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1. Introduction

Let k be an algebraically closed field and Q a finite acyclic quiver with n vertices. Let H = kQ be
the associated path algebra. The cluster category CH was introduced and investigated in [7], motivated
by the cluster algebras of Fomin–Zelevinsky [10]. By definition we have CH = Db(H)/τ−1[1], where τ
denotes the AR-translation. An important class of objects are the cluster-tilting objects T , which are
the objects T with Ext1

CH
(T , T ) = 0, and T maximal with this property. They are shown to be exactly

the objects induced by tilting objects over some path algebra kQ ′ derived equivalent to kQ .
A crucial property of the cluster-tilting objects T = T1 ⊕· · ·⊕ T j where the Ti are indecomposable,

and Ti is not isomorphic to Ti′ for i �= i′ , is that j = n and for each i = 1, . . . ,n there is a unique
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indecomposable object T ∗
i not isomorphic to Ti in CH , such that (T /Ti)⊕ T ∗

i is a cluster-tilting object.
This is a more regular behavior than what we have for tilting modules (of projective dimension at
most one) over a finite dimensional algebra A. In general there is at most one replacement for each
indecomposable summand.

The maps in CH are defined as follows, as usual for orbit categories. Choose the fundamental
domain D of CH inside Db(H), whose indecomposable objects are the indecomposable H-modules,
together with P1[1], . . . , Pn[1], where the P j are the indecomposable projective H-modules. Let X

and Y be in D. Then HomCH (X, Y ) = ⊕
∈Z HomDb(H)(X, (τ−1[1])i

(Y )).

In [2] the authors considered the triangular matrix algebra Λ = ( H 0
D H H

)
, where D = Homk(−,k).

They chose a fundamental domain for CH inside the category mod Λ of finite dimensional Λ-modules,
by using the H-modules together with indτ−1

Λ (D H). They established a bijection between cluster-
tilting objects in CH and a certain class of tilting modules in modΛ, which was shown in [3] to be
all tilting modules (of projective dimension at most 1).

The present paper is inspired by [2]. Instead of using the algebra Λ which normally has global
dimension 3, we use a smaller triangular matrix algebra Γ which has global dimension at most 2,
and is a tilted algebra. We obtain a similar connection between cluster-tilting objects in CH and tilting
modules in modΓ and give an alternative proof for the special property of complements mentioned
above. The projective–injective modules play a crucial role here, as in [2].

If T is a tilting H-module, a description of the quiver of EndCH (T ), on the basis of the quiver
of EndH (T ), is given in [1] (see [9] for finite type). For each relation in a minimal set of relations
in add T , an arrow is added in the opposite direction. We obtain a similar description for T in the
fundamental domain, but not necessarily being an H-module. Again the projective–injective mod-
ules play an essential role. Now we consider relations where we allow factoring also through the
projective–injective modules, in addition to add T . Then we obtain the same result about adding ar-
rows in the opposite direction as before. When T is a tilting H-module, then no maps in add T factor
through projective–injective modules.

We now describe the content section by section. In Section 2 we give some preliminary results on
describing the indecomposable Λ-modules of projective dimension at most 1. In particular, we show
that all predecessors of a module of projective dimension 1 have projective dimension at most 1. In
Section 3 we introduce the algebra Γ which replaces Λ in our work, starting with motivation on
how to choose Γ smallest possible, without losing essential information. We show that the indecom-
posable Γ -modules of projective dimension at most 1 are exactly the modules in the left part LΓ

of indecomposable modules where the predecessors have projective dimension at most 1. Further,
this class consists of the indecomposable modules in our fundamental domain, together with the in-
decomposable projective–injective Γ -modules. In Section 4 we show how to describe the quiver of
EndCH (T ) for any T in the fundamental domain.

2. Duplicated algebras

In this section we recall work from [2] and improve the statement of the main theorem in [2].
Throughout the paper we assume that H is a basic hereditary algebra over an algebraically closed
field k and Λ is the duplicated algebra of H , that is, Λ = ( H 0

D H H

)
. We denote by mod Λ the cate-

gory of finitely generated left Λ-modules, and we use the usual description of the left Λ-modules as
triples (X, Y , f ), with X , Y in mod H and f ∈ HomH (D H ⊗H X, Y ) (see [11], or [5, III, 2]). Then the
full subcategory of modΛ generated by the modules of the form (0, Y ,0) is closed under predecessors
and canonically isomorphic to mod H . We will use this isomorphism to identify mod H with the cor-
responding full subcategory of mod Λ and give some alternative proofs. The opposite algebra Λop

is isomorphic to the triangular matrix algebra
( Hop 0

D H Hop

)
. Under these identifications, the duality

D : mod Λ → mod Λop is given by D(X, Y , f ) = (DY , D X, D f ), where D f ∈ HomHop(DY , D(D H ⊗H
X)) ∼= HomHop (DY ,HomH (D H, D X)) ∼= HomHop (DY ⊗H D H, D X) ∼= HomHop (D H ⊗Hop DY , D X).

We recall (see [11] or [5, III, Proposition 2.5]) that the indecomposable projective Λ-modules
are given by triples isomorphic to those of the form (0, P ,0) or (P , D H ⊗H P ,1D H⊗H P ), with P
indecomposable projective in mod H . The former are the projective H-modules, and the latter are
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projective–injective Λ-modules. The remaining indecomposable injective Λ-modules are of the form
(I,0,0) with I injective in mod H .

We denote by pdΛ M and idΛ M the projective dimension and the injective dimension of the
Λ-module M , respectively. When M is in mod H we have pdH M = pdΛ M , and for that reason we
will write just pd M . We denote by rad X and soc X the radical and the socle of the Λ-module X ,
respectively.

Let indΛ denote the full subcategory of mod Λ where the objects are a complete set of represen-
tatives of the isomorphism classes of indecomposable Λ-modules.

We denote by Db(H) the bounded derived category of H , by CH the cluster category of H , and
by τ the Auslander–Reiten translation in modΛ or Db(H). Note that the injective H-modules are not
Λ-injective, so that τ−1

Λ (Ii) is indecomposable for each indecomposable H-module Ii = I0(Si), where
Si is a simple H-module. Then {τ−1

Λ (Ii)} in modΛ will play a similar role as {Pi[1]} in the derived
category Db(H). In particular, add(ind H ∪ {τ−1

Λ D H}) ⊆ mod Λ can be considered as a fundamental
domain DΛ inside mod Λ of the cluster category CH (see [2]).

