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Abstract

A number of new fundamental problems expanding Vasiliev’s and Tarkhov’s methodology worked out for neural network models
constructed on the basis of differential equations and other data has been stated and solved in this paper. The possibility of extending
the parameter range in the same neural network model without loss of accuracy was studied. The influence of the new approach to
choosing test points and using heterogeneous complementary data on the solution accuracy was analyzed.

The additional conditions in equation form derived from the asymptotic decomposition were used apart from the point data. The
classical and non-classical definitions of the problem were compared by entering a parameter into the complementary data. A new
sampling scheme of test point choice at different stages of minimization (the procedure of test point regeneration) under various
initial conditions was investigated. A way of combining two approaches (classical and neural network) based on the Adams PECE

method was considered.

Copyright © 2015, St. Petersburg Polytechnic University. Production and hosting by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

A methodology of designing neural network models
from differential equations or other data (boundary
conditions, measurements, etc.) developed by the St.
Petersburg Polytechnic University professors Vasiliev
and Tarkhov [3] allows solving complex and ill-posed
problems of mathematical physics [4—7]. Those show-
ing the most promise are the parameterized neural
network models including one or several problem
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parameters as input variables [6—8] and allowing to si-
multaneously solve a family of problems with common
parameters.

This paper raises and solves some new fundamental
questions using a simple modeling task as an example.

First, we studied the possibility of extending the pa-
rameter variation range within a single neural network
model without loss of accuracy, i.e. without increasing
the pool of simultaneously solved tasks.

Second, we investigated how the new approach to
choosing test points that we called a special test point
regeneration influences solution accuracy.

Third, we continued the study in ref. [3] aimed at
refining the solution through the use of heterogeneous
complementary data. This is point data of the sought-for
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function, including the inaccurate data, which is often
the case with real models.

The novel nature of the approach we have adopted
is, compared with previous studies [3], that the above-
mentioned point data was obtained by an intention-
ally inaccurate numerical method. Additionally, comple-
mentary conditions that are equations obtained through
asymptotic decompositions are used along with the point
data.

To answer the questions listed above, there was a
good reason to primarily consider a simplest modeling
problem with an analytical solution that the constructed
approximate solutions could be compared to, and then
objectively estimate the obtained results.

For this modeling task we chose a stiff first-order dif-
ferential equation [1]. Studies [2—-8] give reason to as-
sume that the conclusions from the comparative analysis
of the studied methods and algorithms remain valid for
more complex tasks, including the problems of math-
ematical physics; so taking such a simple problem is
justified.

Introducing a parameter into the complementary data
of the problem (expressed through an equation) allows,
in particular, to compare the classical and the non-
classical statements of the problem. In the latter case,
the conditions are imposed on the sought-for function
outside the domain chosen for the solution. The natural
asymptotic behavior of the studied problem is used as a
starting point for such a condition. An approximate solu-
tion of the problem obtained through one of the classical
methods serves as the inaccurate complementary point
data.

A neural network consolidates the information both in
data and equation forms using the minimizing functional
reflecting the quality of a model. Additionally, in this pa-
per we studied a new system of choosing test points at
different stages of minimization (the test point regener-
ation procedure) for different types of input conditions.

2. Neural network models with complementary data

The problems that are commonly difficult to solve by
classical explicit methods or require a lot of iterations are
particularly interesting. Among the ordinary differential
equations (DEs) these are stiff ones [1].

Ref. [1] deals with a classical example of a stiff
equation

y = —=50(y — cosx) (1)

with an initial condition y(0) = 0.
When this problem is solved by the explicit Euler
method, a critical value of the grid step equal to 2/50

occurs, above which the approximate solution becomes
unstable with large variations (Fig. 1, a). At the same
time, the error appears to be too large for a smaller step.

We shall focus on a generalized parameterized
problem

Yy = —a(y —cosx), (2)

v(0) =0,

where « € [5, 50] ora € [0.5, 50], x € [0, 1].

The problem is stiff for the variable x in the vicinity
of 0, which governs the choice of the proper intervals.
Test runs showed that the quality of the neural network
solution is also preserved for wider intervals. The prob-
lem is solved for all examined values of the parameter
«. Notice that these intervals of parameter variation are
sufficiently wider than those discussed in refs. [6,8].

