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SUMMARY

European and North American strains of the parasite
Toxoplasma gondii belong to three distinct clonal
lineages, type I, type II, and type III, which differ in
virulence. Understanding the basis of Toxoplasma
strain differences and how secreted effectors work
to achieve chronic infection is a major goal of current
research. Here we show that type I and III infected
macrophages, a cell type required for host immunity
to Toxoplasma, are alternatively activated, while type
II infected macrophages are classically activated.
The Toxoplasma rhoptry kinase ROP16, which acti-
vates STAT6, is responsible for alternative activation.
The Toxoplasma dense granule protein GRA15,
which activates NF-kB, promotes classical activation
by type II parasites. These effectors antagonistically
regulate many of the same genes, and mice infected
with type II parasites expressing type I ROP16
are protected against Toxoplasma-induced ileitis.
Thus, polymorphisms in determinants that mod-
ulate macrophage activation influence the ability of
Toxoplasma to establish a chronic infection.

INTRODUCTION

Toxoplasmagondii is anobligate intracellularparasitecapableof in-

fecting a wide range of mammalian hosts including humans. Most

Toxoplasmastrains isolated inEuropeandNorthAmericabelong to

just three distinct clonal lineages, the type I, II, and III strains. These

strains differ in virulence inmice and likely cause different sequelae

in humans (Boothroyd and Grigg, 2002). Toxoplasma secretes

effector molecules from two secretory organelles, rhoptries and

densegranules, into thehostcytosolwhichmodulatehostsignaling

pathwaysanddictate virulence (Reese et al., 2011; Rosowski et al.,

2011; Saeij et al., 2006, 2007; Taylor et al., 2006). Amajor aim in the

field is to understand the genetic basis underlying Toxoplasma

strain differences in virulence and how secreted effectormolecules

work to achieve chronic infection for the parasite.
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A possible strategy to establish a chronic infection is through

the modulation of the host’s Th1 response, which culminates in

the production of IFN-g, the main mediator of resistance against

Toxoplasma. However, the Th1 response must also be tightly

regulated, otherwise a lethal inflammatory response develops.

For example, mice lacking the regulatory cytokines IL-10 or

IL-27 die of severe immune pathology when infected with type

II strains (Gazzinelli et al., 1996; Stumhofer et al., 2006). Th1

type cytokines (e.g., IFN-g) synergize with pattern recognition

receptors on macrophages to signal for the classical activation

(or M1) of macrophages, which exert antimicrobial functions

against intracellular pathogens and require the activity of NF-kB,

IRF, and C/EBPd transcription factors (Medzhitov and Horng,

2009). Macrophages are necessary for host protection to Toxo-

plasma (Dunay et al., 2008), and the IL-12 response by infected

macrophages is greatly influenced by the strain type (Robben

et al., 2004). Themolecularmechanism underlying parasite strain

differences in proinflammatory cytokine induction by macro-

phages has not been resolved.

In contrast, alternatively activated macrophages (or M2)

develop in a Th2 cytokine environment (IL-4, IL-13) and are

inhibited by Th1 type cytokines (Martinez et al., 2009). M2

macrophages secrete anti-inflammatory molecules that can

downregulate Th1 immune processes and are important in the

immune response against worm infections. M2 activation is

promoted by STAT6 and PPARg transcription factors (Odegaard

et al., 2007), and mice deficient in IL-4, a potent mediator of M2

polarization, aremore susceptible to acute Toxoplasma infection

(Roberts et al., 1996). IL-4 treatment, as well as TLR stimulation

(El Kasmi et al., 2008), alters L-arginine metabolism in macro-

phages through the induction of the arginase enzyme. L-arginine

and the arginase catabolite ornithine can be scavenged by para-

sites to generate ATP (Cook et al., 2007) and assist their replica-

tion (Iniesta et al., 2001). Thus, the ability of Toxoplasma, or other

protozoan parasites, to induce specific macrophage activation

states could have immediate consequences on virulence, local

parasite burden, and inflammatory-related pathologies.

Given that Toxoplasma elicits a strong Th1 response, it is not

known whether the parasite actively counteracts collateral

damage following inflammation or if there are strain differences

in such a response. In this report, we show that mouse macro-

phages infected with type I and III Toxoplasma strains are
c.
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polarized toward an M2 activation state, while type II infected

macrophages resemble aspects of M1 activation. This differ-

ence is due to polymorphisms in the Toxoplasma rhoptry kinase

ROP16 and dense granule protein GRA15, which activate STAT6

and NF-kB signaling pathways, respectively. Finally, type II

strains that express ROP16 from the type I strain fail to cause

intestinal inflammation in susceptible C57BL/6 (B6) mice. This

report provides direct evidence that Toxoplasma-infected

macrophages can be alternatively activated, and describes

parasite-specific factors that work independently of pattern

recognition receptors to achieve M1 or M2 activation.

RESULTS

Toxoplasma Type I and III Strains Induce M2 Activation,
while the Type II Strain Induces M1-like Cells
Toxoplasma strain differences in the modulation of host cells at

the site of infection might lead to variation in their ability to

disseminate, replicate, or survive. In agreement with an earlier

report studying the type I and II strains (Mordue and Sibley,

2003), we observed that all three strains equally infected macro-

phages during the first 3 days of intraperitoneal (i.p.) infection,

and this cell type accounted for approximately 60% of the total

infected peritoneal exudate cells (PECs) (see Figure S1 available

online). Neutrophils were the next most abundant cell type

infected by Toxoplasma (15% of the total infected PECs).

However, it was the macrophage that provided a niche permis-

sive for parasite replication, because when compared to neutro-

phils they exhibited a higher GFP intensity (parasites express

GFP) (Figure S1) and had more parasites per vacuole when

FACS sorted and analyzed under a microscope (R4 compared

to 1 parasite per parasitophorous vacuole, macrophages versus

neutrophils, data not shown). No differences were observed in

cellular recruitment, or infectivity of these or other cell types,

over the first 3 days of infection (Figure S1, data not shown).

These observations suggest that parasite differences in viru-

lence might be due in part to how these strains modulate or

interact with macrophages. To explore this further, two mouse

macrophage cell lines, RAW264.7 and J774, were infected with

either the type II or III strain, and gene expression profiles were

analyzed by oligonucleotide arrays 18 hr after infection. Dendritic

cells are an important link between the innate and adaptive T cell

immune responses and can be infected by Toxoplasma in vivo

(Bierly et al., 2008; John et al., 2009) (data not shown). Thus, the

transcriptional response of the dendritic cell line DC2.4 (Shen

et al., 1997) to Toxoplasma infection was also analyzed. A total

of 1173 annotated genes were differentially regulated (2-fold

expression level difference) between type II and III infections:

670 in RAW264.7 cells, 238 in J447 cells, and 930 in DC2.4 cells.

