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A b s t r a c t - - W e  propose a numerical method to verify the existence and uniqueness of solutions to 
elasto-plastic torsion problems. We numerically construct a set containing solutions which satisfies 
the hypothesis of Banach fixed-point theorem in a certain Sobolev space. @ 2000 Elsevier Science 
Ltd. All rights reserved. 

K e y w o r d s - - B a n a e h  fixed-point theorem, Elastoplastic torsion problems, Numerical verification 
method, Variational inequalities. 

1. I N T R O D U C T I O N  

In previous papers, we have developed numerical verification methods for the existence of solutions 
t,o variational inequalities (see [1,2]). Although the verification method enables us to find a 

solution, it is impossible to assure uniqueness of the solution. In this paper, we propose a 
numerical method to verify not only existence but also uniqueness of solutions to elastoplastic 
torsion problems. 

2. F O R M U L A T I O N  A N D  M E T H O D S  O F  V E R I F I C A T I O N  

Let f~ be a bounded convex domain in R 2, with piecewise smooth boundary 012, and a(u, v) = 
I~ V ~ .  V v d x .  Let f be a bounded and continuous map from Hl(f~) into L2(~).  Next, we define 

t:  = {v ~ Hi(a); IVvl _< 1 a.e. on ft}, where IVvl = V,o~j / (  o~ ~2 + ,Ox:,l 0~ ~2. Here, H~(ft)  stands for 

the usual Sobolev space on ft with homogeneous boundary condition. Now, let us consider the 
following nonlinear elastoplastic torsion problem: 

find u E K such that a ( u ,  v - u)  >_ ( f ( u ) ,  v - u ) ,  V v E K ,  (2.1) 

where ( - , • ) denotes the L2-inner product  on ~. 
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We adopt  (V¢, V¢)  as the inner product on H~(~) ,  whence the associated norm is defined by 

II¢ll a( ) = IlVCll/2< ). 
First, since a( • , • ) is a continuous bilinear form on Hob(a) × H0'(a), for each • H0 (a), 

from the Riesz representation theorem, there exists a unique element F (u )  • H~(f~) such 

that a ( F ( u ) , v )  = ( f ( u ) , v ) ,  Vv • That  is, 

3 F(u)  E H i ( a )  such t h a t -  AF(u)  = / ( u )  in ft, F(u) = 0 on 0n.  (2.2) 

Then the map  F : H i ( f / )  , H] ( f I )  is a compact  operator  by the above assumptions on f .  In 
the preceding paper  [1], problem (2.1) is equivalent to tha t  of finding u • H I ( ~ )  such tha t  

u = PKF(U). (2.3) 

To verify the existence of a solution of (2.1) in a computer,  we use the fixed-point formulation (2.3) 

of a compact  operator  P K F  as above. 
Now we describe a numerical verification method to verify the existence and uniqueness of 

solution of (2.1). First, we determine a set V for a bounded, convex, and closed subset U C H 1(~)  

a s  

V = {v • g01(gt) : v = FKF(u ) ,Vu  • U} .  

From Schauder 's  fixed-point theorem, if V c U holds, then there exists a solution of (2.1) in the 
set U. Our aim is to find a set U which includes V. A procedure to verify V C U using a computer  
is as follows. Now, let Vh be a finite dimensional subspaces of H~ (ft) dependent on h. We then 

define K h ,  a n  approximate  subset of K,  by K h  = Vh A K = {Vh : Vh • Vh, I•vh] 5 1 a.e. on ~}. 
For any u • H~(~t), we define the rounding R(PKF(u))  • Kh as the solution of the following 

problem: 

a(R(PKF(u)) ,  Vh -- R(PKF(u)) )  > ( f(u) ,  Vh -- R(PKF(U))) ,  VVh • Kh. 

For a set V C H~ (i2), we define the rounding R ( P K F V )  C Kh as 

R ( P K F V )  = {Vh • Kh : Vh = R(PKF(u)) ,  u • U}. 