An approximate solution is sought in the form of an
output of an artificial neural network of the given archi-
tecture:

n
yx) = Z civ(x, a, a;),
i=1
whose weights {c;, a;}__| are determined when minimiz-
ing the error functional

m

3 66 — F & yEn. a) + 8y2(0),

J=1

and for our case, F(x, y, @) = —a(y — cosx).

Test points (§;, a;) are chosen to be random and dis-
tributed uniformly over the examined intervals of varia-
tion of the value x and the parameter «; their choice is
repeated after several (3—5) iterations of the optimization
algorithm. We shall define a new random choice of test
points at some step as test point regeneration.

The quality of the obtained solution is assessed from
the exact analytical solution of Eq. (2) with an initial
condition y(0) = 0, which takes the form

a?(cos x — exp(—ax)) + a sin x
a?+1 ’

In the present work, we have examined two types of
models corresponding to various basic functions with the

varying number of neurons in the network. The first case
involved choosing universal sigmoids in the form

thla(x — d)]th[a, (@ —d1)],

y(x,a) = 3

and the second one asymmetric Gaussians in the form
xexpl—a(x —d)*]expl—ai (@ — d1)’]

that were known to satisfy the initial condition.
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Fig. 1. The solutions of a stiff differential Eq. (2) by the explicit Euler method for « = 50 (a) and 5 (b). The symbols show the pointwise solutions

by the Euler method, the lines show the true solutions.

Table 1

Values of the error functional with various data sets for two types of neural networks.

n Basic model (§; = 0) 1st modification (o = 50) 2nd modification (a = 5; o = 50)
Sigmoid Gaussian Sigmoid Gaussian Sigmoid Gaussian

5 4.078 1.503 2.176 3.746 1.561 3.376

20 4312 0.932 2.781 1.226 1.673 2.074

50 8.811 1.787 4.482 1.587 1.26 1.556

Notations: n is the number of neurons, « is a parameter; §; is a weight of the complementary data; for nonzero values of 81, the complementary

data for various values of & was used. The number of iterations is 200.

The error functional was optimized according to the
algorithm combining RPop and the cloud method [2]; the
points were randomly regenerated in each three steps,
and the cloud consisted of three particles.

It is worth mentioning that the optimization process is
complex because the optimized functional changes after
each test point regeneration; thus we avoid getting a good
approximation for a fixed set of points and a bad one for
other points of the examined interval, which may happen
when applying the collocation method.

We should stress that the calculation procedure used
is doubly stochastic, i.e., the initial weights of the neural
network are chosen as random in addition to the afore-
mentioned random test point regeneration.

Additionally, we studied model construction algo-
rithms using the complementary data on the sought-for
solution, estimated the effect of such a refinement for
various types of basis functions and various numbers of
neurons in the network. Matches of the sought-for so-
lutions and the ones already found by the explicit Euler
method for the values of the parameter « equal to 5 and
50 were treated as such data. Apparently, for « = 5, the
equation is no longer stiff and has a sufficiently accu-
rate solution (see Fig. 1, b). A ‘bad’ solution for o =
50 allows examining how the model reacts to inaccurate
data.

New information is introduced into the model by
adding the following complementary summand to the
minimizing functional:

m

81y (f () —y(x)),

j=1

where f(x;) is a pointwise Euler solution; a weight §;
may be varied, and accuracy of all acquired data or any
special conditions should be taken into account.

The above described data for @ = 50 was used in the
first modification of the model, while the data for « = 5
was also taken into account for the second modification.
Some results of the simulation experiments of the error
functional for two types of neural networks are listed in
Table 1. We examined networks with a varying number
of neurons and with the number of iterations equaling
200.

Evidently, with no complementary data, the option
with the basis functions satisfying the initial condition,
i.e. the Gaussians, proved to be preferable. Introduc-
ing the complementary data increases the accuracy only
when universal basis functions, i.e. sigmoids, are used,
and vice versa, for the network with the functions ad-
justed to the initial condition, there is, generally, an in-
crease in error. The effect of using the data for networks
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with a great number of neurons (n = 50) is particularly
pronounced.

