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SUMMARY

T cell responses to low-affinity T cell receptor (TCR)
ligands occur in the context of infection, tumors,
and autoimmunity despite diminished TCR signal
strength. The processes that enable such responses
remain unclear. We show that distinct mechanisms
drive effector/memory development in high- and
low-affinity T cells. Low-affinity cells preferentially
differentiate into memory precursors of a central
memory phenotype that are interleukin (IL)-12Rlo,
IL-7Rhi, and Eomeshi. Strikingly, in contrast to naive
cells, low-affinity memory cells were impaired in the
response to low- but not high-affinity ligands, indi-
cating that low-affinity cells are programmed to
generate diverse immune responses while avoiding
autoreactivity. Affinity and antigen dose directly
correlated with IL-12R signal input and T-bet but
not with Eomes expression because low- affinity
signals were more potent inducers of Eomes at a
high antigen dose. Our studies explain how weak
antigenic signals induce complete primary immune
responses and provide a framework for therapeutic
intervention.
INTRODUCTION

CD8 T cell memory contributes to the health of an individual by

providing protection against re-exposure to intracellular patho-

gens and tumors. High-affinity interactions between the T cell

receptor (TCR) and peptide-MHC ligands lead to acquisition of

effector function and generation of long-term memory (Corse

et al., 2011; Gourley et al., 2004). Interactions with low-affinity

self-peptide MHC molecules are necessary for the survival of

naive peripheral T cells (Jameson, 2005; Sprent et al., 2008).

Strikingly, these low-affinity interactions are sufficient for the

acquisition of effector function and memory differentiation

(Zehn et al., 2009). This challenges the notion that central toler-

ance leads to complete nonresponsiveness to self and suggests
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an important role for low-affinity T cell interactions in the periph-

eral lymphoid compartment.

The biological significance of generating low-affinity memory

T cells becomes evident when considering the following: first,

low-affinity T cells are significant contributors to the effector

response against autoantigens, tumors, and pathogens (Pardoll,

2002; Sabatino et al., 2011). Second, low-affinity T cells can

participate in the maintenance of a diverse memory repertoire

(Intlekofer et al., 2006). This may be especially relevant with

age considering the drop in thymic output upon puberty (Ahmed

et al., 2009; den Braber et al., 2012; Hale et al., 2006; Naylor

et al., 2005). Additionally, this may be advantageous to control

microbes that mutate T cell epitopes in an effort to evade the

immune response (van Gisbergen et al., 2011). Therefore, under-

standing a T cells’ ability to respond to low-affinity ligands is a

critical aspect of T cell immunity.

How low-affinity TCR-peptide-MHC interactions lead to T cell

effector andmemory differentiation is not known. Studies of TCR

signaling in response to low-affinity ligands have demonstrated

that changes in potency are quantitatively and qualitatively

unique and cannot be explained by simple antigen dose effects.

Seminal studies with altered peptide ligands have shown that the

TCR has the ability to trigger specific signaling events that

support some functions but not others depending on the nature

of the TCR-peptide-MHC interaction (Daniels et al., 2006; Davis

et al., 1998; Jameson and Bevan, 1995; Jameson et al., 1993;

Koniaras et al., 1999; Madrenas et al., 1995; Sloan-Lancaster

et al., 1994a, 1994b). Therefore, low-affinity TCR interactions

do not necessarily imply an overall dampening of TCR signal

but rather may lead to qualitative changes in signal output that

are sufficient to support unique T cell responses. Additionally,

in the context of an immune response, TCR and proinflammatory

signals cooperate to regulate T cell differentiation (Mescher

et al., 2006). However, whether this is dependent on TCR affinity

is poorly defined.

The T-box transcription factors T-bet and Eomes are crucial

for effector and memory differentiation in T cell immune

responses (Intlekofer et al., 2005). Both are induced by high-

affinity TCR ligands and modulated by the proinflammatory

cytokine interleukin (IL)-12 (Takemoto et al., 2006). Studies

with T-bet and Eomes-deficient mice suggest that both can

act redundantly to induce effector functions. However, although
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T-bet suppresses Eomes expression and promotes terminal

short-lived effector differentiation, Eomes supports self-renewal

of antigen-specificmemory cells, without affecting T-bet expres-

sion (Banerjee et al., 2010; Intlekofer et al., 2007). Thus, T-bet

and Eomes expression profiles may be useful to predict the effi-

ciency of generating a memory pool. Curiously, there is little

insight into how TCR affinity impacts T-bet and Eomes expres-

sion profiles for effector/memory differentiation.

Central and peripheral tolerance mechanisms regulate the

delicate balance between protective immunity and autoimmunity

during an immune response. Central tolerance is regulated by a

sharp border that defines the difference between positive and

negative selection (Daniels et al., 2006; Naeher et al., 2007).

This is an imperfect process, and there is considerable evidence

for self-reactive clones that escape negative selection and can

cause autoimmunity (Enouz et al., 2012; Hogquist et al., 2005;

Liston et al., 2005). These cells, then, are kept in check by periph-

eral tolerance mechanisms to avoid autoimmunity. Among these

mechanisms, transforming growth factor (TGF)-b signaling is

critically important to control low-affinity T cell responses (Gore-

lik and Flavell, 2002; O’Sullivan et al., 2011; Zhang and Bevan,

2012). Therefore, for low-affinity T cells to develop effector func-

tion and memory without causing autoimmunity, one could envi-

sion a scenario where the quantity and/or quality of TCR signals

regulate susceptibility to inflammation and tolerance, shaping

memory programming in a way that maximizes diversity of the

memory pool and limits induction of autoimmunity.