We recall that given X, Y ∈ indΛ, a path from Y to X is a sequence of nonzero morphisms Y
f0−−→

X1
f1−−→ X2 → ·· · → Xt

ft−−→ X , with the Xi ∈ indΛ. When such a path exists, Y is a predecessor of X ,
and X is a successor of Y . The left part LΛ of modΛ, defined in [13], is the full subcategory of
indΛ consisting of the modules whose predecessors have projective dimension at most 1. That is,
LΛ = {X ∈ indΛ | pd Y � 1 for any predecessor Y of X}. The main result of [2] is the following.

Theorem 2.1.

(a) The fundamental domain DΛ of CH lies in addLΛ , and the only other indecomposable Λ-modules in LΛ

are projective–injective.
(b) There is induced a bijection between cluster-tilting objects in CH and tilting modules in mod Λ whose

indecomposable non-projective–injective summands lie in LΛ .

Note that in [3] it is shown that the bijection in (b) is with all tilting modules. Using the following
results for Λ-modules with projective dimension at most one, we give a different approach to the
improved version.

Proposition 2.2. Let X ∈ indΛ. Then pdΛ X � 1 if and only if τΛ X ∈ mod H. In other words, the indecom-
posable Λ-modules X such that pdΛ X � 1 are those in the fundamental domain of CH , together with the
indecomposable projective–injective Λ-modules.

Proof. We have that pdΛ X > 1 if and only if HomΛ(DΛ,τ X) �= 0, and this last condition implies
τ X /∈ mod H , since the injective Λ-modules do not belong to mod H . Conversely, if τ X /∈ mod H , there
is a projective–injective Λ-module E such that HomΛ(E, τ X) �= 0, and this implies pdΛ X > 1. �
Lemma 2.3. Let X, Y ∈ indΛ be such that HomΛ(X, Y ) �= 0 and pdΛ Y = 1. Then pdΛ X � 1.

Proof. Let f : X → Y be a nonzero morphism. We want to show that pdΛ X � 1. Suppose that this
is not the case. Then f is not an isomorphism, and so it factors through the minimal right almost
split morphism E → Y . Since f �= 0, we can choose an indecomposable direct summand E0 of E ,
and morphisms g0 : E0 → Y and h0 : X → E0 with g0h0 �= 0 and g0 irreducible. Then E0 /∈ mod H ,
because its predecessor X is not in mod H . Now suppose E0 is projective. Then it is also injective,
since all indecomposable projective Λ-modules which are not in mod H are injective. Hence τ Y ∼=
rad E0, because g0 : E0 → Y is irreducible. Now h0 : X → E0 factors through rad E0 ↪→ E0, so rad E0 /∈
mod H , and we conclude that τ Y ∼= rad E0 /∈ mod H . By Proposition 2.2, this contradicts our hypothesis
pd Y = 1. Therefore E0 is not projective, and then there is an irreducible morphism τ E0 → τ Y . On the
other hand, pd Y = 1 implies that τ Y is in ind H . Hence τ E0 is in ind H , and thus pd E0 = 1. Therefore
our original morphism f : X → Y can be replaced by h0 : X → E0, and so we can iterate the process
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to obtain an arbitrarily long path of irreducible morphisms Em
gm−−→ Em−1

gm−1−−−→ · · · g2−−→ E1
g1−−→ E0

with g1 g2 · · · gm �= 0. But this is a contradiction, because each Ei ∈ τ−1 ind H \ mod H , i.e. it is a direct
summand of τ−1 D H , and this implies that all the gi are in rad End(τ−1 D H), which is nilpotent. �

Proposition 2.2 can be used to give the following relationship between LΛ and the modules of
projective dimension at most 1.

Proposition 2.4. If X ∈ indΛ and pdΛ X = 1, then X ∈LΛ .

Proof. Suppose that the result does not hold, and let Y
f0−−→ X1

f1−−→ X2 → ·· · → Xt
ft−−→ X be a path

in indΛ, with pd X = 1 and pd Y > 1. Then Y /∈ mod H , because H is hereditary. Since mod H is closed
under predecessors in modΛ, then the Xi and X do not belong to mod H either. Now, let us choose
the path so that it has minimal length among those with pd X = 1 and pd Y > 1. By Lemma 2.3, t � 1.
By minimality, Xi is projective (and hence injective) for 1 � i � t . The map ft−1 factors through rad Xt ,
which is not injective, and thus not projective. Then, by minimality we must have pd(rad Xt) > 1 and
t = 1. Since f1 factors through X1

soc X1
– which is not projective – we must have pd(

X1
soc X1

) = 1, by

Lemma 2.3. By Proposition 2.2, τ ( X1
soc X1

) ∈ mod H . But then 1 < pd(rad X1) = pd(τ ( X1
soc X1

)) � 1. This
contradiction ends the proof of the proposition. �

It follows that the only indecomposable Λ-modules X with pdΛ X � 1 and X not in LΛ , are
projective–injective. Note that we do not necessarily have that LΛ consists exactly of the indecompos-
able Λ-modules of projective dimension at most 1. (See example in [2].) We now have the following
improvement of Theorem 2.1.

Theorem 2.5. Let Λ = ( H 0
D H H

)
as before.

(a) If X is indecomposable and not projective–injective in mod Λ, then X is in LΛ if and only if pdΛ X � 1.
(b) The fundamental domain DΛ of CH inside modΛ lies in addLΛ , and the remaining modules in LΛ are

projective–injective.
(c) There is a one-to-one correspondence between the multiplicity-free cluster-tilting objects in CH and the

basic tilting Λ-modules.

It was proven in [2] that the global dimension gldimΛ of Λ is at most 3. We end this section
with a more precise description of gldimΛ. We will give a proof of this result using the description
of Λ-modules as triples, which allows us to calculate the global dimension of Λ more precisely. This
shows that Λ is normally of global dimension 3.

Proposition 2.6. gldimΛ � 3. Moreover:

(a) gldimΛ = 1 if and only if H is semisimple.
(b) gldimΛ = 2 if and only if τ 2

H = 0 and H is not semisimple.

Proof. We calculate gldimΛ = max{pd S: S simple Λ-module} = max{pd(X,0,0),pd(0, X,0): X ∈
ind H}.

For M in mod H , P1(M) → P0(M) → M → 0 denotes a minimal projective presentation.
Let X ∈ ind H . Then pd(0, X,0) � 1, for mod H is closed under predecessors in modΛ. Suppose X

is projective in mod H . Then the following is a minimal projective resolution:

0 → (
0, P1(D H ⊗ X),0

) → (
0, P0(D H ⊗ X),0

) → (X, D H ⊗ X,1) → (X,0,0) → 0.

