
Theoretical Computer Science 33 (1984) I39- 174

North-Holland
139

A SYSTEMATIC STUDY OF MODELS OF ABSTRACT
DATA TYPES

M. BROY and M. WIRSING
Depo~.r.zc! qf Computer Science, Uniuersity of Passau, 8390 Passau, Fed. Rep. Germany

C. PAIR
Centre de Recherche en hformatique de Nawy (CNRS LA 262), France;

and hlin~.&e de 1‘Ed~wi~~ra rVatianale, 75007 Paris, France

Communicated by M. Niv*at

Received September I982

Revised February 1984

Abstract. lk term-generated models of an abstract data type can be represented by congruence

relatiotls UI; &r term algebra. Total and partial heterogeneous algebras are considered as models

af hierarchical abstract dalta types.

Particular classes of moJels are studied and it is investigated under which conditions they form

a complete lattice. This theory allows also to describe programming languages (and their semantic

models) by abstract types. As example we present a simple deterministic stream processing

language.

1. htrodurtion

Abstract (data) types are formal specifications of (classes of) heterogeneous
algebras which are called the models of abstract types. Such a view of the semantics

of abstract types is important, in particular, for their applications; for instance, for
the incorporation of abstract types into programming languages [16, IS], the use of

abstract types for the definition of programming languages and for the specification
of compilers [3.4,8,9, I&33,34,42]. or for the joint development of programs and
data structures [37, 171.

However, the study of the models of a type has rarely been done very systemati-

cally. The point of view of the ADJ-group [23 is that an abstract type specifies an
initial dgebru of a categorv of algebras. Wand 1421 is interested in final algebras,
the Milano-group (Bertoni et al. [7]) in monoinitkd algebras. The study of all

term-generated models of a type has been initiated by a group of Pisa (Giarratana

et al. ‘[19]) and independently proposed by Bauer and then continued by the
Cl P-group of Munchen [i 1,451. The present study is based on this work: however,

the presentation-(based on [34]) and several results are new.

U?O4-Y/75: WJI’S3.00 $3 1984, Elsevier Science Publishers B.V. (North-Holland)

140 M. Bray, M. Wirsing, C. Pair

One often cited advantage of abstract types is their modularized, hierarchical

construction from already predefined types (cf. [141). We call such types hierarchical
types and have made particular efforts for their definition and the study of their

models for total (Section 4) and partial algebra semantics (Sectioti 5) as it is needed
for the specification of programming languages (cf. [8,9,34]).

W6 prove theorems of the following kind: under certain assumptions the models
of an abstract type form a complete lattice, or a semilattice; or if these assumptions

cannot be satisfied, we single out ‘well-behaved’ subclasses of models such as the

classes of extensionally equivalent models.
The assumptions concern the properties of a type. Let us first recall the definition

of a type used in this paper: an abstract type consists of a signature (Section 2) and
of axioms (Section 3).’ The assumptions may concern the ,fbm~ of fhe axioms. We

do not try here to reach a maximal generality (cf. for this [I I]), but only a generality
appropriate for particular applications. Moreover, we introduce other hypotheses,

also of ‘syntactic nature’, since evidently the interesting results connect syntactic

properties of a formal system, i.e., the abstract type, with semantic properties
concerning its models. For example, for hierarchical types, the slcficic?nt conlpleteness

of Guttag [23] and Guttag and Horning [24] ensures the extensional equivalence of

all models. But, for programming languages in particular, it is necessary (cf. [ICI, 341) .
to study models of abstract types which are not sufficiently complete (Sec;ion 5).