Bioinformatic analysis of these gene sets suggested that

signaling pathways which intersect with NF-kB (pattern recogni-

tion receptor signaling, TNF, IL-8, and CD40 signaling), IRF

(cytosolic receptor and interferon signaling), JAK/STAT tran-

scription factors (interferon and IL-10 signaling), and nuclear

receptors (LXR/RXR and glucocorticoid receptors) mediate

gene expression differences between type II and III infections

(Figure S2). Furthermore, type II-induced genes were signifi-

cantly enriched in TFBSs for NF-kB, IRF, Ets, ATF/CREB, and

CEBP/AP1 transcription factors, as well as several nuclear
Cell H
receptors (Table S1). Generally these transcription factors are

also activated in LPS-stimulated orM1macrophages (Medzhitov

and Horng, 2009). Conversely, type III-induced genes had signif-

icant enrichment for TFBSs of transcription factors involved in

hematopoietic cell proliferation, survival, and differentiation

(GATA1, E2F, and HOXA9), as well as for NFIL3, a transcription

factor which is regulated by STAT6 (Schroder et al., 2002). These

results suggest that macrophages and dendritic cells undergo

distinct programming when infected by different Toxoplasma

strain types. Interestingly, many of the genes that differed in

expression between cells infected with the type II and III strains

are also highly expressed in either M1 or M2 macrophages,

respectively (Martinez et al., 2006) (Table 1). Thus, type II and

III infected cells appear to have been activated differently,

specifically along the M1/M2 axis.

To confirm these observations, a variety of in vitro assays were

performed to determine the alternative activation state of macro-

phages: arginase-I activity, expression of the mannose receptor

type C (Mrc1/CD206), and the macrophage galactose/N-acetyl-

galactosamine-specific lectin (mMgl or Mgl1/2). Macrophages

infected with type I or III parasites, but not with type II parasites,

had high arginase activity 24 hr after infection (Figure 1A). In

general, type III infected macrophages had higher arginase

activity than type I infected macrophages. Furthermore, approx-

imately 50% of macrophages infected with either the type I or III

strain, but not the type II strain, expressed high levels of CD206

and mMgl (Figure 1B). Experiments with the DC2.4 dendritic

cell line produced essentially the same results (Figure 1C).

Compared toRAW264.7cells, theDC2.4cell linewasmoresensi-

tive to arginase induction, and under these conditions the type II

strain induced a small but significant increase of arginase activity

compared to noninfected cells.

In contrast, the type II strain induced the expression of genes

that are associated with the M1 phenotype, including many

proinflammatory cytokines (Table 1). As has been previously

noted (Robben et al., 2004), compared to other strain types,

the type II strain highly induces the expression of transcripts

for the proinflammatory cytokines IL-1b, IL-6, and IL-12p40/35

in infected bone marrow-derived macrophages (BMDMs). Our

transcriptional profiling largely confirmed these results, and

also suggested that Il23 was consistently induced by the type

II strain in all three cell lines tested (Table 1). In agreement with

these observations, the type II strain, but not the type I or III

strains, elicited a strong IL-23 (p40/p19) and IL-12 (p40/p35)

response by infected BMDMs as determined by ELISA (Fig-

ure 1D). Not all aspects of M1 activation were observed in type

II infected cells. For example, M1 cells are known to produce

high amounts of reactive oxygen and nitrogen intermediates.

Although we found iNOS message (Nos2) to be enriched in

type II infected cells (Table 1), compared to LPS/IFN-g-stimu-

lated BMDMs, infection with the type I, II, or III strains generated

little to no amounts of nitric oxide (NO) (data not shown). The

inability of Toxoplasma to directly induce iNOS protein has simi-

larly been observed (Mordue and Sibley, 2003).

Toxoplasma Rhoptry Kinase ROP16 Promotes
M2 Activation
Previously, using human foreskin fibroblasts (HFFs), we demon-

strated that the type I and III strains, but not the type II strain,
ost & Microbe 9, 472–483, June 16, 2011 ª2011 Elsevier Inc. 473