We tested this hypothesis with the OT-I TCR transgenic sys-

tem. We compared immune responses to the strongest negative

selecting peptide, N4 (agonist), and the strongest positive

selecting ligand, Q4H7 (pseudo-self), and studied how differ-

ences in TCR affinity influence T cell memory programming

and the susceptibility of T cells to inflammatory and regulatory

signals. We show that high- and low-affinity T cells are different

in their effector/memory programming. We provide mechanistic

data about how TCR affinity, IL-12, and TGF-b signals interplay

to modify this distinct program. We propose that quantity (anti-

gen dose) and quality of the signal triggered by the stimulating

TCR ligand not only determine the nature of the primary immune

response but also have a profound impact on programming the

sensitivity to low-affinity ligands during the secondary immune

response.

RESULTS

T Cells Responding to High- and Low-Affinity Ligands
Are Phenotypically Different
Numerous studies have led to the general conclusion that activa-

tion of a T cell is proportional to TCR ligand affinity (Gottschalk

et al., 2010). Contrary to this, low-affinity T cells significantly

contribute to the effector response against autoantigens and

pathogens by developing into effector and memory cells (Zehn

et al., 2009), which may pose a risk for autoimmunity. Thus, we

sought to understand how very-low-affinity TCR ligands (in the

range of positive selectors) are able to support these T cell fates.

For this, we compared the responses against the cognate anti-

gen for the OT-1 TCR, N4 (SIINFEKL), and the strongest positive

selecting ligand Q4H7 (SIIQFEHL). Q4H7 selection potential was
determined by analysis of a large panel of N4 variants in fetal

thymic organ culture. It was found to have the highest affinity

and potency and still induce positive selection of OT-1 T cells

(Daniels et al., 2006). We deliberately chose Q4H7 because it

would potentially present the highest risk for a positive selecting

ligand to induce dangerous autoreactivity. As expected, Listeria

monocytogenes (LM) expressing Q4H7 induced a much weaker

response than LM-N4. Both LM-N4 and Q4H7 T cell responses

gave rise to stable T cell memory pools. However, the ratio of

effector to memory in response to LM-N4 and LM-Q4H7 were

different (Figure 1A). As expected, 5%–10% of the cells present

at the peak of the LM-N4 response survived contraction and

established the memory pool (Williams and Bevan, 2007). Inter-

estingly, in LM-Q4H7 responses, an approximately 6-fold higher

ratio of T cells present at the peak ended up in the memory pool.

This suggests that although low-affinity effector cell numbers

were diminished, the percentage of low-affinity memory cells

generated was comparatively increased. Looking further, we

measured IL-7Ra expression as a surrogate marker for memory

precursors during the immune response. T cells responding to

LM-Q4H7 (low affinity) exhibited a substantially higher percent-

age of memory precursors than their LM-N4 (high affinity)

counterparts (Figure 1B, left) (King et al., 2012). Furthermore,

low-affinity responders expressed higher levels of IL-7Ra than

naive or high-affinity responders at the peak of the response (Fig-

ure 1B, right), supporting the idea that antigen controls IL-7Ra

levels (Hammerbeck and Mescher, 2008). IL-7Rhi cells respond-

ing to LM-Q4H7 exhibited an activated phenotype (CD44hi,

Granzyme Bhi, etc), discarding the possibility they were unstimu-

lated naive T cells (data not shown). The percentage of CD62Lhi

cells was significantly higher in response to LM-Q4H7 than to

LM-N4, suggesting a correlation between TCR affinity and cen-

tral memory phenotype (Figure 1C). Yet, the number of cells with

IL-7Rhi and CD62Lhi phenotypes was significantly lower in low-

affinity T cells (Figure S1). Low-affinity IL-7Rhi CD62Lhi T cells

were present at similar frequencies in spleen, lymph nodes,

and bone marrow, indicating they do not preferentially accumu-

late in one of these organs. Interestingly, a higher frequency of

low-affinity cells remained CD27hi (Figure 1D), correlating with

the idea that its expression is required for low-affinity T cells to

develop into memory (van Gisbergen et al., 2011). Collectively,

these data show that T cells responding to high- and low-affinity

TCR ligands are phenotypically different during the course of

listeria infection and low-affinity T cells primarily develop into

memory precursors with a central memory phenotype.

Low-Affinity TCR Ligands Trigger a Distinct Effector/
Memory Program
These results suggest that low-affinity T cells preferentially

differentiate into memory at the expense of effectors or, alterna-

tively, they are less efficiently recruited into the effector pool

whereas memory development remains intact (or both). To

distinguish between these possibilities, we investigated how

low-affinity TCR ligands support effector and memory program-

ming by examining the expression of T-bet and Eomes (Kallies,

2008; Rutishauser and Kaech, 2010). Naive OT-1 T cells were

stimulated with 20 nM of N4 or Q4H7 peptide pulsed antigen-

presenting cells (APCs) and T-bet and Eomes expression was
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Figure 1. Low-Affinity Cells Preferentially

Differentiate into Central Memory Pre-

cursors

(A–D) OT-I T cells (1 3 103) were transferred into

congenic B6 hosts and challenged with 1 3 103

colony-forming units (cfu) LM-N4 or LM-Q4H7.

