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Canine hip dysplasia is predictable by genotyping
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s u m m a r y

Objective: To establish a predictive method using whole genome genotyping for early intervention in
canine hip dysplasia (CHD) risk management, for the prevention of the progression of secondary oste-
oarthritis (OA), and for selective breeding.
Design: Two sets of dogs (six breeds) were genotyped with dense SNPs covering the entire canine
genome. The first set contained 359 dogs upon which a predictive formula for genomic breeding value
(GBV) was derived by using their estimated breeding value (EBV) of the Norberg angle (a measure of
CHD) and their genotypes. To investigate how well the formula would work for an individual dog with
genotype only (without using EBV), a cross validation was performed by masking the EBV of one dog at
a time. The genomic data and the EBV of the remaining dogs were used to predict the GBV for the single
dog that was left out. The second set of dogs included 38 new Labrador retriever dogs, which had no
pedigree relationship to the dogs in the first set.
Results: The cross validation showed a strong correlation (R> 0.7) between the EBV and the GBV. The
independent validation showed a moderate correlation (R¼ 0.5) between GBV for the Norberg angle and
the observed Norberg angle (no EBV was available for the new 38 dogs). Sensitivity, specificity, positive
and negative predictive values of the genomic data were all above 70%.
Conclusions: Prediction of CHD from genomic data is feasible, and can be applied for risk management of
CHD and early selection for genetic improvement to reduce the prevalence of CHD in breeding programs.
The prediction can be implemented before maturity, at which age current radiographic screening
programs are traditionally applied, and as soon as DNA is available.

� 2010 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Introduction

Hip dysplasia (HD) is a common inherited trait that affects the
wellbeing of humans and dogs and imposes a heavy financial and
emotional burden1. The disease is characterized by hip instability,
which leads inexorably to painful, debilitating secondary hip
: Zhiwu Zhang, Institute for
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osteoarthritis (OA)2e4. Canine hip Dysplasia (CHD) is a major
veterinary problem occurring with a frequency up to 75% in mixed
and pure breed dogs of approximately 70 million dogs in American
households5. The prevalence in a hospital population is about 20%5.
HumanHD, referred to as developmental dysplasia of the hip (DDH),
occurs with a frequency ranging from 5.4% to 12.8%. Hip OA preva-
lence was 4.4e5.3% for individuals over 60 years6,7. Developmental
dysplasia of the human hip significantly influenced the prevalence
of hip OA7. Radiographic surveys have found that 20e50% of human
patients diagnosed with idiopathic hip OA had antecedent DDH6.

Canine HD and DDH are homologous conditions from a clinical
perspectivewith identical sequelae due to subluxationwhich results
ublished by Elsevier Ltd. All rights reserved.
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in focal overload of the articular surface and hip OA6e9. Current
treatment options for human and canine HD or OA are limited to
symptom management and hip replacement at end-stage degen-
eration. No data is available for the number of canine hip replace-
ments undertaken eachyear but 82% of humanhip replacements are
due to end-stage OA10. The number of human total hip replacements
is about a quarter million and this number is expected to double in
the next 20 years11. The challenge is to develop predictive tools to
identify the risk of CHD, DDH and hip OA at an early age so thatmore
efficient and cost effective management can be applied.

Selective breeding of dogs has proven to be effective in reducing
the prevalence of CHD12. In a previous study13, we showed that the
selective breeding program operated by Guiding Eyes for Blind (in
Yorktown Heights, New York, USA) was able to achieve stable
genetic improvement in hip morphology. Nationwide, the Ortho-
pedic Foundation for Animals (OFA) has been scoring hip radio-
graphs and releasing some of the records publicly over the last 40
years. In a previous study, we showed that a consistent genetic
improvement has accumulated14. The genetic improvement was
limited by the fact that the selection criteria of the majority of the
breeding dogs had low accuracy. Even when an estimated breeding
value (EBV) of an individual derived from raw phenotypes of itself
and its relatives was available, it only reached reasonable accuracy
if it was based on hundreds of progeny who were in a comparable
group which also contained progeny from other dogs14e16.
Producing this large number of progeny takes several years. The
number of such accurate dogs was limited. Thus, improved
methods of identifying dogs susceptible to HD are required to
implement earlier preventative methods for allaying secondary hip
OA. Because pure breed dogs must have documented pedigrees to
be registered as pure by the American Kennel Club (AKC), EBVs can
be calculated and these can be correlated with genomic breeding
values (GBVs) composed of single nucleotide polymorphisms
(SNPs) or sequence variants.