Table 1. Macrophages andDendriticCell Lines InfectedwithType

II or Type III Parasites Have Gene Expression Profiles Consistent

with either a Classical or an Alternative Activation Program

Type II versus Type III Fold Change

Gene Symbol Raw DC J774 Average ALT/CLASS

H2-Eb1 (MHCII) 8.0 18.7 6.2 11.0 CLASS/ALT

Ccr7 7.5 20.5 4.6 10.8 CLASS

Ccl5 14.5 12.2 2.7 9.8 CLASS

Cxcl10 4.0 8.1 2.2 4.8 CLASS

Cxcl11 4.6 3.3 3.4 3.8 CLASS

Ltb (Lymphotoxin B) 4.0 4.6 2.2 3.6 CLASS

Oasl2 2.3 4.6 2.9 3.3 CLASS

Irf7 4.3 3.2 1.9 3.2 CLASS

Traf1 2.6 3.9 2.6 3.1 CLASS

Ptgs2 (COX2) 3.2 2.5 2.3 2.6 CLASS

Tnf 3.1 2.3 2.6 2.6 CLASS

Il15ra 2.1 2.7 2.9 2.6 CLASS

Relb 1.3 4.5 1.8 2.5 CLASS

Cd40 1.6 2.2 3.5 2.4 CLASS

Nos2 (iNOS) 2.7 1.3 3.0 2.3 CLASS

Ccl3 2.9 2.1 1.6 2.2 CLASS

Nfkbie (IkB-3) 1.3 2.8 2.3 2.1 CLASS

Il23a 3.0 ND 1.2 2.1 CLASS

Stat1 2.3 2.5 1.4 2.1 CLASS

Cxcl16 1.4 3.1 1.7 2.1 CLASS

Tlr2 1.6 2.5 1.8 2.0 CLASS

Arg1 �24.0 �529.9 �138.0 �230.6 ALT

Chi3l4 (Ym2) �1.3 �182.2 ND �91.8 ALT

Chi3l3 (Ym1) ND �74.9 ND �74.9 ALT

Mgl2 �61.1 �121.8 �10.1 �64.3 ALT

Ccl24 1.1 �58.1 ND �28.5 ALT

Mrc1 (CD206) �13.4 �45.2 �4.2 �20.9 ALT

Ear11 �23.8 �11.9 ND �17.8 ALT

Pdcd1lg2 (B7-DC) �3.7 �22.9 ND �13.3 ALT

Mgl1 �11.7 �14.4 �3.7 �9.9 ALT

Ptgs1 (COX1) �7.7 �4.6 �2.6 �5.0 ALT

Igf1 �8.2 �3.5 �1.5 �4.4 ALT

Irf4 �1.5 �5.5 ND �3.5 ALT

Clec7a (Dectin 1) �1.4 �4.5 �2.7 �2.8 ALT

Retnla (Fizz1) ND �2.6 ND �2.6 ALT

Ccl17 �1.8 �3.3 ND �2.5 ALT

Gene symbols are depicted for a subset of genes (36 out of 184) that were

similarly regulated in a strain-specific manner (at least 2-fold average

difference) between the mouse macrophage cell lines RAW264.7 and

J774, and the DC2.4 dendritic cell line. The fold difference in expression

comparing type II and III infected cells is indicated, where positive

numbers indicate the fold increase in type II over III infection and negative

values indicate the fold increase of type III over type II infections. Genes

were grouped according to their expression level in either alternatively or

classically activated macrophages (Biswas and Mantovani, 2010; Gor-

don, 2003; Martinez et al., 2006, 2009). ND indicates that the gene was

not detected above background in that particular cell type. The experi-

ment was performed in duplicate. See also Figure S2 and Table S1 for

molecular pathway and TFBSs analysis of these gene sets, respectively.
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constitutively activate STAT6, a difference due to polymor-

phisms in the secreted Toxoplasma rhoptry kinase ROP16 (Saeij

et al., 2007). Furthermore, ROP16 can directly phosphorylate the

critical Y641 residue required for STAT6 activation (Ong et al.,

2010), thusmaking ROP16 a likely candidate driving strain differ-

ences in M2 activation. To investigate this further, we analyzed

whether a type I strain that has the ROP16 gene deleted (type I

Drop16) (Ong et al., 2010) can induce M2 cells. Unlike wild-

type type I (and III) strains, the type I Drop16 strain failed to

induce the expression of any of the M2-associated markers

(arginase, CD206, and mMgl) (Figure 2), which correlated with

its inability to phosphorylate STAT6 at any time point investi-

gated (0.5, 1, 2, 4, 8, and 18 hr, data not shown; 24 hr shown

in Figures 2C and 2D).

Gene expression profiling of BMDMs infectedwith the type I or

type I Drop16 strains indicated that ROP16 controlled the

expression (R2-fold) of 538 unique annotated genes. Indeed,

the most differentially regulated genes were those associated

with the M2 phenotype, with Arg1 at the top of the list of

ROP16-induced genes (132-fold) (Table S2A). Other M2markers

including Cd206,Mgl2, and Cdh1 (E-cadherin) were also depen-

dent on ROP16. Surface receptors that were induced by ROP16

were confirmed by FACS, which included the B7 familymembers

B7-DC (Pdcd1lg2) and B7-H1 (Cd274), as well as the C-type

lectin Dectin-1 (Clec7a) (Figure 2E). The M2 signature could

clearly be seen in a TFBS analysis of ROP16-regulated genes,

which implicated STAT6 and other M2 transcriptional regulators

(Table S2B). In summary, the M2 activation program induced by

Toxoplasma is controlled by ROP16.

To confirm that ROP16-mediated differences in macrophage

activation occur in vivo, we infected BALB/c mice i.p. with type

I, type II, or type I Drop16 parasites and stained for M2 markers

21 hr postinfection. In type I-challenged animals, infected

CD11b+ PECs (which includes monocytes/macrophages and

granulocytes) stained positive for phospho-STAT6 and ex-

pressed the mannose receptor CD206 (Figures 2F and 2G),

and this was dependent on type I ROP16. In contrast, type II

infected cells did not express CD206 and were less likely to stain

positive for phospho-STAT6 (Figures 2F and 2G). These data

show that strain-specific induction of M2 cells is apparent

in vivo and that the rhoptry kinase ROP16 plays a fundamental

role in this process.

Toxoplasma Dense Granule Protein GRA15 Promotes
M1 Activation
Recently, we identified a dense granule protein GRA15, encoded

by the type II strain (GRA15II), that is secreted into the host

cytosol and causes the activation and nuclear translocation of

host p50/REL-A NF-kB heterodimers (Rosowski et al., 2011).

Furthermore, GRA15II accounted for most of the IL-12p40

response by infected macrophages in vitro, which prompted

us to explore in greater detail the role ofGRA15II inM1 activation.

Therefore, gene expression profiles of type II and type II Dgra15-

infected BMDMs were analyzed. Genes that were dependent

(R2-fold) on the expression of Toxoplasma GRA15II were those

typically induced in M1 cells (Table S3A) and included many

proinflammatory cytokines (Il23a, Il6, Il12a, Il12b, Il1a, and Tnf),

ligands for T cell costimulatory receptors (Cd40, Cd80, Cd70,

Tnfsf9, and Tnfsf4), NF-kBmodulators (Nfkb1e,Nfkb1b,Nfkb1z),
c.



Figure 1. Toxoplasma Strain-Specific Induction of Markers Associated with either M1 or M2 Macrophages

(A) RAW264.7 macrophages were infected with the type I (RH), II (Pru), or III (CEP) Toxoplasma strains (moi = 5), and 24 hr after infection arginase activity was

measured in the lysates of infected and uninfectedmacrophages by determining the conversion of L-arginine to urea in 1 hr (Student’s t test, *p < 0.006, type I or III

versus type II). Similar results were obtained with other strains of the three clonal lineages (GT1, ME49, and VEG, data not shown). Error bars represent a standard

deviation (SD). The relative percentage of infected macrophages following i.p. infection with the three strain types can be seen in Figure S1.

(B) RAW264.7 macrophages were infected with either the type I, II, or III Toxoplasma strains that expressed GFP (moi = 0.5), and 1 day after infection macro-

phages were fixed, permeabilized, and stained with antibodies against either the macrophage mannose receptor (CD206, also called Mrc1, stained red) or the

galactose/N-acetylgalactosamine-specific lectin (mMgl/Mgl2, stained red). Nuclei were stained with Hoechst (blue). These results are representative of at least

three experiments.

(C) As in (A), but DC2.4 dendritic cells were assayed (Student’s t test, *p < 0.02, type I, or III versus type II; #p < 0.002, type II versus uninfected control). Error

bars, +SD.

