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Abstract

New heuristics and strategies have enabled major advancements in SAT solving in recent years.
However, experimentation has shown that there is no winning solution that works in all cases.
A degradation of orders of magnitude can be observed if the wrong heuristic is chosen. The
problem is that it is impossible to know, in advance, which heuristics are best for a given problem.
Consequently, many ideas - those that turn out to be useful for a small subset of the cases, but
significantly increase run times on most others - are discarded.
We propose the notion of Adaptive Solving as a possible solution to this problem. In our framework,
the SAT solver monitors the effectiveness of the search on-the-fly using a Performance Metric. The
metric gives a score according to its assessment of the search progress. Based on this score, one
or more heuristics are turned on or off. The goal is to use a specific heuristic or strategy when
it is advantageous, and turn it off when it is not, before it does too much damage. We suggest
several possible metrics, and compare their effectiveness. Our adaptive solver achieves significant
speedups on a large set of examples. We also show that applying different heuristics on different
parts of the search space can improve run times even beyond what can be achieved by the best
heuristic on its own.

Keywords: SAT solving

1 Introduction

Recent years have seen great amounts of research on SAT solving [6,12,15].
The problem is interesting theoretically, as well as important for practical
reasons. The high capabilities of advanced solvers has encouraged their use in

1 Email: {ohads,yorav}@il.ibm.com
2 This research is supported in part by EU contract FP6-IST-507219 (PROSYD)

Electronic Notes in Theoretical Computer Science 144 (2006) 35–50

1571-0661  © 2005 Elsevier B.V. 

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2005.07.018
Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82240561?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/


various fields such as verification, artificial intelligence, CAD, and more. This,
in turn, created great incentive to invest in research of SAT solving techniques.

Our perspective on SAT solving comes from its use in Bounded Model

Checking [3] (BMC), where the verification problem of a hardware design is
translated into a Boolean formula such that a satisfying assignment, if one ex-
ists, represents a counterexample. Most tools that implement this framework
are based on DPLL-style SAT solvers. Although the ideas presented in this
work are general, and may easily be applied to other types of SAT solvers, our
results are tuned for BMC instances. We believe the method is most efficient
when applied to instances that have internal structure.

Modern SAT solvers rely heavily on various heuristics and strategies such
as decision heuristics, restart strategies, learning strategies, clause deletion
strategies, etc [2,6,11,12,15,16]. However, many ideas that seem appealing in
theory turn out not to perform well in practice, decreasing the run time on
a few examples while increasing it on most others. As a result, these ideas
are discarded. Even successful heuristics are not useful in all cases, but it is
impossible to know beforehand which heuristics are most suitable for a given
example.

In this paper we propose the concept of Adaptive Solving. Adaptive Solving
optimizes the way different strategies are used, by applying them when they
are useful and turning them off when they are not. The adaptive solver tracks
the performance of the search and evaluates it using a Performance Metric.
Whenever the search seems not to be progressing well enough, it changes run-
time parameters by enabling or disabling heuristics. In this way the adaptive
solver is capable of making use of heuristics that do not work well in all cases.

We propose several metrics to be used in adaptive solving. These metrics
are easy to compute and incur a negligible overhead. They track different
aspects of the search and give a score accordingly. We compare their effec-
tiveness and present some insights to their use.

Our BMC tool is part of RuleBasePE [9], a parallel model checker de-
veloped at the IBM Haifa Research Laboratory. This tool uses our in-house
solver called Mage. We have implemented an adaptive version of Mage and
used it on a large number of examples. Results show that adaptive solving
reduces the overall run time by more than a third, and achieves speedups of
up to 12x on single examples.

Naturally, there are examples for which run time is increased as a result
of enabling or disabling a heuristic. The overall reduction is achieved by
significantly reducing run times on many examples, while increasing the run
time of others to a lesser degree. Results show that in general speedups are
better for larger examples, making the method highly scalable. Furthermore,
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we show that even when a heuristic performs badly for a certain example,
applying it on parts of the search may give better results than not using it
at all. This means that adaptive application of heuristics gives performance
improvements over the best heuristic on its own.

