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Image denoising using principal component analysis
in the wavelet domain
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Abstract

In this work we describe a method for removing Gaussian noise from digital images, based on the combination
of the wavelet packet transform and the principal component analysis. In particular, since the aim of denoising is to
retain the energy of the signal while discarding the energy of the noise, our basic idea is to construct powerful tailored
filters by applying the Karhunen–Loéve transform in the wavelet packet domain, thus obtaining a compaction of the
signal energy into a few principal components, while the noise is spread over all the transformed coefficients. This
allows us to act with a suitable shrinkage function on these new coefficients, removing the noise without blurring the
edges and the important characteristics of the images. The results of a large numerical experimentation encourage
us to keep going in this direction with our studies.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Signals and images are often corrupted by noise in their acquisition or transmission. Let the noise
model be

f̄ = f + �,
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where f̄ is the noisy image, f is the original image and � is i.i.d. Gaussian noise with mean zero and
standard deviation �. The goal of a denoising method is to remove the noise, while retaining the important
signal features as much as possible. Traditionally, in the existing literature there are two kinds of denoising
methods; namely, linear and nonlinear techniques. Linear denoising methods, such as Wiener filtering
[14], are simple and cheap to implement. However, they sometimes tend to blur the proper edge structure
of an image, which determines a good visual quality. In order to preserve the real characteristics of a
signal, a vast literature has recently emerged on signal and image denoising using nonlinear denoising
techniques, such as, e.g., the well-known Wavelet Shrinkage introduced in [11]. This method is based
on filtering the wavelet coefficients in the frequency detail subbands by means of the Soft Thresholding
operator, which takes the coefficients of absolute value larger than the threshold and shrinks them by the
threshold value towards zero.

More precisely, the wavelet expansion of f̄ ∈ L2(R2) is considered, namely

f̄ =
∑

j∈Z2, k∈Z, �∈�

c̄j,k,��j,k with c̄j,k,� =
∫

R2
f̄ (x)�j,k(x) dx,

where the functions � ∈ � are the two-dimensional wavelets, constructed via the tensor product of one-
dimensional wavelet and scaling functions [8,10]. Hence, the Soft Thresholding filter acts on the noisy
wavelet coefficients c̄j,k,� in the following way:

S�(c̄j,k,�) =
{

sign(c̄j,k,�)(|c̄j,k,�| − �), |c̄j,k,�| > �,
0, |c̄j,k,�|��.

The wavelet expansion of the denoised image is therefore given by

f � =
∑

j∈Z2, k∈Z, �∈�

S�(c̄j,k,�)�j,k .

In recent years, many papers have been devoted to the wavelet denoising problem, by proposing many alter-
native choices both for the thresholding rule and the shrinkage parameter � (see, for example, [2,15,13,16]).
In particular, in [16], a first attempt has been proposed to combine linear Wiener filtering and wavelet
thresholding in an unique nonlinear denoising method. The idea discussed in [16] is to estimate the co-
variance matrix of each block of wavelet coefficients and to use its eigenvalues to obtain a more efficient
thresholding rule.

On the other hand, an interesting aspect of wavelet thresholding algorithms is that they can lead to
lossy compression of the starting data. Actually, in the existing literature, many works addressed a strong
connection between lossy compression and denoising, especially with nonlinear algorithms (see [6,7]).
Therefore, a good compression method can provide a suitable model for distinguishing between signal
and noise.

In this paper, we exploit the analogy between denoising and lossy compression problems in order to
introduce a new denoising method, which combines the good properties of the wavelet packet analysis
with those of principal component analysis, realized using the Karhunen–Loéve (KL) transform in the
wavelet domain. In fact, the KL transform is a well-established data-dependent tool for image and signal
compression, but its great computational complexity highly reduces its field of application. Our idea is
to evaluate the covariance matrix of the wavelet packet coefficients and to exploit the magnitude of its
eigenvalues to make a decision about the amount of information contained in each coefficient. In fact, the
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application of the KL transform in the wavelet packet domain leads to completely decorrelated frequency
subbands, where the energy of the signal is clustered in few large coefficients, while the noise pollutes all
the transformed coefficients by a small amount. An eigenvalue-based shrinkage function in the wavelet-
KL domain can therefore exploit the possibilities provided by this new data-dependent filtering operator
and hence leads to a more efficient denoising algorithm which removes the noise without sacrificing the
important signal structures.