A cwmpkte lattice is a nonempty set together rz+tk an ordering relatiort such that

every nonempty subset has a least upper bound and a greatest lower bound. In this

study the set will be the class of term-generated models and the ordering will be
based on the notion of Ilomomo~j?hism: AL R if there exists a homomorphism from

A into B. In fact, this is not an ordering between models but between isomorphism
classes of models. The isomorphism classes of term-generated models can be rep-

resented by the congruence relations on the terr?l algebra. We will use this tool

systematically, for it permits to work with the set (the lattice) of congruences. So

we need not to make any use of category theory as., e.g., ADJ or Wand. In particular,

we prove that the isomorphism classes of the models of a consistent and suiliciently
complete hierarchical type T form 3 lower semilattice w.r.t. c (see Theorem 4.6):

they form a complete lattice if, furthermore, the premises of the axioms of T are
of primitive sort (see Theorem 4.7). But, if 7’ is not sufficiently complete, then the

isomorphism classes split into disjoint and incomparable lattices of extensionallq
equivalent models (see Theorem 4.8). By allowing partial functions as interpretations

of incompletely specified operations with primitive range, the situation remains the
same (see Proposition K(3), but we can distinguish the class of locahy computable

models.

Such models exist in the more general framework of hierarchical partial types,
under the assumption of consistency and partial sufficient completeness (see

Theorem 5. I I !. Rut there a class of extensionally equivalent models does form or+
I

.iRd

(I]. 6311 dwtrsct data type is indeed a clilss

here the class of models of the type.

ot slgetrras specified

Systematic study of models ofabstract data types 141

an upper semilattice and not a complete lattice (see Theorem 5. IO). Furthermore,

in the class ‘%: of all classes of extensional equivalence the locally computable models
are an initial element w.r.tt. the generalised ‘less-definedness’ ordering of the fixed
point theory (see Proposition 5.7). We give syntactic conditions under which the
class 8 forms a lower semikttice w.r.t. this ordering (see Theorem 5.15).

Finally, as example we present a simple deterministic stream processing language.
This language cau be used to write programs which consecutively read and consecu-

tively output finite or infinite sequences of integer numbers.

2. Signature and algebras

In this section we review the notions of signature, term algebra and term-generated
heterogeneous algebra. In particular, we recall that the se t cf congruences associated
to the algebras of a certaitl signature forms a complete lattice with respect to set

inclusion. Its greatest element is called terminal element and is associated to the
algebras z iwe :very carrier set contains (at most) one element whereas its least
element is called initial element and is associated to the term algebra.

A ~@QTUW C = (S, F) consists of

- a (finite) set S of sorts sI, . . . , s,, which will be interpreted as carrier sets,

- a (finite) set F of opemtion symbols f,, . . . , fn togetkr with their functionalities,

s,, x l l
- x s,, --* s. (p 2 0, s,~, s, E S), where every operation symbol J will be inter-)

preted as a kction S,, x 0 . 9 x S,, + Si where S, is the interpretation (or carrier

set) associated with s,. In Sections 2, 3 and 4 we assume that these functions are
total.

The operation symbols composed in accordance with the usual rules generate the

terms of the different sorts (unless stated otherwise, a ‘term’ does not contain any
variable). If W(E), is the set of terms of sort s, then the n-tuple W(C) =

(WC),,, l . l , W(Q,) is a heterogeneous algebra with the operations f”“’ for the
symbols -1’ of the following signature:

W 2 1 is called the term algebra of the abstract tji;;.

An interpretation is an epimorphism from the term algebra; it uniquely determines
;1 tcr~n-Kcnel.clleri~~te(f heterogeneous I-algebra A: A heterogeneous X-algebra A is called

term-generated if there exists an epimorphism from W(Z) into A. W(E) is initial

in the class of nil such algebras. We denote by t.4 the image of term t in the algebra

.A w.r.t. the interpretation homorphism W(C) -+ A. Obviously, at most one

homomorphism can exist from A into B, if A and B are term-generated Z-algebras:

if this homomorphism exists, it transforms tA into t ‘.

The notion of congruence ouer W(E) will be the tool for studying the category

of term-generated Z-algebras. Every term-generated Z-algebra is isomorphic to the

142 M. Bray, M. Wirsing, C’. Puir

quotient W(2)/ -A of the term algebra W(Z) w&t. the congruence - ,&

t - A t’ gf t A = t’A.