Now, if gldimΛ � 1, then P1(D H ⊗ X) = 0 for every projective X . Since D H ⊗ − is the Nakayama
equivalence between projective and injective H-modules, this is to say that every injective H-module
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is also projective, i.e. H is semisimple. This establishes (a), since Λ is clearly hereditary when H is
semisimple.

Assume now that X is not projective. Then we have an exact sequence 0 → τ X → D(P1(X)∗) →
D(P0(X)∗), where (−)∗ = HomH (−, H). Using that for projective P there is a functorial isomorphism
D H ⊗ P � D P∗ , we obtain the following minimal projective resolution:

0 → (
0, P1(τ X),0

) → (
0, P0(τ X),0

) → (
P1(X), D H ⊗ P1(X),1

)
→ (

P0(X), D H ⊗ P0(X),1
) → (X,0,0) → 0.

Thus pd(X,0,0) � 2 if and only if P1(τ X) = 0, if and only if τ 2 X = 0. The proposition now follows
right away. �
Corollary 2.7. For each algebraically closed field k, there are only a finite number of basic indecomposable
hereditary k-algebras H such that gldim Λ � 2.

Proof. By Proposition 2.6, gldimΛ � 1 if and only if τ 2
Λ = 0, i.e. if each Λ-module is either projective

or injective. Hence H is of finite representation type and so its ordinary quiver Q has no multiple
arrows. In addition, (i → j → k) is not a subquiver of Q , because the simple module S j would be
neither projective nor injective in such case. Finally, (i ↙ j↘k↙l) is not a subquiver of Q , because
otherwise the module j

k
would be neither projective nor injective. Therefore Q must be one of the

following four quivers: A1, A2, A3 with nonlinear order (↘↙ and ↙↘). �
Denote by

Ĥ =

⎛⎜⎜⎜⎜⎜⎝
. . .

H
D H H

D H H
. . .

⎞⎟⎟⎟⎟⎟⎠
the infinite dimensional repetitive algebra associated with the finite dimensional hereditary algebra H .
As explained in [2], we have the following relationship:

mod H ⊂ D ⊂ LΛ ⊂ mod Λ ⊂ mod Ĥ � mod Ĥ �−→ Db(H) � CH .

The following more precise relationship will be useful.

Proposition 2.8. Let α : (X, Y , f ) → (X ′, Y ′, f ′) be a nonzero map in mod Λ. Then α factors through a
projective–injective Λ-module if and only if it factors through a projective module in mod Ĥ .

Proof. The projective–injective Λ-modules are additively generated by (H, D H, id). For Ĥ , the projec-
tive modules, which coincide with the injective ones, are additively generated by modules of the form

⎛⎜⎜⎜⎝
. . .

0 H 0
D H 0

. . .

⎞⎟⎟⎟⎠ .

If α factors through a projective–injective Λ-module, it is clear that it does the same when considered
as a map in mod Ĥ .
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Conversely, assume that α factors through a projective Ĥ-module. The possible projective modules
must come from one or more of the following pictures:

(1)

(
X
Y

)
γ−→

(
H

D H

)
δ−→

(
X ′
Y ′

)
, (2)

( 0
X
Y

)
γ−→

( H
D H
0

)
δ−→

( 0
X ′
Y ′

)
,

(3)

( X
Y
0

)
γ−→

( 0
H

D H

)
δ−→

( X ′
Y ′
0

)
.

In case (2) we must have a commutative diagram

D H 0

D H
δ

X ′,

which is impossible since δ �= 0. In case (3) the diagram

D H ⊗ Y
D H⊗γ

D H ⊗ H

�

0 D H

commutes. Then D H ⊗ γ must be zero. But since H is hereditary and γ : Y → H is nonzero, there is
an indecomposable summand Y1 of Y which is projective, with γ |Y1 : Y1 → H nonzero. Since D H ⊗−
gives an equivalence from the category of projective H-modules to the category of injective ones, then
D H ⊗ γ |Y1 and hence D H ⊗ γ is nonzero. This gives a contradiction.

Hence we must have case (1), which implies that α factors through a projective–injective
Λ-module. �

We end this section with some discussion about fundamental domains (see [2]). For the cluster
category CH we have a natural functor Π : Db H → CH . Let D be the additive subcategory of Db(H)

whose indecomposable objects are the indecomposable H-modules together with the shift [1] of the
indecomposable projective H-modules [7]. Then D is a convex subcategory of Db(H), and Π in-
duces a bijection between the indecomposable objects of D and those of CH . In order to find other
“fundamental domains”, one is looking for similar properties. In particular, it is nice to use appro-
priate module categories rather than derived categories. A step in this direction was made in [2], by
considering the duplicated algebra Λ = ( H 0

D H H

)
of a hereditary algebra H . Here there is a natural

functor from modΛ to CH , as discussed above, and mod H is naturally embedded into mod Λ. In
addition, the indecomposable objects τ−1

Λ (I), for I indecomposable injective H-module, are added
to mod H to form a fundamental domain DΛ inside mod Λ, giving a desired bijection with the
indecomposables in CH , from our functor modΛ → CH . Here the fundamental domain is not only
convex, but is also closed under predecessors in modΛ which are not projective–injective. We shall
see that we have a similar situation when replacing the duplicated algebra Λ by a smaller alge-
bra Γ .

3. The algebra Γ

In this section we will replace the duplicated algebra Λ by a smaller algebra Γ such that also
mod Γ contains the fundamental domain D of CH .
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We start with a lemma, which will be needed later.

Lemma 3.1. Let A be a basic Artin algebra, and let S, S ′ be simple projective A-modules. Then:

(a) If I is an indecomposable injective module not isomorphic to I0(S), then HomA(I, I0(S)) = 0.
(b) EndA I0(S) ∼= EndA S.
(c) EndA I0(S ⊕ S ′) ∼= EndA I0(S) × EndA I0(S ′).
(d) S ∼= EndA S as an EndA S-vector space.

Proof. (a) and (b) follow using the Nakayama equivalence ∗D from the category of injective
Λ-modules to the category of projective Λ-modules, and (c) is a direct consequence of (a).