(A) Frequency of cells during the immune response

to LM-N4 (left) or LM-Q4H7 (right) in blood. Ratio

shown as mean ± SD.

(B) Frequency of cells expressing IL-7Rhi in blood

(left). For all data points except day 35, p < 0.0001.

Bar graph represents expression of IL-7R (mean

fluorescence intensity, MFI) in IL-7Rhi and IL-7Rlo

populations in lymph nodes at day 6 (right). Geo-

metric MFIs were normalized to a naive control.

(C) Frequency of cells expressing CD62Lhi in

blood. For all data points except day 35, p <

0.0007. Day 35, p < 0.05.

(D) CD27, CD62L, and IL-7R expression in lymph

nodes, spleen, and bone marrow at day 6.

All graphs show mean ± SD and represent n R 3

independent experiments, with n R 3 mice per

experiment (*p < 0.05, **p < 0.005, ***p < 0.0005).

See also Figure S1.
measured from days 1–4. We found that T cells responding

to Q4H7 expressed very low levels of T-bet (Figures 2A). In

contrast, low-affinity T cells expressed Eomes at much higher

levels than high-affinity cells (Figure 2B). This was not exclusive

to Q4H7, because we observed similar results with a lower affin-

ity pseudo-self TCR ligand (Q7) that we have previously

described in (Daniels et al., 2006) (Figure S2). Similar frequencies

of CD25+ and CD44+ cells were observed for Q4H7 (or Q7) and

N4 stimulation, ruling out that the differences in T-bet and Eomes

expression resulted from unstimulated naive OT-1 T cells (Fig-

ure S2). Thus, as TCR affinity decreased, T-bet expression

diminished, whereas the induction of the memory-associated

factor Eomes increased.

Because inflammation, andmore specifically IL-12, is required

for CD8 effector andmemory development (Xiao et al., 2009), we

also tested whether high levels of exogenous IL-12 differentially

affected the induction of T-bet and Eomes depending on TCR

affinity. IL-12 increased the expression of T-bet for T cells re-

sponding to low- and high-affinity TCR ligands. However, IL-12

did not enable Q4H7-stimulated cells to reach the T-bet levels

induced by N4 (Figures 2C and S2). More importantly, IL-12

did not alter Eomes expression for either ligand (Figures

2D and S2).
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Next, we compared Eomes and T-bet

expression levels in T cells responding

to high- and low-affinity TCR ligands in

the context of infection. At the peak of

both immune responses, low-affinity cells

exhibited a 6-fold greater frequency of

cells expressing high levels of IL-7R and

Eomes than their high-affinity counter-

parts (Figure 2E). Furthermore, on a per-

cell basis, low-affinity T cells expressed

higher Eomes levels than high-affinity
cells, confirming the in vitro results. We also observed a higher

frequency of low-affinity T cells expressing high levels of Bcl-6,

a transcription factor linked to memory development (Crotty

et al., 2010; Ichii et al., 2002). Interestingly, T-bet expression

in vivo was comparable between high- and low-affinity cells (Fig-

ure 2F). Overall, these data show that, in the context of infection,

low-affinity TCR ligands are able to induce T-bet levels compa-

rable to high-affinity ligands. More importantly, they are uniquely

capable of inducing very high levels of memory transcription

factors Eomes and Bcl-6. This suggests that low-affinity TCR

ligands induce a transcriptional program that favors memory

development.

TCR Signals Differentially Regulate Eomes and T-Bet
Expression
It seemed counterintuitive that weak TCR signals could induce

T-bet and Eomes equal to or better than strong cognate antigen.

Because antigen dose and/or inflammation shape a T cell

response, we examined the ability of OT-1 T cells to induce

T-bet and Eomes depending on antigen dose, in the absence

or presence of excess exogenous IL-12. T-bet expression was

directly proportional to TCR ligand affinity and antigen dose.

Although N4 was generally better at the induction of T-bet, there



Figure 2. Induction of Eomes, T-Bet, and Bcl-6 Expression in Low-Affinity Cells
(A–D) Naive OT-I splenocytes were stimulated with 20 nM N4 or Q4H7 peptide-pulsed APCs in the absence (A and B) or presence (C and D) of 2 ng/ml IL-12.

Expression of T-bet (A and C) and Eomes (B and D) were determined by flow cytometry on OT-1 T cells. Naive control (dashed line). Graphs showmean ± SD and

represent nR 5 independent experiments (*p < 0.05, **p < 0.005, ***p < 0.0005). OT-I naive T cells were transferred into congenic B6 hosts and challenged as in

Figure 1.

(E) Frequency of cells expressing IL-7Rahi Eomeshi at the peak of the LM-N4 and LM-Q4H7 immune responses (days 6–8) in blood. Dot plots are representative of

five independent experiments, n R 3 mice per condition.

(F) Eomes, T-bet, and Bcl-6 expression determined as in (A) on OT-1 donors at the peak of the LM-N4 and LM-Q4H7 immune responses (days 6–8). Isotype or

naive control, dashed line. Histograms and values are representative of three independent experiments, nR 3 mice per condition. Values showMFI (median) for

Eomes and T-bet and percentage of Bcl-6+ cells.

