. The cytokinin effect on PIN1

degradation did not change significantly in either single ahk2

and ahk3 or ahk2 ahk3 double-mutant backgrounds (Figures

4A and 4B; Figures S4A and S4B). In contrast, the PIN1-GFP

degradation in response to cytokinin was dramatically reduced

in cre1/ahk4 (Figures 4A and 4B). Likewise, in the multiple loss-

of-function mutant combinations ahk2 cre1/ahk4 and ahk3

cre1/ahk4, cytokinin was ineffective in targeting PIN1 to lytic

vacuoles (Figures S4A and S4B). As the expression of all three

cytokinin receptors overlapped in the stage-I LRP (Figure S4C),

the phenotypic differences are unlikely to be the consequence

of tissue-specific receptor expression. The impact of the PIN1

cytokinin insensitivity due to the lack of AHK4 activity on the

LR organogenesis was investigated. In both single and multiple

cre1/ahk4mutants, in which the PIN1 degradation was resistant
Developm
to cytokinin, LRP initiation and development were as well. In

contrast, the ahk2 and ahk3 single and ahk2 ahk3 double

mutants showed only minor differences in the cytokinin effect

on LR organogenesis (Figures S4D and S4E).

To analyze the role of downstream components of the

signaling pathway, we examined the cytokinin sensitivity of

PIN1 in the root meristem of several B-type ARR loss-of-function

mutants. The PIN1 membrane signal decreased in arr1-2 and

arr10-1 comparably to that of the cytokinin-treated root meri-

stem of control roots, but PIN1 was not diminished in arr2 and

arr12-1 mutants (Figures S4F and S4G).

Altogether, these findings show that functional cytokinin per-

ception is required to mediate the PIN1 lytic degradation in

response to cytokinin and imply a specific role for the AHK4

receptor-mediated branch of the pathway, including some

B-type ARR components (ARR2 and ARR12) in the transduction

of this cytokinin activity. Moreover, cytokinin-dependent regula-

tion of the vacuolar PIN1 trafficking appears to be functionally

important for regulation of the LRP organogenesis and meristem

control.

DISCUSSION

Establishment and maintenance of shoot and root apical meri-

stems (Dello Ioio et al., 2008; Zhao et al., 2010), shoot branching

(Ongaro and Leyser, 2008), and LR organogenesis (Laplaze

et al., 2007) are developmental processes controlled by antago-

nistic activities of auxin and cytokinin. Thus, an accurate balance

between opposing auxin and cytokinin effects is crucial for

proper developmental output. The auxin-controlling activity of

the cytokinin signaling pathway has been shown to be mediated

by the transcriptional modulation of its signal transduction. Con-

versely, cytokinin has been shown to feedback on the auxin

activity through modification of the expression of the Aux/IAA

genes that suppress the auxin signaling pathway. Consequently,

cytokinin directly impacts on the auxin distribution mediated

through the auxin efflux carriers of the PIN family that are under

transcriptional control of the auxin signaling pathway (Dello Ioio

et al., 2008; R�u�zi�cka et al., 2009). Thus far, all disclosed mecha-

nisms of the auxin-cytokinin communication act through mutual

modulation of their transcriptional responses.

Here, we reveal another mechanism underlying the cytokinin

control of plant development and crosstalk with the auxin

pathway.We show that cytokinin, independently of transcription,

affects the PIN1 trafficking and redirects it for lytic degradation

in vacuoles. At early stages of LR organogenesis, cytokinin

depletes in 90 min approximately 40% of the membrane-local-

ized PIN1. Such a rapid posttranscriptional regulation of the

PIN1 abundance provides for a very efficient and precise

mechanisms to control auxin fluxes and distribution during cyto-

kinin-mediated developmental regulations, including LRP organ-

ogenesis and root meristem differentiation. The results imply that

the endocytic trafficking plays a role in cytokinin-controlled

development and that cytokinin activity downstream of the cyto-

kinin perception is not restricted to transcriptional regulation.

However, unraveling exactly how both transcriptional and

transcription-independent effects are mediated by the cytokinin

pathway is a challenge for future investigations. Our data reveal

that the functional AHK4 receptor and several B-type ARR
ental Cell 21, 796–804, October 18, 2011 ª2011 Elsevier Inc. 801
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Figure 4. Cytokinin-Induced PIN1 Degradation Requires a Functional Cytokinin Perception
(A and B) PIN1-GFP is degraded upon BA and simultaneous BA and CHX treatments in the ahk2, ahk3, but not in the cre1/ahk4mutant (*p < 0.05, n = 10 LRP). The

PIN1-GFP membrane signal was measured in stage-I LRP 1.5 hr after BA treatment. Yellow arrows indicate vacuoles with GFP accumulation. Scale bar, 8 mm.

Error bars mark standard error of the mean. See also Figure S4.
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regulators are required for cytokinin-stimulated PIN1 degrada-

tion. Although underlying mechanisms are still elusive, we

hypothesize that cytokinin perception might either target the

endocytotic pathways, or affect the PIN1 protein itself, thus pre-

venting PIN1 recycling and promoting its vacuolar targeting.