Conversely, every quotient of W(Z) w.r.t. a congruence is a term-generated
C-algebra.

Therefore, we can reduce the study of this category of algebras to the study of
the set Z(S) of congruences over W(S). In particular we have

-AS -B e there exists a homomorphism from A to B,

where E is the set inclusion (also called ‘finer than’, ‘stronger than’).

Proposition 2.1 (cf., for instance, Gr5tzer [22]). V(C) is u complete lcs:ice w.r.t. C .

Its minimum (or initial element) is the identity relation between terms (associated

to W(E)).
Its maximum (or terminal element) is the ‘universal congruence’ U where all

terms of a sort are congruent (associated to the algebras A where every carrier set

s” is a singleton, 3r empty if W(2 j,. = 8). The greatest lower bound ni, , -, is the
conjunction of the congruences

t-_ijt’C3 t--J forall &I,
del

making ‘i;‘(2) a complete lower semilattice. Therefore, St-V) is a complete lattice
(cf. Fig. 1) according to the following well-known lemma.

Lemma 2.2. A ccwlplete lower semilattice having a maximum jbrms a complete lattice.

Effectively a set E has a least upper bound

u E=n E’,

where E’ is the set of upper bounds.

terminal algebras

("singletons")

id C W(!') x W(L) W(!9 initial algebras

Systematic study of models of abstract data typs 143

3. Axioms and models

In this section, the form of the axioms for algebraic types is discussed. It is shown
that the set of con Emgptlces associated to a type with positive conditional axioms
forms a complete lattice. Moreover, a sound and complete proof system (with respect
to ground equations) is given.

In algebra the axioms are equations of the form t = 1’ where t and t’ are terms
of the same sort: we refer to this as the equational case. For the applications in
computer science, however, at least axioms with preconditions are reasonable (cf.
[25] j:

h=true * I=:’

if one of the sorts is BOOL, the SW of boolean values; and in order to avoid this

particularioation ant: accepts conditions

or, more generally, condltiurlal equations (cf. [1, 111) also called Horn clauses [26]:

(920, for q=O we have 2s t’).
We I+ Iii ~cx with this kind of axioms: the tj = t: are called the premises and

t = t’ the conclusion of the axiom.
Thus we obtain a jir~ order formal sys’tem with equality. Its theorems are called

tkeorems of the abstract type.

A X-algebra A satisjks an axiom of the preceding form if 1; = ?iA for i = 1, . . . , q

implies tl” = 1’“: in other words, if 1, -A ti for i = I,. . . , q, then t sA 1’: we say also

that the congruence CYA safisjes the axiom.

A model A of a type is a term-generated L-algebra satisfying the axioms. The

theorems of the type are also satisfied in A.

Remark 3.1. In Sections 3 and 4 we only use axioms without variables. Indeed, a

formula

containing at most the free variables xl,. . . , x, of sort s,,, . . .) s,;,, is satisfied by a

Zalgehta A if, for all (I,, . . . , a, of the carrier sets St,. . . , St,

1;[9,/?1,, -. . , tJ,lX,,] = t;“[U,/X,, . v . , U,,/X,,] fOrj = 1,. . . , 4

implies P[U,/X,, . . . , U”/X”] = t’Aju,/x,, . . . , UJX,].

in the case of term-generated algebras this exactly means that A satisfies all’the
ax:oms obtained by replacing each variable by term of the same sort. Thus, using

axiIams with variables does not change the classes f>f models specified by abstract
types.

144 M. Bray, M. Wirsing, C. Pair

Proposition 3.2. ?he congruences satisfying the axioms E form a complete lattice

%(C),‘E.

Proof. %(Z)/ E is a complete sub-iower-semilattice of %(A) since if some con-
gruences satisfy a Horn clause, then their conjunction satisfies this formula, too (cf.
for instance [I]). Obviously, U satisfies the axioms: thus we can apply Lemma
2.2. q

By the way, the lattice %‘(2)/ E of congruences (cf. Fig. 2) satisfying the axioms
E has an initial element the corresponding model of which is an initial algebra in
the category of models (and even in the category of possibly not term-generated
models, cf. [I I]).