Here we present data for the first time to demonstrate that CHD
is predictable from genomic data so that selection decisions can be
made for a dog at puppy age. This implies that human HD could also
be predicted at an early age and suitable preventative management
could be applied to identify susceptible individuals who may be
missed by physical screening and ultrasound and reduce the
prevalence hip OA by pre-emptive intervention.

Materials and methods

Dog samples

Two sets of dogs were genotyped for this study. The first set (359
dogs) was sampled from a pool of dogs with breeding values
reported from our previous study13. The second set (53 Labrador
retrievers) contained 15 dogs that were in the first set for the
purpose of data quality control (e.g., genotyping error) and impu-
tation of missing SNPs across genotyping platforms. The rest of the
dogs (38) were newly admitted patients to the Cornell University
Hospital for Animals (CUHA). They either had hip pain and lame-
ness or were being radiographed as a screening tool prior to
breeding. There was no known pedigree relationship between the
38 new dogs in the second sample and the 359 dogs in the first
sample. Cornell Institutional Animal Care and Use Committee
Protocol approval numbers are 2005-0151 (DNA Bank) and
2006-0187 (HD and OA Genetics).

Radiographic methods and EBV

The four measurements used for hip evaluation were the Nor-
berg angle (NA), OFA score, the distraction index (DI) and the
dorsolateral subluxation score (DLS)17. The former two are evalu-
ated from the extended hip projection and are phenotypically and
genetically correlatedwhile the latter two are evaluated ondifferent
projections and are phenotypically and genetically correlated14. No
measure alone completely represents hip morphology. The hips of
the Baker Institute dogs were commonly radiographed at 8e12
months of age. The Guiding Eyes for the Blind radiographed their
dogs’ hips at 14e18 months of age. The age of dogs admitted to the
CUHA varied but were 2 years of age on average. All radiographic
measurements except the OFA score have achieved their maximal
accuracywhen the dogs are 8months oldwhich is skeletalmaturity.
The DI and the DLS reveal more hip laxity than the NA and the OFA
score. The DLS imaging position reveals maximum subluxation
which can be masked by the extended hip imaging position. The
OFA score increases in accuracy as a dog ages because the secondary
OA progresses and is more evident radiographically17. EBVs were
derived by using a multiple trait mixed linear model from our
previous study13. As NA correlated to OFA score and most dogs had
NAs measured, NA was chosen for this study.

SNP genotyping

The first set of dogs was genotyped on the Infinium Canine
SNP20 BeadChip (Illumina Inc., San Diego, CA) with w22,000 SNPs
across the genome (http://www.illumina.com/documents/
products/datasheets/datasheet_canine_snp20.pdf). The second
sample of dogs was genotyped on an Affymetrix platform (Canine
127K SNP array version 2) of which w50,000 SNPs were reliable.
The majority (92.3%) of the Illumina SNPs had completed calls.
There were 99.46% SNPs with call rate above 95%. For the Affyme-
trix SNP array, there were 71.65% and 43.24% of SNPs with call rate
above 90% and 95% respectively.

SNPs with missing calls above 45% were removed. We also
removed SNPs with minor allele frequency (MAF) below 1%18. The
final analysis contained 21,455 SNPs for the Illumina array and
48,431 for Affymetrix array. For the Illumina SNP array, the mean
and median MAF were 0.2589 and 0.2399, respectively. For the
Affymetrix SNP array, the mean and median MAF were 0.2589 and
0.2641, respectively. There were 13,465 SNPs in common between
the two sets of SNPs. The concordance rate was 99.9% of the
common SNPs genotyped on 15 dogs.

Principal component analysis (PCA)was performed based on the
numeric genotypes that were 0 and 2 for the two homozygotes and
1 for the heterozygotes. PCA was performed on the 359 dogs plus
the additional 38 newdogs by using the common 13,465 SNPs from
both Illumina genotypes and the Affymetrix genotypes.

