H
A DISCRETE
4 MATHEMATICS

ELSEVIER Discrete Mathematics 208/209 (1999) 387-409

www.elsevier.com/locate/disc

Recent developments on absolute geometries and
algebraization by K-loops

Helmut Karzel *

Mathematisches Institut, Technische Universitdt Miinchen, D-80290 Miinchen, Germany

Received 5 March 1997; revised 3 March 1998; accepted 16 March 1998

Abstract

Let (P, £,a) be an ordered space. A spatial version of Pasch’s assertion is proved, with that a
short proof is given for the fact that (P, £ ) is an exchange space and the concepts h-parallel, one
sided h-parallel and hyperbolic incidence structure are introduced (Section 2). An ordered space
with hyperbolic incidence structure can be embedded in an ordered projective space (P, £,,1)
of the same dimension such that P is projectively convex and projectively open (cf. Property
3.2). Then spaces with congruence (P, £,=) are introduced and those are characterized in which
point reflections do exist (Section 4). Incidence, congruence and order are joined together by
assuming a compatibility axiom (ZK) (Section 5). If (P, £, o, =) is an absolute space, if o € P is
fixed and if for x € P,x’ denotes the midpoint of 0 and x and X the point reflection in x then the
map °: P — J; x — x°:=X satisfies the conditions (B1) and (B2) of Section 6, and if one sets
a+b:=a’o0°(b) then (P,+) becomes a K-loop (cf. Theorem 6.1) and the J of all lines through
o forms an incidence fibration in the sense of Zizioli consisting of commutative subgroups
of (P,+) (cf. Property 7.1). Therefore K-loops can be used for an algebraization of absolute
spaces; in this way Ruoff’s proportionality Theorem 8.4 for hyperbolic spaces is presented.
© 1999 Published by Elsevier Science B.V. All rights reserved.
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Lecturing on foundations of geometry stimulates mostly new attempts to improve
the presentations that sometimes end in new areas of research. Here we start with the
concept of an ordered space (P, 2,u) and prove a spatial version of Pasch’s asser-
tion (Property 1.3). Since the incidence closure 7'U {a} of a subspace T and a point
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a € P\T can be decomposed in T and two halfspaces TTa and TTa (Property 1.4), the
validity of the exchange axiom is an easy consequence (Property 1.5). (A rigorous
proof of this fact I found only in Sérensen’s paper [31] of 1986.)

The notion hyperbolic parallel or in short h-parallel in ordered spaces (introduced
1994 in [6,8]) was generalized to one sided A-parallel by Karzel et al. [10] and Konrad
[22]; the main results are listed in Section 2.

The projective embedding of ordered spaces with hyperbolic incidence structure (Sec-
tion 3) is based mainly on results of Sorensen [31] and Kreuzer [24]. The new results
of the paper by Karzel et al. [11] are summarized in Properties 3.3-3.5.

In 1984, Sorensen [30] made fundamental investigations on incidence and congru-
ence. Here we will extend notion plane with congruence to space with congruence
(P, R,=). Also orthogonality between lines and line-reflections can be defined; but we
do not know if the latter are motions (Property 4.1). Our spaces split into regular ones
and Lotkernspaces. Only in certain regular spaces do point reflections exist and they
turn out to be motions (Property 4.3).

Incidence, congruence and order are joined together in Section 5 by assuming the
compatibility axiom ZK. The main properties of these spaces (P, %,o,=) are found
in Property 5.1. Then, by adding a further axiom WF, the notion absolute space' is
established. Results recently achieved by Konrad [22], Soérensen [32], and Kroll and
Sorensen [27] are collected in Properties 5.4 and 5.5.

Wefelscheid and Konrad and the present author [16,9] showed that there are close
connections between hyperbolic spaces and certain reflection groups on the one hand
and K-loops on the other. To find a common, most general frame which allows us to
construct K-loops, is the aim of Section 6. We proceed in a manner very similar to
that of Manara and Marchi in [28] (cf. Properties 6.1 and 6.2).

In 1987, Zizioli [33] gave a correct definition of a loop with incidence fibration,
such that the usual derivation produces an incidence loop.

To each regular space (P,&,=) where point reflections exist, one can associate a
reflection structure in the sense of Section 6, and then (via (Property 6.1) a K-loop
(P,+) which in addition possesses an incidence fibration § (in the sense of Zizioli)
and where the members of § are even commutative subgroups of (P, +) (Property 7.1).
If (P, 2,0,=) is also an ordinary absolute space (cf. Section 5), then the corresponding
loop (P,+) can be used for an algebraization of the space (Property 7.2). Using this
algebraization we present Ruoff’s [29] astonishing proportionality Theorem (8.4) for
hyperbolic spaces.

To each K-loop there corresponds the so-called structure group 4 (cf. [26]) whose
properties are of interest from both the geometric and algebraic points of view. Con-
tributions in this area were given by Im [4,5], Kiechle [17], Kiechle and Konrad [18],
and Konrad [23].

"In order to charcterize absolute spaces which can be coordinatized by the reals, one has only to add the
axiom of continuity.
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The algebraization by K-loops opens a new procedure to extend the foundation
results for singular spaces (achieved by Karzel and Kist [7]) now on ordinary spaces
by the concept loop with a reflection germ. Gabrieli [1] has reported on this topic at
the conference ‘Combinatorics *96°.

1. Some properties of ordered spaces

Let (P,L) be an incidence space (also called a linear space), i.e. P is a set and
2 CP(P) is a subset of the powerset of P such that

(I1) Va,b€P, a#bI L€ :a,bEL; let a,b:=L.

2)vVLeg : |L|=2.

A subset 7 C P is called a subspace if for all points x, y € T,x # y we have X, yC T.
Let T be the set of all subspaces of (P, ), and for SCP let S:= (T €T |SCT}
be the incidence closure. Each subspace E which is the closure of three non-collinear
points is called a plane. Let € be the set of all planes.

For peP, Le & and T€T et

Q(p)={Xel|peXx}, €UL)={EcC|LCE}

and

Q(T):={XeQ|XCT}

Now let P®) :={(x,y,2)€EP?|x#y, zAzEX,y}. A map

OCP(S)_>{_1>1}, (x,y,Z)'_)(x‘y,Z)

is called a betweenness function? and (P,2,a) an ordered space if the following

conditions (Z1), (Z2), (Z23) and (ZP) hold:

(Z1) For all (a,b,c),(a,b,d)€P® :  (alb,c)- (alc,d) = (alb,d).

(Z2) For a,b,c € P distinct and collinear, exactly one of the values (al|b,c),(b|c,a),
(cla,b) equals —1.

(Z3) For all a,b € P, a+# b there exists a ¢ € P such that b € Ja,c[:={x € P |(x,a,c) €
PO A (x|a,c) = —1}.

(ZP) If a,b,c € P are non collinear, x € 1b,c[ and y € Ja,x[ then ¢,y N ]a, b[ # 0.

From now on let (P, L,a) be an ordered space. A subset C C P is called convex if
for all x,y€C, x#y : ]x, [ CC. Let € be the set of all convex subsets of (P, £,a).

For T€X and a€P\T let Tja:: {xeP\T |Ix,a] N T #0}, in particular, if a,

be P with a#b then bja:: {xeP\{b}|b€]a,x[}; and we set bja ={x€a,b\{b}|
(bla,x) =1} (halfline).
(P, 2,a) has the following properties.

2(x|y,z)=—1: x between y and z.
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Property 1.1. For all a,b€ P, a#b, c€la, bl and d Eajb we have:

(1) la,c[ Cla,bl,

(2) Ja,b[ = Ja, c[U{c}U]e, b,

(3) la,b[ is convex (cf. [6], p. 146, (VII 1.5)]),

4) ajb is convex, B

(5) @b = a,b{a}Va,d and a,b—a,d.
Proof. (4) Let x,y € ajb, x#y and z € Ix, y[. By (Z1), (alx,y) = (alb,x) - (a|b,y) =
(—=1)-(=1)=1. Hence by (Z2) exactly one of the values (x|a, y) and (y|a,x) equals —1,
for instance (x|a, y)=—1, i.e. x €]a, y[. Then z€]x, y[Cla, y[ by (1), i.e. (zla,y)=—1
and hence by (Z2), (a|y,z) = 1. Now yEaTb implies a € 1b, y[, ie. (alb,y)= —1.
Consequently by (Z1), (alb,z) = (alb,y) - (a|y,z)=(-1)-1=—1, ie z€ ajb and so
a,beC. ] ]

(5) By definition, agZajb U ajd and dEajb implies a €1b,d[, i.e. (a|b,d) = —1.
Let x €a,b\{a}. Then —1 = (alh,d) = (a|b,x) - (alx,d), and so either (a|h,x) =1 and

(al.d)=—1,ie. x€ a,b and x€a,d or (alb,x)=—1 and (ajx,d)=1, i.e. x€a,b and

x¢a,d.