The mathematical derivation of this filtering operator is realized using the algebraic framework of
recursive matrices, since it represents a flexible tool which easily handles the basic operation of signal
processing. This allows us to interpret our operator as a data-dependent filter bank, hence exploiting all
the mathematical results concerning this subject.

The paper is organized as follows: in Section 2 we give some algebraic preliminaries and the basic
notions on recursive matrices, and in Section 3 the general theory of orthogonal wavelet packet filter
banks is presented. Sections 4 and 5 are devoted to the algebraic interpretation of the KL transform and
to the description of the proposed orthogonal wavelet packet-KL filter bank. Finally, in Section 6 we
describe the use of the newly constructed filtering operator for image denoising, and we describe our
numerical results.

2. Algebraic preliminaries and notations: basics on recursive matrices

We here briefly introduce some basic concepts on Laurent polynomials and recursive matrices, that
will be useful in the rest of the paper. A Laurent polynomial in a fixed field K is a formal polynomial

� =
q∑

i=p

〈i|�〉t i =
q∑

i=p

ait
i ,

where t is a formal variable. As usual, given two Laurent polynomials �=∑q
i=p ait

i and �=∑s
j=r bj t

j ,
the composition � ◦ � is defined as the following Laurent polynomial:

� ◦ � =
s∑

j=r

bj

⎛
⎝ q∑

i=p

ait
i

⎞
⎠

j

.

Now, given a fixed integer k�2, the k-decimated polynomials relative to � are the k polynomials
Dk

0(�), Dk
1(�), . . . , Dk

k−1(�) defined, for r = 0, 1, . . . , k − 1, as follows:

�k
r = Dk

r (�) =
∑

i

aki+r t
i ,

where the symbol Dk
r represents the decimation operator. Easy computations show that any Laurent

polynomial can be recovered from its k-decimated polynomials in the following way [3]:

� = �k
0 ◦ tk + · · · + t r (�k

r ◦ tk) + · · · + t (k−1)(�k
k−1 ◦ tk). (1)
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We recall that if � = ∑q
i=p ait

i is a Laurent polynomial, the stared polynomial is defined as

�∗ =
q∑

i=p

ait
−i .

Laurent polynomials are often associated with vectors. In the following we will denote with � the vector
whose entries are given by the sequence {ai}qi=p, defining the Laurent polynomial �. Laurent polynomials
are useful to define recursive matrices. Briefly, recursive matrices are bi-infinite matrices such that each
row can be recursively computed from the previous one. This kind of matrix has recently been revealed
to be a powerful tool to represent the basic operations of filter theory. In particular, recursive Toeplitz and
Hurwitz matrices are used in [5] to give an algebraic interpretation of signal processing. More precisely,
given two nonzero Laurent polynomials � and �, the (�, �)-recursive matrix is the unique matrix B such
that its ith row B(i) is obtained as

B(i) = �i � for every integer i.

The matrix B will be denoted by the symbol R(�, �), and the polynomials � and � are called the recurrence
rule and the generating function of B, respectively. For a more complete description of this topic, the reader
is referred to [3]. In practical applications, we frequently deal with recursive matrices whose recurrence
rule is a monomial. More precisely, given a Laurent polynomial � = ∑q

i=p pit
i , we define a Toeplitz

matrix with generating function � the recursive matrix R(t, �)=[pk,i], where pk,i =pi−k . Moreover, we
define a Hurwitz matrix of step h�2 and generating function � the recursive matrix R(th, �) = [pk,i],
where pk,i = pi−hk .