Proposition 3.3. The minimal congruence sati$j)ing the axioms is the ‘syntactic con-
gruence’ = _ which is d&cd 6~

t = sv t’ Q t = t’ is a theorem of the type.
drf

Proof. (a j -sb is a congruence and satisfies the axioms since they are Horn clauses.

(b) If - - is a congruence satisfying the axioms, then =,,. E -: indeed, if I = I’ is
a theorem, then t” = t’.” in every model A, and thus t - t’ if - satisfies the axioms. El

The proof is done considering the type as a first ordw fmnd system. t-hwer,

it is dso true for ;I simpler formd system (1 I):
- its formulas we the t z-z t’ where t. t’ are terms of the same sort,

- its axioms are the t = t,

- its rules of inference are: for each asiom A,. , . ‘, t, = t: * t = t’, the rule

(C’OSlP)
tz5 t’ t” 1”

--,-*+r-- f
(St! w-r)

t tt

t f(t,.-t, . . . , ‘J =.t’(11, . . . , t’. - . . . 1,J’

Swematic study of models of abstract dota tges 145

Symmetry and transitivity of =sY result from (CoMr): for instance, symmetry can
be derived with t” =dcf 1:

Transitivity then results fro.m symmetry combined with (COMP).

Consequently, this system is also complete for the proof of I= t’ which is satisfied
by every model. In fact, there exists a model, associated with the congruence zsy,

where only the equalities which are provable are satisfied: this situation is rather

remarkable for a formal system.

We note that these rules are sound for heterogeneous types because of the absence
of variables. In the presence of variables the transitivity may cause some problems

and therefore, the rule!: have to be modified (according to Goguen and Meseguer
[21] and Huet and Oppcn [28]). We also note that because of the restriction to

term-generated models no complete proof system can exist w.r.t. formulas containing

free variables (cf., e.g., [a]).

Remark 3.4. TFe converse of part (b) of the proof of Proposition 3.3 is not true: if
St- _ ,then - Goes not necessarily satisfy the axioms. Only if one restricts to the

equiltional case, then every epimorphic inlge of the initial model is a model too:

in the equational case, %(E))/ E is a complete sublattice of S(C). This is not true
in the general case. If two congruences satisfy the axioms, their least upper bound

does not necessarily do the same. For example, let single, married, widowed, true,

false, be O-ary operations (i.e.. constants) with the axiom

single = married - true = false.

Then two congruences where

single - widowed, single + married, true + false,

married - widowed, single + married, true +false

satisfy the axioms but not their least upper bound, for which

single - widowed - married, true + false.

4. Hierarchical abstract types

The abstract types of the preceding chapter do not exclude trivial models, i.e.,
models defined by the congruence U, with (at most) one element for every carrier

set. In particular, if one uses the boolean values, nothing specifies that, in every

model of the type BOOL, true is different from faise.

On the other hand, one often constructs types based on (known) data types the
axiom:ltisation of which is presupposed to be known-cf. for instance finite sets of

146 M. Broy, M. Wirsing, C. Pair

integers [24], arrays of natural numbers [43], primitive recursive functions over
natural numbers [44] or statements of a programming language over the expressions
of the came language [38].

For these primitive types (integers, natural numbers, expressions) we assume a

given model, or in other words a given congruence = P, called primitive congruence.

This congruence could be the initial congruence of the primitive type (cf. [43,1 I]),
but also other choices are feasible.

A hierarchical type T is an abstract type (Z, E) together with a subsignature &C X,

called primitive signature and a primitive congruence =p for this subsignature &.

4.1. Primitive signature and hierarchical algebras

In this section, hierarchical algebras (these are algebras respecting the primitive

congruence) and their associated hierarchical congruences are discussed. Using the
notion of primitive context we define whether two (hierarchical) congruences are

extensionally equivalent. It is shown that the set V?(X) of all congruences (of
signature C) is partitioned into disjoint sublattices of extensionally equivalent
cpngruences.