Genomic prediction model

We used the EBV and Illumina SNPs on 359 dogs to derive the
predictive formula. The model to predict the GBVs based on m bi-
allelic markers with m¼ 21,455 was

y ¼ mþ
X
i

X
j

Xijbij þ eði ¼ 1 to m and j ¼ 1 to 2Þ (1)

where y is the vector of the dependent variable (EBV), m is a general
mean, Xij is a design vector for the jth allele of marker i, bij is the
allele substitution effect of the jth allele of marker i, and e is
a residual vector, which by default is ewNð0; Is2e Þ. In this model,
the allele effects are modeled as random effects with bijwNð0; 42

i Þ,
where 4i is a scaling factor that models the variance explained at
the ith marker. The scaling factors can be interpreted as a standard
deviation of allele substitution effects. The variance of allele effects
is estimated using an informative prior distribution. We chose
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Table I
EBVs and reliabilities of HD for 359 genotyped dogs*

Breed N Average SD Min Max

EBV LR 182 0.81 6.1691 �20.42 9.96
G 7 �0.65 2.0233 �4.31 2.20
LR�G 8 �1.15 2.0455 �4.50 1.54
F1� LR 68 �0.66 4.4654 �14.71 6.40
F1�G 17 �0.84 2.1344 �5.19 4.06
(F1� LR)� (F1� LR) 13 �3.78 2.7547 �8.73 0.92
German shepherd 17 �1.24 8.0438 �19.70 6.98
Golden retriever 15 0.30 6.7509 �15.40 7.42
Newfoundland 18 0.39 6.9325 �16.41 9.27
Rottweiler 14 1.22 6.8150 �10.93 8.89

Reliability LR 182 0.91 0.0343 0.70 0.97
G 7 0.90 0.0121 0.89 0.92
LR�G 8 0.92 0.0169 0.89 0.94
F1� LR 68 0.90 0.0064 0.89 0.93
F1�G 17 0.88 0.0051 0.88 0.89
(F1� LR)� (F1� LR) 13 0.89 0.0065 0.87 0.89
German shepherd 17 0.87 0.0461 0.76 0.94
Golden retriever 15 0.87 0.0113 0.86 0.91
Newfoundland 18 0.83 0.0221 0.86 0.91
Rottweiler 14 0.86 0.0354 0.76 0.92

* The number of dogs (N), average, standard deviation (SD), the minimum and
maximum of EBV and reliability were given for each pure breed and crosses
between Labrador retriever (LR) and Greyhound (G). The crosses included the first
cross between Labrador retriever and Greyhound (F1), backcross to LR (F1� LR),
backcross to Greyhound (F1�G), and a third generation cross (F1� LR)� (F1� LR).
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a prior common normal distribution on the scaling factors 4i, e.g.,
4iwNð0; s2s Þ, where s2s was variance of 4i. The s2s parameter was
estimated from the data so that it would properly adjust to the
correct level and apply the optimal shrinkage19. The s2s parameter
could roughly be described as the expected average fitted variance
per marker. The parameter of the common prior was given a start-
ing value as s2s ¼ 0:0001, and then was estimated simultaneously
with other unknown parameters.

For all parameters, single chain Gibbs samplers were imple-
mented. A Markov Chain Monte Carlo (MCMC) sampler was used to
generate samples from the joint posterior distribution of the model
parameters. The MCMC was performed with IBAY20 for 50,000
cycles. The first 10,000 cycles were used as the burn-in period. One
sample was saved for every five cycles in the rest of the 40,000
cycles. The averages and variances of unknown parameters from
the 8000 posterior samples were used as the final estimates and
their dispersion parameters. The GBV was estimated as follows:

GBV ¼
X
i

X
j

xij
bbij (2)

where bbij was the average of the estimates of bij over 8000 samples.
Prediction error variance (PEV)13 was derived for the GBV of each
individual and genomic variance ðs2aÞ was calculated from GBVs of
all individuals.