The main property of recursive matrices is the fact that the product of two recursive matrices, under
suitable conditions, can always be performed and it is again a recursive matrix, which can be explicitly
described. In fact, we have [3]:

Theorem 2.1. Let K be a field, and �, �, 	, 
 be nonzero Laurent polynomials. Then

R(�, �) × R(	, 
) = R(� ◦ 	, (� ◦ 	)
).

We now recall some results on Toeplitz and Hurwitz matrices and their transposes, that will be useful
in developing the theory of the next sections.

Proposition 2.1. The products of Toeplitz and Hurwitz matrices are Hurwitz matrices; more precisely:

R(t, �) × R(tk, �) = R(tk, (� ◦ tk)�),

R(tk, �) × R(t, �) = R(tk, ��).

Proposition 2.2. The product of two Hurwitz matrices is again a Hurwitz matrix, with a different step:

R(th, �) × R(tk, �) = R(thk, (� ◦ tk)�).
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Proposition 2.3. Let � = ∑q
i=p ait

i be a Laurent polynomial; the k-upsampling of �, defined as

(↑ k)� = � ◦ tk =
q∑

i=p

ait
ki ,

is equivalent to the following product:

(↑ k)� = R(tk, 1)T�.

Proposition 2.4. Let � = ∑q
i=pait

i be a Laurent polynomial; the k-positions shift of �, defined as

tk� =
q∑

i=p

ait
i+k ,

is equivalent to the following product:

tk� = R(t, t−k)�.

Theorem 2.2. Let � and � be nonzero Laurent polynomials and k be a fixed integer, k�2. Set M=R(tk, �),
N =R(tk, �). Then the product MT ×N is a block Toeplitz matrix, whose generating function is the block
Laurent polynomial

∑
i Ci t

i , where Ci is a (k × k) matrix, namely

Ci =
⎡
⎣ 〈i|�k∗

0 �k
0〉 . . . 〈i|�k∗

0 �k
k−1〉

...
...

〈i|�k∗
k−1 �k

0〉 . . . 〈i|�k∗
k−1 �k

k−1〉

⎤
⎦ .

For more details, the reader is referred to [3,5,1].

3. Orthogonal wavelet packet filter banks

Let us consider an orthonormal multiresolution analysis of L2(R), whose generating scaling function
�(x) and the corresponding wavelet �(x) [10,9] satisfy the well-known two-scale equations

�(x) = H�(2x),

�(x) = W�(2x),

where

�(x) =

⎡
⎢⎢⎢⎣

. . .

�(x + 1)

�(x)

�(x − 1)

. . .

⎤
⎥⎥⎥⎦ , �(x) =

⎡
⎢⎢⎢⎣

. . .

�(x + 1)

�(x)

�(x − 1)

. . .

⎤
⎥⎥⎥⎦

and the matrices H and W are Hurwitz matrices, namely,

H = R(t2, �0) = (hi,j )i,j∈Z = ((�0)j−2i)i,j∈Z and W = R(t2, �1) = (wi,j )i,j∈Z = ((�1)j−2i)i,j∈Z.
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Their generating functions �0 = ∑
i(�0)i t

i and �1 = ∑
i(�1)i t

i are the low-pass and high-pass filters,
respectively, characterizing the multiresolution analysis.

An orthonormal wavelet-packet basis [8] is obtained by setting

�0(x) = �(x),

�1(x) = �(x) (2)

and by defining the other functions of the basis by means of the two-scale equations as follows:{
�2l(x) = H�l(2x),

�2l+1(x) = W�l(2x).
l = 0, 1, . . . (3)

The family wavelet packet �l(x), l ∈ Z+, so obtained, preserves the orthogonality property of the scaling
function �0(x) = �(x), and represent an orthonormal basis of L2(R). It follows that each finite energy
signal � can be decomposed into its wavelet-packet components.