(D) IL-23 (p40/p19) and IL-12 (p40/p35 or ‘‘IL-12p70’’) cytokine production by type I, II, or III infected BMDMs were determined by ELISA 24 hr after infection

(Student’s t test, *p < 0.03 type II versus type I or III). These results are representative of at least three experiments. Error bars, +SD.
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and some of the M1-associated chemokines (Cxcl1 and

Cxcl11). Transcripts for Il10 and the IL-27/35 subunit Ebi3,

which are necessary to prevent inflammatory damage following

Toxoplasma infection (Gazzinelli et al., 1996; Stumhofer et al.,

2006), were also highly dependent on the expression of GRA15II
(Table S3A). Interestingly, Il23a was the most differentially regu-

lated gene transcript between these stains (58-fold), and secre-

tion of IL-23 (p40/19), IL-12 (p40/35), and IL-10 by infected

BMDMs was entirely dependent on the expression of type II

GRA15 (Figure 3C). TFBS analysis of the 710 genes that were

regulated by GRA15II also revealed a significant enrichment of

TFBSs for transcription factors known to be activated in

M1 macrophages (Medzhitov and Horng, 2009), which include

NF-kB, IRF, C/EBP, PU1, and ATF (Table S2B). GRA15II also

repressed many genes that are associated with M2 activation

(Mrc1, Mgl1, Ccl24, Ear11, Ptgs1) (Table S3A). In particular,

PPARg, which encodes a transcription factor that promotes
Cell H
M2 activation (Odegaard et al., 2007), was the gene most

repressed by GRA15II. In summary, many aspects of M1 activa-

tion by the type II strain were largely controlled by GRA15.

Inducing the M2 Phenotype with Type II-Engineered
Parasites
To test whether a simple combination of GRA15 and ROP16 will

determine the M1/M2 phenotype of infected macrophages,

a series of type II parasites was generated that expressed or

lacked the STAT3/6- and/or NF-kB-activating versions of these

genes. Gene expression profiles, proinflammatory cytokine

secretion, and arginase activity of BMDMs infected with type

II, type II +ROP16I, type II Dgra15, and type II Dgra15 +ROP16I
parasites were analyzed. Type II +ROP16I-infected macro-

phages possessed significantly higher arginase activity than

type II infected RAW264.7 cells (data not shown) and BMDMs

(Figure 3B), but lower than the response elicited by the type III
ost & Microbe 9, 472–483, June 16, 2011 ª2011 Elsevier Inc. 475



Figure 2. Toxoplasma-Secreted Rhoptry Kinase ROP16 Mediates Alternative Macrophage Activation

(A) RAW264.7 macrophages were mock infected (control) or infected (moi = 5) with type I, type I Drop16, or type II parasites, and 24 hr later arginase activity was

determined (Student’s t test, *p < 0.05, type I versus type I Drop16 or type II). Error bars, +SD.

(B) As in (A), except the macrophages were fixed and stained with antibodies to the parasite surface antigen SAG-1 (green) and the M2 markers CD206 or mMgl.

Hoechst dye was used to stain nuclei (blue).

(C) Western blot of infected RAW264.7 cell lysates using antibodies against mMgl1/2, tyrosine-phosphorylated STAT6 (pSTAT6), or total STAT6. Antibodies

against GAPDH and SAG-1 were used for host cell and parasite loading controls, respectively.

(D) One day after infection with the indicated strain types, RAW264.7 macrophages were fixed, permeabilized, and stained with antibodies against pSTAT6 and

SAG-1. Nuclei were stained with Hoechst (blue).

(E) BMDMswere infectedwithGFPexpressing type I or type IDrop16parasites andstainedwithPE-labeled antibodies to the surface receptorsB7-H1 (PD-L1), B7-

DC (PD-L2), Dectin-1 (Clec7a), or CD86 (which is not regulated by ROP16). Histogram plots depict the relative surface expression of these markers on infected

GFP+ (black lines) and noninfected GFPneg (blue lines) BMDMs in the same well. Isotype staining with Rat IgG2a antibodies is also shown (shaded histogram).

(F) BALB/c mice were infected i.p. with type I, type I Drop16, or type II parasites. Twenty-one hours postinfection, PECs were harvested and stained for CD11b

and the SAG-1 parasite surface antigen. Infected (toxo+) and uninfected (toxoneg) CD11b+ PECs were analyzed for their expression of pSTAT6 or CD206 by

histogram (gray, ‘‘minus one’’ staining control, where cells are stained with all staining reagents except the anti-STAT6 or CD206 primary antibodies; red, type I;

blue, type II; green, type IDrop16; black, PECs from an uninfectedmouse stimulated with recombinant murine IL-4 for 10 min at 37�C). Data are representative of

two independent experiments (n = 3).

(G) Bar graphs depict the percentage of positively staining CD11b+ PECs as analyzed in (F) (KO, type I Drop16). N.D., not detected. Error bars, +SD. ANOVA

one-way analysis of variance was used to determine statistical significance. The percentage of infected CD11b+ cells was similar in type I, type II, and type I

Drop16-infected mice (data not shown).

See Table S2A for a list of genes regulated by ROP16, as well as Table S2B for a TFBS analysis of this gene set.
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Figure 3. GRA15 and ROP16 Determine M1/M2 Activation

(A) Gene cluster analysis of uninfected and infected BMDMs with the indicated type II Toxoplasma strains for markers of alternative activation. For a list of genes

that are regulated by GRA15 and a TFBS analysis of this gene set, see Tables S3A and S2B, respectively. For a list of genes that are coregulated by ROP16 and

GRA15, see Table S3B.

(B) Arginase activity of wild-type (dark bars) or Stat6�/� BMDMs (light bars) infected for 20 hr with the indicated parasite strains. Error bars, +SD (Student’s t test,

*p < 0.03, indicated sample versus all other infected wild-type BMDMs; #p < 0.01, type III versus all other infected wild-type BMDMs; %p = 0.06, type II

Dgra15 +ROP16I versus type II + ROP16I;
$p < 0.03 uninfected Stat6�/� versus all other infected Stat6�/� macrophages; Infected wild-type versus Stat6�/�

BMDMs was significantly different for each parasite strain, p < 0.02, data not shown).