EXPERIMENTAL PROCEDURES

Plant Material

The transgenic Arabidopsis thaliana (L.) Heynh. lines have been described

elsewhere: PIN1::PIN1-GFP, DR5::GUS (Benková et al., 2003); PIN2:PIN2-

GFP (Xu and Scheres, 2005); PIN7::PIN7-GFP (Blilou et al., 2005); PIN3::

PIN3-GFP (Zádnı́ková et al., 2010); PIN2::PIN1-GFP (Wi�sniewska et al.,

2006); AUX1::AUX1-YFP (Swarup et al., 2004); 35S::PIN1-GFP (R�u�zi�cka

et al., 2007); WAVE138::YFP (Geldner et al., 2009); AHK2::GUS, AHK3::GUS,
802 Developmental Cell 21, 796–804, October 18, 2011 ª2011 Elsev
CRE/AHK4::GUS, cre1-12, ahk2-2, ahk3-3, cre1-12 ahk2-2, ahk2-2 ahk3-3,

cre1-12 ahk3-3 (Higuchi et al., 2004); ben1-1 and ben2 (Tanaka et al., 2009);

pin2 pin3 pin7 (Friml et al., 2003) and ein2 (Roman et al., 1995). arr1-2

(N6368), arr10-1 (N6369), arr12-1 (N6978) (Mason et al., 2005), and arr2

(SALK_043107C) were obtained from the European Arabidopsis Stock Centre

(NASC). Q RT-PCR analysis confirmed that arr2 is null mutant allele (primers

TTATTAAATGCCAGTGGCAGC and CGACAAGAACTCGAAGATTCG). The

tobacco cell line VBI-0 (Nicotiana tabacum L. cv. Virginia Bright Italia) (Opatrný

and Opatrná, 1976) was used as suspension-cultured cells.

Growth Conditions

Seeds of Arabidopsis (ecotype Columbia-0) were plated on 0.5 MS medium

(Duchefa) with 1% sucrose and 1% agar (pH 5.7) and stratified for 2 days

at 4�C. Seedlings were grown on vertically oriented plates in growth cham-

bers under a 16-hr-light/8-hr-dark photoperiod at 18�C. Tobacco VBI-0

cells were grown in liquid media and stably transformed with Arabidopsis
ier Inc.
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PIN1::PIN1-GFP (Benková et al., 2003) and PIN7::PIN7-GFP (Blilou et al.,

2005). For transformation details see Supplemental Experimental Procedures.

Pharmacological and Hormonal Treatments

Five- to 6-day-old seedlings were transferred onto solid MS media with or

without the indicated chemicals and incubated for 1.5 to 2 hr in the dark at

22�C. Drugs and hormones used were as follows: CHX (50 mM), COR

(400 mM), BFA (50 mM), LatB (20 mM), Wm (30 mM), Oryz (20 mM), BA (0.1 mM

and 2 mM), NAA (10 mM), ZA (2 mM), AVG (0.2 mM), ACC (0.04 mM and 5 mM).

For double treatments, a 30 min pretreatment with CHX, BFA, COR, LatB,

Wm, or Oryz was done prior to the BA application. Seven-day-old tobacco

VBI-0 cells were incubated in liquid medium supplemented with CHX

(50 mM), BFA (20 mM), LatB (20 mM), Wm (30 mM), Oryz (15 mM), BA (0.1 mM)

for 1.5 to 2 hr in the dark at 22�C. Vacuoles visualized by FM4-64 (4 mM) as

described (Kleine-Vehn et al., 2008).

Real-Time Analyses of Membrane Protein Dynamics and GFP Signal

Quantification

The membrane GFP signal was quantified on scans of stage-I LRP, root

epidermal cells and tobacco cells. Pictures were taken by a FV10 ASW

confocal microscope (Olympus) with a 20 or 60 (water immersion) objective.

Criteria for quantifications ofmembrane signals in particular tissues andmicro-

scope settings are specified in Supplemental Experimental Procedures. The

fluorescence intensity of the membrane PIN-GFP signal was quantified with

ImageJ (NIH; http://rsb.info.nih.gov/ij) as described (Zádnı́ková et al., 2010).

The statistical significance was evaluated with Student’s t test.

Analysis of Primary Root and LRP Organogenesis

For real-time analysis of the LRP development, 6-day-old seedlings were

placed on chambered cover glass (Nunc Lab-Tek) and covered with

0.2-mm- thin square blocks of solid MS media with or without the indicated

chemicals and hormones. LRPs were scanned in 3 or 5 min time intervals for

8–12 hr by the FV10 ASW confocal microscope (Olympus).

For phenotypic analyses of root growth, LR initiation and development, at

least 20 seedlings were processed. The LRP density was analyzed in 8-day-

old seedlings as described (Malamy and Benfey, 1997). Root growth parame-

ters (root length and root meristem) were analyzed with the ImageJ software

(NIH; http://rsb.info.nih.gov/ij) as described (R�u�zi�cka et al., 2009).

Gene Expression Analysis

GUS activity was detected as described (Benková et al., 2003). For quantita-

tive RT-PCR RNA was extracted with the RNeasy kit (QIAGEN) from 5-day-

old roots of Arabidopsis. Expression levels were normalized to UBQ10. For

details see Supplemental Experimental Procedures.

Western Blot Analysis and Whole-Mount Protein Localization

Fourteen-day-old Col O seedlings were sprayed with a known amount of BA or

DMSO. Roots were harvested after 2–3 hr. Isolation of membrane proteins,

western blotting, and quantification were done as described (Abas and Lusch-

nig, 2010). Affinity-purified antibodies against PIN1 (Paciorek et al., 2005),

PIN3 (provided by C. Luschnig), and PIN7 (Friml et al., 2003) were used. The

statistical significance was evaluated with Student’s t test (paired, 2-tailed,

n = 7 independent biological repeats). For details see Supplemental Experi-

mental Procedures.

In situ whole-mount localization of PIN1 and PIN2 was done on 6-day-old

roots as described (Sauer et al., 2006).

SUPPLEMENTAL INFORMATION

Supplemental Information includes four figures and Supplemental Experi-

mental Procedures and can be found with this article online at doi:10.1016/

j.devcel.2011.08.014.
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