Property 1.2. Let a,b,c € P be non-collinear, a’ € 1b,c[,b’ € lc,al,c’ €la,b[, u€la,d'[
and v:=c,uN]a,b[ (v exists by (ZP)). Then:

(1) uele, o (cf. [6, VII(1.6)]),

(2) la,d'[N 16,6 #D (cf. [6, VII(1.7)]),

(3) @, b N]a,b[ =0,

(4) {a,b,c} ={da',b',c'}.

Proof. (3) Assume {z}:=a/,b'N]a,b[ # 03 exists. If z € ]a’, [ then a’ € ]c, b[ implies
by (ZP), 0 #z,bN]e,b'[ Ca,bNe,a={a}, i.e. (alc,b’) = —1 which is a contradiction
to b’ €la,c[. Hence z¢]a’,b'[ and we may suppose a’ €]b',z[. Then z € ]a,b[ and
a' € b, z[ implies by (ZP), 0 #b,a’N]b ,a[ C b,cNa,c={c}. But c € &', a[ contradicts
b €la,cl.

(4) By (2) {d}:=]a.d'[N]b,b'[#0. d €]a,d'[ and ¢’ € Ja, b[ implies by (2), {e}:=
la', '[N ]b,d[ #0. Therefore be b ,e C{a’,b',c’} and so {a,b,c} C{a’,b',c'}.

Property 1.3 (Spatial form of the statement of Pasch). Let a,b,c,d € P be distinct,
u€la,bl,velb,cl,wele,d[, then la,d[ N {u,v,w} # 0.

31If the intersection of two sets X, Y consists of a single point p we will write also X N'Y = p instead of
XnY={p}
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Proof. By Property 1.2.(2), x:=1b,w[ N Jv,d[# 0. Now u € Ja, b[,x € ]b,w[ imply by
Property 1.2(2), y:=Ix,a[N]u,w[# 0, and x € |v,d[, y € ]x, a[ force s:=]a,d[NT,y £
by (ZP). Since y € Ju,w[ one obtains s €7, y N {u,v,w}, and so s € Ja,d[ N {u,v, w}.

We extend Theorems 1.10, 1.11, and 1.12 of [22]:

Theorem 1.4. Let T€T and a,b€ P\T such that Ja,b[ N T #0. Then
(l)Tae(S ] )
(2) VcETb Ta—Tc and TaﬂTb 0,
(3)TU{a}=T,aUTUT,b.

Proof. (1). Let x,y € T,Z,x#y,z € Jx, y[ and x'=la,x[NT, y:=]a,y[NT. If a,x,y
are collinear, then x'=)" and x, y Gxta - f a, hence by Property 1.1(4), Ix, y[ Cx?a C

TTa. Now let a,x,y be non-collinear, i.e. x’' #y’. By Property 1.2.(2), z”":=]a,z[ N
Jx, [ #0, and then z” € Ix, y'[,x’ € Ix,a[ gives again by Property 1.2.(2), z’ :=]a,z"’[N
¥, y'[#0. From z' €]a,z"[ and z" €]a,z[ we obtain z’' €]a,z[ by Property 1.1.(1).

Finally z/ € |x’, y/[Cx',y’ CT implies z € TTa consequently Tja eC.

(2) Let b’ :=1a,b[NT, b" :=]c, b[ﬂTandagameTaandx—]xa[ﬂT Thenby

Property 1.3, @#]c,y_c[ Ny, o', x"Cle,x[NT, ie. x€ T,c and consequently T,aC T,c.
Suppose x € Ea NT,b,ie x':=la,x[NT#( and x”":=1b,x[ N T. Then by Property
1.2.(4), a,b,x =b",x",x" C T which c_ontradicts a,bgT.

(3) Since TU{a}CFaUTU T,b=:RC T U{a} we have to show ReT . Let
X,y €R with x;«éy If x, yET then X, yCTCR Therefore let y¢ 7 and we may
assume yeTb By (2), Ta—Ty,le R= TyUTUTb and y":=1y,b[NT #(. We
consider the cases:

1. xETy ThenbxGTany 1mp11es TxfTbby (2), and so z:=]x, y[NT #0.

Hence by Property 1.1(5), ;7 =zx U {z} Uz, ) yCTxUTUTy R.

2.xeT. By(Z3) JzeP: x€]z v, hencezex yCTy Ta andby(Z)Tz Tb
Thereforexy—szxeyCTzUTUTy R.

3.xEle and z:=X,yN T #(. Then X, 7 =Z,y CR by 2.

4. xET—>b andWﬁT—@' then x” :=1b,x[NT # 0. Letzex Y\{x, y}. If z € Ix, y[ then

by (1), zETbCR If z & Jx, y[ we may assume ZEX,) v, i.e. x €]z, y[. From x €]z, y[
and y” €1y, b[ we obtain by Property 1.2(2), u:=1y",z[N]b,x[#0 and u & T, hence
u#x". Therefore by Property 1.1(2), x” € lx,u[ U Ju,b[. If x”" € Jx,u[ then together
with u€1y”,z[ we obtain x”, y” N x,z[#£D by (ZP), and so 0 AT Nx,z[CT NX, p
a contradiction to X,y N T = ). Consequently x” € Ju, b[, and since u € ]y”,z[ we have
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"= X", y" 0 1b,z[ #0 by (ZP). But 2" €x”,y” CT and z"” €]b,z[ implies z € T,b,

thus x,y C T,b CR.
From Theorem 1.4 it follows that each subspace 7€ T \{P,0} and each point

a € P\T determines exactly one halfspace T,a in the following way: Let €T and
be P such that 7 € Ja,b[ (cf. (Z3)). Then T,a :=T, b.
From Theorem 1.4 we obtain (cf. [31, (5.3)])

Theorem 1.5. If (P,L,a) is an ordered space, then (P,2) is an exchangespace, ie.
if SCP,a,beP such that be S U {a}\S, then ac S U {b}.

Proof. he S U {a}\S implies a,bgT:=S. Let teT and ceP with t€]a,c[ (cf.
(Z3)). "l:hen by del‘_inition ae TT: ¢ and by Property 1.4(3) we have bem\@ =
LaUTe. If be T,c then a€ T,eC T,bUTUT,c = T U {b} =S U {b}. If b€ T.a, then
fb = TTC 3 a by Property 1.4(2), hence a € TTbC TU{b} =SuU{b}.

Since an exchange space (P, ) has a base B and two bases have the same car-
dinality (cf. e.g. [15, Section 8]) one defines dim(P, L) := |B| — 1 as dimension of
(P, 2).

An ordered space (P, <,a) is called desarguesian if the following holds:

(D) Letz€ P, let (G1,Gy,G3 € £(z):={L € L|z€ L} be distinct and for i € {1,2,3}
let a;, b; € G;\{z} be distinct such that the points p;:=az,a3Nby, b3 # 0, pr:=az,a;N
b3,b1 A0 and p3:=ay,a N by, by #0 exist. Then py, po, p3 are collinear.

Since (P, L,«) is an exchange space, one obtains with the same arguments as in
[15, Section 10] the following result:

Property 1.6. If dim(P, 2)>3, then (P,,a) is desarguesian.

Property 1.7. I[f E€ €, 4,B€ L (E) with A#B, there are z € E\(AUB) and C,D € £(z)
such that C#D and CNA,CNB,DNA,DNBH#.