Our implementation is an initial experiment in Adaptive Solving. It con-
trols only one heuristic, and uses only one metric at a time, and yet it achieved
impressive speedups.

Related Work

Previous attempts have been made at assessing the progress of the solver’s
search for a satisfiable assignment. Aloul, Sierawski, and Sakallah view the
conjunction of conflict clauses as representing the space that is yet to be cov-
ered, with each added conflict clause reducing this space until it is empty.
Their Satometer [1] tool keeps a BDD representation of this conjunction. Of
course, the exact space cannot be calculated, so the tool uses an approxima-
tion. The drawback of this approach is its huge overhead - both in space and
in computation, which prevents it from being used as a performance metric.

Another related work is presented by Herbstritt and Becker in [7], where
decision heuristics are chosen dynamically, according to a set of probability
functions. The probabilities are changed according to several criteria. Our
work is more general because we address any run-time parameter of the solver,
not just the decision heuristic.

Nudelman et al [14] use machine learning to identify features of CNFs.
Using a large training set they learn the correlation between the hardness of
the problem and the result of different kinds of analyses of the CNF. Their
SATzilla tool [13] profiles the run times of several different solvers using the
same training set and features. When a new problem is to be solved, the tool
computes the different features and then chooses the solver predicted to have
the least run time. However, the features they use to choose the solver are not
applicable for us, because they are more relevant for random instances than
for structured ones, and because they need to be computed beforehand.

In Lagoudakis and Littman’s work [10], decision heuristics are chosen ac-
cording to a value function, which is calculated on the current state of the
search. The value function is created beforehand, using a training set. The
training set must be a significantly large set of examples that are similar in
some sense to the CNFs we want to solve. Using a training set is problematic
both because it incurs a high overhead, and because it is difficult to generate
an adequate training set, especially in the setting of SAT-based verification.

The remainder of the paper is structured as follows. Section 2 provides an
overview of DPLL-style SAT solver algorithms. Section 3 presents a variety of
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performance metrics. Section 4 defines Adaptive Solving. Finally, Section 5
shows the experimental results, and Section 6 presents our conclusions.

2 Background on SAT Solving

Given a Boolean formula F over a set of variables V , the task of the SAT
solver is to find an assignment to all variables in V such that F is satisfied.
The formula is given in Conjunctive Normal Form (CNF). A CNF formula
is a conjunction of clauses, where each clause is a disjunction of literals. A
literal is an instance of a variable, x, or its negation, x.

A literal may have one of three values: true, false, or undef (undefined). A
clause in which one literal is undefined and all the rest are false is called a unit

clause. Such a clause forces an assignment of true to the undefined literal, as
this is the only way to satisfy the formula.

2.1 SAT Solving Algorithms

Our implementation is geared towards DPLL-style solvers [5] with conflict
clause learning and non-chronological backtracking [2,11], although the adap-
tive solving concept can be applied to other solving schemes. We give a brief
description of DPLL with learning. For a more thorough discussion see [17].

while(1) {
if (decide_next_branch())

while (deduce() == CONFLICT) {
blevel = analyze_conflicts();
if (blevel == 0) return UNSAT;
else bactrack(blevel);

}
else

return SAT;
}

Fig. 1. Basic DPLL algorithm with learning

Figure 1 gives a bird’s eye view of a DPLL algorithm with learning. The
algorithm iteratively chooses a value for a variable (decide next branch()).
If all variables become assigned the algorithm halts, and outputs a satisfy-
ing assignment. Otherwise, the implications of this assignment are carried
through by the deduce() function. If deduce() reveals a conflict, the reason
for the conflict is analyzed and a conflict clause is added to the database. The
conflict clause summarizes the combination of values that lead to the conflict
and prevents this combination from being assigned a second time. The func-
tion analyze conflicts() returns a decision level to which the algorithm
backtracks. If this is level 0, it means that there exists a conflict even without
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a single decision, which means that the formula is unsatisfiable. Otherwise,
the algorithm backtracks and continues the search.