Reliability (r), or accuracy of the GBV of an individual, defined as
the correlation between true and predicted values, was calculated
from PEV and s2a as follows:

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� PEV

s2a

s
(3)

We calculated GBV from all the SNPs based on the scaling factor
and a subset of the most influential k SNPs (k¼ 20, 50, 100, 200,
500, 1000, 5000 and 10,000) selected for the largest scaling factors.

Imputation of missing SNPs

The Illumina SNPs that were not on the Affymetrix array were
imputed by using a software tool (MACH)21,22.

Validation of predictive formula

We performed two types of validations: cross validation and
independent validation. The cross validation was performed by
masking an EBV of a dog one at a time (Jackknife cross validation).
Its GBV was calculated based only on its genotypes by using the
formula derived from the EBV and genotype on the rest of the 358
dogs. The process was repeated for each of the 359 dogs. We
calculated GBV from all the SNPs based on the scaling factor and
subsets of the most influential SNPs.

The independent validation was performed on 38 Labrador
retriever dogs that had no pedigree relationship to the 359 dogs.
The predictive formula was derived from the 359 dogs. The GBVs of
the 38 dogs were calculated by using the formula in two ways. The
first way used all the 21,455 Illumina SNPs with the missing SNPs
imputed. The second way used the 13,465 common SNPs. The rest
of the SNPs were discarded from the predictive formula. The
correlations between GBV and EBV/phenotype within breed/cross
were used as the criteria of validation.

Sensitivity, specificity, positive and negative predictive values

CHD is a complex disease and NA measurement is continuous.
The range of NA is usually between 70� and 120�, and the low
degree indicates severe HD. No obvious cutoff was defined a priori
to distinguish a dysplastic and non-dysplastic hip. In this study, the
cutoff was determined to maximize the minimum of the four
diagnostic statistics; sensitivity, specificity, positive predictive
value and negative predictive value23,24.

Results

EBV

CHD was measured using the NA. Its EBV for each dog was
obtained from a multiple trait model in our previous study13. Breed
was included as a co-factor. The average EBV was restricted to zero
for each breed. Table I displays the averages and standard devia-
tions of the 359 dogs sampled from various breeds and crosses. The
seven Greyhounds did not show HD and the standard deviations
within this breed were small (w2). The standard deviations within
breed were about the same among other pure breeds (6w7). The
variations among the crosses between Greyhounds and Labrador
retrievers related to their parental variations (Table I). The EBV of
each dog was accompanied with a reliability score indicating the
degree to which the EBV correlated with the true genetic effect,
with 1 and 0 as the closest and farthest, respectively (Table I).

Genomic prediction

The training data set contained 359 dogs which were genotyped
with the Illumina Canine SNP20 BeadChip containing w22,000
SNPs (Fig. 1). The prediction formula was built in a Bayesian
framework16,19,25. When both genomic data and EBV were used to
formulate the model for each dog, the correlation coefficient
between the EBV and the predicted GBV was almost 1.00 which
indicated that the model was over-parameterized. When the SNPs
with least contribution (smallest scaling factors) to the GBV were
gradually removed from the formula, the correlation decreased
slowly and steadily. Evenwhen 5000 SNPs remained in the formula,
the correlation was still above 0.98. However, the correlation
decreased quickly when the total number of SNPs in the GBVmodel
was less than 100e500 (Fig. 2). In addition to the agreement



A B

C D

Fig. 1. The properties of SNPs. The SNPs were genotyped with the Illumina array on 359 dogs and Affymetrix array on 53 dogs. (A) Cumulative distribution of minor allele
frequencies (MAF); (B) the density of the SNPs; (C) distribution of heterozygosity; (D) LD decay (R2) over physical distance. The LD was calculated with all breeds and Labrador
retriever (LR) respectively.
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between EBVs and GBVs, a moderate correlation (R¼ 0.47) was
observed between the reliabilities of EBVs and GBVs. As expected,
themore reliable the EBV, themore reliable the corresponding GBV.