First we define the notions of primitive sort, operation and term.

One designates in the signature 1 of a type a primitive signature & = (Sp, FJ.
The sorls s E SIB are called primitive sorts, the operations ,f~ FP are called primitive
ofreratiajns and must have a functionality which uses only primitive sorts.

The terms which are formed by the primitive operations are called primitive terms.

Thus, every primitive term is an element of W(&)\ for some s E SIa, and also

W(L),. But, in general, W(E), contains W(,V,A, sroperly: there exist terms
primitive sort s which are not primitive terms (see Fig. 31.

of

of

terms of sort s

An algebra A of a hierarchical type is called hiwarc~~icwl a/g&-u if A is a

term-generated “- - algebra such that the primitive carrier sets and oprrations form
an algebra Al & which is isomorphic to W(z’,)/ =p, i.e., which is an element of the

isomorphkm class of those trrm-generated E,-algebras which satisfy exactly = p.
The congruence relation illdL:ed by a hierarchical algebra on the term algebra is
ca I led 3 hitwudkd cortgrutw~.

Systematic study of models oj‘ahstract data types 147

Emma 4.1. The restriction of a hierarchical congruence -A to the primitive terms
coincides with the primitive congruence = p.

Proof. For all primitive terms p and p’:

p zpp’ @ pA”P ,_ pIA@, e p” = p’” (j p NAP’* 0

’ But not every congrumce satisfying the condition of Lemma 4.1 is hierarchical

(cf. Fig. 41. The following proposition will give an exact characterisation of such

congruences.

Proposition 4.2. The hierarchical congruences are exactly those congruences over W(C)
which satisfy that thepirimitive terms of eLery (congruence) class of a term ofprimitive sort
represents exactly and onl?, one class qf the primitive congruence = p.

l oe

*acI congruence classes of the primitive congruence =p

\\1_=f// congruence classes of a hierarchical congruence

Fig. 4.

)S

Proof. Let A be a hierarchical algebra. Then, according to Lemma 4.1, every

congruence class c, of a term t of primitive sort contains at most one class of =p.
c, contains at least one class since t,” is an element of Al Cp which is isomorphic

to W(&)/ = [a: hence, there exists a primitive term p (E W(Ep)) such that

t .A :’ /) A I 1,. = p .*I .

Conversely if every class of a congruence - contains one and only one class of

= lBr then the restriction of W(2)/ .- to Zp is isomorphic to W(2’,)/ = p. Ll

Corollary. Jjhw hierarchical congruences - n and -- H verily - n C_ - L3, thw the... have

the same restriction to the primitive sorts.

Definition. Two congruences are extensionally equivalent if they have the same

restriction to the primitive sorts. Corresponding algebras are also said to be

extensionally equivalent.

148 M. Bray, M. Wirsing, C. Pair

In some applications, an element of an algebra (e.g., a stack sr) is only considered

through the functions of primitive sort (e.g., top(sl), top(pop(sf)), . . .). We call
every term cn of primitive sort a (primitive) context of a term f if cn contains exactly

one occurrence of one variable x9 the sort of t and x being the same: cn[t/x] will

be simply written as cn[t]. Note that a context may contain nonprimitive functions,

too, and that only the outermost function must range in a primitive sort.
Extensionaiiy equivalent algebras ale tiiliistinguishable through the (primitive)

contexts, i.e., they have the same ‘input-outplrt’ behavior.

Lemma 4.3. The lattice Y(C) is partitioned in sublattices qf extensionally equivalent

congruences: -for each of them, V, the maximum is the congruence @ dejined by

t@ 1’ G for all contexts cn of 1, cn[t] Ln[t’],

where g is the restriction to the primitive sorts of the congruences CJ~’ (4’ (thus, .tbr

Proof. It is obvious that @ is a congruence. Let us study its restriction to terms

t, t’ of a primitive sort:

@f’ z+ f Lt’ (with s for err),

Thus, (_3 belongs to ‘fO ‘.