2.2 Decisions

The decide next branch() function chooses a variable that is undefined and
assigns to it either true or false. This is called a decision, and the variable is
called the decision variable. The algorithm that controls the way this choice
is made is the decision heuristic. Each decision is associated with a number,
called the decision level. All the implications that result from one decision are
associated with the same decision level. When constant values are revealed,
they are associated with decision level zero.

2.3 Boolean Constraint Propagation

Boolean Constraint Propagation (BCP) is the process of propagating the effect
of an assignment. This is the task of the function deduce() in Figure 1. Each
assignment may cause several clauses to become unit. Each unit clause implies
an assignment, which may in turn result in more unit clauses. During BCP,
this process is iterated until no further assignments can be implied.

Since modern solvers spend roughly 80% of their time carrying out BCP,
it is crucial that this process be implemented efficiently. The technique used
in Mage, as in zChaff and others, is to mark two literals in every clause as
watched literals. The rational is that a clause of length n (with n ≥ 2) can
become a unit clause only after n − 1 of its literals have been assigned false.
Only unit clauses can cause implications, so as long as the two watched literals
of a clause are undefined (or true) this clause is not unit, and there is no need
to examine it during BCP. Whenever a literal l is assigned false, all clauses in
which l is watched are examined to see whether they have become unit.

2.4 Clause Learning and Non-Chronological Backtracking

A conflict happens when BCP propagates a certain assignment and discovers
a clause with all its literals set to false. During conflict analysis, the chain of
implications that resulted in the conflict is analyzed, and the reason for the
conflict is summarized in a conflict clause. This clause describes a combination
of assignments that should not be repeated as they are conflicting. The conflict
clause is added to the clause database, thus pruning the search space that
remains to be traversed.
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3 Performance Metrics

The performance of a SAT solver is measured by the time it takes to solve a
given instance. In order to evaluate whether a certain heuristic or strategy
is beneficial, the overall run time on many different formulas is compared.
The reality is that even for the best heuristics, there are examples on which
they do not work well. The role of the performance metric is to assess the
compatibility of the solver settings for a specific example during the run.

We propose the following requirements on performance metrics:

(i) The metric can be evaluated during the solver’s run.

(ii) It can be calculated efficiently, i.e. with low overhead, and with minimal
additional space consumption.

(iii) The metric gives a score that (roughly) corresponds to the effectiveness
of the search.

The nature of the SAT problem is such that it is unrealistic to expect to
find a metric that will give a perfect correlation to the end result. However,
based on our understanding of the way the solver operates, we suggest several
candidates, which are listed below. Each metric is evaluated on a sample of
the run, consisting of a constant number of decisions.

3.1 Decision Level

When a decision causes a conflict, the solver backtracks to a previous decision
level and cancels all the assignments made in between. In this case the decision
level of the next decision will be some smaller number. Otherwise, if there
was no conflict, the decision level increments by one.

The DL metric looks at the average decision level in a single sample (in
our case - 2048 decisions). The solver reaches high decision levels when it
makes a large number of decisions without conflicts, or when the conflicts do
not set it back by much. As a result many variables keep their value for long
periods of time. This could mean that the solver spends significant amounts
of time searching in a small part of the state space. On the other hand, a low
average may indicate a high conflict rate. Since each conflict clause restricts
the space that remains to be searched, a high conflict rate is a good sign. This
leads us to expect that an efficient run is one in which the average decision
level is relatively low.

It should be noted that the average decision level is greatly influenced by
the internal structure of the solver and the chosen decision heuristic. When
experimenting with this metric, we found that the average decision level in
zChaff was, in general, twice as high as the average level for Mage when
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running on the same formula.