Cross validation

To examine howwell the genomic predictionwould work for an
individual dog without an EBV or any phenotype, we removed one
dog at a time from the set with 359 dogs and then used the rest of
the set to build a new prediction formula and then used that new
formula to predict the GBV for the excluded dog. We repeated this
process (Jackknife cross validation) for each dog until every dog had
its own GBV estimated only with its genotype. During the process
of calculating GBV, we used the most influential k SNPs (k¼ 5000,
1000, 500, 200,100, 50 and 20). Interestingly, the r for using the top
5000 SNPs dropped from w0.98 to w0.60 when each dogs’s EBV
was not used to predict the GBV of itself in the cross validation, no
longer observing the over parameterization as before (Fig. 3). The
cross validation showed a strong correlation (R¼ 0.70w0.9 or
R2¼ 0.7w0.8) between EBV and GBV by using all the SNPs.
More interestingly, the correlation was well maintained even
when the prediction formula was based on the most influential
100e500 SNPs. The correlation reduction for using less than
100e500 SNPs reflected the loss of SNPs in linkage disequilibrium
(LD) with the quantitative trait nucleotides (QTNs) underlying the
EBVs. In general, reasonable correlation (R¼ 0.7w0.9) in pure
breeds was achieved when the top 100e500 SNPs were included.

Independent validation

Our final goal was to test whether the predictive formula could
be applied to a naïve set of dogs outside the 359 dogs from which
the original formula was derived, especially for the dogs that were
unrelated to the original set. We genotyped another set of Labrador
retriever dogs (53) with the Affymetrix Canine array. One-third of
these dogs (15) were part of the 359 used for the purpose of data
quality verification (e.g., genotyping error) and imputation of
missing SNPs. The other 38 dogs were from among those admitted
to the Cornell Hospital and had no known pedigree relationship to
the dogs in the first set. Each of these dogs only had a single NA



Fig. 2. Model fit of GBV and EBV. The model fit (R2) was displayed for each breed/cross over different number of the most influential SNPs. The cross included the first cross (F1)
between Labrador retriever and Greyhound (G), backcross to LR (F1� R), backcross to G (F1�G), and third generations cross (F1� LR)� (F1� LR).
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measurement on each hip. The worst hip angle (the minimum)
from the two hips was used as the phenotype for each dog. No EBV
was available on these dogs.

The Affymetrix SNP array containedw50,000 informative SNPs,
including the 13,465 from the Illumina array. The genotype calls on
the 15 dogs genotyped with both arrays showed a very strong
agreement (concordance rate was 99.9%).

We performed PCA by using the common SNPs. The population
structure of these dogs was clearly revealed by the first two prin-
cipal components (PCs). All the dogs within a pure breed were
clustered together in the scatter plots (Fig. 4). All the F1 dogs of
Greyhound/Labrador retriever breedings were positioned between
their respective parental breeds. The backcross of the F1 to Labrador
retriever was closer to Labrador retriever and the backcross of F1 to
Greyhound was closer to Greyhound as expected. The substructure
within the Labrador retriever breed reflected the multiple sources
of Labrador retriever for these studies. The scatter plot of the first
two PCs revealed the dispersion of the relationship of the new 38
Labrador retriever dogs with other dogs (Fig. 4).

Among the Illumina 21,455 SNPs used to derive the predictive
formula, 40% were not on the Affymetrix SNP array, including the
most influential SNPs (Fig. 5). We imputed the Illumina SNPs
missing on the Affymetrix array. We applied the predictive formula
to the 38 dogs by using the common SNPs (without imputation)
and all of the Illumina array SNPs (with missing SNPs imputed).
This independent validation showedmoderate correlations (R¼ 0.5
with imputation and R¼ 0.45 without imputation) between their
known NA phenotype and GBV (Fig. 6).
Clinical diagnosis/prediction

The cutoffs on NA and GBV were set at 105� and �6 respectively
to define and diagnose dysplastic and non-dysplastic hips. These
cutoffs maximized the minimum of the four clinical diagnostic
statistics (sensitivity, specificity, positive predictive ability and
negative predictive ability) in the reference population with 359
dogs (Fig. 7). The corresponding sensitivity, specificity, positive
predictive ability and negative predictive ability were 72.22%,
75.00%, 72.22% and 75.00%, respectively, among the 38 dogs in the
independent validation.
Discussion

This is the first report showing a repeatable prediction of CHD
from genomic data. A reliable prediction (R¼ 0.7w0.9) was ach-
ieved with as few as the most influential 100e500 SNPs. This
prediction could be used for risk management of CHD or as a better
alternative selection criteria than phenotype26. The correlation
between GBV and observed NA (R2¼ 0.52¼ 0.25) in the indepen-
dent validation population was close to the correlation level
between phenotype and true breeding value represented by heri-
tability, reported as 0.24w0.2527 and 0.31w0.3528.