By using the recursive matrix machinery it is easy to show how L wavelet-packet decomposition/
reconstruction steps can be seen as a 2L-channel analysis/synthesis filter bank.

In fact, in [3] it is shown that a filtering operation followed by decimation is equivalent to multiply
the input signal � by a Hurwitz matrix. Therefore, L wavelet packet decomposition steps of � can be
represented as follows:

�0 = F0� = R(t2L

, h0)�

�1 = F1� = R(t2L

, h1)�
...

...
...

�2L−1 = F2L−1� = R(t2L

, h2L−1)�, (4)

where the matrix Fi , 0�i�2L − 1, that acts on the signal �, yielding its ith subband ‘contribution’ �i , is
given by the following product of Hurwitz matrices:

Fi = R(t2, �i1
) × R(t2, �i2

) × · · · × R(t2, �iL
),

ij ∈ {0, 1} being the coefficients of the dyadic expansion of index i, namely

i =
L∑

j=1

ij 2j−1.

Using Proposition 2.2 we thus have that Fi is a Hurwitz matrix of step 2L and generating function

hi =
L∏

j=1

�ij
◦ t2L−j

. (5)

Fig. 1 gives a schematic representation of the 2L-channel analysis filter bank so obtained.
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Fig. 1. Scheme of the filter bank representing L wavelet-packet decomposition steps.

4. An algebraic approach to principal component analysis

Given a random population X of vectors:

X = [x0, x1, . . . , xK−1] =

⎡
⎢⎢⎣

x0,0 x0,1 . . . x0,K−1
x1,0 x1,1 . . . x1,K−1
...

...
...

...

xM−1,0 xM−1,1 . . . xM−1,K−1

⎤
⎥⎥⎦ .

The mean vector of the above random population is defined as

mx = 1

K

⎡
⎢⎢⎢⎢⎢⎣

∑K−1
j=0 x0j∑K−1
j=0 x1j

...∑K−1
j=0 xM−1j

⎤
⎥⎥⎥⎥⎥⎦

and its covariance matrix is obtained as

C = 1

K − 1
X̄X̄T, (6)

where

X̄ = [x0 − mx, x1 − mx, . . . , xK−1 − mx].
Let vi and �i , i = 0, . . . , M − 1 be the eigenvectors and the corresponding eigenvalues of C, arranged in
descending order so that �i ��i+1 for i = 0, . . . , M − 2. The matrix V, whose columns are the vectors
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vi , is the well-known matrix used in the Karhunen–Loéve transform that satisfies the relation V TCV =
D = diag(�0, �1, . . . , �M−1) and that maps the population of vectors xk into a transformed population x̃k

as follows:

X̃ = [
x̃0, x̃1, . . . , x̃K−1

] = V TX̄. (7)

These new vectors turn out to be completely decorrelated, since their covariance matrix is diagonal, and
their energy is compacted according to the principal component rule [12]. In fact, by denoting with X̃i ,
i = 0, . . . , M − 1, the row vector corresponding to the ith row of the transformed matrix X̃, we have that
the mean energy of this row equals the ith eigenvalue of C, namely:

1

K
X̃iX̃

T
i = 1

K

K−1∑
j=0

X̃2
ij = �i .

This implies that the KL-transform compacts most of the energy of the entire population in the first rows
of X̃.

If we now come back to the recursive matrix context, it is easy to see how, in this new algebraic
framework, the KL transform can be interpreted as a filtering operation that uses the eigenvectors vi as
filters, yielding the vectors X̃i , i = 0, . . . , M − 1. More precisely, indicating with X̄i , i = 0, . . . , M − 1,
the row vector corresponding to the ith row of the mean-adjusted population matrix X̄, the latter can be
seen as a single vector x̂ of length M × K , defined by the following Laurent polynomial:

x̂ =
M−1∑
i=0

t i(X̄i ◦ tM),

i.e., by Propositions 2.3 and 2.4,

x̂ =
M−1∑
i=0

R(t, t−i)R(tM, 1)TX̄T
i . (8)

It is now easy to verify that the KL-transformed matrix X̃ can be algebraically described in terms of
recursive matrices as:

X̃T
0 = R(tM, v0)x̂

X̃T
1 = R(tM, v1)x̂

...
...