Proof. (1) If s:=ANB#0, let acA\s, b€B\s, C:=a,b, z€la,b[, a’ €A such that
acld,s[ and D=d',z, then B #D N 1b,s| C DN B by (ZP).
(2)If ANB=0let acd, beB, C:=a,b, z€ C such that a€]z,b[, b’ € B\b and

D:=zb'. Since BN A =0 we have by Property 14, b’ €B CA—:Z hence
0#£1p,zlNACDNA.
2. Ordered spaces with hyperbolic incidence structure

The concepts hyperbolic parallel or in short h-parallel and one-sided h-parallel re-
spectively, were introduced in [8] and in [10,22], respectively.
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In this sect1on let (P, 2,a) be an ordered space. If a,b,c,d GP with a 7éb and c;éd
the halfline q, b is called one-sided h-parallel to the halfline c, d denoted by a, b e, d
if

l.a,bNe,d=10,

2. la,c[N]b,d[ =0,

3. VxE]b d[ axne, d 7é(2)

Ifa b H—>c dandc d H—>a b then we write a, bHc dandcalla b and c, dhparallel
If Ge 2, then q, b is called one-sided h-parallel to G — denoted by a, b - G -

there are ¢,d € G with ¢#d and ajb I cjd. In [11,10] the following theorems are
proved:

Property 2.1 (Extended Pasch statement). Let a,b,c,d € P with ajb |~ c,_>d and
Gel{ab,c})={Xe|X C{ab,c} with a,cZ G. Then

() If GNa,b #0 then either GN]a,c[#0 or Gﬁc,_)d £10.
) If GNa,c[£0 and GNa,b=G N c,d =0 then a,b I G, [10, (13)].

Property 2.2. Let (P,2,0) be desarguesian and let a,b,c,d € P with a#b,c#d and
a,b b e, d then c¢,d { a,b, [10, (1.5)].

Remark 1. By Properties 1.6 and 2.2 we have: If (P,2,a) is an ordered space with
dim(P, L) >3 or if (P, £, a) is a desarguesian ordered plane, then the concepts one-sided
h-parallel and h-parallel coincide.

Two lines G,H € £ are called h-parallel, denoted by GHH if there are a, b€ G,

e,d € H with a#b, c#d and a,bjc,d.
Property 2.3. Let Ge€ & and pe P\G. Then |{H e & | peH, HHG}|<2,[10, (1.6)].

We introduce Hilbert’s concept of an end as follows: A subset ¢ C & is called an
end of (P,L,a) if

(1) VX, Yee with X#Y : X7,

Q)Ue =Uye. X =P.

For a,b€ P with a#b let (a,b):= {X € € | a,b X }U{a,b}. Then (P, £, ) is called
an ordered space with hyperbolic incidence structure if the ‘non-euclidean parallel
axiom’

(H) VGEQ,VPEP\GHHI,I‘QEQ with H, #Hz,pEHl N H,, H HG and H, HG
and the ‘ends axiom’ .

(E) Ya,b € P with a+#b the set (a,b) is an end

are valid.

Property 2.4. If dim(P, £ ,0)>3 then the condition (E) is a consequence of (H) [11,
(3.11)].
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Remark 2. The ordered space (P, L,a) is an ordered affine space if
(P)VGel VpeP\G3|He L with peH and H }G.

Property 2.5. If (P, 2,0) has hyperbolic incidence structure then
() ab I ed = d I a,b, [10, (1.7)] - -
(2) If AUB and ay,a; € A with ay # a, then either aj,a; §B or ay,a; || B, [10,(1.8)]
(3) Let a,b,c € P be non-collinear, then there exists exactly one line (al| bjc)::
A€ with ac A and b?c HA4 and moreover (al| b?c) N(ch b?a);é 0, [10, (1.9)].

Remark on Property 25. If a,b,ceP are | non—colhnear then by Property 2.5(3) the
points a’ :=(c |} a, b)ﬂ(bH a,c), b :=(alf b, c)ﬂ(cH b a)and ¢ := (b} c,a)N(al c, b)
exist and we have a#a’,b#b',c#c’. From Fisher and Ruoff I learned that in hyper-
bolic geometry (in the sense of Hilbert (cf. [15])) the statement

(C) The lines a,a’,b,b’,c,c’ intersect in a common point.

is valid. Therefore the following problem arises:

Problem. If (P,2,«) is an ordered space with a hyperbolic incidence structure such
that (C) is valid, then is (P, &,u) a hyperbolic geometry?

3. Projective embedding of ordered spaces with hyperbolic incidence structure

Let (P,€,a) be an ordered space with dim(P,£,)>3 and let € be the set of all
planes of (P,L). A subset b C £ is called bundle if
1. Any two lines X, Y €b are coplanar,

2. Ub i=Uyecp X =P
With P, we denote the set of all bundles. A subset G, C P, is called b-line if there
are a,b € G, with a #b such that for x € P,

¥ €G,< VE€E holds with &(E)Na #0, L(E)ND #0: L(E)Nx #0.

Let £, be the set of all b-lines. Sérensen [31] and Kreuzer [24] proved:

Property 3.1. The “bundle space” (P,,%,) is a projective space with dim(P,, 2,) =
dim(P, &) and the map

1:P— Py x— L2(x)
is an injection such that (P,2) and (1(P), L)) with
Ly ={XNuP)|Xel, : XNnuP)#0}

are isomorphic.
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Because of Property 3.1 we assume that (P,,%,) is a projective space, P a subset
of Ppand & ={X NP|Xe€L,: XNP+#D}. The incidence closure of the projective
space (P, £,) will be denoted by ().

The order o can be extended in a modified way to an order structure t such that
(Pp, 2,,7) becomes an ordered projective space (cf., e.g. [12, p. 125]).

Let Pg) ={(a1,a2,a3,a4) EP‘/‘, |ai, a2 # as,a4 and ay,a4 € (ay,a3)} and let

©: P — {1, -1};(a1,a2,a3,a4) — [a1,a | a3, a4

be a map. Then 7 is called a separation function and (P,,2,,7) an ordered projective
space if

(T1) For all a,b,c,d,ecP, with a,b#c,d,e and b,d,ec(a,c):[a,b|c,d] -
[a,b|d,e] =[a,b]c,e].

(T2) For all a, b, ¢,d € P distinct with ¢,d € (a,b), exactly one of the values [a,b] ¢, d],
[a,c|d,b],[a,d]|b,c] equals —1.

(T3) For all (a,b,c,d) EPS‘) and for each perspectivity n:

[a,b | ¢,d] = [n(a), w(b) | (c), n(d)].

A subset M C P, is called projectively convex in (P,,,,7) if for a,b,c,d € P, distinct
and collinear with a,b € M,d ¢ M and [a,b|c,d] = —1 always c € M and projectively
open in (P,,8,,7) if Yee M Vd € P,\M exist a,b € (c,d) "M with [a,b|c,d] =—1
and {x € (a,b)\{a,b}|[a,b]|x,d]=—1} C M.

By the papers of Sorensen and Kreuzer (cf. [31, (6.8); 24, (10.14)]) we have the
following result.

Property 3.2. (P,,8,) can be changed into an ordered projective space (P, 2,,7)
such that

(1) P is projectively convex and projectively open in (P,,Lp,7).

(2) If a,b,c,d €P are distinct and collinear and u € (a,b)\P then [a,b|c,d] =
(ale,d)-(b|c,d) and [u,a|b,c] = (a|b,c).

Following Kreuzer [24,11] we define for G€ £ : s € (G) is called limit point of G
if one of the two conditions holds:

(i) (GN\G = {s}

(i) |(G)\G| =2 and for all a,b € G\{s}, for all

x,y€ (G\(GU{s}) : [a,b|x,s]=[a,s|x,y] = 1.