Furthermore, higher selection response may be achieved using
GBV compared to using EBVs25,29,30 suggesting that genomic
selection would therefore be the method of choice to improve hip
conformation most efficiently. It would have special use in small
breeding programs for which breeders do not have deep and
extended pedigrees upon which to estimate breeding values
because the pool of reference individuals for a breed would house
the genetic information needed for any dog of the same breed. In
chickens, an almost four-fold increase in the accuracy of prediction
of yet-to-be observed phenotypes for food conversion rate in
broilers was reported when genomic prediction of phenotype was
used compared with pedigree prediction of phenotype31. In mice,
genomic predictions, including both additive and dominant SNP
effects, produced a higher accuracy of phenotype prediction for
various traits than using pedigree information alone32.

In addition to the financial burden of progeny testing, the time
delay to phenotyping at maturity means that many dogs are bred
or bought by owners at weaning time without knowledge of their
genetic potential for good hip conformation. Genomic prediction
could be applied at birth even prior to weaning and purchase of
pups by owners. Nevertheless, reliable phenotype or EBVs are
essential prior to developing GBV. Our result showed that there
was a significant correlation (P< 0.01) between the reliability of
EBV and the accuracy of GBV. The correlation between the reli-
ability of EBV and reliability of GBV was 0.47 (R2¼ 0.22). The more
reliable the EBV, the more reliable the corresponding GBV. This
was consistent with the previous results that GBV was more
accurate when it was derived from EBV than that derived from the
raw phenotype as the EBV was more reliable than the raw
phenotype.



Fig. 3. Accuracy of genomic prediction from cross validation. Linear regression lines and R2 are given for each plot of GBV vs EBV. The GBV of a dog was calculated from its genotypes by
using the predictive formula derived from the genotype and EBV of all the other dogs (Jackknife cross validation). The plots were classified by breed/cross and number of the most
influential SNPs used to calculate GBV. The cross included the first cross (F1) between Labrador retriever and Greyhound (G), backcross to LR (F1� LR), backcross to G (F1�G), and third
generations cross (F1� LR)� (F1� LR).
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Fig. 4. Genetic relationship among dogs in the reference and independent sample. The genetic relationship was characterized by the first PC (x axis) and the second PC (y axis) of
the SNP genotypes. The PCs were derived from the common 13,465 SNPs shared by the Illumina array and Affymetrix array. The Illumina array was used to genotype the reference
population (359 dogs) and the Affymetrix SNP array was used to genotype the independent validation population (38). Fifteen dogs were genotyped on both platforms for the
purpose of data quality control and imputation of missing SNPs. Different pure breeds and crosses are displayed separately. The crosses between Labrador retriever (LR or L) and
Greyhound (G) include the first cross (F1), backcross to LR (F1� L), backcross to G (F1�G), and third generations cross (F1� L)� (F1� L). The Labrador retrievers from the reference
population and the independent validation population are also displayed separately to show the diversity between the two subgroups. The Labrador retrievers from the reference
sample are displayed as LR and the ones from the independent sample is displayed as LR (independent).
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The qualities of genotyped markers in this study were reason-
ably good with respect to polymorphism and heterozygosity. The
MAF of these SNPs followed a uniform distribution after removing
the SNPs with MAF < 1%. Heterozygosities had a bimodal distri-
bution with one peak toward zero and one toward 0.5. The distri-
bution was similar to both practical33e35 and theoretical
observations36 under the assumptions of the neutral theory in
a random mating population.