(d) Let A A = S ⊕ Q . Then EndA S S ∼= HomA(A, S) = EndA S ⊕ HomA(Q , S) = EndA S , since
HomA(Q , S) = 0, because A is basic. �

Let P be a projective Λ-module. We recall that HomΛ(P ,−) : mod P → mod(EndΛ P )op is an
equivalence, where mod P is the full subcategory of modΓ consisting of the modules with a pre-
sentation in add P . Now we can take Γ = (EndΛ P )op , with the projective P such that mod P contains
the fundamental domain add(ind H ∪ {τ−1

Λ D H}) of CH . We want to choose P as small as possible.
Since modules in mod P have their projective cover in add P , it is clear that add P must contain
H ⊕ P0(τ

−1
Λ D H). Next we show that this is enough.

We denote by 
 the sum of the non-isomorphic simple projective H-modules. That is, 
 is a
basic Λ-module such that add 
 = add soc H = add soc Λ. Let Λ P = H ⊕ IΛ0 (
). We will prove in the

next proposition that P0(τ
−1
Λ D H) = IΛ0 (H), and that the basic projective module P has the required

properties. For M in modΛ, we denote by Gen M the full subcategory of modΛ whose objects are
the modules generated by M , that is, the epimorphic images of modules in add M .

Proposition 3.2. Let Λ P = H ⊕ IΛ0 (
). Then:

(1) add P is closed under predecessors in P(Λ) = {projective Λ-modules}.
(2) mod P = Gen P = {(X, Y , f ) ∈ mod Λ: X ∈ add 
}.
(3) Let P be an indecomposable projective H-module. Then τ−1

Λ D HomH (P , H) = (soc P , I H
1 (P ),π), where

0 → P → I H
0 (P )

π−→ I H
1 (P ) → 0 is a minimal injective resolution in mod H.

(4) IΛ0 (H) = P0(τ
−1
Λ D H).

(5) mod H ∪ {τ−1
Λ D H} ⊆ mod P .

(6) If Q is a projective Λ-module such that mod H ∪ {τ−1
Λ D H} ⊆ mod Q , then P is a direct summand of Q .

Proof. (1) Let Q → P be a nonzero morphism between indecomposable projective Λ-modules, with
P ∈ add P . We have to prove that Q ∈ add P . We may assume that P , Q are projective–injective.
Hence P is in add IΛ0 (
), and the result follows from Lemma 3.1(a).

(2) The first equality follows from (1). Now, P = (
, H ⊕ I H
0 (
),

( 0
1

)
), where we identify D H ⊗H 


with I H
0 (
). Thus (X, Y , f ) ∈ Gen P if and only if X ∈ Gen
 (= add 
).

(3) and (4) We proceed to calculate τ−1
Λ D HomH (P , H) = TrΛ HomH (P , H). Let P∗ = HomH (P , H).

Since D HomH (P , H) ∼= (0, D P∗,0) in mod Λ, then HomH (P , H) ∼= (P∗,0,0), and the following is
a minimal projective presentation in modΛop:(

0, P0
(

P∗ ⊗H D H
)
,0

) → (
P∗, P∗ ⊗H D H,1

) → (
P∗,0,0

) → 0.

Applying HomΛ(−,Λ), we obtain

0 → (0, P ,0) → ((
P0

(
P∗ ⊗H D H

))∗
, D H ⊗H

(
P0

(
P∗ ⊗H D H

))∗
,1

) → TrΛ HomH (P , H) → 0.
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Since P∗ ⊗H D H ∼= D P , then (P0(P∗ ⊗H D H))∗ ∼= (P0(D P ))∗ = (D I0(P ))∗ = (D I0(soc P ))∗ =
P0(soc P ) = soc P . (We used that H is hereditary in the last step.) Hence P0(TrΛ HomH (P , H)) =
(soc P , I0(soc P ),1) = IΛ0 (soc P ). The last equality follows from the description of injective Λ-modules
as triples, and the fact that soc P is a projective H-module. Therefore the above sequence is

0 → (0, P ,0) → IΛ0 (soc P ) → τ−1
Λ D HomH (P , H) → 0,

so τ−1 D HomH (P , H) = (soc P , I1(P ),π). This establishes (3). Adding all the indecomposable projec-
tive H-modules yields the projective resolution

0 → H → IΛ0 (soc H) → τ−1
Λ D H → 0 (∗)

and proves (4).
(5) We have mod H ⊆ mod P , since H is a direct summand of P and mod H is closed under pre-

decessors in mod Λ. Now the projective resolution (∗) shows that τ−1
Λ D H ∈ mod P .

(6) follows from (2), (4) and (5). �
Now we define Γ = EndΛ(P )op . The next proposition describes Γ as a triangular matrix ring.

Proposition 3.3. Let Γ = EndΛ(P )op. Then:

(a) Γ is isomorphic to the triangular matrix ring
( K 0

J H

)
, where K = EndH 
op is a basic semisimple alge-

bra, and J = I H
0 (
). In particular, the Γ -modules can be described in terms of triples (K X, H Y , f ), with

f : J ⊗K X → Y .

(b) For X ∈ add 
 there is an isomorphism J ⊗K HomH (
, X)
ψ� D H ⊗H X of H-modules which is functorial

in X.
(c) (H X, H Y , f ) �→ (K HomH (
, X), H Y , f ψ) is an equivalence from mod P to mod Γ .

Proof. (a) Since Λ P = H ⊕ IΛ0 (
), then

Γ = EndΛ(P )op �
(

EndΛ H HomΛ(IΛ0 (
), H)

HomΛ(H, IΛ0 (
)) EndΛ IΛ0 (
)

)op

�
(

Hop 0
HomΛ(H, IΛ0 (
)) EndΛ IΛ0 (
)

)op

�
(

EndΛ IΛ0 (
)op 0

HomΛ(H, IΛ0 (
)) H

)
.

Now, by Lemma 3.1, EndΛ IΛ0 (
) � EndΛ 
 � EndH 
 � K op is a basic semisimple algebra.
Finally, since IΛ0 (
) = (
, I H

0 (
),1), we have HomΛ(H, IΛ0 (
)) � HomH (H, I H
0 (
)) � I H

0 (
) = J
as H–K -bimodule.

(b) Since the functors J ⊗K HomH (
,−) and D H ⊗H − are additive, we can assume that X is
simple projective. By Lemma 3.1(c), we have K � ∏

S∈ind
 EndH (S)op , so that J ⊗K HomH (
, X) �
I H
0 (X) ⊗EndH (X)op EndH (X) � EndH (X) ⊗EndH (X) I H

0 (X) � I H
0 (X). But D H ⊗H X is also isomorphic to

I H
0 (X) when X is simple projective.