Let rd(G) be the set of all limit points of G. s € P, is called limit point of P if
there is a G € £ such that s €rd(G). Let rd(P) be the set of all limit points of P. In
[11] we find the following results:

Property 3.3. Let GGHe 2,G#H with {s}:=(G)N(H)#0 and s ¢ P. Then

(1) 1d(G) N G = 0 hence rd(P)yN P = 0. [11, (2.6)]

2) [rd(G)| <2. [11, (2.8)]

(3) If | (G\G| =1, ie. {s} = (G\G =r1d(G), then {s} = (H\H = rd(H). [11,
(2.9)]
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(4) s€rd(G) < serd(H), [11, (2.10)]
(5) GHH < serd(G)Nrd(H), [11, Egs. (3.4) and (3.6)]

Property 3.4. td(P) is the set of all ends of (P,2,x). [11, (3.9)]
Property 3.5 (Characterization theorem) (Karzel et al. [11, (3.11)]). Let (P,2,a) be
an ordered space with dim(P,L)>3. Then
(1) (P,8,a) is an ordered affine space if and only if VG €L : |rd(G)| = 1.
(2) (P, 2,a) has hyperbolic incidence structure if and only if for all G € L:
|rd(G)| =2.

4. Incidence and congruence

Following Sorensen [30] we introduce the concept of a space with congruence

(P,R,=).
Let (P,2) be an incidence space and let = be a congruence relation on P x P,
(i.e. = is an equivalence relation such that for all a,b,c€P : (a,b) = (b,a) and

(a,a) = (b,c) & b=c) such that the following compatibility axioms (W1), (W2) and
(W3) between incidence and congruence are valid:

(W1) For all a,b,c € P collinear and distinct, for all a’,b’ € P with (a,b) = (d’,b")
there exists exactly one ¢’ € a’,b’ such that (a,b,c) = (a',',c") (i.e. (a,b) = (d',b),
(b,c) = (V',¢") and (a,¢) = (d',")).

(W2) For all a,b,x € P non-collinear, for all a’,b',x’ € P with (a,b,x) = (a’,b’,x"),
for all ¢ €a,b, for all ¢/ €a’,b’ with (a,b,c) = (d',b,c"),(x,c) = (x,¢") holds.

(W3) For all a,b,x € P non-collinear there exists exactly one x’ € {a,b,x}\{x} with
(a,b,x) = (a,b,x"), denoted by a,b(x):=x'.

Then we call (P,2,=) a weak space with congruence and a space with congruence,
if moreover, the following condition (F) is valid.

(F) For all E€€, for all 4,B€ £(E) with A# B there exists z€ E\(4 U B) and
C1,C, € 2(z) with C; £C, and C;NA,C;NB#D for i € {1,2} (cf. Property 1.7)

For Ge & let a,be G with a# b and let

X if x e G,

G:P— P; —
- XH{a,b(x) if x&G.

By (W2), G does not depend on the choice of a,b € G. G is called a line-reflection.
Let £ :={L|LeL}. For 4,B€ L and pcP let

AlB: = A#B and A(B)=B

(pLd)={LEL(p)|LLA}
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A permutation ¢ € SymP is called a motion if ¢ is a collineation (i.e., VL€ £ :
@(L)e L) and if for all a,b€ P : (a,b) = (p(a), p(b)).
Let A be the group of all motions of (P, L,=). By Sorensen [30] we have

Property 4.1. Let (P,L,=) be a weak space with congruence and let E €€,
GeLQ(E), a,b,c,d€E,a#b, A,B,CeLQ(E)NL(d), a €U and o € SymP. Then:

(1) Go G=id, FixG =G, G(E)=E, [30, (1.4)].

(2) |{m€a,b|(m,a) = (m,b)}| <1 (ie. there is at most one “mid-point”),

|[{M € Q(E)|M(a)=b}| <1, [30, Eq. (1.1) and (1.7)].

(3) If p¢4 then (pLA)={p.A(p)}, [30, (1.6)].

4) If (d)=d and w(A)=A then o*|,=1d, and either A C Fixo.:={x € P|a(x)=x}
or Fixa N 4 = {d}. If moreover w(E) = E then o*|p = idr and either Fixa DE or
Fixa NE =4 or Fixa NE ={d}, and if Fixa NE =A then o|g :/I|E, [30, Egs. (1.11),
(1.12) and (1.14)].

(5) If A|g, B, C| € Wy then there exists a unique D € £ (E)NL(d) : AoBoC|z=D|g
(‘theorem of the three reflections’), [30, (1.15)].

If moreover axiom (F) is valid (i.e., (P,Q,=) is a space with congruence), then

(6) G|z € Ay, [30, (3.1)]. )

(7) If (c,a) = (c,b) then there exists exactly one M € &(c)NL(E) with M(a)=0>,
[30, Egs. (1.7), (1.8) and (4.2)], i.e., |(cLa,b)NL(E)| =1.

(8) If for all x,y € P : (x,y) = (6(x),a(y)) then o €U, [30, (1.11)].

We consider the following bifurcation: (P, L,=) is called regular if:

(R) There exists a,b,c € P with a#b,c € a,b\{b} and (a,b) = (a,c)

and weak Lotkernspace resp. Lotkernspace if (L) resp. (L) and (F) are valid.
(L) For all a,b,c € P with a#b and c €a,b\{b} : (a,b) Z (a,c).

By [32, (4.3)] we have

Property 4.2. If (P,2,=) is a regular space with congruence then
(1) For all x,y € P,x+#y there exists y e, y\{y} with (x,y) = (x,)).
(2) For all GE L, for all cc G, for all ECE(G): (cLG)N L(E)#0.

For (P,2,=) we claim the further axiom:

(Wa) For all x,yeP,x#y: |[{zex, p)\{y}|(x,y) =(x2)}]| <1.

If (P,L,=) is regular, then by Property (4.2) and (Wa) we can associate to each
a € P the point reflection

if x=a,

~ . X
ab=h xH{zz'(x):—{yea,—x\{x}l(a,mz(a,y)} if x#a.

Let P:={p|pcP}.
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Property 4.3. Let (P,L,=) be a regular space with congruence such that (Wa) holds
and let L€ 8, a,b,ce L with a#b,d€P,ac W and T €T with acT. Then

(1) @doa=id, Fixa={a},a(T)=T

(2) Fix(d o b) = () by Property 4.1(2).

(3) ~: P — P; p — p is a bijection.

4) o%):oco doofl,oZL):aco Loa™!

(5) PcU

(6) If the points ¢ and a(b(c)) have a midpoint m, and if y:=d o boé then
Y =id, Fix y €T and Fix y N L= {m}, i.e.  is a reflection in the subspace Fixi.
If Fixyp # {m},u € Fixyy\{m},v:=é&(u), and w:=b(v) then {u,v,w} are non-collinear
and c resp. b resp. a is the midpoint of u,v resp. v,w resp. w,u.

(7) If there is a point o € P with P(0)=P then any two points x,y € P, with x# y
have a midpoint and P acts regularly on P.

Proof. (5) Let a,x,y€P be distinct, let E€€ with a,x,y€E,X:=0a,x,Y :=a, y,
Se(alX)n L(E) (cf. Property 42(2)), and ¢:=S o X. We want to show ae 2.
By Property 4.1(6) ¢|g € g and so (x, y) = (¢(x), p(»)). Moreover p(x)=SoX(x)=
S(x)ex (since SLX), (a,x) = (¢(a), p(x))=(a,S(x)), and S(x) #x (since x ¢ S). By
(Wa), S(x) = d(x). By Properties 4.1(5) and (6), there exists Z € Q(a) N Q(E) with
Zlp=8So0XoY¥|g=¢oY|g, hence ¢|r =70 Y|z, and so 50 p(y)= Z(Y(y))=Z(y) with
(a,y) = (a,Z(y)). By S1X, ie. S#X and X|p = S(X)|z =S 0o X o S|z we obtain
@?*|p =idg, hence @z =Y o Z|z and so Z(y)=Y oZo Y(y)=Y(Z(y)), i.e. Z(y)€Y.
From (a, y) = (a,2(y)), a, ,Z(y)€ Y and y # Z(y) we obtain by (Wa), Z(y)=d(y).
Therefore (x, ) = (¢(x), p(¥))=(S(x), Z(y))=(d(x),d(»)), and so by Property 4.1(8),
acU.