(C) IL-12p70, IL-23 (p40/p19), and IL-10 cytokine secretion by parasite-infected BMDMswas determined by ELISA 20 hr after infection (Student’s t test, *p < 0.03,

type II versus all other samples). Error bars, + SD. For a further analysis of the ability of GRA15II and ROP16I to induce M1 and M2 markers in the context of

polarizing environments in vitro and in vivo, see Figure S3.
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strain (Figure 3B). Furthermore, by removing GRA15 from the

type II +ROP16I strain (i.e., type II Dgra15 +ROP16I), arginase

activity of infected BMDMs was enhanced (Figure 3B, p =

0.06), suggesting that GRA15 can inhibit arginase-1 induction

by ROP16. Although the expression of the other arginase

isozyme, Arg2, was dependent on Toxoplasma GRA15II (5.7-

fold) (Table S3A), only a small decrease of urea production was

observed between macrophages infected with type II Dgra15

and type II parasites (Figure 3B), implicating Arg1 as the major

producer of urea following Toxoplasma infection. Arginase

activity was also determined in Stat6 knockout BMDMs. In

keeping with an earlier report that Toxoplasma can induce the

expression of Arg1 independently of STAT6 (El Kasmi et al.,

2008), Toxoplasma elicited urea production in Stat6�/� BMDMs,

albeit at levels much lower than in wild-type BMDMs (Figure 3B).

Importantly, strain differences in urea production were absent in

Stat6�/� BMDMs, suggesting that polymorphisms in ROP16

affect signaling via STAT6 to achieve strain-specific differences

in the macrophage arginase response.

To obtain a complete picture of the macrophage response

to these strains, the gene expression profiles of BMDMs in-

fected with type II, type II Dgra15, type II +ROP16I, and type II

Dgra15 +ROP16I parasites were compared. Indeed, there was

significant overlap between ROP16- and GRA15-regulated

genes, as many genes were either synergistically or antagonisti-

cally regulated by both GRA15 and ROP16 (Table S3B). For

example, M1 cytokines that were highly induced by GRA15II
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were downregulated following type II+ROP16I infection (Fig-

ure 3C), likely because ROP16 can inhibit the activation of NF-kB

by type II strains (Rosowski et al., 2011). Conversely, many M2

markers were more highly expressed in BMDMs infected with

type II Dgra15 +ROP16I than with type II +ROP16I parasites

(Figures 3A and 3B), indicating that activation of NF-kB can inhibit

the expression of M2 markers, possibly through its effect on

PPARg. Finally, GRA15 and ROP16 retained the ability to induce

M1 or M2 markers in polarizing environments in vitro and in vivo

(see discussion in Figure S3). Thus, a combination of GRA15 and

ROP16 can control macrophage activation along the M1/M2 axis.

Arginase Promotes Toxoplasma Replication
Recently, it was demonstrated that arginase-I expression in

macrophages is a susceptibility factor during Toxoplasma

infection and that Arg1�/� macrophages produce more NO in

response to inflammatory stimuli (El Kasmi et al., 2008). iNOS,

like arginase, uses L-arginine as its substrate, but converts it to

L-citrulline and NO, which is required for long-term control of

Toxoplasma infection (Scharton-Kersten et al., 1997). We there-

fore investigatedwhether the inductionofarginasebyToxoplasma

ROP16 has a similar effect on the production of NO by macro-

phages. By adding different concentrations of L-arginine to L-

arginine-free medium, it was determined that below �40 mg/L

of L-arginine there is a rapid decline in NO production by mouse

macrophages stimulated with LPS and IFN-g (Figure 4A)

(commercial DMEM contains 84 mg/L L-arginine, mouse serum
ost & Microbe 9, 472–483, June 16, 2011 ª2011 Elsevier Inc. 477



Figure 4. M2 Activation Promotes Parasite Growth, but Induction of Arginase by ROP16 Does Not Affect Nitric Oxide Production by Stimu-

lated Mouse Macrophages

(A) RAW264.7 macrophages were stimulated with LPS (20 ng/ml) and IFN-g (100U/ml) in medium containing different concentrations of L-arginine, and NO

production was measured by determining the concentration of nitrite (NO2�) in the medium.

(B and C) (B) RAW264.7 macrophages cultured in mediumwith either 15 or 40 mg/L L-arginine were mock-infected (control) or infected (moi = 5 or 10) with type I

or type I Drop16 parasites and subsequently stimulated with LPS (20 ng/ml) and IFN-g (100 U/ml). One day after infection NO production was measured by

determining the concentration of nitrite in the medium, and (C) arginase activity was determined. Error bars, +SD.

(D) DC2.4 cells were infected with either type I or type I Drop16 at an moi of 1 in medium supplemented with 35 mg/L L-arginine and stimulated with 50 ng/mL of

IL-4 and/or treated with 100 mM of the arginase inhibitor nor-NOHA. Twenty-four hours later, the number of parasites per vacuole was quantified by immuno-

fluorescence microscopy. The bars represent the number of vacuoles containing 1 or 2 parasites (dark bars), or R3 parasites (light bars). Fisher’s exact test

one-tailed probabilities %0.03 are indicated.

(E) As in (D), but type II (PruA7 5-8b+,HXGPT+) and type II +ROP16I (2C4) parasites were assayed after 48 hr of infection. The bars depict the number of vacuoles

containing 1–3 parasites (dark bars) orR4 parasites (light bars). Fisher’s exact test one-tailed probabilities%0.03 are indicated (Fisher’s exact test, p % 0.002,

NOHA versus IL-4 for all infections in D and E, data not shown).
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contains�35mg/L L-arginine). RAW264.7macrophageswere in-

fected for 24 hrwith type I or type IDrop16parasites and activated

with LPS and IFN-g for 24 hr. Although high arginase activity was

induced only in macrophages infected with type I parasites,

both strains inhibited NO production equally well at L-arginine

concentrations of 15, 40, and 80 mg/L (data not shown). Since

Toxoplasma-infected cells are refractory to IFN-g signaling (Zim-

mermann et al., 2006), infection and stimulation were performed

concurrently to bypass this refractory state. Indeed, NO produc-
478 Cell Host & Microbe 9, 472–483, June 16, 2011 ª2011 Elsevier In
tion was restored under these conditions. NO production by

stimulated macrophages was dependent on the concentration

of L-arginine andmultiplicity of infection (moi); however, no signif-

icant difference in NO production was observed between cells

infected with type I or type I Drop16 parasites (Figure 4B), even

though type Iparasites inducedhigh levelsof arginaseunder these

conditions (Figure 4C).