X̃T
M−1 = R(tM, vM−1)x̂. (9)

Fig. 2 gives a schematic representation of the filter bank associated with this interpretation of the KL
transform.

5. An orthogonal wavelet packet-KL filter bank

In this section we show how the wavelet-packet transform and the principal component analysis can be
suitably combined to obtain a new orthogonal filter bank with more effective filters. This result is stated
in the following theorem, where, for the sake of simplicity, we consider the case of mean zero:
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Fig. 2. Scheme of the filter bank representing the KL transform in an algebraic setting.

Theorem 5.1. Given an orthonormal wavelet-packet basis and a signal � ∈ U0
n , L wavelet packet decom-

position steps followed by the KL transform on the matrix S whose rows are the frequency components
�j , can be seen as an orthogonal filter bank described by

�̃0 = R(t2L

, �0)�

...
...

�̃2L−1 = R(t2L

, �2L−1)�,

yielding the rows of the transformed matrix S̃. In particular, the generating functions of the Hurwitz
matrices R(t2L

, �i) are given by

µi =
2L−1∑
j=0

vij hj ,

where the vectors vi =[vi0, . . . , vi2L−1], i = 0, . . . , 2L − 1 are the eigenvectors of the covariance matrix
(6) of S, and the filters hj , j = 0, . . . , 2L − 1 are defined in (5).

Proof. The proof is based on the algebraic description to concatenate of relations (9), (8) and (4). In fact,
L wavelet packet decomposition steps on the input �, as described by (4), produce the 2L vectors

�i = R(t2L

, hi)�, i = 0, . . . , 2L − 1.
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These vectors must be suitably combined, according to (8), to yield the input for the KL transform,
namely,

�̂ =
2L−1∑
i=0

R(t, t−i) × R(t2L

, 1)T�i =
⎡
⎣2L−1∑

i=0

R(t, t−i) × R(t2L

, 1)T × R(t2L

, hi)

⎤
⎦ �.

From Theorem 2.2, the product R(t2L
, 1)T × R(t2L

, hi) is a block Toeplitz matrix whose generating
function is �i = ∑

j Ci
j t

j , with

Ci
j =

⎡
⎢⎢⎢⎣

〈j |h2L

i,0〉 · · · 〈j |h2L

i,2L−1
〉

0 . . . 0
...

...

0 . . . 0

⎤
⎥⎥⎥⎦ ,

where 〈j |h2L

i,l 〉 denotes the jth coefficient of the lth 2L-decimated polynomial of the Laurent polynomial
associated with the filter hi . Since the above product is pre-multiplied by a shift matrix, each entry of the
block coefficient Ci

j turns out to be shifted down by i positions. We denote by C̃i
j the shifted blocks and

by �̃i = ∑
j C̃i

j t
j the new block generating function. Therefore, we obtain

�̂ =
⎡
⎣2L−1∑

i=0

R(t, �̃i)

⎤
⎦ � = R(t, P )�,

where the generating function of the block Toeplitz matrix R(t, P ) is the block Laurent polynomial

P =
2L−1∑
i=0

�̃i =
2L−1∑
i=0

∑
j

C̃i
j t

j =
∑
j

⎛
⎝2L−1∑

i=0

C̃i
j

⎞
⎠ tj =

∑
j

Pj t
j ,

with

Pj =

⎡
⎢⎢⎢⎢⎢⎣

〈j |h2L

0,0〉 . . . 〈j |h2L

0,2L−1
〉

〈j |h2L

1,0〉 . . . 〈j |h2L

1,2L−1
〉

...
...

〈j |h2L

2L−1,0
〉 . . . 〈j |h2L

2L−1,2L−1
〉

⎤
⎥⎥⎥⎥⎥⎦ .

