Existence of Three Solutions for a Nonautonomous Two Point Boundary Value Problem

Pasquale Candito

metadata, citation and similar papers at core.ac.uk

and Dipartimento di Matematica, Università di Messina, contrada Papardo, salita Sperone n 31, 98166 Sant'Agata (ME), Italy
E-mail: Candito@ns.ing.unirc.it, Candito@dipmat.unime.it
Submitted by D. O'Regan
Received January 4, 2000

1. INTRODUCTION

Very recently, in [3-5], B. Ricceri proposed and developed an innovative minimax method for the study of non-linear eigenvalue problems. Let us also mention that a basic problem of the theory was solved by G. Cordaro [2], while G. Bonanno [1] gave an application of the method to the two point problem

$$
\left\{\begin{array}{l}
u^{\prime \prime}+\lambda f(u)=0 \\
u(a)=u(b)=0
\end{array}\right.
$$

The aim of the present paper is to extend the main result of [1] to the nonautonomous case.

2. RICCERI'S BASIC RESULTS

For the reader's convenience we now recall the two basic results of B. Ricceri which will be our main tools.

Theorem 1 [4, Theorem 1]. Let X be a separable and reflexive real Banach space; $\Phi: X \rightarrow R$ a continuously Gâteaux differentiable and sequentially weakly lower semicontinuous functional whose Gâteaux derivative admits a continuous inverse on X^{*}; and $\Psi: X \rightarrow R$ a continuously Gâteaux
differentiable functional whose Gâteaux derivative is compact. Assume that

$$
\lim _{\|u\| \rightarrow+\infty} \Phi(u)+\lambda \Psi(u)=+\infty
$$

for all $\lambda \in[0,+\infty[$, and that there exists a continuous concave function h : $[0,+\infty[\rightarrow R$ such that

$$
\begin{aligned}
& \sup _{\lambda \geq 0} \inf _{u \in X}(\Phi(u)+\lambda \Psi(u)+h(\lambda)) \\
& \quad<\inf _{u \in X} \sup _{\lambda \geq 0}(\Phi(u)+\lambda \Psi(u)+h(\lambda))
\end{aligned}
$$

Then there exist an open interval $\Lambda \subseteq] 0,+\infty[$ and a positive real number q such that, for each $\lambda \in \Lambda$, the equation

$$
\Phi^{\prime}(u)+\lambda \Psi^{\prime}(u)=0
$$

has at least three solutions in X whose norms are less than q.
Proposition 1 [5, Proposition 3.1]. Let X be a non-empty set and Φ, Ψ two real functions on X. Assume that there are $r>0$ and $x_{0}, x_{1} \in X$ such that

$$
\Phi\left(x_{0}\right)=\Psi\left(x_{0}\right)=0, \quad \Phi\left(x_{1}\right)>r, \quad \sup _{\left.\left.x \in \Phi^{-1}(]-\infty, r\right]\right)}<r \frac{\Psi\left(x_{1}\right)}{\Phi\left(x_{1}\right)} .
$$

Then, for each ρ satisfying

$$
\sup _{\left.\left.u \in \Phi^{-1}(]-\infty, r\right]\right)}(\Psi(u))<\rho<r \frac{\Psi\left(x_{1}\right)}{\Phi\left(x_{1}\right)},
$$

one has

$$
\sup _{\lambda \geq 0} \inf _{x \in X}(\Phi(x)+\lambda(\rho-\Psi(x)))<\inf _{x \in X} \sup _{\lambda \geq 0}(\Phi(x)+\lambda(\rho-\Psi(x))) .
$$

3. MAIN RESULTS

Here and in the sequel, $[a, b]$ is a compact real interval, $f:[a, b] \times \mathbf{R} \rightarrow$ \mathbf{R} is a continuous function, and g is the real function defined by putting

$$
g(t, \xi)=\int_{0}^{\xi} f(t, x) d x
$$

for all $(t, \xi) \in[a, b] \times \mathbf{R}$. Moreover, X is the Sobolev space $W_{0}^{1,2}([a, b])$ equipped with the usual norm $\|u\|=\left(\int_{a}^{b}\left|u^{\prime}(t)\right|^{2} d t\right)^{1 / 2}$. Our main results fully depend on the following lemma:

Lemma 1. Assume that there exist two positive constants d, c, with c $<\sqrt{\frac{2}{b-a}} d$, such that:
(i) $g(t, \xi) \geq 0$ for each $(t, \xi) \in\left(\left[a, a+\frac{b-a}{4}\right] \cup\left[b-\frac{b-a}{4}, b\right]\right) \times$ $[0, d]$
(ii) $\max _{(t, \xi) \in[a, b] \times[-c, c]} g(t, \xi)<\frac{1}{2}\left(\frac{c}{d}\right)^{2} \int_{a+(b-a) / 4}^{b-(b-a) / 4} g(t, d) d t$.