(c) Let (H X, H Y , f ) ∈ mod P . By Proposition 3.2(2), we have that X is a semisimple projective
H-module. Now the statement follows easily from (b). �

Note that the equivalence given in Proposition 3.3(c) is just HomΛ(P ,−) : mod P → mod Γ ,
stated in terms of triples. We will identify mod Γ with the full subcategory mod P of modΛ. Un-
der this identification, the fundamental domain DΛ of CH in modΛ is in mod Γ , ΛΓ = Λ P , and
IΓ0 (H) = IΛ0 (H) = PΛ

0 (τ−1
Λ D H) = PΓ

0 (τ−1
Γ D H). From Proposition 3.2(2), it follows easily that a min-

imal Λ-projective resolution of a Γ -module M is in modΓ . Hence also pdΓ M = pdΛ M for M
in modΓ .
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We illustrate the situation with the following example.

Example 3.4. For the hereditary algebra H given below we indicate the corresponding algebras Λ

and Γ .

3

21H :
3

21

3′

2′ 1′

Λ:
3

21

3′

Γ :

By using Γ instead of Λ we get improved versions of Propositions 2.4 and 2.6.

Proposition 3.5.

(a) Γ is a tilted algebra.
(b) The set of indecomposable Γ -modules with projective dimension � 1 is closed under predecessors, and

consists of the indecomposable objects in the fundamental domain DΓ of CH plus the indecomposable
projective–injective Γ -modules. In particular, LΓ consists of the indecomposable Γ -modules of projective
dimension at most one.

Proof. (a) Let U = D H ⊕ IΓ0 (
). By [4, Lemma 2.1], it suffices to show that U is a convex tilting
Γ -module.

We have pdΓ U = pdH (D H) � 1 because IΓ0 (
) is projective and H is hereditary. Since mod H
is closed under predecessors, then Ext1

Γ (U , U ) = Ext1
Γ (D H, D H) = Ext1

H (D H, D H) = 0. Finally,
|ind add U | = rk K0(Γ ), where K0(Γ ) denotes the Grothendieck group of Γ . Hence U is tilting.

Now let us see that U is convex:
Let T0

f1−−→ T1
f2−−→ · · · f s−−→ Ts be a path in indΓ with T0, Ts ∈ add U , where we assume that

all f i are non-isomorphisms. If Ts ∈ mod H , then all Ti are H-modules, and therefore they are all
H-injective. On the other hand, if Ts /∈ mod H , then Ts ∈ add I0(
). Then Ts is projective and f s fac-
tors through rad Ts . Since rad Ts ∈ mod H and is an injective H-module, we are in the previous case,
so we are done.

(b) Let f : X → Y be a nonzero map with X, Y ∈ indΓ and pd Y � 1. If pd Y = 1 then, by Propo-
sition 2.4, pd X � 1. Thus we can assume Y is projective and f is not surjective. Hence f factors
through rad Y . Since rad Y ∈ mod H , the proposition follows. �
Corollary 3.6. Let F = {X ∈ mod Γ : pd X � 1}, T = add(indΓ \ F) = add{X ∈ indΓ : pd X = 2}. Then
(T ,F) is a split torsion pair in mod Γ .

Now we will prove that the global dimension of EndΓ (T ) remains less than or equal to 2 when T
is a tilting Γ -module. We will use results from [12], which we collect in the following lemma.

Lemma 3.7. Let A be an Artin algebra with finite global dimension and A T be a tilting module such that
pd T = 1 and id T = s. Let B = (EndA T )op. Then:

(a) [12, Proposition 2.1] We have s � gldim B � s + 1.
(b) [12, Theorem 3.2] If s � 1, then s = gldim B if and only if Exts

A(τ T , T ) = 0.

Proposition 3.8. Let T be a tilting Γ -module. Then gldim EndΓ (T ) � 2.

Proof. By Proposition 3.5(a), Γ is a tilted algebra. Thus gldim Γ � 2. Then we may assume that
pd T = 1. Let s = id T . If s � 1, the proposition follows from Lemma 3.7(a), so assume s = 2. By
Lemma 3.7(b), it is enough to prove that Ext2

Γ (τ T , T ) = 0. We have Ext2
Γ (τ T , T ) � Ext1

Γ (Ωτ T , T ) �
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D HomΓ (T , τΩτ T ). Therefore it suffices to show that τΩτ T = 0. By Proposition 3.5(b), pdτ T � 1.
Hence Ωτ T is projective and τΩτ T = 0. �

We have seen that the algebra Γ is a tilted algebra and mod Γ contains the fundamental do-
main DΓ of the cluster category CH as a full subcategory, closed under predecessors in modΓ . An
analogous statement to Theorem 2.5(c) also holds for tilting Γ -modules. We will use a preliminary
lemma.

Lemma 3.9. There is a bijective correspondence between the set of (isoclasses of ) basic tilting Γ -modules and
the set of (isoclasses of ) basic tilting Λ-modules, given by Γ T → ΛT ⊕ IΛ0 (D H)/IΛ0 (
).

Proof. Let T be a basic tilting Γ -module and let Q = IΛ0 (D H)/IΛ0 (
). Then ΛΛ � P ⊕ Q . Hence
the basic projective–injective Λ-module Q is not in modΓ , and T ⊕ Q is a basic partial tilting
Λ-module. But |ind(T ⊕ Q )| = |ind T | + |ind Q | = |indΓ | + |indΛ| − |ind P | = |indΛ|. Thus T ⊕ Q is
a basic tilting Λ-module. Conversely, let T ′ be a basic tilting Λ-module. Then the basic projective–
injective Λ-module Q is a direct summand of T ′ . Now, since pd T ′ � 1, by Proposition 2.2, we have
that τΛT ′ is in mod H . Thus T ′ is in add(τ−1

Λ mod H ∪{ΛΛ}) ⊆ add(mod Γ ∪{Q }), and therefore T ′/Q
is a basic partial tilting Γ -module, which must be a tilting Γ -module, by the counting argument used
before. �
Theorem 3.10. There is a bijective correspondence θ between the multiplicity-free cluster-tilting objects in the
cluster category CH of H and the basic tilting Γ -modules. For a cluster-tilting object represented by T in the
fundamental domain DΓ of CH , the corresponding tilting Γ -module is θ(T ) = T ⊕ IΓ0 (
).