See also Figure S2.
was no difference in T-bet expression between high- and low-

affinity ligands at the highest antigen doses (Figure 3A). On the

other hand, there was not a direct correlation between antigen

dose and TCR affinity for Eomes expression. At low antigen

doses (%10�10M), Q4H7 induced lower levels of Eomes than

the high-affinity ligand N4. For N4, increase in antigen dose led

to more Eomes expression; however, at the highest doses

(R10�9 M), Eomes expression was repressed. Strikingly, at

these highest doses (R10�9 M), Q4H7 induced much higher

Eomes expression than N4. Importantly, high-affinity ligands

were unable to reach these levels of Eomes expression at

extremely low antigen doses (Figure 3B). This cannot be
explained by simple differences in TCR occupancy as it only

takes 5-fold higher concentration of low-affinity ligands to reach

the same level of occupancy of their high-affinity counterparts

(Daniels et al., 2006). Taken together, these data suggest that

the quality of the TCR signal has a greater affect on Eomes

expression than the quantity.

Next, we evaluated the effect of IL-12 on the pattern of T-bet

and Eomes expression. T-bet expression was increased in a

linear fashion across all doses for both TCR ligands with no

change in sensitivity. Furthermore, similar to results in the

absence of exogenous IL-12, low-affinity ligands only reached

T-bet levels comparable to the high-affinity ligands at the highest
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Figure 3. TCR Signal Strength Regulates

T-Bet and Eomes in Distinct Ways

(A–D) Naive OT-I splenocyteswere stimulated with

APCs pulsed with varying concentrations of N4 or

Q4H7 peptides in the absence (A and B) or pres-

ence (C and D) of 2 ng/ml IL-12. Expression of

T-bet (A and C) and Eomes (B and D) was deter-

mined by flow cytometry as in Figure 2.

Graphs show mean ± SEM and are representative

of nR 4 independent experiments. *p < 0.05, **p <

0.005, ***p < 0.0005. See also Figure S3.
antigen doses (Figure 3C). In contrast, we observed two unique

patterns of Eomes expression in the presence of exogenous

IL-12. At the lowest antigen doses, IL-12 decreased Eomes

expression for N4, whereas it increased Eomes levels for the

low-affinity ligand Q4H7. At high antigen doses, IL-12 did not

have any significant effect on Eomes expression for either ligand.

Yet, Eomes levels were much higher for low- than high-affinity

ligands (Figure 3D). Importantly, we found similar results with

other high- (negative selectors) and low-affinity (positive selec-

tors) ligands, indicating that these results are not restricted to

N4 and Q4H7 peptides (Figure S3). Of note, even at very low an-

tigen doses (2 3 10�10M), low- and high-affinity cells were simi-

larly activated (Figure S3). Yet, Eomes and T-bet expression

were significantly different between high- and low-affinity cells,

reinforcing the idea that both TCR affinity and antigen dose regu-

late Eomes and T-bet expression in distinct ways. Additionally,

these results predict that the T-bet and Eomes expression profile

observed in low-affinity cells in vivo (Figure 2) may correspond to

T cells that have encountered high levels of low-affinity antigens.

TCR Signals Regulate the Susceptibility to IL-12
Given the effect of IL-12 on T-bet and Eomes was dependent on

TCR affinity and antigen dose, we hypothesized that TCR signals

regulate the ability of T cells to receive IL-12 signals. To test this,

we evaluated whether TCR affinity and antigen dose could regu-

late the expression of IL-12R. Naive OT-1 T cells were stimulated

with 20 nM N4 or Q4H7 peptide-pulsed APCs in the presence or

absence of exogenous IL-12. In the absence of exogenous IL-12,

N4 stimulation upregulated IL-12R expression by day 3. In

contrast, IL-12R expression was not induced upon stimulation

with the low-affinity ligand Q4H7 (Figure 4A). The addition of

exogenous IL-12 increased the expression of IL-12R for both
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TCR ligands over naive levels by day 2

(Figure 4B). Yet, IL-12R expression

induced by the low-affinity ligand Q4H7

did not reach the levels induced by the

high-affinity TCR ligand N4. This was

also observed upon infection (Figure 4C).

Importantly, low IL-12R levels led to low

STAT-4 phosphorylation upon IL-12 stim-

ulation of low-affinity T cells (Figure 4D).

Because antigen dose had a profound

effect on T-bet and Eomes expression

for low-affinity ligands (Figure 3), we

next tested whether this also applied to
IL-12R expression. The low-affinity TCR ligand Q4H7 was only

able to induce levels of IL-12R comparable to the high-affinity

ligand N4 at the highest antigen doses in both the presence

and absence of exogenous IL-12 (Figures 4E and 4F). Collec-

tively, these data clearly show that TCR signal strength (affinity

and antigen dose) regulates the ability of T cells to respond to

IL-12. Because IL-12 regulates T-bet andEomes expression, this

suggests that TCR signals regulate the input of IL-12 signals to

instruct effector/memory programming, and thereby, T cell fate.

TCR Signals Regulate the Susceptibility to TGF-b
Signals
TGF-b receptor signals negatively regulate the response of

T cells against low-affinity TCR ligands (Johnson and Jameson,

2012; Zhang and Bevan, 2012). Thus, we tested whether the

susceptibility to TGF-b signals was dependent on TCR signal

strength by measuring TGF-bRII expression in experiments

analogous to Figure 4. Interestingly, the low-affinity TCR ligand

Q4H7 only induced the downregulation of TGF-bRII to the levels

of the high-affinity TCR ligand N4 at the two highest antigen

doses (Figure 5A). Furthermore, the difference in TGF-bRII

expression between high- and low-affinity cells resulted in differ-

ences in TGF-bR signaling, as measured by phosphorylation of

SMAD2/3 (Figure 5B). These data strongly suggest that TCR

signal strength also dictates the susceptibility of T cells to

TGF-b regulation.

