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We compute the electroweak O(α3αs) corrections to three-jet production and related event-shape
observables at electron–positron colliders. We properly account for the experimental photon isolation
criteria and for the corrections to the total hadronic cross section. Corrections to the three-jet rate and
to normalised event-shape distributions turn out to be at the few-percent level.

© 2009 Elsevier B.V. All rights reserved.
Precision QCD studies at electron–positron colliders rely on the
measurement of the three-jet production cross section and related
event-shape observables. The deviation from simple two-jet con-
figurations is proportional to the strong coupling constant αs, so
that by comparing the measured three-jet rate and related event
shapes (see, e.g., Ref. [1]) with the theoretical predictions, one can
determine αs. Including electroweak coupling factors, the leading-
order (LO) contribution to this process is of order α2αs.

Owing to recent calculational progress, the QCD predictions for
event shapes [2,3] and three-jet production [4,5] are accurate to
next-to-next-to-leading order (NNLO, α2α3

s ) in QCD perturbation
theory. Depending on the observable under consideration, the nu-
merical magnitude of the NNLO corrections varies between three
and twenty percent. Inclusion of these corrections results in an
estimated residual uncertainty of the QCD prediction from missing
higher orders at the level of below five percent for the event-shape
distributions, and below one percent for the three-jet cross section.
At this level of theoretical precision, higher-order electroweak ef-
fects could be of comparable magnitude. At present, only partial
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calculations of electroweak corrections to three-jet production and
event shapes are available [6], which cannot be compared with
experimental data directly. In this work, we present the first calcu-
lation of the NLO electroweak (α3αs) corrections to three-jet ob-
servables in e+e− collisions including the quark–antiquark–photon
(qq̄γ ) final states. Note that the QCD corrections to these final
states are of the same perturbative order as the genuine elec-
troweak corrections to quark–antiquark–gluon (qq̄g) final states.
Since photons produced in association with hadrons can never be
fully isolated, both types of corrections have to be taken into ac-
count.

Event-shape measurements at LEP usually rely on a standard
set of six variables y, defined, for example, in Ref. [7]: thrust T ,
C-parameter, heavy jet mass ρ , wide and total jet broadenings BW
and BT, and two-to-three-jet transition parameter in the Durham
algorithm Y3. The experimentally measured event-shape distribu-
tion
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is normalised to the total hadronic cross section. In the perturba-
tive expansion, it turns out to be most appropriate to consider the
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expansion of this ratio, which reads to NNLO in QCD and NLO in
the electroweak theory
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where the fact is used that the perturbative expansion of σhad
starts at order α2. The calculation of the QCD coefficients Ā, B̄ ,
and C̄ is described in Refs. [2,3]. The LO purely electromagnetic
contribution δγ arises from tree-level qq̄γ final states without a
gluon. The NLO electroweak coefficient δEW receives contributions
from the O(α) correction to the hadronic cross section,

σhad = σ0

[
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(
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)
δσ ,1

]
, (2)

and from the genuine O(α3αs) contribution to the event-shape
distribution
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such that
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= dδ Ā
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(3)

yields the full NLO electroweak correction. Both terms are to be
evaluated with the same event-selection cuts. As shown in the
following, many of the numerically dominant contributions, espe-
cially from initial-state radiation, cancel in this difference.

In the experimental measurement of three-jet observables at
electron–positron centre-of-mass energy

√
s, several cuts are ap-

plied to reduce the contributions from photonic radiation. In
our calculation, we apply the criteria used in the ALEPH analy-
sis [7]. Very similar criteria were also applied by the other exper-
iments [8]. Particles contribute to the final state only if they are
within the detector acceptance, defined by the production angle
relative to the beam direction, |cos θ | < 0.965. Events are accepted
if the reconstructed invariant mass squared s′ of the final-state
particles is larger than scut = 0.81 s. To reduce the contribution
from hard photon radiation, the final-state particles are clustered
into jets using the Durham algorithm with resolution parameter
ycut = 0.002. If one of the resulting jets contains a photon carry-
ing a fraction zγ > zγ ,cut = 0.9 of the jet energy, it is considered to
be an isolated photon, and the event is discarded. The event-shape
variables are then computed in the centre-of-mass frame of the
final-state momenta, which can be boosted relative to the e+e−
centre-of-mass frame, if particles are outside the detector accep-
tance.