3.2 Conflict Clause Size

As mentioned earlier, every conflict clause that is added is a constraint that
reduces the state space that remains to be searched. In general, smaller conflict
clauses are capable of posing a greater restriction. So, although it is possible
for a specific small clause to be less useful than a very large one, in general
we expect that very small conflict clauses advance the search more rapidly
towards its goal.

Our second metric, CCS, is the average length of all the conflict clauses
that were learned in a sample - the smaller the better. Note that the score
does not explicitly reflect the actual number of conflict clauses, which could
be a metric on its own.

3.3 Binary Conflict Clauses

Some Solving strategies emphasize preference towards short conflict clauses [4]
and binary clauses in particular [15]. This makes sense in light of the fact that
these clauses have the highest potential of generating implications (a single
assignment makes the clause unit). We therefore expect that adding many
binary clauses to the database greatly advances the search.

The BIN metric measures the percentage of binary conflict clauses out of
the total number of conflict clauses learned in a given sample.

We have also considered looking at ternary clauses as a part of this metric.
However, extensive experimentation revealed that the percentage of ternary
conflict clauses is linearly correlated to the percentage of binary clauses. In
all of our examples, these two numbers are almost equal, and they increase
and decrease in the same manner from one sample to the next. We concluded
that there is no added benefit in tracking ternary conflict clauses.

3.4 BCP Ratio

When a watched literal l in a clause c becomes false, the BCP process must
go over the literals in c and look for a new watched literal. In the worst case
scenario, all the literals in c are examined. The BCP metric measures the
ratio between the number of literals examined (all together) and the number
of clauses visited, i.e., it calculates the average number of literals examined
per clause. This ratio is indicative of the speed at which implications are
carried out. Since the BCP operation is the major part of the computation,
it is important to keep this number low.
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3.5 Unary Clauses Learning

The analyze conflicts() function is capable of producing unary conflict
clauses. This amounts to learning the value some variable must have in order
to satisfy the formula. The variable is then assigned a permanent value. When
this happens, the algorithm backtracks to decision level zero and applies BCP
to discover all implications of this assignment. Any assignment resulting from
this BCP process is also permanent.

The UNARY metric tracks the rate at which permanent values are as-
signed. It gives the number of such values assigned in the last sample. An
examination of the behavior of this metric reveals that learning happens in
bursts. Typically, there are extended periods of time with little or no learning,
and then suddenly tens or even hundreds of variables are assigned a value.

4 Adaptive Solving

As mentioned earlier, there is no one heuristic that works well in all cases,
whether it is a decision heuristic or any other heuristic that is used during
the search. Our solution is an Adaptive Solver that is capable of adapting its
run-time parameters to the specific CNF it is solving. During the search, the
solver looks for signs that the run-time parameters with which it is running
are not optimal, and changes them on-the-fly.

An Adaptive Solver works according to the following scheme:

• The run is divided into samples, where each sample consists of the compu-
tation performed during a certain number of decisions.

• At the end of each sample, a performance metric is used to evaluate the
effectiveness of the search in this sample.

• A switching condition decides whether the solver is progressing.

• If the switching condition evaluates to true, one or more parameters of the
run are changed. We call this a switch.

The specifics of an adaptive solving algorithm include the size of a sample,
the choice of a performance metric, the choice of parameters to change, and
the condition for switching. The possibilities for all these are endless. In the
end, the right choice of these elements can make the difference between success
and failure. Furthermore, the choices for each element depend on the specifics
of the SAT solver implementation. There are no clear cut rules for building
an adaptive solver. The rest of this section describes, and motivates, some of
the choices made for Mage, and the insights gained from experimentation.
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4.1 The Parameter

The choice of parameters to switch is important. The idea is to choose a
parameter that has a high impact on the run time. At the same time, there
is no point in adaptively switching a parameter that is always useful. Luck-
ily, there is no shortage of such options. There are numerous heuristics and
strategies that are not used in practice because they are beneficial only for
some examples, but detrimental for most.