Now, if - is a congruence belonging to ‘f,“,

t - I’ =3 cn[r]- cn[t’l --i cn[r] LI[t’]

for every (primitive) context 01 of t * t(.J I’ t -1

A model of a hierarchical type is called hierarchical model if it is a hierarchical

algebra satisfying the axioms. We shall study the hierarchical congruences satisfying

the axioms and, from now, ‘hierarchical congruence’ will mean ‘hierarchical con-

gruence satisfying the axioms‘.

The formal system associated with a hierarchical type is the system of the

nonhierarchical type extended by the axioms p - p’ for all p and p’ that are primitive
terms with p -7 ,, p’. E:very hitx~rchical algebra b&ties these axioms. We shall study

the hierarchical congruences. In particukr, ;I question is whether the syntactic
Congruence -* \) defined by this formal system is a hierarchical conguence. We will
see that ‘consistency’ and ‘suflkient completeness’ guarantee this. Then, all hierar-

chical congruences are extensionally equivalent and form a complete lower semi-
lattice with s,, as initial element (see Theorem 4.6). If, moreover, the premises of

the Corns NC Ed’ primitive sort, then the hierarchical congruences form even a

Systematic study of models qfabstract data types 149

complete lattice (see Theorem 4.7). On the other hand we show that for a consistent
but not sufficiently complete type the set of hierarchical congruences is partitioned

into disjoint and (w.r.t. E) incomparable complete lower semilattices of extensional

equivalent congruences.

First, we can observe two simple facts.

Fact 4.4. Every primitive ckzss ST =S4 contains at most one class of = p ifl for all

primitioe !CVIS p and p’

P =,> p’ * p =p Pl,

i.e., the hierarchical type is (hierarchy-) consistent [23]. This means that an equality

between pri:r:itilje terms is provable in tile whole hierarchical type on137 if these terms are

congruent in the primil’ice congruence.

Fact 4.5. Every primitic,? class yf =,\ contains at least one class oj‘ = P ijf for ever!

term oJprimitive sort t there exists a primitive term p with t =,\ p, i.e., the hierarchical

type is suJkiendy complete [23]. Equivalently- one can say that every term of primitive

sort can be proved to he corlgruent to a primitive term bv the proof system of the type.

Moreover, if =., is a hierarchical! congrtience, it is the least one: then, by the
conseqtsence of Proposit ion 4 2, all hierarchical congruences have the same restric-

tion to the primitive sorts: they are extensionally equivalent.

Theorem 4.6. Tlw syntactic congruence is associated with a hierarchical model @ the

hierarchic’aI type i.v consistent and s@iciently complete. In this case, the hierarchical

coIigru4nceq are e.~tensionally equivalent and jhrm a complete lower semilattice with

the .yitcrcVic corlgrrcence us initial element.

Proof. The tirst part of the tlllcorem follows from Facts 4.4 and 4.5. Let us consider
the second ;,art. The hierarchical congruences are the elements of the complete

lattice ‘fl(2’ I/’ E which are extensionally equivalent to =,\. Thus the intersection in
the lattice f (2 b/ E of hierarchical congruences is a hierarchical congruence, too. Cl

Consistency and suficient completeness do not yuarantee that the hierarchical

congruences form a complete lattice. Consider e.g., the example of Remark 3.4 and

assumt’ that true and false are different elements of primitive sort whereas single,

married, widowed are not primitive. This type is consistent and sufficiently complete
but doe\ not have any terminal algebra and, hence, cannot form a complete lattice.

In the equational case, however, S’(6)/ E is the sublattice of %(2) constituted

by the congruences greater than =;4v (see Remark 3.4); the congruences extensionally

equivalent to =,V L dso form a sublattice %’ of X’(C) : thus, the hierarchical congruences

are those of the-intersection of these two sublattices, which is a sublattice of %(S).
Its maximum is that of (. ‘, given by Lemma 4.3.