Arginase converts L-arginine to urea and ornithine, the latter of

which can be utilized in a variety of metabolic pathways including
c.
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amino acid and polyamine synthesis. Toxoplasma lacks arginase

activity and is a polyamine auxotroph (Cook et al., 2007). Induc-

tion of host arginase could therefore be a strategy to increase the

availability of host polyamines to support Toxoplasma replica-

tion. Since DC2.4 cells are extremely responsive to induction

of arginase-I (Figure 1C), we assayed parasite growth in these

cells cultured in 35 mg/L L-arginine and either stimulated with

IL-4 to induce arginase-I and/or treated with the arginase-I inhib-

itor nor-NOHA. In general, parasite replication for all strains was

enhanced in IL-4-treated cells. The difference was apparent at

48 hr for the type II/III strains and at 24 hr for the type I strains

(Figures 4D and 4E). Proliferative enhancement was through

IL-4-induced host arginase, since IL-4-stimulated cells treated

with nor-NOHA elicited a proliferative response that was similar

in magnitude to parasite growth in nontreated cells (Figures 4D

and 4E). Strains that express ROP16I grew slightly faster (in

particular type II +ROP16I compared to type II), and nor-NOHA

inhibited parasite replication of all strains tested. These results

suggest that Toxoplasma could use the arginase metabolic

pathway to promote its own growth, possibly through the action

of ROP16.

ROP16 Promotes Host Survival and Quells Toxoplasma-
Induced Ileitis in C57BL/6 Mice
Following natural peroral infection with the type II strain, C57BL/

6 mice rapidly die during the acute phase of infection, which

correlates with severe intestinal pathology (Liesenfeld et al.,

1996). Toxoplasma-induced ileitis can be cured by removing

a variety of proinflammatory cytokines including IFNg (Liesenfeld

et al., 1996), IL-23, and IL-22 (Munoz et al., 2009). Given the anti-

inflammatory capacity of the Jak-STAT6 and -STAT3 signaling

pathways to regulate these mediators, we decided to explore

the role of ROP16 in inflammatory modulation at the site of

infection.

To this end, B6 mice were perorally challenged with type

II +ROP16I or +ROP16III parasites, or with the type II or III strains.

With high-dose infection (800 cysts), the majority of mice

survived infection with the type II ROP16I/III strains, and those

that died did so at a much later time point than mice infected

with the type II strain (Figure 5A). Survival following type

II+ROP16I infection correlated with reduced intestinal inflamma-

tion across the entire length of the intestine (Figure 5D). By day

8, cellular infiltrate into the lamina propria, villi blunting, and

necrosis were nearly absent in type II+ROP16I-infected mice

(Figures 5B and 5D). Protection also correlated with reduced

submucosa thickening (type II, 72 uM; versus type II +ROP16I,

56 uM, average over 400 measurements p < 10�7, data not

shown). Whereas the type II strain elicited a significant influx

of granulocytes into the villi and Peyer’s patches, as detected

by Gr-1 and myeloperoxidase (MPO) staining, granulocyte

recruitment was significantly reduced in type II +ROP16I-

infected animals (Figure 5E). Villus expression of iNOS (NOS2)

in type II +ROP16I-infected mice was reduced but not signifi-

cantly different from type II infection. Lymphocytes isolated

from the Peyer’s patches of type II +ROP16I-infected animals

produced less IL-22 and IFN-g when stimulated with plate-

bound anti-CD3 and anti-CD28 antibodies compared to

lymphocytes from type II infected mice (Figure 5C), while

lamina propria lymphocytes from type II +ROP16I-infected
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animals produced less IL-22 but similar amounts of IFN-g

compared to lymphocytes from type II infected animals. Thus,

type I/III ROP16 expression correlates with a general damp-

ening of Toxoplasma-induced ileitis after oral infection in

B6 mice.

DISCUSSION

In this report, we have demonstrated that Toxoplasma type I

and type III strains can induce the M2 phenotype, while the

type II strain induces M1-like macrophages. The alternative

activation of macrophages is dependent in large part on the

Toxoplasma polymorphic protein kinase ROP16, while the clas-

sical activation of macrophages by the type II strain is due to the

unique ability of its GRA15 protein to activate the NF-kB

pathway and elicit proinflammatory cytokines. In total, polymor-

phisms in these two factors account for �25%–50% of the gene

expression differences between type II- or III infected cells (data

not shown).

Interestingly, ROP16 and GRA15 seem to affect signaling

pathways that are themselves differentially ‘‘wired’’ between

different hosts. For example, there is considerable mouse strain

variation in the ability to generate M1 or M2 cells (Mills et al.,

2000). One hypothesis is that parasite effectors from different

Toxoplasma strains evolved to work optimally in hosts predis-

posed to certain types of immune responses, such as those

along the Th1/Th2/Th17 or M1/M2 axes. Conversely, ending

up in the wrong host might lead to severe disease and failure

to establish chronic infection. Evidence surrounding this idea

include (1) C57BL/6, but not BALB/c, mice challenged orally

with type II strains, but not type III strains (data not shown),

can develop severe immune pathology caused by high levels

of proinflammatory cytokines in the small intestine (ileitis) (Lie-

senfeld et al., 1996); (2) chronic infections with type II strains,

but not other strains, can cause severe pathology in the brain

(encephalitis) of susceptible mice (Suzuki and Joh, 1994); (3)

type I or type I/III recombinant strains are more often sampled

in patients that present severe ocular toxoplasmosis (Grigg

et al., 2001); and (4) although the type I strain is lethal in labora-

tory mice, rats are extremely resistant to Toxoplasma infection in

general (Sibley and Ajioka, 2008). Whether the type II or other

strains are uniquely suited to spread in nature is an unresolved

question; however, the type II strain is the most abundant strain

identified in livestock and in humans in North America and

Europe.

The fact that type I and III parasites initially induce M2 macro-

phages seems to contradict the well-established fact that

Toxoplasma infections with the type I strain induce a strong

Th1 response (Mordue et al., 2001). We favor the hypothesis

that early alternative activation of macrophages, decreased

macrophage IL-12 secretion (Robben et al., 2004), and reduced

dendritic cell expansion following type I infection (Tait et al.,

2010) contribute to a lower IFN-g and cytotoxic host response

against the parasite. Later during infection, the higher type I

parasite burden could lead to increased levels of proinflamma-

tory cytokines (Mordue et al., 2001). This could be due to

‘‘danger signals’’ released from lysing parasites such as profilin

that can directly stimulate dendritic cells to produce high levels

of IL-12 (Yarovinsky et al., 2005).
ost & Microbe 9, 472–483, June 16, 2011 ª2011 Elsevier Inc. 479



Figure 5. ROP16 Prevents Toxoplasma-Induced Ileitis

(A) Susceptible C57BL/6 mice were orally infected by gavage with 800 cysts of the type II, type II +ROP16I, type II +ROP16III (Pru background), or type III (CEP)

strains, and survival was monitored. The combined results of two experiments are shown (n = 10).