Then there exist $r>0$ and $u \in X$ such that $2 r<\|u\|^{2}$ and

$$
(b-a) \max _{(t, \xi) \in[a, b] \times\left[-\sqrt{\frac{r}{2}}, \sqrt{\frac{r}{2}}\right]} g(t, \xi)<2 r \frac{\int_{a}^{b} g(t, u(t)) d t}{\|u\|^{2}}
$$

Proof. We claim that the number $r=2 c^{2}$, and the function

$$
u(t)= \begin{cases}\frac{4}{b-a} d(t-a), & a \leq t \leq a+\frac{b-a}{4} \\ d, & a+\frac{b-a}{4} \leq t \leq b-\frac{b-a}{4} \\ \frac{4}{b-a} d(b-t), & b-\frac{b-a}{4} \leq t \leq b\end{cases}
$$

satisfy our conclusion. In fact $u \in W_{0}^{1,2}([a, b])$ and $\|u\|^{2}=8 d^{2} /(b-a)$. Hence, taking into account that $c<\sqrt{(2 /(b-a))} d$, one has $2 r<\|u\|^{2}$. Moreover, owing to our assumptions, we have that

$$
\begin{aligned}
\frac{\int_{a}^{b} g(t, u(t)) d t}{\|u\|^{2}} 2 r & \geq \frac{b-a}{2}\left(\frac{c}{d}\right)^{2} \int_{a+\frac{b-a}{4}}^{b-\frac{b-a}{4}} g(t, d) d t \\
& >(b-a) \max _{(t, \xi) \in[a, b] \times[-c, c]} g(t, \xi)
\end{aligned}
$$

So, the proof is complete.
Now, we state our main result:
Theorem 2. Assume that there exist four positive constants μ, d, c, s with $c<\sqrt{(2 /(b-a))} d$ and $s<2$ such that:
(i) $g(t, \xi) \geq 0$ for each $(t, \xi) \in\left(\left[a, a+\frac{b-a}{4}\right] \cup\left[b-\frac{b-a}{4}, b\right]\right) \times$ $[0, d]$
(ii) $\max _{(t, \xi) \in[a, b] \times[-c, c]} g(t, \xi)<\frac{1}{2}\left(\frac{c}{d}\right)^{2} \int_{a+(b-a) / 4}^{b-(b-a) / 4} g(t, d) d t$
(iii) $g(t, \xi) \leq \mu\left(1+|\xi|^{s}\right)$ for each $t \in[a, b]$ and $\xi \in R$.

Then there exist an open interval $\Lambda \subseteq] 0,+\infty[$ and a positive real number q such that, for each $\lambda \in \Lambda$, the problem

$$
\left\{\begin{array}{l}
u^{\prime \prime}+\lambda f(t, u)=0 \tag{1}\\
u(a)=u(b)=0
\end{array}\right.
$$

admits at least three solutions belonging to $C^{2}([a, b])$, whose norms in $W_{0}^{1,2}([a, b])$ are less than q.
Proof. For each $u \in X$, we put $\Phi(u)=\frac{1}{2}\|u\|^{2}$ and $\Psi(u)=$ $-\int_{a}^{b}\left(\int_{0}^{u(t)} f(t, x) d x\right) d t$

$$
J(u)=\Phi(u)+\lambda \Psi(u) .
$$

It is well known that the critical points of J are the classical solutions of (1). Then, our goal is to prove that Φ and Ψ satisfy the assumptions of Theorem 1. Clearly, Φ is a continuously Gâteaux differentiable and sequentially weakly lower semicontinuous functional whose Gâteaux derivative admits a continuous inverse on X^{*} and Ψ is a continuously Gâteaux differentiable functional whose Gâteaux derivative is compact. Moreover, thanks to (iii) and to Poincaré inequality, one has

$$
\lim _{\|u\| \rightarrow+\infty} \Phi(u)+\lambda \Psi(u)=+\infty
$$

for all $\lambda \in[0,+\infty[$. We claim that there exist $r>0$ and $u \in X$ such that

$$
\sup _{\left.\left.u \in \Phi^{-1}(]-\infty, r\right]\right)}(-\Psi(u))<r \frac{(-\Psi(u))}{\Phi(u)} .
$$

To this end, taking into account that

$$
\max _{t \in[a, b]}|u(t)| \leq \frac{1}{2}\|u\| \quad \text { for each } u \in X,
$$

we have, for each $r>0$,

$$
\left.\left.\Phi^{-1}(]-\infty, r\right]\right) \subseteq\left\{u \in X:|u(t)| \leq \sqrt{\frac{r}{2}} \text { for each } t \in[a, b]\right\},
$$

and so

$$
\begin{aligned}
& \sup _{\left.\left.u \in \Phi^{-1}(]-\infty, r\right]\right)}(-\Psi(u)) \\
& \quad=\sup _{\|u\|^{2} \leq 2 r} \int_{a}^{b} g(t, u(t)) d t \leq(b-a) \max _{(t, \xi) \in[a, b] \times\left[-\sqrt{\frac{r}{2}}, \sqrt{\frac{r}{2}}\right]} g(t, \xi) .
\end{aligned}
$$