The accuracyofGBV could behigher if the genotypedmarkers had
better coverage of LD by inclusion of more densely spaced
markers37e39. The LD in our study population decayed very rapidly. A
useful LD40 (r2> 0.3) only occurred at distances shorter than
Fig. 5. Missing rate of SNPs. There were 21,455 SNPs on Illumina array that was used to deriv
array that was used to genotype the dogs for independent validation (including the first and
SNPs are plotted against their order (descending log scale) based on their scaling factor.
30 kilobase (kb) pairs in Labrador retrievers and 20 kb pairs across
the six breeds and the crosses. Thedoggenome is similar in size to the
genomes of humans and other mammals, containing approximately
2.5 billion DNA base pairs41. This requires at least 125,000 informa-
tive SNPs to capture the LD intervals among breeds. The average and
median marker interval from the Illumina CanineSNP20 BeadChip
were 107 kb and 70 kb, respectively. This implied that we could have
missed many QTNs.

GBV for hip conformationwill become available for most breeds
of interest. However, a continued effort at progeny testing to obtain
reliable EBV, even as the new technology is applied, is necessary to
retrain the predictive formula and to improve the accuracy of
e the predictive formula. Aboutw40% of these SNPs were not present on the Affymetrix
the third most influential SNPs on the Illumina array). The cumulative missing rates of



Fig. 7. Precision of genomic prediction. The dichotomous status of HD was defined by the cutoff of NA (x axis) and diagnosed by GBV (y axis) among 359 dogs in the reference
population. The color at each combination of the two cutoffs indicates the corresponding values of sensitivity (A), specificity (B), positive predictive value (C) and negative predictive
value (D) and the minimum among these four values (E). The optimized cutoffs were 94 for NA and �6 for GBV indicated by the blue circle. The corresponding sensitivity, specificity,
positive predictive ability and negative predictive ability were 98.77%, 75.00%, 96.97% and 88.23%, respectively.

Fig. 6. Accuracy of genomic prediction from independent validation. The validation was performed on 38 Labrador retrievers with the NA phenotype and SNPs from the Affymetrix
array. The accuracy is displayed as the correlation coefficient between the phenotype and GBV. GBV was calculated by using the formula derived from 359 dogs genotyped with the
Illumina SNP array. As 40% of SNPs on the Illumina array were not on the Affymetrix array, GBV was calculated with the common SNPs shared by the two arrays and all the SNPs on
the Illumina array with missing SNPs imputed. The calculation of GBV was performed with a different number of the most influential SNPs.
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genomic prediction. There will always be impetus to expand the
reference panel, such as combining the naïve 38 dogs with our
original 359 to use as the next reference population. As more dogs
and breeds which have undergone genome wide genotyping are
added to the reference population, the subset of SNPs used in the
prediction set would be recalculated to capture more SNPs in LD
with the causal QTN or genes.

The majority of the 359 dogs we used were Labrador retrievers
and their crosses with Greyhounds, yet the other minor breeds
were well predicted. This indicated that multiple breeds could be
integrated together although they were remarkably diversified
from a phenotypic and genotypic point of view. We derived PCs
from all the SNPs. Similar to previous reports, we were able to
separate the breed structure of the dogs in our study based on a plot
of the first and second PCs (Fig. 4).

For the four traits that collectively define CHD, there are at least
10e20 QTLs42e44. In the current study, we identified the most
100e500 influential SNPs providing the most information to the
GBV through Bayesian analysis which jointly estimates their
contribution. As the number of SNPs in the reference panel dropped
below 50, the SNPs failed to bracket some of the QTN and thus the
accuracy of the GBV would decrease.

Our previous genome wide association study (GWAS) identified
four SNPs associated with CHD and two SNPs associated with hip
OA45. These SNPs were identified through individual SNP associa-
tions. Further, the GWAS45 included many more dogs and breeds
which were genotyped within eight previously identified QTL44.
Genomic prediction could be enhanced by finding the causal genes
through GWAS45. Positional cloning of candidate genes will provide
opportunities to add intragenic informative SNPs in mutated genes
to the genomic prediction panel46,47. However, this may take some
time as only one gene, fibrillin 2, has been shown to be associated
with CHD to date48.

Our study indicated that genomic prediction could be effective
with the most influential 100e500 SNPs chosen from w22,000
SNPs. If genotyping of these SNPs with customized array, or
sequencing whole genome becomes cost effective for public use,
genomic prediction can become a vital and integral part of
improving canine breeding practices for CHD and become a routine
part of personalized canine genetic medicine.
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