(6) a,b,ce L imply d(h(c))eL and therefore meL and ¢ =i o do b(c) =i o
Y(c). By (5), hop:=moyeW, p(c)=c and by (1), ¢(L) =yY(L) =L and for all
EcC(L): (E)=y(E)=E. Consequently by Property 4.1(4) ¢*>=id and Fix¢ DL or
FixpNL={c}. Suppose FixpNL={c}, then &|, = ¢|, =rmodoboé|; hence dob|,=|;
implying a(b) = m(b), and so a =m by (2). This gives us 15|L =1id;, a contradiction
since Fixh = {b}. Therefore Fixp DL, i.e. Y|, = |, and so Fixyy N L = {m}. This
implies, again by Property 4.1(4), > =id. In order to show Fixyy € T, let x, y € Fix
with x # y and z € X, y. Since € A we have (x, y,z) = (Y(x), Yy (¥), ¥ (2))=(x, ¥, ¥(2))
and this implies Y(z) =z by (W1), hence X, y C Fixy.

(7) Let x’ € P with ¥'(0) =x, let z:=%'(y) and z’ € P with £'(0) =z =x'(y). Then
F oo (x)=%0Z(0)=XF(y))=y and if m:=%'(z') by (4), =% 0z oX’. Since
m(x)=y,mex,y and (m,x) = (m, y), i.e. m is the midpoint of x and y. Together with
Property 4.1(2) this shows us that P acts regularly on P.

We extend the definition of orthogonality: Let Le , T €T and pe P, then LLT :&
LZTANLT)=T. (pLT):={Lc(p)|LLT}.

Property 4.4. If TeXT, peP\T and A€ (pLT) with ANT #( then (pLT)={4}.
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Proof. Let a:=A N T and suppose B € (pLT)\{4}. Then a¢B, a# B(a), B(a)eT,
hence C:=a,B(a)C T and 4,B1C. Consequently, by Property 4.1(3) {4} =(pLC)=
p.C(p)={B}.

5. Absolute geometry

A quadruple (P, &,0,=) is called an ordered space with congruence if (P,2,a) is
an ordered space, if (P,L,=) is a weak space with congruence and if the following
compatibility axiom (ZK) holds:

(ZK) For all a,b,c,c’ € P with a#b, c£c, ¢! €{a,b,c} and (a,b,c) = (a,b,c") :
a,bNle,c'[#0.

By Property 1.7, (P, L, ) fulfills the axiom (F) and therefore (P, ,=) is a space with
congruence.

Property 5.1. If (P,8,0,=) is an ordered space with congruence and dim(P, L )>2
then:

(1) (P,2,=) is regular.

(2) If a,meP, a#m and bea,m\{a} with (a,m) = (b,m) then (m|a,b)=—1, i.e.
m € la, b[.

(3) (P, 2,=) fulfills (Wa) and so P C A (cf. Property 4.3(5)).

(4) For all a,b,c€P collinear: GoboéeP.

(5) For all A,Bc 8 with ALB:ANB#.

(6) For all A,B,C € Q with ALB,C, for all pcA, for all Ec€(A) : A|pcUg
(cf. Property 4.1(6)), |(pLA)N L(E)| =1 (cf. Property 4.1(7)) and BN C#0 =
ANBNC#Q.

(7) PC Aut(P, 2, ).

(8) Let a,b€ P with a#b. If there are x,y € P\a,b with (a,b,x) = (b,a,y) and
yve{a,b,x} then (a,b) has a midpoint (cf.[30,(5.5)]).

(9) Let ECC, z€E, oAy, with ¢(z)#z and @*(z) =z then (z,¢(z)) has a
midpoint, [30,(5.6)].

(9) For all o,a,b€ P there exists exactly one ceP :do b(o) = &(o).

(9") For all a,b,c €P distinct: If two of the segments la,b[, 1b,c[, ]c,a[ have a
mid-point, then also the third.

(10) For all E€C€, for all pe P\E : |(pLE)| =1 and (pLE)NE #).

(11) For all E€€, for all ceP\E, C:=(cLlE), ¢c,;=C NE : (c,LE) N
LEU{c}H=C

Proof. (1) Since dim(P, L )>2 there are a,b,c € P noncollinear and by (W3) there is
a ¢’ €{a,b,c}\{c} with (a,b,c) = (a,b,c"). By (ZK), m:=a,bN]c,c'[ exists (hence
(m|c,c’)=—1) and by (W2), (m,c) = (m,c").
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(2) By Property 4.1(7) there is a L € £ (m) with L(a)=b and if u,v € L, u#v then
(u,v,a) = (u,v,b) by Property 4.1(6), hence by (ZK), 0 #LN]a,b[ CLNa,m= {m},
ie. (mla,b)=—1.

(3) Suppose there are x, y,)’, y"” € P collinear and distinct with (x,y) = (x,)') =
(x,»"). Then by (2), (x|y,»") = (x[y,»") = (x[y, ") = —1 and by (Z1) (x]y,»") =
x|y, ) x|y, y")=(—1)-(—1)=1 which is a contradiction.

(4) Let a#b, L:=a,b, :=doboé, Ce(cLL) (cf. Porperty 4.2(2)) and x € C\{c}.
Then C,y(C)LL, Y(c)=LNY(C), (¢,x) = (Y(c),P(x)) (cf. Porperty 4.3(5)) hence
by [32, (3.5)] (x,¥(c)) = (¢, ¥(x)). Now (¢, ¥(c),x) = (¥(c),x,¥(x)) implies by [30,
(5.5)] that ¢ and ¥(c) = d(b(c)) have a midpoint m. By Property 4.3(6) ¥ =id and
{m} L N Fixy. Suppose {m} #Fix . Let u € Fix lﬂ\{m} v: —c(u) w:=b(v) and

= {u,v,w}. Then EEG(L) and by Property 1.4, E= L ulJL U L v. w=>b(v) implies

belv,w[NL hence w eL,v. On the other hand, u:x//(u):a_obocgu):aob(v):a(w),

thus a € Ju,w[NL, i.e. w eLju which is a contradiction to I:uﬂljv: (). Consequently
VSR

(5) Let be B\A4 and a,,a, € A with a; #a,. Then b’ :=A(b) CA(B)=B, b’ #b and
(ai,az,b) = (ay,a2,b") hence by (ZK), 0 £4 N1b,b'[ CA NB.

(6) If B=C then ANBNC=ANB#{ by (5). If B#C hence {x}:=BNC then
{A(x)} =A(BN C)=A(B)NA(C)=BNC={x} and so x € 4.

(7) 1. Let o0,a,b € P be noncollinear and ¢ € ]a,b[. For C:=0,¢, E:={o,a,b} we

have by Property 1.4, E = Cja ucu C—;b and by Property 5.1(2), Ja,6(a)[ N C =

16,3(b) N C = {0} hence d(a) € C,a, 3(b)<€ C,b and so together with Property 5.1(3),
{o(e)} =1o(a),6(b) N C#0, ie. 6(]a,bl) =16(a),6(D)L.

2. Let 0#b and a€o,b[. We choose L€ £(0)\{o,b} with Lf 0,b and set B:=
(bLL),b':=BNL, {c}:=(alb,b)Nb,b (cf. (5)). Then by (6), a,cNL =10 and so
a€lo,b[ implies c€]b,b'[. Since 6€A and by 1, we have o(c)€]1a(b),o(b),
5(a),5(c) N 6(L) = 0 which implies 6(a) € Jo,3(h)[. This shows

3. If 0,a,b are collinear and distinct then (a|o,b) = (6(a)|o,d(b)) and for ¢ € ]a, b[,
¢#o0 we obtain from this formula: —1 = (c|a,b) = (c|o,a) - (c|o,b) = (6(c)|o,d(a)) -
(6(c)|0,3(h)) =(6(c)|6(a), 5(b)), i.e. 6(c) € 16(a), 6(b)[. For c=o € ]a, b, i.e. (o|a,b)=
—1, we have by (2) (ola,d(a)) = (o]|b,d(b)) = —1, hence

(0lo(a),6(b)) = (ola,b) - (ola,d(a)) - (o]b,6(b)) = (=1) - (=1) - (=1) = —1,
ie. 0€16(a), o(b).

By 1., 2. and 3., 0 € Aut(P, £,u) and so ISCAut(P,Q,oc).
(8) Let G:=a,b, E:={a,b,x}, x:=G(x). Then by (ZK), Jx.x'[ N G#0 and by

Property 1.3 E:ij UGu ij’. We may assume y € GTx, ie. {m}:=1x, y[ NG #0.
Now the arguments of [30] (5.5) show that m is the midpoint of (a,b).