Low-Affinity Memory T Cells Are Impaired in Their
Effector Function in Response to Low-Affinity TCR
Ligands
The previous findings indicate that OT-1 T cells responding to

low-affinity TCR ligands in the presence of inflammation fully



Figure 4. TCR Affinity Regulates IL-12R

Expression and Signaling

(A and B) Naive OT-I splenocytes were stimulated

with 20 nM N4 or Q4H7 peptide-pulsed APCs in

the absence (A) or presence (B) of 2 ng/ml IL-12.

Expression of IL-12Rb2 (A and B) was determined

by flow cytometry. Naive control (dashed line).

(C) IL-12Rb1 expression on donor OT-1 cells

challenged as in Figure 1 at day 5 of the immune

response, in blood. Representative of n = 4.

(D) Phosphorylation of STAT-4 was determined on

high- and low-affinity cells upon 30 min of 2 ng/ml

IL-12 stimulation. Isotype control (dashed line).

Histograms representative of two independent

experiments.

(E and F) Naive OT-1 splenocytes were stimu-

lated as in Figure 3 and IL-12Rb1 expression was

determined as in (A). X denotes IL-12Rb1 expres-

sion in naive T cells.

All graphs show mean ± SEM and are represen-

tative of n R 4 independent experiments (*p <

0.05, **p < 0.005, ***p < 0.0005).
support effector and memory programs. This could explain why,

in vivo, naive T cells responding to low-affinity ligands are able to

differentiate into effector and memory T cells (Zehn et al., 2009).

However, memory T cells are expected to be higher in frequency

and more sensitive to antigen than naive T cells (Williams and

Bevan, 2007). Thus, we wondered whether low-affinity memory

T cells would be more reactive to very-low-affinity antigens

(pseudo-self) and, hence, a higher risk for autoimmunity. For

this, we compared the response of naive T cells and memory

OT-1 T cells generated against LM-Q4H7 (low-affinity memory).

Low-affinity memory cells (CD44hi, IL-7Rhi) were isolated from

recipientmice. Then, equal numbers of naiveor low-affinitymem-

ory cells were transferred into naive congenic hosts and their

responses were compared upon infection with either LM-Q4H7

(low-affinity ligand) or LM-N4 (high-affinity ligand). As a control,

high-affinity OT-1 memory cells (generated in response to

LM-N4) were also rechallenged with high- or low-affinity ligands.

In response to LM-N4, low-affinity memory cells expanded simi-

larly to high-affinity memory cells (Figure 6A). Similar results were

observed in competition experiments where equal numbers of

high- and low-affinity memory cells were transferred into the

same congenic recipient followed by challenge with LM-N4 (Fig-

ure 6B). For memory effector function, we observed that low-af-

finity memory cells expressed Granzyme B and interferon (IFN)-g

at levels comparable to their high-affinity counterparts. However,
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the percentage of low-affinity memory

cells able to perform these effector func-

tions was slightly but significantly lower

(Figures 6C and 6D). This suggests that

low-affinity memory T cells provide pro-

tection against high-affinity antigens,

although not to the same extent as high-

affinity memory T cells.

Next, we evaluated the response of

low-affinity memory T cells to low-affinity

ligands (LM-Q4H7 and LM-Q7). Low-
affinity memory cell re-expansion in response to LM-Q4H7 or

-Q7 was substantially better than naive T cells and similar to

the re-expansion of high-affinity memory cells (Figure 7A; data

not shown). Strikingly, we found that low-affinity memory

T cells were impaired in the expression of Granzyme B, IFN-g,

T-bet, and Eomes (Figures 7B and 7C; data not shown). These

results are in marked contrast to the response of naive T cells

against LM-Q4H7, which is characterized by the expression of

Granzyme B and IFN-g at levels comparable to their high-affinity

counterparts (Figures 7B, 7C, and S4) (Zehn et al., 2009). These

data suggest, unexpectedly, that low-affinity memory T cells are

less efficient effectors than naive T cells in response to low-

affinity ligands. For high-affinity memory cells responding to

low-affinity ligands, expression of IFN-gwas also lower, whereas

Granzyme B was similar to naive cells (Figure S4). Collectively,

these results suggest that although both high- and low-affinity

memory T cells undergo normal secondary expansion, they are

impaired in their effector function against ligands in the range

of positive selectors. However, they remain reactive (although

not equally) to high-affinity ligands.

DISCUSSION

In the context of infection, low-affinity cells are able to acquire

effector function and develop into memory. However, the
, August 15, 2013 ª2013 The Authors 559



Figure 5. TCR Affinity Regulates TGF-bRII Expression and Signaling

(A) Naive OT-I splenocytes were stimulated as in Figure 3, in the presence of

2 ng/ml IL-12 for 3 days. Expression of TGF-bRII was determined by flow

cytometry. Graph shows percentage of downregulation relative to naive T cells

(mean ± SEM, n = 5 independent experiments) (*p < 0.05, **p < 0.005, ***p <

0.0005).

(B) Naive OT-I splenocytes were stimulated with 0.2 nM N4 or Q4H7 peptide-

pulsed APCs for 3 days and stimulated with 5 ng/ml TGF-b for 30 min.