In our adaptive implementation of Mage, we chose the -sign option as
the parameter to control. As this is an initial experimentation in Adaptive
Solving, only one aspect of the SAT solving algorithm was controlled adap-
tively. This option controls the way a value is chosen for a decision variable
in the decide next branch() function. Normally, after choosing a variable
to decide upon, the function chooses whether to assign it true or false by ex-
amining the scores of the corresponding literals. The default is to assign true

to the literal with the highest score. Activating the -sign option will make
decide next branch() assign true to the literal with the lower score.

Experimentation shows that in general, it is better to choose the literal
with the higher score. In most examples this will result in shorter run times.
However, for some examples, choosing the lower scored literal can result in a
speedup of up to 4x (see results in Section 5).

4.2 Switching Conditions

We implemented a mechanism to compute all of the metrics mentioned in
Section 3. The sample size we chose is 2048 decisions. When using a smaller
sample we found that the metric score did not stabilize, and another switch
would occur too soon 3 .

For each of the DL, CCS, BIN, and BCP metrics, we chose an initial bound,
so that a switch is made when the metric score exceeds the bound. The initial
bound was chosen by running a large number of examples without adaptive
solving, and inspecting the scores each metric produces. After the runs com-
pleted, we saw which were the best in terms of run times. We looked at the
average score of the “bad” runs, and the average score of the “good” ones,
and chose the initial bound for each metric to be some number in between.

In the case of the UNARY metric a switch is made if the number of added
permanent values is low over a period of several samples. Because of the
effect mentioned earlier, in which permanent values are added in bursts, the
condition for this metric was set to: “perform a switch if in 14 out of the

3 The sample size is an exponent of 2 because this makes the implementation more efficient.
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last 16 samples the number of permanent values added was low” (less than
3). Again, this scheme was developed by examining the runs of good and bad
examples. We noticed, for example, that even for the worst cases there may
be one or two added values in each sample, which is why we do not require
this number to be zero.

Initial experimentation revealed that for some of the hard problems the
metric scores were consistently high, and the adaptive solver was switching
parameters throughout the run. This caused a significant increase in run
times. It seems that in order for a heuristic to be effective, it needs to run
for a certain period of time without interruption. Consequently, we placed
several mechanisms to prevent the adaptive solver from switching too often:

• When a switch is made the metric bound is incremented (or decremented),
so that in order for another switch to occur the metric score will have to be
slightly worse than it was in the last switch.

• After each switch, further switching is prevented during the next 20 samples.

• A limit is placed on the number of switches allowed during a single run.

5 Experimental Results

We conducted extensive experimentation on our adaptive version of Mage.
Our benchmark suite includes 50 examples from the IBM Benchmarks Suite [8].
This is a collection of CNF files that originate from the verification of various
industrial designs using SAT-based BMC. The benchmark is very diverse, with
both long and short examples, satisfiable and unsatisfiable, various depths, etc.

Our Adaptive Solver enables switching only after 20, 000 decisions have
been executed, so that no switches are made for easy problems. The bench-
marking suite includes only examples that require more than 20, 000 decisions.
We also made sure that the examples we consider do not abort because of time-
out. This is done so that the time we choose to time out on will not influence
the speedup results. Although it may seem impressive to report that there
are several examples on which the native version timed-out while the adap-
tive version succeeded, in reality this only depends on the time-out constant.
Instead of reducing this constant to generate such “impressive” examples, we
chose to enlarge it to the point where all of the examples we want to run do
not time-out. This required a relatively high timeout of 10, 000 seconds. The
only two runs that time out on 10, 000, are examples that run with the -sign

