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Abstract—We propose a numerical method to verify the existence and uniqueness of solutions to
elasto-plastic torsion problems. We numerically construct a set containing solutions which satisfies
the hypothesis of Banach fixed-point theorem in a certain Sobolev space. © 2000 Elsevier Science
Ltd. All rights reserved.
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1. INTRODUCTION

In previous papers, we have developed numerical verification methods for the existence of solutions
to variational inequalities (see [1,2]). Although the verification method enables us to find a
solution, it is impossible to assure uniqueness of the solution. In this paper, we propose a
numerical method to verify not only existence but also uniqueness of solutions to elastoplastic
torsion problems.

2. FORMULATION AND METHODS OF VERIFICATION
Let 2 be a bounded convex domain in R?, with piecewise smooth boundary 89, and a(u, v) =
fq Vu-Vudz. Let f be a bounded and continuous map from Hg(€2) into L2(Q2). Next, we define
K = {ve H}(Q);|Vyv| <1 ae. on Q}, where |[Vu| = 1/(‘(’%}1)2 + ({;97”2)2. Here, H}(Q) stands for
the usual Sobolev space on £ with homogeneous boundary condition. Now, let us consider the
following nonlinear elastoplastic torsion problem:

find u € K such that a{u,v — u) > (f(u),v — u), Vv e K, (2.1)

where (-, - ) denotes the L2-inner product on €.
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We adopt (V¢, Vi) as the inner product on HJ(£2), whence the associated norm is defined by
ollga) = IVOllL2(e)-

First, since a( -, - ) is a continuous bilinear form on H}(Q)) x H} (), for each u € H(Q),
from the Riesz representation theorem, there exists a unique element F(u) € H}(f) such
that a(F(u),v) = (f(u),v), Vv € H}(). That is,

3 F(u) € H}(Q) such that — AF(u) = f(u) in Q, F(u) =0 on 0. (2.2)

Then the map F : H}(2) — H{(Q) is a compact operator by the above assumptions on f. In
the preceding paper [1], problem (2.1) is equivalent to that of finding u € Hg(Q) such that

u= PKF(”U,) (2.3)

To verify the existence of a solution of (2.1) in a computer, we use the fixed-point formulation (2.3)
of a compact operator P F as above.

Now we describe a numerical verification method to verify the existence and uniqueness of
solution of (2.1). First, we determine a set V' for a bounded, convex, and closed subset U C H}(£2)

as
V={veHj(Q):v=PgF(u),YueU}.

From Schauder’s fixed-point theorem, if V' C U holds, then there exists a solution of (2.1) in the
set U. Our aim is to find a set U which includes V. A procedure to verify V C U using a computer
is as follows. Now, let V}, be a finite dimensional subspaces of H}(2) dependent on h. We then
define K, an approximate subset of K, by K, = V), N K = {v}, : v, € Vj,,|Vup| <1 a.e. on 02}.
For any u € H}(S), we define the rounding R(PxF(u)) € K}, as the solution of the following
problem:

a(R(Px F(u)),vn — R(PxF())) 2 (f(u),vn — R(PkF(w))),  Vun € Ki.
For a set V C H}(Q), we define the rounding R(Px FV) C K}, as
R(PxFV) = {vy € K, : v, = R(PxF(u)), ueU}.

Also, we define for V C Hg(Q) the rounding error RE(PxFV) C H}(Q) as
RE(PxFV) = {v € HYO: lllngio) < Ch sup £ ()]s . (2.0

From the definition, we have V C R(Pg FV)+ RE(PFV). Then it is sufficient to find U which
satisfies R(PxFV) + RE(PxFV) C U. Although the verification method in the above enables
us to find a solution in the set U, it is impossible to assure uniqueness of the solution in the same
set. We now present a technique including the verification of uniqueness under the following
additional assumption.

Al. Suppose that there exists a 8 < 1 such that
| P F(u1) — P F(u2)ll g0y < Bllur — vallmya) Vuy,ug €U

Banach fixed-point theorem gives the proof of uniqueness of solutions to variational inequal-
ity (2.1) in the set V, and in U. Next let us introduce the procedure for finding such a set U
using computers. First, we describe how to obtain a such set of H}(Q?) on a computer. In order to
find a set U satisfying the above condition, we use simple iterative method. The simple iteration

method is as follows.

(1) First, we obtain an approximate solution u;lo) € V,, to (2.1) by some appropriate method.

Set U}(LO) = {uﬁlo)} and ag = 0.
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(2) Next, we will define R(Px FV®) and RE(Px FV®) fori > 0, where V%) is the set defined
as follows:

vO = [o® € Ky :0® = PcF (u®), ut? e U(i)} .