151-l M. Bray, M. Wirsing, C. Pair

All this remains true if the terms ti, t: of the premises of the axioms are of primitive
SCM (we briefly say that premises are of primitive sort); indeed such a type has the
same models as an equational one, its axioms are the conclusions t = I’ of the axioms
the premises of which are satisfied by ssY. Wt ‘irave thus proved
theorem.

uxioms are qf Theorem 4.7. Let T be a hierarchical type such that all premises oj
primitive sort. Then f T is consistent and suflciently complete, the hierarchical wngruert-
ces form a complete lattice. The terminal congruence is the exterrsiod congruence

the following

t@ t’ a _hr all (primitive) contexts cn qf t, cn[t] =>, cnrt’].

@ terminal congruence

-* hierarchical congruences

syntactic congruence

O- identity id

Fig. 5. The lattice of hierarchical congruences of a consistent, sufficiently complete hierarchical type.

Therefore, the hierarchical type T has initial models determined by the syntactic
equality sS,, and terminal models determined by the extensional congruence (cf.
Fig. 5). The terminal models are _fitII_v abstract in the sense of [32].

As a consequence of Theorems 4.6 and 4.7, a method can be given to prove an
equality t rM = trTM in a terminal model TM of 3 type T verifying the hypotheses of
Theorem 4.7: add t = t’ to the axioms of T and prove the consistency of the obtained
type T’. Indeed, if T’ is consistent, it possesses 3 model .9 which is also a model
of T: t n = t’A and thus tvrM = CT”. Tools to prove consistency are well known,
essentially by proving the confluence of an equivalent rewriting system [3 I, 271.

If a type is inconsistent, then no hierarchical congruence can exist which contains
=,,,. An inconsistent type does not have any hierarchical model.

On the other hand, consider consistent hierarchical types which are not sufficiently
complete-as, e.g., a type SKI- over integers together with a function some: set-+

integer and the axiom isempty = false ==+ some(s) E s.
The syntactic congruence of such a type does not correspond to a hierurshicul

model (cf. Theorem 4.6). Every congruence - associated with a hierarchical ma&l
must properly contain the syntactic congruence: the restriction of - to the primitive
sorts is obtained by grouping together every class of =,V without primitive term
(‘nonstandard class’) together wrth a class conreining a primitive term (standard
class), to verify the assumptions olr Proposition 4.2 (see Fig. 6).

Every I-egrouping p determines a class ESI-,, of extensionally equivalent hierar-
chical models. If we add the equations for the regrouping ta the axioms, we obtain

Swtematic study of models of abstract data types

nonstandard classes

151

nonstandard class

witt a standard class

standard classes

Fig. 6.

a sufficiently complese hierarchicai type having exactly the elements of EXT, as
hierarchical models, ExT,, being nonempty iff this type is consistent. According to
Theorems 4.6 and 4.7 tihe congruences associated with EXT, form a complete lower
semil.aGcir ;dnd, if the terms of the premises of the axioms are of primitive sort,
then they even form a completle lattice. If p and p’ are two different regroupings,
the congruences of ,p and p) are incomparable w.r.t. the set inclusion C_ (cf. Fig.
7). We obtain the following theorem.

Theorem 4.8, Let T 04 a consistent hierarchical type. Then every class of extensionally

eqddent hierarchical congruences Jorms a complete lower semilattice. These semi-
lattices are disjoint arrd incomparable w.r. t. c_ . I the axioms have premises of primitive

sort, therr eveq class is a complete sublattice of %‘I(C)/ E.

class of extensionally equivalent congruences

Fig. 7. The classes of congruences associated with a not sufficiently complete type.

152 P f. Bray, M. Wirsing, C. Pair

NOW, unlike the cases of sufficient completeness, a first order proof system, or
the proof system II (cf. Proposition 3.3), is no more complete: if t = t’ is satisfied
by eLery model, it is not always provable. For example, let us consider a type with:
- a primitive sort S, having one constant JJ
- a nonprimitive sort S2 and operations a : + SJ: S2 + S, without any axiom. Every

hierarchical model satisfies f(a) = p, but ,f(a) = p is not provable (for a study of
these questions, see [6]).