Proof. Let T ∈DΓ be a multiplicity-free cluster-tilting object in CH . By [2, Theorem 10], T ⊕ IΛ0 (D H)

is a basic tilting Λ-module. Thus, by Lemma 3.9, θ(T ) = T ⊕ IΓ0 (
) = T ⊕ IΛ0 (
) is a basic tilting
Γ -module. Conversely, if T ′ is a basic tilting Γ -module then, by Lemma 3.9, T ′ ⊕ IΛ0 (D H)/IΛ0 (
)

is a basic tilting Λ-module. Hence, by Theorem 2.5(c), T ′/IΓ0 (
) = T ′/IΛ0 (
) is in the fundamental
domain DΛ , and represents a multiplicity-free cluster-tilting object in CH . �

As a consequence of this result we obtain the following result of [7].

Corollary 3.11. Let H be a hereditary algebra. Then each almost complete cluster-tilting object in CH has
exactly two complements.

Proof. Let T ′ be an almost complete cluster-tilting object in CH . Then T ′ ⊕ IΓ0 (
) is an almost com-
plete tilting module in modΓ . Since add 
 = add(soc Γ ), then IΓ0 (
) is a faithful Γ -module, since
Γ ⊆ IΓ0 (
). We know from a result of Happel and Unger that then T ′ ⊕ IΓ0 (
) has exactly two com-
plements, thus so does T ′ in CH (see [14]). �

The following result, building upon Proposition 2.8, will be useful in the next section. Here D˜Λ

and D˜Γ denote the categories DΛ and DΓ modulo the projective–injective Λ-modules, respectively
the projective–injective Γ -modules.

Proposition 3.12.

(a) A map α : (X, Y , f ) → (X ′, Y ′, f ′) in DΛ ⊂ mod Λ factors through a projective–injective Λ-module if
and only if it factors through IΛ0 (soc H).

(b) We have an embedding of D˜Γ into Db(H) via the composition D˜Γ = D˜Λ ⊂ mod
˜

Λ ⊂ mod
˜

Ĥ =
mod Ĥ �−→ Db(H).

Proof. The indecomposable objects in DΛ are the indecomposable H-modules together with the
τ−1
Λ (I) for I an indecomposable injective H-module. Similarly, the indecomposable objects in DΓ
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are the indecomposable H-modules together with the τ−1
Γ (I) for I an indecomposable injective

H-module. If f : X → Z is an irreducible map between indecomposable modules in modΛ, with
Z projective–injective and X in mod H , it is clear that Z = ( S

I0(S)

)
, where S is simple projective,

since all proper predecessors of Z should be H-modules. Since then only summands of IΛ0 (soc H) are
amongst the projective–injective Λ-modules which are summands of the middle term of an almost
split sequence 0 → I → E → τ−1

Λ I → 0 in modΛ, we see that τ−1
Γ I = τ−1

Λ I , so that DΓ =DΛ .
It follows from the above that the only indecomposable projective–injective Λ-modules which

have a nonzero map to τ−1
Λ I are the summands of IΛ0 (soc H). Hence no nonzero map g : D → D ′

in DΛ can factor through any other projective–injective Λ-modules. (Note, however, that there might
be additional projective–injective Λ-modules belonging to LΛ .) Now we conclude that D˜Γ = D˜Λ ,
and the rest follows. �
4. A description of the cluster-tilted algebras

In this section our aim is to describe the quivers of cluster-tilted algebras, that is, of the endomor-
phism algebras of cluster-tilting objects in CH [8], using the fundamental domain DΓ for CH inside
mod Γ . Note that a cluster-tilted algebra is determined by its quiver [6]. Let T̂ be a cluster-tilting ob-
ject in CH . We assume that T̂ is represented by T in DΓ ⊂ mod Γ . For X , Y in DΓ , regarded as objects
in Db(H), we have that HomCH (X, Y ) = HomDb(H)(X, Y ) ⊕ HomDb(H)(F −1 X, Y ), where F = τ−1[1]
in Db(H) (see [6]). By Proposition 3.12 we have HomDb(H)(X, Y ) = Hom

˜

Γ
(X, Y ). We want to investi-

gate how to describe HomDb(H)(F −1 X, Y ) in terms of modΓ , for X, Y ∈ add T .

We first assume that T is an H-module. In this case HomDb(H)(F −1T , T ) � Ext2
B(D B, B), where B =

EndDb(H)(T ) [1, proof of Theorem 2.3]. The top of this B–B-bimodule is generated as k-vector space
by a minimal set of relations of B [1, 2.2 and 2.4]. These relations correspond to relations between
projective B-modules. Since projective B-modules are of the form HomDb(H)(T , T ′) = HomH (T , T ′),
such relations correspond to relations between indecomposable modules in add T .

By this we mean the following. Let T = T1 ⊕ · · · ⊕ Tn with the Ti indecomposable and pairwise
non-isomorphic. We will consider maps f : Ti → T j which are irreducible in add T . Since EndH (T ) is
a tilted algebra, add T is triangular. Thus no map from Ti to Ti is irreducible in add T and, for i �= j,
maps from Ti to T j are irreducible in add T precisely when they do not factor through a module
in add(T /(Ti ⊕ T j)). Let A(i, j) be the space HomH (Ti, T j) modulo the maps which factor through
add(T /(Ti ⊕ T j)). For each pair (i, j) with i �= j, choose a set of irreducible maps in add T representing
a basis of A(i, j), and let B be the union of all these bases. To each path of maps in B we associate
the corresponding composition map in mod H . A linear combination of such paths is a relation for
add T if the corresponding map is zero in mod H . A set R of such relations is a minimal set of relations
for add T if R is a minimal set of generators of the ideal of relations for add T . This means that for
any relation g : Tr → Ts we have g = ∑

aiγiρiγ
′
i , with ai in k, ρi in R , and γi , γ ′

i paths in add T ; and
no proper subset of R has this property.

We will prove that a similar statement holds also when the Γ -module T is not an H-module. In
this case we have to consider a minimal set of relations between indecomposable summands of T in
add(T ⊕ IΓ0 (
)).

Consider the following example. Let H = kQ , where Q is the quiver 1 → 2 . Then Γ is the path
algebra of the quiver 2′ → 1 → 2 . Let D be the fundamental domain of CH .

12

2[1]1
2

1
2
[1]

D:
12

2′

2′
1

1
2

2′
1
2

AR-quiver of Γ :

and let T1 = 2, T2 = 1
2
[1], and T = T1 ⊕ T2. Then T defines a cluster-tilting object in CH and is not

an H-module. The Γ -module corresponding to T under the identification of D with mod Γ is 2 ⊕ 2′ .