Phosphorylation of SMAD2/3 was determined by flow cytometry. Isotype

control (dashed line). Histograms representative of n = 2 independent

experiments.
mechanisms that enable such responseswere unclear.We show

that low- and high-affinity T cells are unexpectedly different

in their effector/memory differentiation. Low-affinity cells ex-

pressed higher levels of Eomes and lower to equal levels of

T-bet compared to high-affinity cells. This results in low-affinity

cells primarily developing into memory precursors that rapidly

acquire a central memory phenotype. TCR signal strength

(affinity and antigen dose) distinctively regulated the expression

of these transcription factors, in part through the control of

IL-12R signals. Strikingly, and in contrast to naive T cells, both

high- and low-affinity memory T cells are partially desensitized

to low-affinity TCR ligands (in the range of positive selectors) in

secondary responses.

Most of our knowledge about T cell memory is based on data

generated in response to high-affinity ligands. From these

studies, a Goldilocks model of antigenic signal strength was pro-

posed, where ‘‘too little’’stimulation would lead to poor memory

development and ‘‘too much’’ would lead to CD8 memory

exhaustion (Gourley et al., 2004). This model, however, cannot

explain how, in lymphopenic conditions, naive T cells develop

into functional memory in response to self peptide (low affinity)

and low inflammatory signals. Furthermore, it cannot explain
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how, during infection, low-affinity TCR ligands can generate

memory T cells (Zehn et al., 2009). The data presented here

show that, transcriptionally, very-low-affinity TCR ligands have

the full potential to support effector function and develop into

memory (Cordaro et al., 2002; Turner et al., 2008; Zehn et al.,

2009). More importantly, low-affinity TCR ligands favor memory

by uniquely inducing high levels of Eomes and Bcl-6. How very

weak TCR signals are inherently better at inducing Eomes is

unclear. It may be related to a poor induction of T-bet. In fact,

in T-bet-deficient animals, IL-7R expression is higher, the num-

ber of memory precursors is increased, Eomes expression levels

are higher and central memory differentiation is enhanced upon

infection (Intlekofer et al., 2007). Consistent with this, low-affinity

T cells express higher levels of IL-7R, exhibit a higher frequency

of memory precursors that persist throughout an immune

response, and generate a higher percentage of cells with a cen-

tral memory phenotype (CD44hi, CD62Lhi) than high-affinity cells.

Low-affinity T cells are also poor inducers of T-bet in vitro and

require high doses of the low-affinity ligand to reach maximum

T-bet levels. Although we did not observe low expression of

T-bet in low-affinity cells in vivo, it may be that this is a sequential

process and a T-bet deficiency manifested earlier leads to a later

overexpression of Eomes. Alternatively, IL-12-independent sig-

nals, such as IL-7 or CD27, may play a role in T-bet or Eomes

induction, respectively (Dong et al., 2012; Li et al., 2011).

Curiously, we have made similar observations in polyclonal

responses where B6 mice were challenged with LM-OVA.

T cells that exhibited low binding to Kb-OVA tetramer had an

activated phenotype were higher for Eomes but equal for T-bet

expression. However, we cannot discard the fact that these

T cells might have also crossreacted with a Listeria epitope.

Proinflammatory signals have a profound impact on T cell

differentiation (Agarwal et al., 2009; Li et al., 2006; Zhang and

Bevan, 2012). Thus, high levels of inflammation are required to

drive effector function, but they also favor terminal effector dif-

ferentiation (Harty and Badovinac, 2008; Joshi et al., 2007;

Mescher et al., 2006; Pipkin et al., 2010). This is thought to be

in part because IL-12 enhances T-bet expression, which, in

turn, can repress Eomes levels (Intlekofer et al., 2007; Takemoto

et al., 2006). Although this may be true for high-affinity ligands,

our data provide an important insight into how Eomes expres-

sion is differentially regulated depending on affinity, antigen

dose, and the level of IL-12R. We find that, contrary to what

has been described for high-affinity ligands (Rao et al., 2010),

high IL-12 does not repress Eomes for low-affinity ligands and,

actually, has the opposite effect at low antigen doses. Strikingly,

at high antigen doses, IL-12 does not repress Eomes for either

TCR ligand. This indicates that IL-12-dependent regulation of

Eomes depends on TCR signal strength. This may be in part

linked to the regulation of IL-12R signals by TCR signal strength,

because low-affinity TCR ligands are poor inducers of IL-12R.

Alternatively, it may be that Eomes expression is negatively regu-

lated by very strong TCR signals (independently of IL-12) and

low-affinity ligands, even at the highest antigen doses, are not

able to trigger the mechanisms that induce this repression.

Another possibility could be that low-affinity TCR ligands are

inherently better inducers of a specific signaling pathway that

drives Eomes expression. Notably, TCR affinity does not



Figure 6. Low-Affinity Memory T Cells Respond to High-Affinity Ligands

OT-I CD8+ T cells (23 105) were transferred into congenic B6 hosts and challenged with 13 104 cfu LM-N4 or LM-Q4H7, and N4-primed (high-affinity memory

[Hi Aff. Mem]) or Q4H7-primed (low-affinity memory [Lo Aff. Mem]) memory cells were isolated after R30 days.

(A, C, and D) Hi Aff. Mem or Lo Aff. Mem cells (13 104) were transferred into naive hosts and rechallenged with 13 105 cfu LM-N4. Frequency and total number of

responding cells (A), Granzyme B (C), and IFN-g expression (D) were determined in Hi and Lo Aff. Mem cells at day 6 postinfection (p.i.). Average MFI and

percentage of positive cells for Granzyme B and IFN-g are indicated. Graphs show mean ± SD.