As for the great error in the column §; = 0 (which
means there is no complementary data), for the percep-
tron network it is explained by the the functional be-
ing characteristically sensitive to a steep rise in solution.
In this case, increasing the number of neurons does not
change the situation. With no or little data, a great num-
ber of neurons just slows down the training and impairs
the result. Importantly, the results are improved with a
sufficient increase in the number of iterations.

Therefore, refining a neural-network solution is pos-
sible even if inaccurate data (e.g. approximate numerical
solutions obtained through classical methods, including
the weak ones like the explicit Euler method) is used as
complementary information.

3. Modification of a neural network model using
special test point regeneration

Let us continue to refine the model with the comple-
mentary data using a new test point regeneration proce-
dure which is selecting the test points at each iteration by
a specific rule. Let us introduce the parameter d, taking
the values 0, 0.3, 0.5, 0.7, 1.0 (and generally speaking,
any between 0 and 1) and reflecting the proportion of
points fixed from one iteration to another. For example,
d, = 0 means a complete regeneration, i.e. all points are
randomly selected anew (are evenly distributed over the
examined interval) before each iteration, d, = 1 means
that the points are fixed at the first iteration and do not
change. For intermediate values of the parameter the fol-
lowing rule is used: d, * m points of the total m test points
with the highest values of the error functional are fixed,
while the rest are regenerated randomly. In all cases, at
the first iteration the points are selected to be randomly
and evenly distributed over the examined interval.

A perceptron network that had previously proved to
be the most sensitive to new complementary data about
the model was used in the experiments. The number of
neurons in the network was chosen to equal 20 (n = 20);
the data used was on the correspondence between the
sought-for solution and the approximate one, obtained by
the explicit Euler method for « = 5 and 50. The number
of iterations was 300.

Let us introduce the following measure to objectively
estimate the obtained results. Since there is a solution
in explicit form (3) for our equation, we may compare
the solution constructed using the neural networks with
the true one. A root-mean-square deviation ¢ found in
10% points (a, x) is used as such a measure with o and
x evenly distributed over the respective intervals. The

Table 2
Root-mean-square estimate of the quality of the constructed neural-
network model.

Regeneration

parameter d=0 d;=03 d;=05 d;=07 d;=10
E., 1072 639 645 6.80 6.62 6.85
52,1072 096  0.59 0.48 0.92 1.25

Notations: E,, 52 are the mean and the root-mean-square deviations, d;
is the parameter introduced to reflect the proportion of the points fixed
from one iteration to another.

The number of iterations is 300; the number of test points m = 20.

selected number of points gives reason to assume that
the estimate is stable relative to various samples.

A series of tests was held for various values of pa-
rameter d,. The quality of the solutions constructed by
the neural network was determined using the above-
mentioned root-mean-square estimate c. Table 2 lists the
results of the experiments as mean (E,) and root-mean-
square (s?) deviations of the obtained sample for c. As
seen from the table data, the mean error values differ
only in the second digit. We may thus postulate that in
this case the regeneration by the above-described rule
for d, = 0.3 and d; = 0.5 ensures a more stable neural
network modeling result.

Evidently, the effect should be enhanced with an in-
crease in dimensionality, i.e. with a transition to partial
differential equations. We shall continue analyzing the
influence that point regeneration has on the result in the
next section.

4. Refinement of the neural network model using an
asymptotic condition

Let us note that the relation y = « sinx is true for
sufficiently small values of «. Let us regard the thus ob-
tained asymptotic condition as the complementary data
for the model. Additionally, let us take into account the
correspondence between the sought-for solution and the
approximate one obtained by the Euler method for o =
50; in other words, let us study how to use the heteroge-
neous data in the model. Let us also continue to examine
the effect of test point regeneration described in the pre-
vious section.

We shall take into account the asymptotic condition
by adding a summand

m
(073 ap . 2
) [(x,—)——smx]
2;y kM M k

to the minimizing functional in the model, where
M is a sufficiently large fixed positive number, and
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the variables x; and oy are regenerated in the same
way as earlier in the examined intervals « € [0.5, 50],
x € [0, 1].