Also, we define for V C H01(~t) the rounding error R E ( P K F V )  c H~(~) as 

R E ( P K F V )  = ~v • Hl(a);iiviIHa(a) < Ch sup ]]f(u)liL2 ~ . (2.4) 
L uEU ) 

From the definition, we have V C R ( P K F V )  + R E ( P K F V ) .  Then it is sufficient to find U which 
satisfies R ( P K F V )  + R E ( P K F V )  c U. Although the verification method in the above enables 
us to find a solution in the set U, it is impossible to assure uniqueness of the solution in the same 
set. We now present a technique including the verification of uniqueness under the following 
additional assumption. 

A1. Suppose that there exists a/3 < 1 such that 

IIPKF(Ul) - PKF(~t2)IIHa(fI  ) < ~ I I u l  --  ?-t2iiHl(fl) , V U l ,  u 2 • a 

Banach ~xed-point theorem gives the proof of uniqueness of solutions to variational inequal- 
i ty "(2.1) in the set V, and in U. Next let us introduce the procedure for l~nding such a set U 
using computers. First, we describe how to obtain a such set of H~(~) on a computer. In order to 
/~nd a set U satisfying the above condition, we use simple iterative method. The simple iteration 
method is as £ollows. 

(1) First, we obtain an approximate solution u (°) • Vh to (2.1) by some appropriate method. 

S e t  = a n d  = O. 
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(2) Next, we wi11 define R ( P K F V  (0) and R E ( P K F V  (0) for i > 0, where V (~) is the set defined 

as follows: 

R ( P K F V  (i)) is defined by the subset of gh  which consists of a11 elements v(h *) E Kh such 
that 

holds for some u (0 C U (0. Note that R ( P K F V  (0) can be enclosed by R ( P K F V  (~)) c 
- -  ~¢ dp l M ~-]M AjCj where Aj = [ Aj,  Aj ] are intervals, and t Jj=l is the basis of Kh. Next j=l 

RE(PK F V  (~)) is defined by 

Hence, V (~) c R ( P K F V  (0) + R E ( P K F V  (i)) holds. 
(3) Check the verification condition 

I f  the condition is satisfied, then U (i) is the desired set, and a solution to (2.1) exists 
in V (~), and hence, in U (0. 

(4) I f  the condition is not satisfied, we continue the simple iteration by using &inflation, i.e., 
let 5 be a certain positive constant given beforehand, and take 

= C h u  (i) E U  (i) sup f ( u  (i)) L~ +5' c~i+l 

[ai+l] = {v E g01(a):  I]Vllg,(fZ) <_ a i + l } ,  

M 

= ' ~  - &  Cj, 
j=l  

U (i+1) : U (i+1) 

and then go back to the second step. The reader may refer to [1] for the details. 

3. A N  A P P L I C A T I O N  

In this section, we present an numerical example for verification according to the procedures 
described in the previous section. We consider the case 

f (u)  = Ou + ~. (3.1) 

Here, we assume that  ~b, ~ E Lc~(Q). First, in order to validate A1, we need some properties 
for PKF. Let L:(HI(~))  be the set of bounded linear operators from H~(Q) to HI(Q) .  We 
consider the following eigenvalue problem: 

- A u  = Au, in ~, 
u = 0, on (gfl. (3.2) 

As well known, the first eigenvalue )~1 of (3.2) is actually equivalent to the the following problem: 

min = )~l. (3.3) 
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Hence,  we ob ta in  

Vu e Hl(f~) ,  IlullHa(a) > v ~ .  
II~IIL, - 

F u r t h e r m o r e ,  by well-known results,  it follows tha t  

1 

A1 = 2zr2 

for the  uni t  square  in two-dimensional  case. In  one-dimensional  case, we can take  A1 as 

1 

And,  by (2.2), we have F (Ul )  - F (u2)  = ( - A ) - l ( % 0 ( ? - t l  - U2)). 
Now, se t t ing  Au := ( - A ) - l C u ,  we consider the  following inequality:  

(3.4) 

(3 .5 )  

HPKF(Ul) -- PKF(u2)IIHI(a) ~ ]IF(u1) - F(u2) l lgg(a)  

_< [[A(ul - u2)llHo~(a) 

-< IIAllc(Ha(a))Ilu~ - u2llHo~(a). 