By now applying relation (9), which algebraically describes the KL transform, we have that

�̃i = R(t2L

, vi)�̂ = R(t2L

, vi) × R(t, P )�.

We remark that R(t2L
, vi) is a scalar Hurwitz matrix of step 2L, which can also be seen as a block Toeplitz

matrix with blocks 1 × 2L. We can thus apply the product rule for block Toeplitz matrices (see [1]) and
we get

�̃i = R(t, Mi)�,
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where Mi is a 1 × 2L block Laurent polynomial, namely, Mi = ∑
j vT

i Pj t
j = ∑

jMij t
j . In particular,

Mij =
⎡
⎣2L−1∑

k=0

vik〈j |h2L

k,0〉
2L−1∑
k=0

vik〈j |h2L

k,1〉 . . .

2L−1∑
k=0

vik〈j |h2L

k,2L−1〉
⎤
⎦ .

It is easy to see that the block generating function Mi can be seen as the following 1 × 2L matrix whose
entries are scalar Laurent polynomials:

Mi =
⎡
⎣∑

j

2L−1∑
k=0

vik〈j |h2L

k,0〉tj . . .
∑
j

2L−1∑
k=0

vik〈j |h2L

k,2L−1〉tj
⎤
⎦

=
⎡
⎣2L−1∑

k=0

vikh
2L

k,0 . . .

2L−1∑
k=0

vikh
2L

k,2L−1

⎤
⎦ = [m0, . . . , m2L−1].

By using Theorem IV.1, given in [4], we obtain that R(t, Mi) can be seen as a scalar Hurwitz matrix
R(t2L

, �i) of step 2L with the following generating function:

�i = m0 ◦ t2L + t (m1 ◦ t2L

) + · · · + t2L−1(m2L−1 ◦ t2L

).

By using the expression of the coefficients mi , i =0, . . . , 2L −1, and remembering relation (1), we obtain

�i =
2L−1∑
k=0

vikhk ,

which proves our assertion. �

The previous result shows us how to simply combine two powerful tools of signal processing in order to
obtain a new data-dependent operator, which optimally splits a signal into its most significant frequency
components. Fig. 3 shows an example of how the wavelet packet decomposition is improved by the use
of the new filters �i .

6. Application of the wavelet packet-KL filter bank for image denoising

The results of the previous sections show how to construct a data-dependent orthogonal analysis filter
bank which well separates the signal frequency contents. In this section, we make a practical application
of the above procedure to show how the use of this method allows us to realize an efficient image
denoising algorithm. Since we are working with images, we consider an extension of the wavelet-packet
decomposition to the 2D case; this is obtained by using the well-known tensor product technique. After
L steps of wavelet packet decomposition, the starting N × N image turns out to be decomposed into
M = 2L × 2L subband images, �i , each having dimension K = N/2L × N/2L. These M subimages
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Fig. 3. (a) Original signal; (b) two wavelet-packet decomposition steps; (c) two wavelet-packet decomposition steps followed
by KL.
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Fig. 4. Subbands of the two-dimensional orthogonal wavelet-packet transform for two decomposition levels and input vectors
of the KL transform.

constitute the rows of the following population matrix

S =
⎡
⎣ �0,0 �0,1 . . . �0,K−1

...
...

...
...

�M−1,0 �M−1,1 . . . �M−1,K−1

⎤
⎦ ,

which is now the input of the KL transform, as visually shown in Fig. 4.
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The transformed population

S̃ = V TS

represents the image in a more suitable form for dealing with the problem of image denoising. In fact, if the
original image is corrupted by Gaussian noise with mean 0 and variance �2, this further KL decomposition
step yields a better separation between signal and noise energy, allowing us to apply a new thresholding
rule, that takes advantage of this separation, instead of the classical soft shrinkage function, to the wavelet
packet-KL coefficients. More precisely, we propose an algorithm consisting of two phases:

1. Hard Thresholding phase: we discard all the frequency subbands whose mean energy is less than the
variance �2 of the Gaussian noise,

2. Filtering phase: we apply to the retained coefficients the exponential shrinkage function

F�(x) =
{

a
−h �2

x2 if x �= 0 with a�1 and h�0
0 otherwise

proposed in [2]. In this context, the threshold � can be chosen to be “band-dependent”; namely, for
each subband �j , � depends on the relation existing between the mean energy of the subband (i.e., �j )
and the variance of the noise, as follows:

�j =
√

�j�2

�j − �2 .