Let us give the explicit form of the obtained solution
for m =20 and M = 50:

u(x, o) = 0.095 + 0.103th[4.294 - 10'1(3.941 - 10" + x)]th[0.086(—49.788 + «)] + 0.147th[6.398(—0.37 + x)]th
x [0.112(—45.994 + )] + 0.235th[4.21(—0.76 + x) x th[0.025(—45.33 + «)]
—0.787 th[1.88(—0.305 + x)]th[0.046(—34.378 + «)] 4 0.083th[4.474(—0.643 + x)th[0.149(—31.034
+a)]40.579 th[1.523(—0.503 + x)th[0.166(—26.922 + )] — 0.934 th[0.083(—0.054 + x)]th
x[0.565(—26.823 + «)]—0.163 th[1.818(—0.533 + x)]th[0.246(—25.466 + «)]—0.819 th
x[2.017(—0.88 + x)]th[0.14(—23.668 + «)]+0.577 th[0.938(—0.831 + x)]th[0.237(—23.39 + «)]
—0.012th[27.835(—0.284 + x)th[0.407(—22.059 + )] — 0.276 th[1.099 - 10%%(2.145 - 10% + x)]th
x[0.091(—11.042 + )] — 0.317 th[1.464(—0.569 + x)]th[0.244(—9.012 + )] — 0.105 th
x[5.303(—0.489 + x)]th[0.576(—3.596 + «)]+0.893 th[1.588(—0.798 + x)]th[0.105(—3.546 + )]
+0.23th[1.061(—0.581 + x)]th[0.341(—2.658 + or)]+0.445 th[62.244(—0.025 + x)]th
x[(0.084(—1.548 + )] — 1.009 th[1.812(—0.976 + x)]1th[(0.121(—1.166 + )] — 0.026 th[1.222
% (—0.375 + x)]th[(16.58(—0.559 + a)] + 0.849 th[0.595(—0.056 + x)]th[2.416(—0.55 4 a)].

The above-described approach was investigated for
a network with 20 basis functions (n = 20) and 20 and
50 test points (m = 20 and 50). The neuron network
was used with the asymptotic condition for M = 50,
100 and 200. Apparently, the value 1/M for these cases
will be beyond the interval in which the problem (2)
is supposed to be executed, and so we can say with
reasonable confidence that the non-classical problem is
solved.

A series of tests was held for each set of parameters.
The quality of the solutions constructed by the network
was determined using the above-mentioned root-mean-
square estimate. The results of the experiments are listed
in Table 3. Only the case of using the asymptotic condi-
tion for M = 50 is listed for a model with 50 test points, as
no discernible differences in the results have been found
for other values of M. Obviously, for high values of the
parameter M, the problem is largely non-classical, which
means the results deteriorate at full regeneration for
m = 20. The method with the partial test point regener-
ation turns up better results than the collocation method
that produces the greatest error. Significantly, it is for the
model with the fixed points when m = 50 that we obtain a
result as good as the one for complete regeneration with
m = 20. The training time highly increases as it linearly
depends on the number of test points. Thus, other things
equal, the complete regeneration makes for decreasing
the algorithm’s running time by reducing the number
of control points while retaining the accuracy of the
result.

Error increase at the complete regeneration of 50 test
points suggests that there is some network retraining, i.e.
the method and the number of points should be chosen
correctly in accordance with the conditions of the prob-
lem. Partial regeneration may be successfully applied
for a non-classical problem, thus allowing to modify the
model at the ‘complex’ points.

It is particularly interesting to compare neural net-
work solutions constructed using various types of
complementary data at specific values of the root-mean-
square error. Fig. 2 shows neural network approxima-
tions for the models with the parameters m = 20, d, =
0 without applying the asymptotic condition, and with

Table 3

Mean-root-square estimate of the quality of neural network models
designed taking into account the asymptotic condition at various values
of the parameter M and the regeneration parameter d;.