(B) On day 8 of infection, the entire length of the small intestine was fixed, sectioned, and stained with hematoxylin and eosin dyes (top panels), or with antibodies

to Gr-1 (Ly6C/G) (RB6-8C5, brown staining) and hematoxylin (lower panels). Representative pictures of the villi (top panels) or Peyer’s patches (lower panels) from

the intestines of mice infected with either the type II or type II +ROP16I strains are shown at 203magnification. The border of the Peyer’s patch is outlined in white.

(C) On day 8 of infection, lymphocytes were harvested from the Peyer’s patch or lamina propria and stimulated for 20 hr in vitro with plate-bound anti-CD33 and

anti-CD28 antibodies. IFN-g and IL-22 was detected in the supernatant by ELISA. The average of three biological replicates and the standard deviation are

plotted. Student’s t test, p % 0.06 are indicated.

(D) For eachmouse intestine (n = 3), severe inflammation was quantified along the entire length of the intestine bymicroscopy of the tissue sections. If a regionmet

the following criteria—(1) increased cellular influx, (2) villi necrosis or villi blunting, and (3) mucosal thickening—then that region was considered severely inflamed

and the length of that region was measured. The sum of all regions was tallied per mouse intestine, and the average of the biological replicates and standard

deviation is plotted. The Student’s t test p value is indicated.

(E) For each intestine, the number of villi or villi remnant that stained positive for iNOS (NOS2), Gr-1 (Ly6C/G), or MPO was quantified, and the average of the

biological replicates and standard deviation is plotted. Student’s t test p values %0.05 are indicated.
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If both the type I and III strains induce alternative macrophage

activation, why then are type III strains avirulent? The major

Toxoplasma locus responsible for the difference in virulence

between type I and III strains encodes another rhoptry protein

kinase, ROP18 (Saeij et al., 2006; Taylor et al., 2006), which

can phosphorylate and thereby inactivate mouse p47 GTPases,

which are crucial for IFN-gmediated killing of Toxoplasma (Fen-

tress et al., 2010; Steinfeldt et al., 2010). Type III strains express

extremely low levels of ROP18 due to an insertion in its promoter

(Saeij et al., 2006), and the addition of the type I ROP18 locus to

a type III strain causes this strain to be as virulent as type I strains

(Taylor et al., 2006). In contrast, we recently demonstrated that

the virulence differences in mice between type II and III strains

is multifactorial, with five Toxoplasma loci being involved,

including ROP18, ROP16 (Saeij et al., 2006), ROP5 (Reese
480 Cell Host & Microbe 9, 472–483, June 16, 2011 ª2011 Elsevier In
et al., 2011), and most likely GRA15 (Rosowski et al., 2011).

With the exception of ROP5, evidence now exists that these

virulence factors can directly manipulate macrophage function,

and the likelihood that other Toxoplasma effectors, polymorphic

or not, would do likewise seems probable, especially consid-

ering the findings presented here.

We recently reported that following i.p. infection with type II

Dgra15 parasites, a lower host production of IL-12p70 and

IFN-g at 1–2 days of infection preceded a higher parasite burden

at day 5 compared to the type II strain (Rosowski et al., 2011). It is

possible thatM1 activation byGRA15II helps drive IFN-g produc-

tion to keep parasite numbers low, thus facilitating chronic

infection. The induction of IL-12 by GRA15II may be especially

important in hosts that do not express TLR11, as in humans

(Roach et al., 2005). With respect to the in vivo effects of
c.
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ROP16, we previously observed that the type II +ROP16I or

+ROP16III strains were less virulent following i.p. infection

compared to the parental type II parasites (Saeij et al., 2006).

We have extended this analysis to the oral model, and found

that ROP16I prevents Toxoplasma-induced ileitis. The mecha-

nism by which ROP16 promotes host survival is currently under

investigation, but it is unlikely that ROP16 mediates its effect by

inhibiting macrophage NO production. L-arginine depletion by

arginase-1 also inhibits T cell responses (Pesce et al., 2009).

Thus, ROP16-induced arginase activity, suppression of IL-12

family members, and its induction of the T cell coinhibitory mole-

cules B7-DC and B7-H1 might all feed into a general dampening

of the CD4 T cell response, which is implicated in driving Toxo-

plasma-induced intestinal inflammation.

In conclusion, Toxoplasma appears unique in that strains of

the same species can elicit polar opposite responses in in-

fected macrophages. The rationale for alternative activation by

Toxoplasma might be 2-fold: (1) to limit inflammatory damage

in the infected host by quelling the Th1 response aimed at para-

site elimination, and (2) to scavenge polyamines or other metab-

olites for energy consumption. On the other hand, the promotion

of M1 cells could assist the host to develop a better Th1

response required for parasite clearance, and paradoxically

allow the establishment of chronic infection. It appears that the

survival of both the host and the parasite hangs in the delicate

balance between opposing pro- and anti-inflammatory

responses. Understanding how Toxoplasma regulates these

immune decisions may provide important clues to their wide-

spread success in establishing chronic infection.

EXPERIMENTAL PROCEDURES

Mice, Parasites, and Cells

Six- to ten-week-old femaleBALB/cJ,C57BL/6J, orB6.129S2(C)-Stat6tm1Gru/J

(Jackson Laboratories) mice were used in all experiments. All mice were

maintained in specificpathogen-freeconditions inaccordancewith institutional

and federal regulations. The Toxoplasma strains used in this study are

described in the Supplemental Experimental Procedures. RAW264.7, J774,

andDC2.4cell linesweremaintained in the samemediumasHFFswith anaddi-

tional 10 mM HEPES (GIBCO Invitrogen). BMDMs were generated by

culturing bone marrow cells in 20% L929 cell-conditioned medium, as previ-

ously described (Rosowski et al., 2011). This method yielded a highly pure

population of CD11b+ F480+ macrophages (>99%) by FACS. All parasite

strains and cell lines were routinely checked for mycoplasma contamination,

and it was never detected.