In the computation of the O(α) corrections to the total
hadronic cross section, we include the virtual electroweak correc-
tions to qq̄ final states, and the real radiation corrections from
qq̄γ final states, provided the above event-selection criteria are
fulfilled. The corrections to the event-shape distributions receive
contributions from the virtual electroweak corrections to the qq̄g
final state, the virtual QCD corrections to the qq̄γ final state, and
from the real radiation qq̄gγ final state. To separate the divergent
real radiation contributions, we used both the dipole subtraction
method [9,10] and phase-space slicing [11], resulting in two in-
dependent implementations. Soft singularities are present in the
virtual and real corrections. They are regularized dimensionally
or with infinitesimal photon and gluon masses, and cancel in the
sum. Collinear singularities from photon radiation off the incom-
ing leptons (initial-state radiation, ISR) are only partially cancelled.
The left-over collinear ISR singularity is regularized by the electron
mass and absorbed into the initial-state radiator function, which
we consider either at fixed order, or in a leading-logarithmic (LL)
resummation [12]. Owing to the specific nature of the event se-
lection, also photon radiation off the outgoing quarks (final-state
radiation, FSR) is only partially cancelled. The left-over FSR singu-
larity arises from the isolated photon definition, which vetoes on
photon jets with zγ > zγ ,cut. This singularity is absorbed into the
photon fragmentation function, which we apply in the fixed-order
approach of Ref. [13]. For the non-perturbative contribution to this
function, we use the O(α) two-parameter fit of ALEPH [14]. The
fragmentation contribution derived in Ref. [13] is based on phase
space slicing and dimensional regularization. We recomputed this
contribution using subtraction and mass regularization [10].

The Feynman diagrams for the virtual corrections are generated
with FeynArts [15,16]. Using two independent inhouse Mathe-

matica routines, one of which builds upon FormCalc [17], each
diagram is expressed in terms of standard matrix elements and
coefficients of tensor integrals. The tensor integral coefficients are
numerically reduced to standard scalar integrals using the methods
described in Refs. [19,20]. The scalar master integrals are evalu-
ated using the methods and results of Refs. [21–23], where UV
divergences are regularized dimensionally. For IR divergences two
alternative regularizations are employed, one that is fully based on
dimensional regularization with massless light fermions, gluons,
and photons, and another that is based on infinitesimal photon
and gluon masses and small fermion masses. The loop integrals are
translated from one scheme to the other as described in Ref. [24].

The Z-boson resonance is described in the complex-mass
scheme [25,26], and its mass is fixed from the complex pole. The
electromagnetic couplings appearing in LO are parametrized in the
Gμ scheme, i.e., they are fixed via

α = αGμ = √
2GμM2

W

(
1 − M2

W/M2
Z

)
/π.

As the leading electromagnetic corrections are related to the emis-
sion of real photons, we fix the electromagnetic coupling appearing
in the relative corrections by α = α(0), which is the appropriate
choice for the leading photonic corrections. Accordingly the cross
section for e+e− → qq̄g is proportional to α2

Gμ
αs while the elec-

troweak corrections to this process are proportional to α(0)α2
Gμ

αs.
We performed two independent calculations of all ingredients

resulting in two independent Fortran codes, one of them being an
extension of Pole [18].

We use the following values of the electroweak and QCD pa-
rameters:

Gμ = 1.16637 × 10−5 GeV−2, MH = 120 GeV,

α(0) = 1/137.03599911, αs(MZ) = 0.1176,

me = 0.51099892 MeV, mt = 171.0 GeV. (4)

Because we employ a fixed width in the resonant W- and Z-boson
propagators in contrast to the approach used at LEP to fit the W
and Z resonances, where running widths are taken, we have to
convert the “on-shell” values of MLEP

V and Γ LEP
V (V = W,Z), result-

ing from LEP, to the “pole values” denoted by MV and ΓV , leading
to [27]:

MW = 80.375 . . . GeV, ΓW = 2.140 . . . GeV,

MZ = 91.1535 . . . GeV, ΓZ = 2.4943 . . . GeV. (5)

In the final state we take all light quarks into account, including
b quarks.



A. Denner et al. / Physics Letters B 679 (2009) 219–222 221
Fig. 1. Total hadronic cross section σhad(
√

s ).

Fig. 2. Differential thrust distribution at
√

s = MZ.