(B) 13 104 Hi Aff Mem (CD45.2+CD90.1+), Lo Aff. Mem (CD45.2+CD90.1�) or a mixture of 13 104 Hi Aff. Mem and 13 104 Lo Aff. Mem cells were transferred into

naive hosts and rechallenged with 1 3 105 cfu LM-N4. Frequency of responding cells was determined in the blood 5 days p.i.

Dot plots, histograms, and graphs are representative of n R 2 experiments, with three to six mice each. *p < 0.05, **p < 0.005, ***p < 0.0005.
regulate T-bet expression in the same way as Eomes. T-bet

levels increase proportionally to TCR affinity. The positive influ-

ence of IL-12 in T-bet expression equally applies to both high-

and low-affinity ligands. Collectively, these findings provide

evidence that TCR affinity can differentially regulate transcription

factors (T-bet and Eomes) that are associatedwith different T cell

fates. This also supports previous data indicating that the TCR

signaling requirements for effector function and memory devel-

opment are different (Smith-Garvin et al., 2010; Teixeiro et al.,

2009) and raises the intriguing idea that TCR signals could be

manipulated to direct a T cell toward a specific fate.

It has been reported that inflammation regulates TCR sen-

sitivity to antigen (Richer et al., 2013). Remarkably, our data

demonstrate that TCR signal strength also regulates the

response of a T cell to inflammatory signals. Hence, because

there is a mutual regulation and cooperation of both signals,

neither inflammation nor antigenic signals can be considered

alone to fully understand CD8 T cell differentiation.

For low-affinity T cells, negative regulation by TGF-b signals

has an important impact in their immune response (Johnson
and Jameson, 2012; Zhang and Bevan, 2012). We have

observed that low-affinity T cells are unable to downregulate

TGF-bRII (except at the highest antigen doses), even in the pres-

ence of IL-12. TGF-bR signals have been shown to regulate CD8

short-lived effector cell survival but do not affect memory cell

development (Sanjabi et al., 2009). This adds credence to the

idea that low-affinity TCR signals favor memory differentiation,

maybe at the expense of effector differentiation. The fact that

TCR signal strength regulates both IL-12R and TGF-bR signals

suggests that low-affinity T cells need to be tightly regulated

(low for IL-12R signals and high for TGF-bR signals) to limit overt

activation in the context of infection. Thismay explain in part why

low-affinity T cells are able to differentiate to a certain extent but

do not cause stable autoimmunity (King et al., 2012).

In the thymus, a sharp border of TCR affinity defines the

threshold between positive selection of tolerant T cells and

the deletion of autoreactive T cells (Daniels et al., 2006). In the

periphery, these positively selected T cells are expected to

react against their cognate antigen and remain tolerant to self.

Because of this, it is striking that weak TCR signals from positive
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Figure 7. Low-Affinity Memory T Cells Are

Impaired in Their Effector Function against

Low-Affinity Ligands (Pseudo-self)

(A–C) Lo Aff. memory cells were obtained as in

Figure 6. Lo Aff. Mem or naive OT-I cells (1 3 104)

were transferred into naive hosts and challenged

with 13 105 (memory) or 13 104 (naive) cfu LM-N4

or LM-Q4H7or LM-Q7. Frequency and total num-

ber of responding cells (A), expression of Gran-

zyme B (B), and IFN-g (C) were determined by flow

cytometry in naive or Lo Aff Mem cells at day 6 p.i.

Values shown in dot plots are averages. Histo-

grams and graphs show mean ± SD. Data are

representative of nR 2 experiments, with three to

six mice each. Significance shown (*p < 0.05, **p <

0.005, ***p < 0.0005) denotes comparison versus

naive OT-I challenged with LM-Q4H7. See also

Figure S4.
selecting ligands (low affinity) can induce complete immune

responses (Zehn et al., 2009). Based on our data, we propose

that the purpose of these responses is to maintain the diversity

of thememory repertoire. This could be crucial to protect against

viral escape variants and heterologous infections in secondary

immune responses (van Gisbergen et al., 2011) or tumors.

Intriguingly, low-affinity memory cells re-expanded in response

to low-affinity challenge but in contrast to naive T cells respond-

ing to low-affinity ligands in the range of positive selectors, they

were impaired in their effector function (IFN-g and Granzyme B

expression). This may be explained in part by the fact that low-

affinity memory cells exhibit higher levels of TGF-bRII than their
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high-affinity counterparts (O’Sullivan

et al., 2011). Alternatively, this could be

a consequence of their memory pro-

gramming during the primary immune

response. Interestingly, low-affinity mem-

ory cells were able to respond against

high-affinity TCR ligands but not to the

same extent as high-affinity memory

cells. This suggests that low- and high-

affinity memory cell responses are not

equal, an idea that is also inferred in

studies comparing true memory T cells

(generated against strong antigens) and

HP-memory T cells (generated against

self-antigens in lymphopenic conditions)

(Cheung et al., 2009; Jellison et al., 2012).

Others have shown that monoclonal

or polyclonal T cells with low functional

avidity can escape negative selection

and after, being primed and/or rechal-

lenged with TCR ligands that are at or

below the threshold of negative selection,

can cause autoimmunity to tissue ex-

pressing self-antigen at or above this

threshold (Enouz et al., 2012; von Herrath

et al., 1994; Zehn and Bevan, 2006).