Ex Vivo Phospho-STAT6 Assay and FACS Analysis

BALB/c mice were infected i.p. with 3 3 106 parasites; 21 hr later, PECs were

harvested, and all manipulations were done in the presence of Phosphatase

Inhibitor Cocktail 2 (Sigma) and 13 Roche protease inhibitor (Roche). PECs

were blocked with 4% FBS, FcBlock (BD PharMingen), and normal rat and

mouse serums (Caltag Laboratories) and stained with a-CD11b M1/70 PE or

Pacific Blue (eBioscience), washed, fixed in 4% paraformaldehyde, and per-

meabilized with 0.5% saponin in blocking solution, stained with rabbit

a-SAG-1, a-CD206 MR5D3 biotin or PE (Serotec), and a-pSTAT6 pY641 J71-

773.58.11 Alexa Fluor 647 (BD PharMingen), washed and detected with goat

a-rabbit Alexa Fluor 488 (Invitrogen) and streptavidin PerCP (BD PharMingen)

all in permeabilization solution. For the staining of infected BMDMs (moi = 0.5),

cells were blocked with 10% normal mouse and hamster serums (Jackson

ImmunoResearch) and FcBlock and stained with PE-labeled antibodies to

CD86 (eBioscience), B7-H1, B7-DC (BD PharMingen), Dectin-1, or a RatIgG2a

isotype control (R&D Systems), followed by washing. Cells were fixed with 2%

formaldehyde and washed before FACS analysis.
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Arginase and Nitric Oxide Assays

Parasites (mois of 20, 10, 5, or 1) were added to cells (105 cells/well) grown in

96-well plates, and arginase activity was measured 20–24 hr after infection as

described (Corraliza et al., 1994).Wells with similar numbers of viable parasites

were compared between parasite strains as inferred from a plaque assay. To

measure the NO response, RAW264.7 cells were grown in DMEM without

L-arginine complemented with 10% dialyzed serum and defined concentra-

tions of L-arginine (MP Biomedicals). Nitrite wasmeasured by using the Griess

reaction.

Microarray Analysis

Mouse macrophage (RAW264.7 and J774) and dendritic (DC2.4) cell lines

were grown in a T75 to 80% confluency and were infected with the Me49 or

CEP strains (moi = 7). BMDMs were plated at 3 3 106 cells per well (6-well

plate) infected (moi = 3) for 18 hr, after which RNA was isolated using TRIzol

(Invitrogen). RNA was labeled and hybridized to a mouse Affymetrix array

(Mouse 430 2.0 or Mouse 430A 2) and analyzed as described (Rosowski

et al., 2011).

Immunofluorescence Assay

Cells were fixed with 3% formaldehyde, treated with methanol, blocked, and

permeabilized with 3% bovine serum albumin, 5% goat serum, 0.2% Triton

X-100 in PBS. Coverslips were incubated in permeabilization solution with

antibodies specific for Mrc1/CD206 sc-58987, mMgl sc-56109, or polyclonal

antibodies against p-STAT6 sc-11762 (Santa Cruz Biotechnology) and

a mouse monoclonal antibody against the surface antigen SAG-1, DG52.

Alexa Fluor 488 or 594 (Molecular Probes)-coupled secondary antibodies

and Hoechst dye were used for antigen and DNA visualization with a fluores-

cence microscope.

Western Blot

Lysates were prepared from infected (moi = 10 for 24 hr) macrophages grown

in a 6-well plate. Western blots were performed as described (Rosowski et al.,

2011) using antibodies against GAPDH sc-32233 (Santa Cruz Biotechnology),

p-STAT6 558241 (BD PharMingen), mMgl AF-4297 (R&D systems), and

SAG-1.

Parasite Growth Assay in DC2.4 Cells

DC2.4 cells were cultured in DMEM containing 10% dialyzed serum and

35mg/ml L-arginine and infected with anmoi of�1 and simultaneously treated

with 50 ng/mlmouse IL-4 (PeproTech) and/or 100 mMnor-NOHA (Nu-hydroxy-

nor-Arginine) (Cayman Chemical) to induce or inhibit arginase, respectively.

After 24–48 hr, cells were fixed, blocked, permeabilized, and stained as

described above. The number of parasites per vacuole for 50 vacuoles was

counted per each condition.

Oral Infection, Tissue Sections, and Ex Vivo Cytokine Analysis

Brain homogenate of chronically infectedmice was stained with dolichos biflo-

rus-FITC (Vector Laboratories), and cysts were enumerated by microscopy.

B6 mice were orally gavaged with 800 cysts and monitored for survival.

Compared to the ME49 strain, the Pru strain is less virulent, and higher cyst

numbers are needed to cause intestinal inflammation. For tissue sectioning,

8 days after infection the entire length of the small intestine (duodenum to

ileum) was cut longitudinally, fixed in 10% buffered formalin, rolled into a ‘‘jelly

roll,’’ sliced in two, mounted into cassettes, and processed for sectioning and

hematoxylin and eosin staining. Antibodies to Gr-1 (Ly6C/G) RB6-8C5 (BD),

MPO Ab-1 RB-373-A (Neo Marker), and iNOS sc-650 (Santa Cruz Biotech-

nology) were detected with HRP-linked secondary antibodies (Dako, BD).

For ex vivo cytokine analysis, the Peyer’s patches were dissected, and

lymphocytes were obtained by crushing. Pieces of the small intestine were

then incubated in 5 mM EDTA in HBSS, washed, and digested with

1.25 mg/ml collagenase V and 50 U/ml DNase, and lamina propria lympho-

cytes were purified over a 40%/80%Percoll (GE) gradient. Cells were washed,

and 3 3 105 cells were plated in 96-well V bottom plates (Costar) coated with

plate-bound a-CD33 and a-CD28 (5 ug/ml) in RPMI medium with 10% FBS,

supplements, and antibiotics. Twenty hours later, supernatant was analyzed

by ELISA for mouse IFN-g or IL-22 (eBioscience).
ost & Microbe 9, 472–483, June 16, 2011 ª2011 Elsevier Inc. 481
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ACCESSION NUMBERS

Themicroarraydata forBMDMs infectedwith theengineered type II strainshave

been deposited in the NCBI’s Gene ExpressionOmnibus under theGEOSeries

accession number GSE29404. Similarly, microarray data for BMDMs infected

with type I Drop16 parasites, as well as data for macrophage and dendritic

cell lines infected with type II and III strains, have been deposited under the

GEO Series accession numbers GSE29582 and GSE29584, respectively.

SUPPLEMENTAL INFORMATION

Supplemental Information includes three figures, three tables, Supplemental

Experimental Procedures, and Supplemental References and can be found

with this article online at doi:10.1016/j.chom.2011.04.015.
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