R(Px FV®) is defined by the subset of Ky, which consists of all elements v,(f) € K}, such
that

a(vf 9 —o) > (£ ()9 -of)),  veekK, (2.5)
holds for some u® € U®. Note that R(PxFV(?) can be enclosed by R(PxFV®) C
ijvil A;p; where A; = [ A;, A; ] are intervals, and {qb};”il is the basis of K. Next
RE(PxFV) is defined by
L2} ’

RE (PKFv(i)) = {U € Hy(Q) : |vllmay < Ch m‘.f‘;‘,}m H f (u<“)|

Hence, VW C R(PgFV®) + RE(PxFV®) holds.
(3) Check the verification condition

R (PKFV“)) +RE (PKFV(i)) c U,

If the condition is satisfied, then U'? is the desired set, and a solution to (2.1) exists
in V@, and hence, in U™,
(4) If the condition is not satisfied, we continue the simple iteration by using é-inflation, i.e.,
let & be a certain positive constant given beforehand, and take
a;p1 = Ch u? € UMW gup Hf (u(i)> HL2 + 4,
1] = {v € Hy(Q) : ollgay < @ipr},
M
- .
U =3 [él_‘s’ Aj+5]¢j, ,
j=t
plitl) U,(jﬂ) + [aisi,

and then go back to the second step. The reader may refer to [1] for the details.

3. AN APPLICATION

In this section, we present an numerical example for verification according to the procedures
described in the previous section. We consider the case

flu) =yYu+ (3.1)

Here, we assume that ¢,{ € L*(2). First, in order to validate Al, we need some properties
for PxF. Let L(H}(Q)) be the set of bounded linear operators from HE () to H(Q). We
consider the following eigenvalue problem:

—-Au = Au, in Q,

u =0, on JQ. (32)

As well known, the first eigenvalue \; of (3.2) is actually equivalent to the the following problem:

HuHi[é(Q)
min = ——5—> = A;. (3.3)
weHE(Q) [lullf.
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Hence, we obtain

wem@, ma, s

flull -

Furthermore, by well-known fesults, it follows that

1
A= —5 34
1™ or2 (3.4)
for the unit square in two-dimensional case. In one-dimensional case, we can take A; as
1
A = - (3.5)

And, by (2.2), we have F(u1) — F(ug2) = (—=A) " (y(ug — ug)).
Now, setting Au := (—A)~!4u, we consider the following inequality:
| Prc F(u1) — P F(u2)llazy < I1F(u1) — Fu2)ll mz o)
< [[A(u1 — u2)ll Ha)
< Al 2z anllur — v2ll g3 )-

Here, we used the fact that || Pk || z(za(q)) < 1. Further, we obtain

|l Aull 30 (VAu, VAu)
lAll ez = swp " = y)
wrocHi@ Ullaie  wemie) NullazollAullg g
(Yu, Au)

= sup
u€HA(Q) ||UHH3(Q)||AU||H3(Q)

]l 2 [l Au| 12

<|lllze  sup )
werd(@) 1l aze) 1A @)

Hence, by using (3.3) and (3.4), we have

|| .=
lAllzcaay < EYoR

for the unit square in two-dimensional case. Similarly, for one-dimensional case, we obtain

9]l
IAll ez € —5—-
T

Therefore, we have the following result.
THEOREM 3.1. If the function ¢ in (3.1) satisfies

|91l [z~

——— 1 = =

57 <1l(n=2) or 3 <1{(n=1),

then Assumption A1 holds.

In the below, let @ = (0, 1) and we use the approximation subspace as in the previous section,
and consider the case f(u) = 2u + A, where A is a real constant. We choose the basis {¢;}},
of Vj, as usual hat functions, i.e., ¢;(z;) = d;;, where §;; means Kronecker’s delta. The constant
appearing in the rounding error (2.4) can be taken as C = v/5/7 (see [1]).

The execution conditions are as follows:

A=3. .
Numbers of elements = 101. dimV}, = 100.

(0)
h

Initial value : u,’ = Galerkin approximation (2.5), ag = 0.

Extension parameter : § = 1073,
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Results are as follows:

Iteration numbers : 6.
H{ — error bound : 0.025340.
Maximum width of coefficient intervals in {A4;} = 0.074056.

Two free boundary points are located around x = 0.237642 and z = 0.762376. The method pro-
posed in this paper enables us to verify solutions of elastoplastic torsion problems with uniqueness.
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