option and no Adaptive Solving. This version does not influence the analysis
of the results for the adaptive algorithm, it is merely used to demonstrate that
the -sign option is overall detrimental.
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The analysis of the results is done by comparing the overall speedup, i.e.,
the speedup on the sum of the run times of all examples. This number is
indicative of the effect Adaptive Solving has on a large number of examples
of various sizes, such as in the case of a full verification project. This analysis
places more weight on the larger examples. This is suitable for our experimen-
tation, because our goal is to reduce the run times of large examples without
hurting the small ones too much, thus reducing the overall time needed for
a verification project to be completed. Calculating the average speedup, for
example, would place more emphasis on reducing a two-second run to one
second, than adding an hour to an example that runs two hours. This may be
suitable for theoretical analysis, but it is not suitable for an industrial tool.
Because this is a prototype implementation of a new idea, however, we also
give the minimum and maximum speedups. We consider these an indication
to the potential of Adaptive Solving.

Our experimentation was conducted on an Intel Pentium 4, with a single
2GHz CPU, 1GB RAM, running Linux. Tables 2, 3 give the run time results
for all 50 examples, in seconds. It compares the run times between seven
versions. Native is Mage running with its default parameters and no adaptive
algorithms. In particular, the -sign option is not used, so in all decisions
the sign with the highest score is chosen. Sign is Mage running with the
-sign option all of the time. Versions DL, CCS, BIN, BCP, and UNARY

correspond to adaptive versions each using the metric implied by its name
(see Section 3). The Native and Sign versions do not calculate any of the
metrics. Initial experimentation showed that the overhead incurred by the
computation of the metric scores is negligible (only a few seconds even for the
largest examples). Because the difference is so small we omit the results for a
version that computes all metrics but does not apply adaptive solving.

Table 1 gives a summary of the results. In this table the “Time” rows
display the sum of run times on all the examples in the benchmark (in sec-
onds). The “Speedup” for each version is the runtime of Native divided by
the runtime of that version. The “Min” and “Max” rows show the minimum
and maximum speedups achieved by each version on a single example. The
results for satisfiable and unsatisfiable examples are given separately, and the
“ALL” section summarizes all the examples.

Table 1 shows that BIN and UNARY are the best metrics, giving speedups
of 1.6 and 1.5 respectively. The BCP and CCS versions give modest speedups,
and DL has a negligible speedup. For the CCS, BIN, and UNARY versions,
the speedup is better on SAT instances than on UNSAT. On SAT instances
alone, UNARY gives a 2x speedup, while on the UNSAT instances, there is
hardly any gain. On the other hand, the BCP version works better on UNSAT
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instances. The -sign option is, indeed, not recommended as a default option,
since it significantly increases the overall run time.

Examining the minimum and maximum speedups reveals how the overall
speedup is achieved – by significantly reducing run times on some examples
and only slightly increasing run times on others. For example, the worst dam-
age the BIN version causes is a speedup of 0.75 (which equals to an increase
of about a third), while its best performance is almost 12x faster. Note that
all of the examples in the benchmark suite are non-trivial. The best speedup
was achieved on an example that runs 3821 seconds on the Native version,
and 325 seconds with the BIN version.

A phenomenon we encountered, and can be seen in tables 2, 3 is that in
many cases the adaptive version performs better than either Native or Sign.
From this we learn that different sub-spaces of the search space require differ-
ent settings. This encourages us that Adaptive Solving has great potential.

Version Native Sign DL CCS BIN BCP UNARY

UNSAT Time 8662 14579 8609 7726 6702 7057 7933

Speedup - 0.594 1.006 1.121 1.292 1.227 1.091

Min - 0.097 0.771 0.874 0.831 0.830 0.913

Max - 4.354 1.641 3.878 4.042 2.951 4.017

SAT Time 14955 25256 13067 9228 8269 12637 7313

Speedup - 0.592 1.144 1.620 1.808 1.157 2.044

Min - 0.067 0.168 0.509 0.751 0.411 0.523

Max - 4.437 3.900 5.287 11.749 1.326 5.900

ALL Time 23618 39835 21676 16954 14971 19695 15247

Speedup - 0.593 1.089 1.393 1.578 1.182 1.549

Min - 0.067 0.168 0.509 0.751 0.411 0.523

Max - 4.437 3.900 5.287 11.749 2.951 5.900

Table 1
Summary of run time results for all adaptive versions

6 Conclusions

We view the Adaptive Solving algorithm presented here as a starting point
rather than a finished product. As mentioned before, there are many design
decisions in the implementation of an Adaptive Solver that can make a differ-
ence in its performance. Our choices are by no means guaranteed to be the
best possible.