In Fig. 1, we display the total hadronic cross section σhad for
the above event-selection criteria including NLO electroweak cor-
rections and the relative corrections separately. For the latter, “full”
and “weak” refers to the electroweak NLO corrections with and
without purely photonic corrections, respectively, and “h.o. LL” in-
dicates the inclusion of the higher-order ISR effects. For most en-
ergies, the full O(α) corrections are sizable and negative, ranging
between −30% at the Z peak and about −10% at energies above
and below. The numerically largest contribution is always due to
ISR. However, above the Z resonance up to about 110 GeV the cor-
rections are positive and of the order of the Born cross section due
to the well-known radiative return phenomenon [28] that occurs
in this region because of our choice of scut. As it is not relevant
experimentally, we did not fully resolve it in Fig. 1. Below 60 GeV
and above 120 GeV the magnitude of the corrections is increased
due to LL resummation of ISR, whereas it is decreased in the region
in between. The virtual one-loop weak corrections (from fermionic
and massive bosonic loops) yield only a moderate correction be-
tween −5 and +5%. The increase for energies above 1 TeV is due
to electroweak Sudakov logarithms.

Using the same event-selection cuts, Fig. 2 displays the differ-
ential thrust distribution at

√
s = MZ, including NLO electroweak

contributions. The distributions are weighted by (1 − T ), evaluated
at each bin centre. The Born contribution is given by the Ā-term
of (1), while the full O(α) corrections contain the tree-level qq̄γ
contribution δγ and the NLO electroweak contribution δ Ā . Again,
Fig. 3. Differential thrust distribution at
√

s = MZ normalised to σhad.

Fig. 4. Three-jet rate at
√

s = MZ normalised to σhad.

we observe large negative corrections due to ISR, and moderate
weak corrections. The corrections are largely constant for T < 0.95,
where the isolated photon veto rejects all contributions from qq̄γ
final states. For T > 0.95, corresponding to the two-jet limit, we
find a substantial contribution from qq̄γ final states already at LO
(α3). Moreover, it turns out that the electromagnetic corrections
depend non-trivially on the event-selection cuts.

In expanding the corrections according to (1), and retaining
only terms up to LO in αs , we obtain the genuine electroweak
corrections to normalised event-shape distributions, which we dis-
play for thrust at

√
s = MZ in Fig. 3. Again, the Born contribution

is given by the A-term, while the O(α) corrections now consist
of δγ and δEW. It can be seen very clearly that the large ISR cor-
rections cancel between the event-shape distribution and the nor-
malisation to the hadronic cross section, resulting in electroweak
corrections of a few percent. Moreover, effects from ISR resumma-
tion are largely reduced as well. The purely weak corrections are
below 0.5 per mille.

As shown in Fig. 4, we observe a similar behaviour for the
three-jet rate in the region ycut � 0.002. For ycut � 0.002, qq̄γ
final states contribute and lead to a distortion of the shape. For
ycut � 0.0005 the three-jet rate becomes larger than σhad. In this
region, fixed order perturbation theory becomes unreliable due to
large logarithmic corrections at all orders. By improving the LO
QCD prediction used here with NLO and NNLO QCD corrections,



222 A. Denner et al. / Physics Letters B 679 (2009) 219–222
which are large and negative [3,4] for small ycut, it is possible to
extend the range of validity of the fixed order predictions.

In Ref. [6], another calculation of electroweak corrections to
three-jet observables was performed, which differs in two impor-
tant aspects from the work presented here. It considered only the
corrections to qq̄g final states, while qq̄γ final states at LO and
NLO were not taken into account. To remove singularities asso-
ciated with infrared gluons in qq̄γ g final states, event-shape ob-
servables were calculated from the reconstructed jet momenta and
not from the parton momenta, as used in experiment and in our
work. Moreover, the NLO electroweak corrections to the hadronic
cross section were not taken into account, such that only unnor-
malised distributions were considered. Owing to these substantial
differences, a direct comparison with the results of Ref. [6] is not
possible. Taking care of the different renormalizaion of α, we do
observe, however, in the unnormalized distribution, Fig. 2, that
the relative size of the O(α) weak and exact corrections, and of
the LL-improved corrections to the thrust distribution agree at the
percent level with the results of Ref. [6], except in the region
(1 − T ) < 0.05, where qq̄γ final states contribute.

Data on event-shape distributions and jet cross sections have
been corrected for photonic radiation effects modelled by stan-
dard LL parton-shower Monte Carlo programs. They can thus not
be compared directly with the NLO electroweak corrections com-
puted here. Incorporation of these corrections requires a more pro-
found reanalysis of LEP data, in order to quantify the impact of
the NLO electroweak corrections on precision QCD studies, such as
the precise extraction of the strong coupling constant at NNLO in
QCD [29].
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