Here,  we used the  fact  t h a t  IIPKNc(HI(a)) < 1. Fur ther ,  we ob ta in  

IIAullg~(n) (VAu,  VAu)  
IIA[IL(Ho~(a)) = sup -- sup 

u#0eHol(~) IlUlIH](~) u6H(](~t) IlUlIH~(~t)]IAulIH](~t) 

(¢U, Au) 
= s u p  

u~u~(a) IlulIH~(~)IIAuIIH~(a) 
IlullL= IIAuIIL= 

< 11%011L~ sup 
~,CH3(a) [lUlIHI(fl)HAUlIHa(a) 

Hence,  by using (3.3) and (3.4), we have 

IIAIIL(Ha(m) < 11%011L____t 
- 2~r 2 

for the  uni t  square  in two-dimensional  case. Similarly, for one-dimensional  case, we ob ta in  

[[A[IL(Ho'(a)) ~ - -  

Therefore ,  we have the  following result. 

THEOREM 3.1. I f  the  function %b in (3.1) satisfies 

][%011L_____~ < 1 (n = 2) or 
2 ~  2 

then Assumption A1 holds. 

11%011L~ 
71" 2 

IP%01fL~ ~----V-- < 1 (n = 1), 

In  the  below, let ~ -- (0, 1) and we use the  approx ima t ion  subspace  as in the  previous  section, 
and consider  the  case f (u)  = 2u + A, where  A is a real constant .  We choose the  basis {¢i}i=lM 
of Vh as usual ha t  functions,  i.e., ¢i(xj) = 5ij, where  5ij means  Kronecker ' s  delta.  T h e  cons tan t  
appea r ing  in the  rounding  error (2.4) can be taken  as C -- v ~ / ~  (see [1]). 

T h e  execut ion  condit ions are as follows: 

A ~ - 3 .  

Number s  of e lements  = 101. dimVh = 100. 

Ini t ial  value : u~ °) = Galerkin  approx ima t ion  (2.5), a0 = 0. 

Ex tens ion  p a r a m e t e r  : 5 = 10 - 3 .  
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Resu l t s  are  as follows: 

I t e r a t i o n  n u m b e r s  : 6. 

H~ - e r ro r  b o u n d  : 0 .025340.  

M a x i m u m  w i d t h  of  coeff ic ient  i n t e rva l s  in { A j  } := 0.074056.  

Two free b o u n d a r y  po in t s  are  loca ted  a round  x : :  0.237642 and  x = 0.762376. The  m e t h o d  p r o -  

posed  in th i s  p a p e r  enables  us to  verify solu t ions  of e l as top las t i c  tors ion  p rob lems  wi th  uniqueness .  

R E F E R E N C E S  

1. M.T. Nakao, S.H. Lee and C.S. Ryoo, Numerical verification of solutions for elastoplastic torsion problems, 
Computers Math. Applic. 39 (3/4), 195-204, (2000). 

2. C.S. Ryoo and M.T. Nakao, Numerical verification of solutions for variational inequalities, Numerische Math- 
ematik 81, 305-320, (1998). 

3. R. Glowinski, Numerical Methods for Nonlinear Variational Problems, Springer, New York, (]984). 
4. M.T. Nakao, A numerical verification method for the existence of weak solutions for nonlinear boundary 

value problems, Journal of Math. Analysis and Applications 164, 489-507, (1992). 