In summary, the thresholded coefficients are

ˆ̂�k,j =
{

0 if
1

K
�̃j �̃

T
j ��2,

F�j
(�̃k,j )�̃k,j otherwise.

In order to test the performance of the proposed denoising algorithm, we have considered four classical
gray-scale images with dimension 512 × 512, shown in Fig. 5. These test images have been corrupted
with i.i.d. Gaussian noise and with different values of the standard deviation (� = 5, 10, 15, 25, 35). For
the denoising algorithm we have considered L = 3 wavelet-packet decomposition steps, obtained with
interval adapted Daubechies orthonormal wavelet bases with 4 vanishing moments [9], followed by the
KL. In Table 1 we give an objective estimation of the quality of the results, evaluated by means of the root
mean square error (RMSE) and the peak signal-to-noise ratio (PSNR = 20 log10(255/RMSE)). In Table
2, for a comparison purpose, we show both the results obtained in [16] and those obtained by means of the
classical Soft thresholding method in the wavelet packet domain with the Generalized Cross Validation
choice of the threshold [13,15] on the Barbara image, corrupted by Gaussian noise with �=25. It is easily
seen that our method outperforms the two above techniques, highlighting its particular effectiveness on
‘difficult’ images that present sharp edges and many little details. For comparison, in Fig. 6, we also give
the results obtained by means of the classical Soft thresholding with GCV threshold. It is evident that,
for highly perturbed images, our method presents a sensible improvement on the denoised image quality,
especially in the edge preserving capability.
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Fig. 5. Test images: (a) 512 × 512 Lena; (b) 512 × 512 Chessboard; (c) 512 × 512 Barbara; (d) 512 × 512 MRI.

Table 1
Numerical results on the test images with increasing values of the standard deviation of the noise

Images Lena Chessboard Barbara MRI images

RMSE PSNR RMSE PSNR RMSE PSNR RMSE PSNR

� = 5 3.67 36.83 2.18 41.32 3.93 36.27 2.69 39.52
� = 10 5.41 33.46 3.59 37.01 6.56 31.79 4.29 35.46
� = 15 6.70 31.61 4.68 34.71 8.77 29.26 5.56 33.22
� = 25 8.78 29.26 6.68 31.62 12.22 26.38 7.71 30.85
� = 35 10.44 27.75 8.42 29.62 15.18 24.50 9.50 28.57

A possible choice for the parameters h and a is h = 4, a = 2; generally, the values of these parameters are chosen depending
on the amount of noise.
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Table 2
Comparison between our proposed denoising method, the Soft thresholding with GCV threshold and the method proposed in
[16]

Barbara Proposed method GCV method Strela method

RMSE PSNR RMSE PSNR RMSE PSNR

� = 25 12.22 26.38 12.45 26.22 14.02 25.19

Fig. 6. (a) Lena noisy image with �=25; (b) denoised image with the proposed algorithm PSNR=29.23; (c) denoised image with
the wavelet packet Soft thresholding with GCV threshold PSNR = 28.44; (d) MRI noisy image with � = 35; (e) denoised image
with the proposed algorithm PSNR = 28.57; (f) denoised image with wavelet packet Soft thresholding with GCV threshold;
PSNR=27.32; (g) Barbara noisy image with �=25; (h) denoised image with the proposed algorithm PSNR=26.38; (i) denoised
image with wavelet packet Soft thresholding with GCV threshold; PSNR = 26.22.
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