(9Y If a=b then c = o, if b=o0 then ¢ =a, if a =0 then ¢ = 6(b). Let o,a,b
be distinct, £ € € with o,a,b€E, x: —aob(o) and y: =bod(o). Then x,y€E, x+#o0
and x = y would imply: b(o) =dobo a(o) = a(b)(o) hence d@(b) =»b and so a = b.
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Therefore x # y and moreover (0,x) = (bd(0), bi(x))=(y,0). By Property 4.1(7) there
exists exactly one C € £(0)N € (E) with C(x)=y and by (6), C|z € Az. Consequently
@:=d obo ClpeAs po)=dob(o)=x+#0 and ¢*(0) = @(x)=d o b(y)=o. By
(9), (0,x) has a midpoint ¢, hence &0)=x =d o b(o).

(9") If, for instance, x is the midpoint of (a,b) and y of (b,c), then y X(a)=(b)=c
and by (9’) there exists exactly one z € P with Z(a) =c, i.e. z is the midpoint of (c,a).

(10) Because of (5), (6) and Property 4.1(6) we can use the same arguments of the
proof of [22, (5.16)].

(11) Again, due to (6), we can take the proof of [22, (5.20)].

Since an ordered space is an exchange space (cf. Theorem 1.5) we can define the
notion reflection o in a subspace T € T \{0} by

1. 0 € SymP and Fixe =T.

2. Forall xe P\T, for all teT :x,6(x)NT#( and (x,¢) = (6(x),1).

Property 5.2. For all T € T \{0} there is at most one reflection o in T and if o is
a reflection in T then ¢* =id and for all x€ P\T : x,a(x) LT. If T €€ then there
is a reflection in T.

Proof. Let ¢ be a reflection in 7. If T = P then ¢ = id. Let T#P, x€P\T,
X:=x,0(x), t,;:=X NT, t€T\{t,}. Then (x,7) = (a(x),t) and (x,%,) = (6(x),1,)
implies 7,7, 1X, i.e. XLT, X(T) =T and by Property 44, X = (xLT). Now X =
(xLT), x,t,,06(x)€X, x#0c(x) and (x,t,) = (a(x),t,) yield ¢> =id and that ¢ is
uniquely determined. Finally let 7 = E €€, and let ¢ : P — P be defined by: If
x€E then o(x)=x. If x¢E, let X:=(xLE), x,:=X NE (cf. Property 5.1(10)) and
a(x):=%,(x). Then ¢ € SymP, Fixs =E and ¢ =id. For x€ P\E and t € E\{x,} we
have (x,x,) = (o(x),x,) and X _17,x,, hence (x,¢) = (0(x),t). Consequently ¢ is a
reflection in E.

Property 5.3. Let o,a,bcP, p:=doboé, EcC with o,a,beE and u:=¢(0) =
0~ '(0). Then

(1) p€P,

(2) if 0,a,b are noncollinear then FcE (where E :={X|x € E}).

Proof. (1) If 0,a,b are collinear, then ¢ € P by Property 5.1(4). Let 0,a,b be non-
collinear. Then u = @(0)# o0, ¢*(0) =0, ¢ €A (by Property 5.1(3)), ¢(E) = E (by
Property 4.3(1)) and (o, ¢(0)) has a midpoint m (by Property 5.1(9)). For y:=ni o
¢ we obtain € A N Aut(P, £,a) (by Property 5.1(7)), ¥(o) = o, Y(u) = u hence
L:=0,uC Fixy (by Property 4.1(4)) and either E C Fix ¥ or Y|z = L|z. By Prop-

erty 5.1(2), b€1o,b(0)[, @ €lu,b(o)[ hence by Property 1.4, a,b€ L,b(o). Therefore
x:=80b(0) € L,b(0), Gobod(x)=d(o)€ L,b(0), and so Y(x)=riod(o0) € L, b(0) since

me L. On the other hand by (ZK), Jx, L(x)[ N L#0, i.e. L(x)&L,b(0). Consequently
V|g #Llg, and so E CFixy, i.e. o|g=ni|g. f E#P, let ce P\E, T:=EU{c}, C:=
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(cLE), c¢,:=C NE (cf. Property 5.1(10)). Then ConC =(c, LE)N ch (by Property
5.1(11), y(T)=T (by Porperty 4.3(1)), l//(ETC)ZETC (by Properties 5.1(2) and (7)),
Y(co LEY=(Y(co) LY(E))=(c,LE) (since y € A) and so lﬁ(c:c):c:c 3 Y(c). Since
(Co, ) = (Y(co),W(c)) = (co, Y(c)), this shows, Y(c) =c and so ¢ =€ P.

(2) With the same arguments as in [15, Section 21] one obtains: For all x, y,z€ E
there exists s € E with X o J o 2|z = §|g. For a =% o0 joZ, a(z) =3§(z) = o~ !(z) hence
by (1), @ = §€ P. Consequently £ C E.

By Property 5.3 we can classify the planes £ €€ of (P,2,x,=) as follows:

E is called ordinary if £ ¢E and singular if ECE.

We can also classify the ordered spaces with congruence (P, £,a,=) as follows:

(P, L,a,=) is called singular if P C P, ordinary if P ¢ P and strictly ordinary
if each plane of (P, L) is ordinary.

Clearly (P, 2,0,=) is singular, if and only if all planes £ of (P, ) are singular, and
(P, 2,a,=) is ordinary, if at least one plane of (P, &) is ordinary. The question whether
all planes of an ordinary space are ordinary can be answered for absolute spaces, that
is an ordered space with congruence (P, L,a,=) where the following axiom (WF) is
valid:

(WF) For all a,b,c € P noncollinear there exists d €a,c : (a,b) = (a,d).
By Sorensen [32] and Konrad [22] we have:

Property 5.4. Let (P,2,0,=) be an absolute space with dim(P,)>2. Then

(1) The axiom (V2) (Streckenabtragen) For all a,b€ P, a#b, for all G 2, for
all ce G:|{xeG|(x,c) = (a,b)}| =2 of [15] holds [32, p. 29].

(2) For all E€E €, (E,Q(E), 0, =) is an absolute plane in the sense of [15] (cf.
[32]) and therefore any two points a,b € P have a midpoint, [15, (16.11)].

(3) For all E\,E», €€, (E1, 8(E)),05,=g, ) and (Ey, &(E»),05,,=g,) are isomor-
phic [22, (5.15)].

(4) (P,L,a,=) is ordinary if and only if all planes of (P, L) are ordinary (conse-
quence of (3)).

(5) For all GeEQ : Ge A [22, (522)].

(6) (P, L,0,=) is a hyperbolic plane (in the sense of [15, Section 26]) < dim(P, £ )=
2 and (P, 8,a) has hyperbolic incidence structure [22, (6.10)].

(7) (P,8,a,=) is a hyperbolic space, (i.e. VE€C : (E,Q(E),or,=g) is a hyper-
bolic plane) < (P, L,a) has a hyperbolic incidence structure.

The axiom (W2) is the only one which is not restricted to coplanar points. Therefore
the statement

(W2') Let a,b,x€P be noncollinear, a',b',x' € {a,b,x}, c€a,b, ¢’ €a’,b’ with
(a,b,x) = (d',b',x") and (a,b,c) = (d',b',c") then (x,¢) = (x/,c).

is a weakening of (W2). Recently Kroll and Sorensen (cf. [27]) proved:
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Property 5.5. Let (P,L,=) be given such that (P,L,a) is an ordered space and
such that the axioms (W1), (W2"), (W3), (ZK) and (WF) are valid. If for all
Ec€€, (E,Q(E),ag,=g) is a hyperbolic plane, then (P, 2 ,0,=) is a hyperbolic space.

6. Reflection structures and loops

Let P#( be a set, 0P be fixed, Sym P be the group of all permutations of
P, J:={o€SymP|¢> =id}, J*:=J\{id} and let ° : P — J; x — x° be a map such
that

(B1) For all xe P : x°(0) =x.