Nevertheless, the prototype algorithm was able to achieve up to 12x speedup
in run times on satisfiable examples, up to 4x speedup on unsatisfiable exam-
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Native Sign DL CCS BIN BCP UNARY

IBM 02 1 1 cycle 45 26.67 29.11 23.67 24.79 26.84 26.76 26.62

IBM 02 1 1 cycle 50 26.87 23.51 24.8 27.11 27.11 27.17 26.98

IBM 04 cycle 45 39.95 30.15 38.73 31.08 40.01 30.98 39.82

IBM 05 cycle 45 19.28 32.71 28.25 19.21 19.13 23.06 19.1

IBM 05 cycle 50 23.58 42.47 30.48 23.56 23.53 30.88 23.53

IBM 06 cycle 45 47.62 11.32 47.24 41.52 47.5 47.42 47.43

IBM 07 cycle 10 62.35 341.05 40.29 44.42 43.65 46.62 42.59

IBM 07 cycle 15 24.28 18.5 19.63 21.81 16.4 16.69 19.49

IBM 07 cycle 20 24.57 30.14 20.17 20.18 19.19 19.28 20.64

IBM 07 cycle 25 24.74 48.81 22.02 26.55 21.42 23.67 18.41

IBM 07 cycle 30 25.14 50.95 17.43 22.63 18.91 18.32 15.42

IBM 07 cycle 35 25.53 22.8 28.7 22.02 14.01 15.57 17.45

IBM 07 cycle 40 25.9 27.19 20.88 19.99 19.68 21.96 17.8

IBM 07 cycle 45 26.02 192.98 15.86 22.02 28.04 29.16 26.58

IBM 07 cycle 50 26.33 19.4 25.45 22.9 16.45 16.41 24

IBM 11 1 cycle 45 1140.99 1232.29 679.36 1175.36 952.89 1054.36 894.69

IBM 14 2 cycle 25 25.62 22.42 25.88 19.43 25.87 20.7 25.68

IBM 14 2 cycle 30 51.18 58.86 66.39 46.96 43.52 37.62 50.96

IBM 14 2 cycle 50 669.84 6881.23 668.32 535.39 618.71 593.9 684.73

IBM 17 1 2 cycle 40 16.23 8.89 19.14 16.25 16.19 16.17 16.3

IBM 17 1 2 cycle 45 19.38 7.79 24.37 19.39 19.92 19.37 19.32

IBM 17 1 2 cycle 50 15.98 11.64 15.77 16.15 19.23 16.03 15.29

IBM 19 cycle 35 37.96 32.8 30.09 51.42 43.29 37.8 37.71

IBM 19 cycle 40 69.01 120.82 91.02 60.07 84.79 70.69 70.41

IBM 19 cycle 45 112.26 120.35 124.43 220.46 144.64 112.29 155.17

IBM 19 cycle 50 283.95 194.38 401.87 215.21 310.72 341.76 542.8

Table 2
Run times of the adaptive solver versions on each one of the CNF instances.

ples, and an overall 1.6 speedup on the whole benchmark suite. The speedup
on the sum of all run times is particularly significant in the setting of SAT-
based verification, since it represents the impact Adaptive Solving can have
on a whole verification project. Our results show that the overall time needed
for the project can be reduced, by having some of the runs finish significantly
faster and others slightly slower. The result is a verification effort that is
completed in less time, and reveals bugs much faster.