˜
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Moreover, HomCH (T2, T1) = HomDb H (τ T2[−1], T1) = HomDb H (τ 1
2
, T1) �= 0, but there are no relations

in add T from T1 to T2. However 2 → 2′
1
2

→ 2′ is a zero relation from T1 to T2 in add(T ⊕ I), where

I = 2′
1
2

is the injective envelope of the simple 2 in modΓ .

To study the general case we will define an appropriate hereditary algebra H̃ , and use that the
above mentioned result of [1] holds for tilting H̃-modules, to prove our desired result.

We start with defining a hereditary algebra H̃ such that there is an exact embedding G : mod Γ →
mod(H̃) with the property that tilting Γ -modules map to tilting H̃-modules.

We recall from Proposition 3.5 that U = D H ⊕ IΓ0 (
) is a complete slice in modΓ . We consider an-

other complete slice, Σ = τ−1
Γ D H ⊕ IΓ0 (
). Then H̃ = (EndΓ (Σ))op is a hereditary algebra of type Σ .

Let (T ,F) be the split torsion pair in modΓ of Corollary 3.6. Then indF coincides with the predeces-
sors of Σ . Also DΣ is a tilting H̃-module, Γ = EndH̃ (DΣ)op and the functors L = HomH̃ (DΣ,−) and
Ext1

H̃
(DΣ,−) : mod H̃ → mod Γ induce equivalences TDΣ → F and FDΣ → T , respectively, where

(TDΣ,FDΣ) is the torsion pair associated to the tilting H̃-module DΣ .
Let G = DΣ ⊗Γ − : mod Γ → mod H̃ . Then L and G are adjoint functors, and the restrictions

L|TDΣ
: TDΣ → F and G|F : F → TDΣ are inverse equivalences of categories. Moreover, G(Σ) = D H̃ ,

because D H̃ � GLD H̃ = G HomH̃ (DΣ, D H̃) � G HomH̃op (H̃,Σ) � G(Σ).

Example 4.1. We illustrate the situation for the hereditary algebra H indicated below.

4

32

1

H :
4

32

1

4′

Γ :

The Auslander–Reiten quiver of Γ is:

2
4

4

3
4 2 1 4′

3

4′

1
2
4

2 3
4

4′
1
2 3
4

1
2 3
4

3

1
2

4′
1 3
2

4′
1
2

4′
1 3

4′
1

..

.............
..
..
...

.............
..
..
...

Here, Γ Σ is the sum of the five modules in frames, T is given by the two modules inside dotted
circles, F is indicated by the curve, and H̃ is the algebra with quiver:

4′

32

1

4
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The Auslander–Reiten quiver of H̃ is

2
4′
4

4′
4

4′ 2 3
4′
4

1
2
4′

3

1

1
2
4′
4

2 3
4′ 4′

4

3
4′
4

2
4′

1
2 3
4′
4

1
2 3
4′ 4′

4

3
4′

4

1
2 2 3
4′ 4′

4

2 3
4′

2

1
2 3
4′

1
2

.............
..
..
...

.............
..
..
...

..

In this case H DΣ = 4 ⊕
1
2
4′
4

⊕
3
4′
4

⊕
2 3
4′
4

⊕
1
2 3

4′
4

, FDΣ consists of the two modules inside dotted

circles, and TDΣ consists of the 15 modules inside the regions indicated with curves.

We know from the Brenner–Butler theorem that F = Ker TorΓ1 (DΣ,−), so that G = DΣ ⊗Γ − :
mod Γ → mod H̃ restricted to F is exact. In particular, G|mod H is exact. Thus G induces an embedding

Ĝ : Db(mod H) → Db(mod H̃)

such that Ĝ(M[i]) = (Ĝ(M))[i].

Proposition 4.2. Let T be a tilting Γ -module. Then G(T ) is a tilting H̃-module.

Proof. Since Γ and H̃ have the same number of non-isomorphic simple modules, we only need to
prove that Ext1

H̃
(G(T ), G(T )) = 0. Since T ∈ F because pd T � 1, it follows that G(T ) ∈ TDΣ . Then

Ext1
Γ (LG(T ), LG(T )) = Ext1

H̃
(G(T ), G(T )). Thus Ext1

H̃
(G(T ), G(T )) � Ext1

Γ (T , T ) = 0, since LG(T ) � T
because T ∈F . �

We observe that in general the modules τ (G(X)) and G(τ X) are not isomorphic, for X ∈ mod Γ .
We will prove next that they are isomorphic when X = τ−1

Γ I , for any injective H-module I . We start
with three lemmas.

Lemma 4.3. Let f : X → Y be a morphism in mod Γ , with Y ∈ F , such that G( f ) : G X → GY is (minimal)
right almost split in mod H̃ . Then f is (minimal) right almost split in mod Γ .

Proof. The key is that F is closed under predecessors and G|F : F → TDΣ is an equivalence. From
this we obtain right away that X ∈ F , and f is not a split epimorphism since G( f ) is not a split
epimorphism. Now, let Z be an indecomposable Γ -module and h : Z → Y a morphism which is not
a split epimorphism. Again, Z ∈ F and G(h) is not an isomorphism. Hence there is a morphism
g : G(Z) → G(X) such that G(h) = G( f )g . Using that G|F : F → TDΣ is an equivalence once more,
we deduce there is a g′ : Z → X such that G(g′) = g and h = f g′ . Thus f is right almost split. The
minimality is deduced in the same way. �

Let again Σ denote the complete slice in modΓ which consists of ind(τ−1
Γ D H ⊕ IΓ0 (soc H)).

Lemma 4.4. The indecomposable projective–injective modules (i.e. those in ind(IΓ0 (soc H))) are sources of Σ .
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Proof. Let P ∈ ind(I0(soc H)) and let f : X → P be a nonzero non-isomorphism in indΓ . Then Im f ⊆
rad P , which is an injective H-module. Thus X ∈ mod H , since mod H is closed under predecessors
in modΓ . But then X /∈ Σ . �
Lemma 4.5. Let I be an indecomposable injective H̃-module, and let M → I be a minimal right almost split
morphism in mod H̃ . Then M ∈ TDΣ .