Now, thanks to Lemma 1 , there exist $r>0$ and $u \in X$ such that

$$
(b-a) \max _{(t, \xi) \in[a, b] \times\left[-\sqrt{\frac{r}{2}}, \sqrt{\frac{r}{2}}\right]} g(t, \xi)<2 r \frac{\int_{a}^{b} g(t, u(t)) d t}{\|u\|^{2}}=r \frac{(-\Psi(u))}{\Phi(u)} .
$$

Finally, owing to Proposition 1, choosing $h(\lambda)=\rho \lambda$, we obtain

$$
\begin{aligned}
& \sup _{\lambda \geq 0} \inf _{x \in X}(\Phi(x)+\lambda \Psi(x)+h(\lambda)) \\
& \quad<\inf _{x \in X} \sup _{\lambda \geq 0}(\Phi(x)+\lambda \Psi(x)+h(\lambda))
\end{aligned}
$$

Now, our conclusion follows from Theorem 1.
Let $A \in C([a, b])$ and $B \in C(R)$ be two non-negative functions. Put

$$
\alpha(t)=\int_{a}^{t} A(\tau) d \tau, \quad \beta(\xi)=\int_{0}^{\xi} B(x) d x
$$

Then Theorem 2 takes the simpler form:
Corollary 1. Assume that there exist four positive constants η, d, c, s with $c<\sqrt{(2 /(b-a))} d$ and $s<2$ such that:
(i) $\max _{t \in[a, b]} A(t)<\frac{1}{2}\left(\frac{c}{d}\right)^{2} \frac{\beta(d)}{\beta(c)}\left[\alpha\left(b-\frac{b-a}{4}\right)-\alpha\left(a+\frac{b-a}{4}\right)\right]$
(ii) $\beta(\xi) \leq \eta\left(1+|\xi|^{s}\right)$ for each $\xi \in R$.

Then there exist an open interval $\Lambda \subseteq] 0,+\infty[$ and a positive real number q such that, for each $\lambda \in \Lambda$, the problem

$$
\left\{\begin{array}{l}
u^{\prime \prime}+\lambda A(t) B(u)=0 \tag{2}\\
u(a)=u(b)=0
\end{array}\right.
$$

admits at least three solutions belonging to $C^{2}([a, b])$, whose norms in $W_{0}^{1,2}([a, b])$ are less than q.

Proof. Put $f(t, u)=A(t) B(u)$ for each $(t, u) \in[a, b] \times \mathbf{R}$, and note that

$$
\max _{(t, \xi) \in[a, b] \times[-c, c]} g(t, \xi)=\max _{t \in[a, b]} A(t) \beta(c) .
$$

Choosing $\mu=\eta \max _{t \in[a, b]} A(t)$, it is easy to verify that all the assumptions of Theorem 2 are satisfied. So the proof is complete.

Remark 1. We explicitly observe that, if the function $A(t)$ is constant, Corollary 1 gives a version of [1, Theorem 2] for a generical interval [a, b].

Now, we are going to give an example of application:
EXAMPLE 1. We consider (2) with $A(t) B(u)=t \sqrt{|u|} a=0, b=20$, namely

$$
\left\{\begin{array}{l}
u^{\prime \prime}+\lambda t \sqrt{|u|}=0 \\
u(0)=u(20)=0
\end{array}\right.
$$

In this case one has $\alpha(t)=t^{2} / 2$ and $\beta(\xi)=\frac{2}{3} \xi^{3 / 2}$. Moreover choosing $s=\frac{3}{2}, \eta=20, c=1, d=4$, a simple computation shows that all assumptions of Corollary 1 are satisfied. So there exist an open interval $\Lambda \subseteq] 0,+\infty[$ and a positive real number q such that, for each $\lambda \in \Lambda$, the previous problem admits at least two non-trivial solutions belonging to $C^{2}([0,20])$, whose norms in $W_{0}^{1,2}([0,20])$ are less than q.

REFERENCES

1. G. Bonanno, Existence of three solutions for a two point boundary value problem, Appl. Math. Lett. 13 (2000), 53-57.
2. G. Cordaro, On a minimax problem of Ricceri, J. Inequal. Appl., in press.
3. B. Ricceri, A new method for the study of non linear eigenvalue problems, C. R. Acad. Sci. Paris Sér. I 328 (1999), 251-256.
4. B. Ricceri, On a three critical points theorem, Arch. Math., in press.
5. B. Ricceri, Existence of three solutions for a class of elliptic eigenvalue problems, Math. Comput. Modelling, in press.