We showed that the -sign option has an overall detrimental effect on run
times. Although there are some examples for which this option is useful,
when using it on all of our examples the overall run time is much larger. It is
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Native Sign DL CCS BIN BCP UNARY

IBM 20 cycle 25 73.59 75.19 73.32 67.84 73.88 88.68 73.86

IBM 20 cycle 30 378.49 313.49 378.6 304.09 378.23 366.73 377.86

IBM 20 cycle 40 2915.99 2193.85 2913.52 3338.03 2098.47 2612.28 3193.65

IBM 20 cycle 45 2262.22 1384.75 1584.61 4376.08 1495.49 1793.88 2104.08

IBM 20 cycle 50 5688.42 1281.89 1458.45 1075.95 3400.8 4287.91 964.08

IBM 21 cycle 35 30.56 24.51 28.6 35.64 30.45 30.47 30.38

IBM 21 cycle 40 97.71 73.52 90.42 92.78 97.43 97.39 97.09

IBM 21 cycle 45 321.15 221.58 230.48 198.86 235.65 322.9 320.48

IBM 21 cycle 50 207.1 335.21 216.49 211.32 275.71 207.17 270.92

IBM 22 cycle 35 38.34 41.92 47.13 40.96 38.24 37.13 38.18

IBM 22 cycle 40 115.97 155.49 124.63 113.16 116.41 121.43 116.21

IBM 22 cycle 45 368.1 612.17 400.4 378.86 366.91 443.05 371.93

IBM 27 cycle 45 12.83 21.72 19.23 18.31 12.73 19.67 12.68

IBM 28 cycle 30 21.22 18.12 21.11 31.1 21.21 21.31 21.19

IBM 28 cycle 40 21.72 21.41 27.08 39.31 21.74 52.79 21.73

IBM 28 cycle 45 22.25 55.86 28.96 25.27 22.29 22.26 22.14

IBM 29 cycle 15 305.51 149.21 283.99 176.02 173.99 183.16 194.88

IBM 29 cycle 20 1828.63 1792.38 1817.36 1745.12 1948.38 1542.37 1764.72

IBM 29 cycle 30 3821.98 10000 3875.55 1013.73 325.29 3505.24 859.39

IBM 29 cycle 50 673.73 10000 4015.01 647.92 663.63 815.04 758.6

IBM new 2 cycle 20 214.05 152.21 213.85 127.8 69.35 92.03 207.56

IBM new 2 cycle 25 916.42 1020.32 906.14 236.31 226.7 310.5 228.15

IBM new 5 cycle 20 137.81 31.65 118.62 122.9 75.56 124.26 80.63

IBM new 6 cycle 20 252.53 245.97 252.3 146.51 140.69 170.39 217.72

Table 3
Run times of the adaptive solver versions on each one of the CNF instances.

impossible to predict beforehand which examples will benefit from this option.
For this reason it has not been used in practice until now. The Adaptive Solver
is thus capable of making the best out of a heuristic that overall did not prove
beneficial. Our implementation controlled only one such heuristic, but there
are many others that could be used. We plan to investigate how to combine
this strength on multiple options.

An interesting phenomenon is that on some examples, although the -sign
option performs badly, using it on parts of the search space gave better results
than not using it at all. This shows that different sub-spaces require different
approaches, and clearly demonstrates that the potential of Adaptive Solving
is greater than that of the parameters it controls.

As for the performance metrics – we continue to search for better metrics.
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We have discovered that some metrics perform better on satisfiable instances,
while others are better for unsatisfiable instances. This implies that a combi-
nation of metrics may be more beneficial.

The details of the adaptive algorithm need to be tuned according to the
specific implementation of the solver. The organization of the database and
the decision heuristics used by a solver influence the right choices for the
adaptive algorithm. This means that implementing the exact same algorithm
on different solvers, may yield different results.

There are many directions that require further research. Finding the best
metric and parameters to use is crucial. The algorithm used to determine when
to switch options has also not been perfected. Beyond this, we would also like
to experiment with incorporating learning algorithms into the process.
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