Proof. Let M ′ be an indecomposable direct summand of M , and assume M ′ /∈ TDΣ . Then M ′ is not
injective and there is an irreducible morphism I → τ−1M ′ . Since H̃ is hereditary, then τ−1M ′ is
injective. Thus τ−1M ′ ∈ TDΣ , and since M ′ /∈ TDΣ we conclude that τ−1M ′ is Ext-projective in TDΣ .
Therefore, there exists N ∈ indΓ such that N is Ext-projective in F and GN = τ−1M ′ . Since F is
closed under predecessors, then N is projective in modΓ . But we also have N ∈ add Σ , because G
maps Σ to D H̃ , as we observed before Example 4.1. Since τ−1 D H contains no nonzero projective
direct summands, then N ∈ ind(I0(soc H)), i.e. N is projective–injective. By the preceding lemma, N is
a source in Σ . Thus τ−1M ′ = GN is a source in ind(D H̃), which contradicts the already established
existence of an irreducible morphism I → τ−1M ′ . �
Proposition 4.6. Let I be an indecomposable injective H-module. Then Gτ−1

Γ I = τ−1
H̃

G I .

Proof. Since τ−1
Γ I ∈ Σ , then Gτ−1

Γ I is H̃-injective. Let f : M → Gτ−1
Γ I be a minimal right almost

split morphism. By Lemma 4.5, we have M ∈ TDΣ . Then there is a morphism g : N → τ−1
Γ I in modΓ

with N ∈ F , such that f = Gg . By Lemma 4.3, g is minimal right almost split in modΓ . Then the
almost split sequence 0 → I → N

g−→ τ−1
Γ I → 0 is contained in F , and applying G we obtain an exact

sequence (∗) 0 → G I → M
f−→ Gτ−1

Γ I → 0.
Since f is minimal right almost split, then the sequence (∗) is almost split. Hence G I = τH̃ Gτ−1

Γ I ,

and the result follows by applying τ−1
H̃

. �
Proposition 4.7. Let T̂ be a cluster-tilting object in CH represented by T in the fundamental domain DΓ

of CH , which we consider embedded in mod Γ as before. Let T1 , T2 be indecomposable summands of T . Then
top HomDb(H)(F −1T1, T2) is a vector space with basis given by a minimal set of minimal relations from T2 to

T1 in add(T ⊕ IΓ0 (
)).

Proof. As we observed above, the result holds for summands T1, T2 of T which are H-modules. So we
only need to consider the case when T1 /∈ mod H , that is, T1 = τ−1

Γ I , where I is an indecomposable
injective module in mod H . For if T1 ∈ mod H and T2 /∈ mod H , we have Hom(τ T1[−1], T2) = 0 since
T2 = Pi[1] for Pi indecomposable projective [2].

Then τ−1
Γ I = τ−1

Db(H)
I = P [1] in Db(H), where top P = soc I , via our identification. Then, for X ∈

mod H we have

HomDb(H)

(
F −1(τ−1 I

)
, X

) = HomDb(H)

(
I[−1], X

) � HomDb(H̃)

(
Ĝ
(

I[−1]), Ĝ X
)

= HomDb(H̃)

(
(G I)[−1], G X

) = HomDb(H̃)

(
F −1τ−1(G I), G X

)
.

From Proposition 4.6 we know that Gτ−1 I = τ−1G I . Thus

HomDb(H)

(
F −1(τ−1 I

)
, X

) � HomDb(H̃)

((
F −1G

(
τ−1 I

))
, G X

)
.

Using Proposition 4.6 again we can prove that this isomorphism induces an isomorphism between
the corresponding tops.
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Recall that T ⊕ IΓ0 (
) is a tilting Γ -module (Theorem 3.10) and therefore G(T ⊕ IΓ0 (
)) is a tilting
H̃-module (Proposition 4.2).

Now consider X = T2. Since both G(τ−1
Γ I) = G(T1) and G(T2) are modules over the hered-

itary algebra H̃ , we can apply [2] to the tilting module G(T ⊕ IΓ0 (
)) and conclude that
top HomDb(H̃)

(F −1G(T1), GT2) has a basis in correspondence with a minimal set of minimal rela-

tions from G(T2) to G(T1) in add G(T ⊕ IΓ0 (
)). Since G|add(T ⊕IΓ0 (
)) is an equivalence of categories,

we obtain minimal relations as stated. �
Let T and T̂ be as in the previous proposition. We are now in the position to describe the ordinary

quiver Q C of the cluster-tilted algebra C = EndCH (T̂ ), in terms of mod Γ .

Theorem 4.8. Let C = EndCH (T̂ ), where T̂ is a basic cluster-tilting object in CH represented by T = ⊕
Ti

in mod Γ , with Ti indecomposable. Let B = End˜Γ
(T ), and let i denote the vertex of Q C associated to

Hom
˜

Γ
(T , Ti). Then, for vertices i, j of Q C the number of arrows from i to j is equal to the number of

arrows from i to j in Q B plus the cardinality of a minimal set of minimal relations from Ti to T j in
add(T ⊕ IΓ0 (
)) ⊂ mod Γ .

Proof. The number of arrows from i to j equals dim top HomCH (T j, Ti) = dim top HomDb(H)(T j, Ti) ⊕
dim top HomDb(H)(F −1T j, Ti). Now the result follows from the previous proposition and the fact
that dim top HomDb(H)(T j, Ti) is equal to the number of arrows from i to j in Q B , because
HomDb(H)(T j, Ti) � Hom

˜

Γ
(T j, Ti), by Proposition 3.12(b). �

Remark 4.9. In the above statement, for each pair of vertices i and j, only one of the summands
describing the number of arrows from i to j is nonzero.

Example 4.10. For the hereditary algebra H given below we indicate the corresponding algebra Γ .

3

21H :
3

21

3′

Γ :

Then the AR-quiver of Γ is

3

1
3

2
3

3′
1 2
3

1 2
3

2

1

3′
1 2

3′
1

3′
2

3′

..

and the fundamental domain of CH corresponds to the region enclosed by the curve. Let T = 2
3

⊕
2 ⊕ 3′

2
. Then T ⊕ 3′

1 2
3

is a tilting Γ -module, so T defines a cluster-tilting object T in CH .

We notice that nonzero maps 2
3

→ 3′
1 2 → 3′

2
, or 2

3
→ 2 → 3′

2
have always nonzero composition.
3
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However, there are nonzero maps 2
3

→ 3′
1 2

3
⊕ 2 → 3′

2
with zero composition, and this relation from 2

3

to 3′
2

is unique, up to scalar multiples. Therefore dim HomCH ( 3′
2
,

2
3
) = 1.

Since dim HomΓ (
2
3
,2) = 1, and dim HomΓ (2, 3′

2
) = 1, the ordinary quiver of the cluster-tilted al-

gebra EndCH (T ) is

3.

21
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