M Regeneration d;=0 d;=03 d;,=05 d;=07 d;=1.0

m =20

50 E., 1072 551  6.83 8.38 7.36 7.54
s> 1072 041  0.99 0.32 0.83 1.24

100 E,, 1072 7.03  6.84 8.13 6.87 9.12
521072 068 125 1.70 1.10 1.35

200 E., 1072 771 7.09 6.96 6.68 7.63
s> 1072 149 096 1.27 1.01 1.95

m =50

50 E. 1072 6.13  6.05 6.23 6.96 5.62
s> 1072 095 046 1.18 0.71 0.27
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Fig. 2. Neural network approximations of the solution obtained using point data (a) and the asymptotic condition () for « = 0.5 and at the same
root-mean-square error of 0.027. The parameters of the models m = 20, d; = 0. The symbols show the pointwise solutions by the Euler method, the

lines / and 2 show the true and the neural network solutions, respectively.

applying it at « = 0.5 and the same root-mean-square
error. The results in Fig. 2 demonstrate that the neu-
ral network model designed using the asymptotic con-
dition solves a non-stiff problem with less accuracy. At
the same time, its mean error estimate over the entire
interval of parameter variation is less (see Tables 2 and
3), which suggests a more uniform approximation to the
true solution over the whole examined range.

Notably, this effect remains as well for the asymptotic
model at M = 200 (non-classical problem), where the
approximation for small values of « is even cruder for
the equal values of the root-mean-square estimate.

Thus, the neural network successfully solves non-
classical problems, while the asymptotic model produces
a more uniform distribution over the whole interval of
parameter variation.

5. The way of combining the neural network and
the classical methods

It is possible to take one more hybrid approach that
uses the neural network approximation u(x, ) to solve
the problem (2) while modifying the implicit Adams
method of second-order accuracy for the solution of the
differential equation y' = f(x, y):

h
Yir1 =yi + E(f(xiv)’i) + f (i1, Yie1))

With the classical approach, the variable y; is given
implicitly and requires applying some method at each
step in order to solve this non-linear equation. The
predictor—corrector method involving two-stage calcu-
lations at each step is most commonly used in this case.
The Euler method is used as the first stage, and

Vit1 = yi +hf(xi, y)

is calculated, while the Adams method formula

h A
Yir1 =yi+ E(f(xiaYi) + f(xig1, Yir1))

is used as the second.
Let us use the neural network approximation u(x, o)
to replace two formulae with one:

h
Yier =yi + E(f(xiv}’i) + f X1, u(Xipr, )

This approach has been used and analyzed for neural
network models with the perceptron network and the
basis Gaussian functions for various numbers of neurons,
and also with and without the complementary data. Let
us now describe the most interesting results.

As expected, without the complementary data, apply-
ing the neural network with Gaussians yielded the best
result for the hybrid method in question. The number of
neurons n = 5 is apparently insufficient, and there is an
overtraining effect at n = 50. At n = 20 there is a signif-
icant decrease in error for = 50, and thus the hybrid
method allows to improve the result of the predictor—
corrector method for the stiff case.

As for the perceptron network, the effect of applying
the hybrid method occurs in the model using the com-
plementary data at values of @ = 5 and 50 (see Section
2). Even for a network with a small number of neurons,
n =5 improves the result for a stiff equation at « = 50,
compared to the neural network and the classical meth-
ods, while this is not observed for small values of «. It
appears that the reason for this is the lack of neurons
in the network, as for n = 20 and 50 the best result for
the stiff case is retained and the accuracy of the classical
methods is achieved for the equation for the small values
of parameter «.
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6. Conclusion

The conducted study established that applying the
neural network approach when designing a mathemati-
cal model from heterogeneous data including differential
equations allows, by modifying the error functional, to
take into account various types of complementary con-
ditions without substantially altering the algorithm.

Neural networks provide a way of solving non-
classical problems and model construction problems
from inaccurate data, which is often the case with ac-
tual applications. For the examined problem it turned
out that a perceptron network with basis sigmoid func-
tions (also known as universal approximators) was the
most responsive to complementary data.

The algorithm of test point regeneration suggested in
the paper ensures saving the network running time in
simple problems and refining the model if there is any
complex complementary data.

A hybrid algorithm using approximated neural net-
work solutions in classical implicit methods is effective
for neural networks producing sufficiently accurate ap-
proximations. In this case the algorithm may serve to
considerably increase the accuracy of an approximate
solution in a discrete point set.

The methodology presented in book [3] offers the
possibility of naturally generalizing of the approach in-
troduced in the present paper to systems of ordinary dif-
ferential equations, equations of higher order, and partial
derivative equations.
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