For all a,b € P we set a’ :=a’00°, a+b:=at(h), —a:=0%a), dup:=((a+b) ) 'o
at obt =0%0(a+b)’0a’00°0b’00° and moreover P°:={x’|x€P}, P*:=P°o
0°={x*|xeP} and 4:=({d,p|a,b e P}) the subgroup of Sym P generated by the
permutations J,,. Then:

Theorem 6.1. (P,+) is a right loop, 0 the neutral element and for all a€P : a +
(—a)=—a+a=0. Moreover:

(1) The following statements are equivalent:

(a) P° acts regularly on P (i.e. for all a,b€ P there exists exactly one x€P :
x°(a) =b).

(b) (P,+) is a loop.

(2) The following statements are equivalent:

(a) (B2a) For all acP :a°00°0a’cP’.

(b) VaeP:0,,=1d, ie. (a+a)T =at oa™.

(3) The following statements are equivalent:

(a) (B2b) 0° 0 P° 0 0° = P°.

(b) (FK2a) YaeP :9,_,=1d, i.e. (—a)°=0°0a’00°.

(c) (FK2b) 0° € Aut(P,+), i.e. Vx,y€P: —(x + y) = —x+ (—y).

(4) The following statements are equivalent:

(a) (B2) VaeP :a°0c0P°o0a’=P°

(b) (Bol-Identity) YVa,be P :at obt ca™ =(a+ (b+a))*.

(c) (P,+) is a K-loop, i.e. a loop with A<Aut(P,+), (FK2a), (FK2b) and

(FK2¢)Va,b €P : d4p = Oapa-

(d) (P,+) is a Bruck-loop; i.e. a loop with Bol-Identity and (FK2b).

Furthermore, if 6 € A then:

(5) 6€Aut(P,+) < VxeP:60x°00°05 1 00° € PO.

(6) If 5ox° 061 €P° for all x € P then 6 € Aut(P,+) and 5 ox° o 5! = (5(x))°.

(7) If (B2) holds then A<Aut(P,+).

Proof. Since at =a° 0 0° € SymP and P° CJ, the equation a + x = b has the unique
solution x:=0°0a’(h) and 0T =0°00°=id, hence 0+ b =>h. Since a+0=a’00°(0)=
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a°(0)=a, 0 is neutral. By (B1) and P° CJ, a+(—a)=a+0°(a)=a’00°00°(a)=a’(a)=0
and —a+a=(—a)°o0°%a)=(—a)’(—a)=0.

(1) The equation b=x 4+ a=x°00°(a) =x°(—a) has exactly one solution iff P° acts
regularly on P.

(2)Byatoat =a°00°0a°00° (a+a)" =(a+a)o0° (a+a)0)=

a+a, a°00°0a°(0)=a"(a)=a+a and (B1) we have:

(a+a)y =atoat & (a+a)Y =a"00°0a’ < a’00°0a’ €P°.

(3) Since 0° 0 a° 0 0°(0) = 0° 0 a°(0) = 0°(a) = —a = (—a)°(0) we have by (BI1):
(a") '=(—a)" & 0°0a°00°=(—a)’ & VhEP :0°(a+b)=0°0a’00°(b)=(—a)’(h)=
(—a)°00°00°(h)=—a+ (—b)=10°a) + 0°(b) & 0° € Aut(P, +).

(4) atobToat=a’00°0b°00%0a°00°, (a+(b+a))*=(a+(b+a))’00° a°c0°cb’o
0°0a’(0)=a-+(b+a) and (B1) show the equivalence of (B2) and the Bol-Identity. By
Kreuzer [25, (3.5)] we have the equivalence of the third and fourth statement. Finally
(B2) implies (B2b), hence (FK2b) by (3). Consequently the Bol-Identity implies the
fourth statement.

(5) Since d(a+b)=do0a"(b)=050a’00°b), d(a)+ d(b) =0d(a)’ o 0° o (b) and
d0a’00°086 100°(0)=560a’00°0671(0)=d0a’00°(0)=50a’(0)=d(a)=((a))°(0)
(take into consideration that each map at is determined by the image of 0 by (B1),
hence a™(0)=a’00°(0) =a’(0) =a and therefore J,,(0) =0 by definition of J,;) we
obtain by (B1): 6 € Aut(P,+) < YacP :60a’00°05 ' 00°=(da)) < VYacP :
doa’o00°05 1o0°€P.

(6) 60x°08 ' €P’ and §ox° 057 1(0)=60x°0) = d(x) = (5(x))°(0) imply by
(B1) that 6 o x° o 6! = (4(x))°, in particular, § 0 0° 0 5~ = (5(0))° = 0°, and so
50x°00°057100°=60x°06""10800%057"00%=((x))° 00°00°=(5(x))° €P°,
ie., 0 € Aut(P,+) by (5).

(7) Since each ¢ is a product of six elements of P°, (7) follows from (6).

Theorem 6.2. For ac P let a: ==a’00%0a’ and let P: ={d|acP}. Then
(1)aeFix d=a° (leO”)O 0°, aoO*a oat.
(2) If Fix 0° = {0} then ~: P — Pisa bijection and Fix d = {a}.
(3) PCP’ & (B2a).
(4) P=P° & (B2a) and P(0) =P

Remark. In [28] Manara and Marchi (cf. also [13,2,3]) introduced a class of reflection

geometries by starting with a map ~ : P — SymP NJ* such that P acts regularly on
P and a € Fixa for each a € P.

7. Geometric K-loops

The results of Section 6 will be applied to geometric structures. First of all let
(P,2,=) be a regular space with congruence such that (Wa) is true. Then to each



H. Karzell Discrete Mathematics 208/209 (1999) 387-409 405

p € P the point-reflection p can be associated (cf. Section 4). Moreover we claim:
(Cl) 30€P suchthat Vx,ye P, IZzc P : X(3(0)) =Z2(0)

and we set F:={X(0)|xeP}, Lr:={LNF|Lec 8 :|LNF|>2} and (X(0))° :=X|p.

Property 7.1. (P,2,=;0) and (F,Lp,=r) have the properties:
()VpeP: p(F)=F
(2) The maps

P3P — F%F°=P|pCSymFNJ
X=X 5(0) = (5(0)) =5p '

are bijections.

(3) F° acts regularly on F and YNa € F: a° o F° o a® = F°.

(4) (F,+) with a4+ b:=a° 0 0°(b) is a K-loop (cf. Property 6.1(4)).

(5) (F, 8r,=F) is a regular weak space with congruence fulfilling (Wa) and F* C Up.

(6) & :=2L£(0) is an incidence fibration of the loop (F,+) in the sense of Zizioli
[33], ie

(Fbl) VX € §: X <(F,+) (i.e. X is a subloop) and |X|=2.

(F02) UF :=U,cx L=F, V4,BEF, A#B:ANB={0}.

(Fb3) Va,beF, VX €F: 0,p(X)EF, and Lr ={a+ X |a€F, X€F}.

() VX €&, (X,+) is a commutative group.

(8) If in (P,L,=) any two points a,b have a midpoint, then (C1) is fulfilled and
F=P.

Proof. (1) follows from (C1).

(2) Let x, y € P with X|p = J|p. Then £(0) = 7(0), hence by Property 4.3(2), x = y.

(3) Let @(0), b(0)F be given. By (C1), Iee P with d@(b(0)) = &0). Then by
Property 4.3(4), d(c) =do éod and a(c)(@0)) =do &0) = d o (d o b(0)) = H(0).
Since c%|p € P\F =F°, F° acts transitively and so by Property 4.3(2) it acts regularly
on F.

(4) The map ‘o’ fulfills (B1) by (2) and (B2) by (3) so that by Property 6.1(4),
(F,4+) is a K-loop.

(5) (W1) Let a,b,c € F be collinear and distinct and a’,b’ € F with (a,b) = (a’,b’).
By (3) we may assume a =a’ =0 and moreover b= b’. Let m € P such that ¢ = r(0)
and L:=(0Lb,b") (cf. Property 4.1(7)). Then me0,c =0,b, L(b) =¥, (0,b,c,m) =
(0,0, L(c),L(m)) and so L(m) is the midpoint of 0 and L(c), i.e. L(c)EF.