Our data suggest that reactivity against
ligands below the threshold of positive selection could exist if

certain biochemical criterion is met. Thus, low-affinity T cells

were able to integrate TCR and IL-12R signals to support an

effector program (high levels of T-bet and Eomes) similar to

high-affinity ligands only at the highest doses of antigen in

the presence of inflammation. Interestingly, low-affinity primed-

OT-1 memory T cells, which are, in principle, more reactive

than naive T cells, were impaired in their ability to express

effector molecules IFN-g and Granzyme B but not in their ability

to proliferate upon rechallenge with positive selecting ligands

Q4H7 and Q7. This suggests that T cells mount restricted sec-

ondary responses to ligands in the range of positive selectors.



Is it possible that restriction could be overcome and lead to auto-

immunity? Polyclonal T cells from RIP-OVA mice challenged or

rechallenged with a pathogen that expresses OVA caused auto-

immunity in 30% of the RIP-OVA mice (Enouz et al., 2012). Curi-

ously, also in the RIP-OVAmodel, King et al. showed that, only at

high doses of the very low-affinity ligand (Q4H7), autoimmunity

was transiently induced (King et al., 2012), again suggesting

there may be a specific tolerance mechanism to keep these

responses in check below the threshold of negative selection.

The differences between these two systems highlight the impor-

tance of understanding the mechanisms that underlie breaks in

self-tolerance and indicate that the equilibrium between reac-

tivity to foreign and self is more complex than originally thought.

In summary, we show that high- and low-affinity memory

T cells are differentially programmed. Despite the fact that low-

affinity T cells are recruited into the memory pool, they undergo

normal secondary expansion, yet they are impaired in their

effector response to positive selecting ligands. Hence, we pro-

pose that the sharp TCR affinity threshold that distinguishes pos-

itive and negative selection is relevant for memory responses.

This information has important implications for vaccine develop-

ment, tumor immunotherapies, and autoimmunity.

EXPERIMENTAL PROCEDURES

Mice and Reagents

C57BL/6, B6.SJL, and OT-I and OT-1.PL (Thy1.1+) TCR transgenic mice were

bred andmaintained according to the University of Missouri OAR, ACUC. Pep-

tides were purchased from New England Peptides and rmIL-12 from Pepro-

tech. IL-2 (X63-IL-2 hybridoma) was used at 50 U/ml. TGF-b was from R&D

Systems.

Bacteria

Listeria strains were generously provided by M. Bevan (University of

Washington). Listeria strains were grown to an OD600 of 0.5 and were grown

as described in Zehn et al. (2009).

Adoptive Transfer and Infections

Donor naive (1 3 103–1 3 104) or memory OT-1 T cells were purified from the

lymph nodes of OT-1 or host mice and transferred intravenously into congenic

mice. All infections were performed intravenously at least 1 day after adoptive

transfer of transgenic T cells.

Flow Cytometry and Antibodies

Anti-CD8a (53–6.7), CD90.1 (OX-7), IL-7Ra (A7R34), CD62L (MEL-14), Vb5

(MR9-4), IL-12Rb1 (114), IL-12Rb2 (HAM10B9), IFN-g (XMG1.2), and phos-

pho-STAT-4 from BD PharMingen. Anti-CD45.1 (A20), CD45.2 (I04), CD27

(LG.7F9), and Eomes (Dan11Mag) were from eBioscience. Anti-T-bet (4B10)

and Bcl-6 (Clone 7D1) were from Santa Cruz Biotechnology, and secondary

antibodies and Granzyme B (GB12) were from Invitrogen. Anti-phospho-

SMAD2/3 was fromCell Signaling Technology. Flow cytometry was performed

on a FACSCalibur flow cytometer (Becton Dickinson), and the data were

analyzed with FlowJo FACS Analysis Software (Tree Star). For determining

induction of Eomes and T-bet, geometric mean fluorescent intensity was

normalized to a naive control. For determining induction of IL-12Rb2 and

IL-12Rb1, geometric mean fluorescent intensity was normalized to an isotype

control.

Intracellular Staining

Splenocytes were washed in FACS buffer (1% FCS, 0.02% sodium azide in

PBS) and stained for CD8 and congenic markers (CD45.1 or CD45.2 or

CD90.2 or CD90.1) to identify donor cells. Cells were washed in FACS buffer

and then fixed and permeabilized using Cytofix/Cytoperm or Phosflow
(Perm. Buffer III) kit according to the manufacturer’s instructions (BD Biosci-

ences). Next, cells were stained with specific antibodies. For restimulation

and determining cytokine production, splenocytes were incubated in 96-well

round-bottom plates with 1 ml/ml Golgistop (BD Biosciences) in the presence

of 250 nMOVA or Q4H7 or Q7 peptides for 4 hr at 37�C. Data were analyzed by

flow cytometry.

Statistical Analysis

For statistical analysis, unless otherwise stated in figures, two-tail unpaired

Student’s t test was applied using Prism software (GraphPad). Significance

was set at p < 0.05. For T-bet and Eomes dose-response curves (Figure 3),

data were analyzed using the multiple t tests platform (Holmes method correc-

tion for multiple comparisons, alpha = 5.000%), utilizing Prism software

(GraphPad).

SUPPLEMENTAL INFORMATION

Supplemental Information includes four figures and can be found with this

article online at http://dx.doi.org/10.1016/j.celrep.2013.07.008.
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