(W3) Again let = 0. Let L:=a,b =0,b and me P with (0) = x. Then L(x) €
{a,b,x}\{x}, (a,b,x) = (a,b,L(x)), and since L(m)(0)=LormoL(0)=Lom(0)=L(x),
we have L(x) € F.

(W2) and (Wa) are clear.

(6) and (7). Let X € 2¢(0), a=d'(0), b = I;/(O) € F\{0}, and ¢’ € P with &'(0) =
c:=a+b. Then by Property 4.3(5) dup =(c*) ' oa* ob* =00é 0d 00ob, 00N,
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by (1), 0,6(F)=F and since 9,,(0) =0, 0,5(X) € Lr(0). Moreover: a + X =a° o
0°X)=d(X)=X & d €X < acX. This shows X <(F,+).

Ifa,be X, then ce X and 0, a b eX. By (Cl) there exists z € P with a’(b’(O))f
z(0) hence by Property 4.3(6), doblol=00boa andso b ol0od =a o0ob
implying a+b=>b+a. In the same e way, docol= Ooc’oa’ and c’Ob’OO 0ob/oc!.
Consequently 5ab7(Ooc oa )OOOb’OO d'oc’00o0ob ol=a'oc'ob/ c0=d'o0ob'oc,
thus d,(c)=a OOOb’(O) a' o0(b)=a+b=c. By Oap €U, 0,c € Fixd,;, and Property
4.1(4) we obtain 0,c CFixd,p. If ¢#0 then X C0,c CFixd,p hence 0,5y = idy. If
¢=0, then b=—a and by (3) and Property 6.1(3), d,,=1d. Consequently Va,b,x € X :
a+(b+x)=(@+b)+p(x)=(a+b)+x

By adding the concept of order we obtain connections with results of the papers
[9,16].

Property 7.2. Let (P,L,0,=) be an ordered space with congruence. Then

(1) (P,L,=) is a regular space with congruence fulfilling (Wa) and (C1) for each
0€ P (cf. Property 5.1(1), (3) and (9')).

(2) For ©:=P and I := N, the pair (I, D) is a reflection group fulfilling the axiom

(S3) For all a,b,c €D with acbcbca = beacach : abe € J,

of [9] (by Property 5.3), if in addition (P, ,0,=) is singular or strictly ordinary,
then the general three reflection axiom (cf. [12,p. 181; 15, p. 117])

(S1) For all a,b,x,y,z€ D with a#b and abx, aby, abz€J* : xyz €D is valid,
and if moreover any two points of P have a midpoint then (I',D) is a reflection
group with midpoints in the sense of [9].

(3) If (P, 8, 0,=) is strictly ordinary, if for a€ F\{0}, Z(a):={x €F |x+a=a+x}
and 3:={Z(a)|a € F\{0}}, then 3=& =L¢(0) and so Lp={b+Z(a)|b,a € F, a#0}.

(4) If (P,R,a,=) is an ordinary absolute space then in (3) F = P.

8. Quasidilatations and Ruoff’s proportionality theorem

In this section let (P, L,a,=) be an absolute space, 0 € P be fixed and (P,+) the
corresponding K-loop where 0 is the neutral element (cf. Property 7.1). For each
X € F=2(0) we can make the following observations:

I. (X,+,a|y) is a commutative group (cf. Property 7.1(7)) with a betweenness
relation, i.e. (Z1) and (Z2) are valid.

2. If xo, x1 €X, xo#x; are fixed, then there is exactly one total order “<” on X
such that (for a,b € X with a#b we set (alb)=1 if a <b and (a|b)=—1 if b > a):

(1) (xolx1) =1

(i) Y(a,b,c) e X :={(x, y,2) € X3|x # y,z}: (a|b,c) = (a|b)(alc).

In fact ‘<’ is defined by (a|b)=—(alxo,b)- (xo|x1,a) if a #xo and (xo|b)=(xo|x1,b)
if a=x¢ (cf. [15, Eq. (13.3); 14, Eq. (1.1)]).

3. A betweenness preserving map ¢:X — X, ie. Y(a, bc)eXx?: (a|b,c) = (p(a)]
@(b), p(c)) is either isotone, i.e. V(a,xy,b), (xo,xl,a)éXy:

(alxo,b) - (xo|x1,a) = (@(a)|xo, (b)) - (xo|x1, p(a))
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or antitone, i.e.
(alxo,b) - (xo|x1,a) = —(p(a)|xo, (b)) - (xo|x1, p(a))

(cf. [14, (1.3)]). By Property 5.1(7), for each p € X, p|x is a betweenness preserving
map, but for ¢ €X\p, (5(¢q), p. p). (p.q. p(¢))€X” and ¢:= p we have

(2(@D|p,p) - (plg, p(q))=1-(—=1)=~—1
by Property 5.1(2), and
(2(p(a))|p, P(p)) - (plg, P(p(@))) = (q|p, p) - (Plg.q) =11,

i.e. ply is antitone.Therefore for each x € X the map x|y =x° 0 0°|y is isotone and
so (X,+,p) is an ordered commutative group.

4. Each x€X is the midpoint of (0,x + x) and since by Property 5.4(2) there is
exactly one midpoint x” of (0,x) we have x=x’+x'. Therefore, the ordered commutative
group (X,+,p) is divisible by 2, and so (X,+) is a module over the ring Zp):=
{m-27"\meZ,ueNU{0}} of all dual fractions.

Since each x € P\{0} is contained in exactly one X € §, we have by 4 a well
defined operation - : Z;y x P — P : (A,x) — A -x. For each A€ Z)\{0} the map
A P — P;x+— A-x is called quasidilatation with center 0.

We can state the results:

Property 8.1. (P,+,&,Z),-) is a structure where (P,+,§) is a loop with an inci-
dence fibration and - : Zpy x P — P is a map such that for all i,pue Zyy for all
X ey for all a,be P hold the following:

(H)A-a=0&1=0o0ra=0.

(2) If A#0, then L-P=P and /- X =X.

G)A-wa=i-(u-a)y, (A+p)-a=i-a+pu-a.

@A) If a,beX then 2-(a+b)y=Ai-a+ 1-b.

Property 8.2. For A€ Z)\{0,1} the quasidilatation /. is a collineation of (P, L) if
and only if (P,R,0,=) is singular (i.e. P = P).

For our absolute space we introduce a distance. Let U € § and e € U\{0} be fixed
and U, := 0,eU{0}. By Property 5.4(1) there is a surjection

|| : P — Uy p — |p|, where |p| is the uniquely determined point of U, with
(0, p) = (0,|p|), called absolute value, and so a distance d : P x P — Uy; (p,q) —

|—p+4l.
Since (P,+) is a K-loop and P C 2 we have
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Property 8.3. For all a,b,c,d € P, for all p 2 :
(1) (a,b) = (c,d) & d(a,b)=d(c,d).
(2) If be]a,c| then d(a,c)=d(a,b)+ d(b,c).
(3) d(a,b) = d(¢(a), p(b)).

Two distinct lines 4,B € £ can have one of the properties:

1. ANB#0.

2.ANB=0, L€ : L1 A, B and

(a) AUB € €, this case we denote by 4 1L B and if (P, 2,a =) is hyperbolic, we
call 4, B overparallel.

(b) AUBZE

3.ANB =1, A,B do not have a common perpendicular and

(a) AUBEE; (if (P,L,a =) is hyperbolic, then 4 || B, i.e. 4,B are hyperbolic
parallel).

(b) AUBZE.

For the second case let a:=ANL,b:=BNL and set d(4,B):=d(a,b). If (P,L,0,=)
is ordinary then L is unique, and in the singular case d(a,b) has the same value for
all common perpendiculars.

Recently Ruoff [29] proved the following interesting proportionality theorem for
which we can give two formulations:

Property 8.4. Let (P,L,0,=) be a hyperbolic geometry and let 0,a,b € P be non-
collinear.

(1) If (P, +) is the corresponding K-loop with respect to 0 and ). € Z2)\{0, 1} then
abllA-ai-b.

(2) Let ce Oja\{a} such that there is A€ Zyy with d(0,¢) = 4 - d(0,a) and let

de 0,b with d(0,d) =7 - d(0,b), then a,b 1L c,d.

9. For further reading

The following references are also of interest to the reader: [19-21].
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