5 S. Partial abstract types ?Z

Roughly speaking, a type is not sufficiently complete, if an external operation ,A
i.e., an operation with values in a primitive sort, is not completely specified. Then
there exist terms t such that f(t) is not syntactically equivalent to any primitive
term: one can say that the value of _f(t) is not significant and, therefore, may be
interpreted as undefined. This leads us to considering partiul heterogeneous algebras :

the only difference with total ones is that the operations can be interpreted as partial
functions. For simplicity we assume that the given model of the primitive type is a
total algebra.

5 1. Partial models

In this section the interpretation of the equality symbol = in partial algebras as
well as the interpretation of universal quantifier in partial algebras will be discussed.

For a partial algebra A, we write t.” = t’.“’ if t*” and t’” are both defined and equal
or if they are both undefined. And we write V’ s t”’ if f” and 1”’ are both defined
;ind equal; otherwise t” f I’.” does not hold. (= is the so-called strorlg equality
(cf. [q5]) and 2 the existential equulitv (cf. [S]).) An axiom t = t’ is satisfied by a
partial algebra 11 if t” = t”‘. This verification condition is strong: axioms t = I’ are
excluded where 1” and t’” are not both defined or both undefined as e.g., mult(f, 0) =
I) where t is a term which is undefined in A. In order to avoid such situations one
can employ preconditions (cf. also errors in [3]). In contrast to Rroy and Wirsing
[I I] we take here the following position: The undefbedness of terms in the precondi-
tions should not imply the equality of two terms in the conclusion: otherwise, one
could obtain (partial) initial algebras which are not recursively enumeruble.’ Thus,
we say that a partial algebra A satisfies an axiom

without Ivariables if ti’ s ,:” for i = 1, . . . , q implies t ” = Y”‘. As pointed out in [1 I),

Systematic study of models of abstract data types 153

the strong equality is expressible by the existential equality together with a defined-
ness predicate and vice versa. However, allowing the strong equality in the premises
we get a more powerful specification method leading to specifications with noncom-
putable (hyperarithmetic) algebras.

Let us now examine the case where axioms may contain variables. Free variables
in a formula are interpreted as universally quantified. They must hold for all elements
of the carrier set of the algebra: a (term-generated) partial algebra A satisfies a
formu& F -64th free variables xl,. . . , x, if A satisfies F(f,/x,, . . . , t,Jx,) for all
terms t,, . . . , t, of appropriate sort which are dejned in A: t,, . _ . , t, are ground
terms, i.e., terms without variables.

Remark 5.1, Partial functions are strict: f(t) Is undefined when the interpretation
of t is undefined. it is, however, possible to use ‘conditionals’ in the sense of
programming languages. Instead of introducing an operation if-then-else into the
type (which we do not want to be strict) we may consider an axiom

u = if h then f else t’

as abbreviation of the two axioms

b=ttrue * w= t and 6 f false a u = t’.

Another possibility ‘is to define the semantics of if-then-else by an evaluation
function (as in denotational semantics). This has been done in [8,9] where the
semantics of simple programming languages is completely algebraicaily defined.
In general, fixed point theory (cf. [41]) considers also models with nonstrict
operations. This can be done within the algebraic approach by considering general-
ized heterogeneous partial algebras (,cf. [121).

5.2. The associated total type

In this section, the connections between partial types and total types are studied:
to any partial type T (for short, PAT T) a total type T is associated by introducing
a so-called ‘definedness predicate’. Similarly to any partial algebra a total algebra
is associated by introducing new ‘bottom’ elements. Then the totalisations of the
models of T are exactly the models of ?; (see Proposition 5.2). Moreover, we use
the total type T to give a criterion whether a term is defined in T (see Proposition
5.4) tied even to establish a sound and complete proof system (with respect to
ground atomic formulas) for T.

Now, let a partial type T be given. We extend it to a total type r in the following
way:
- 7 is a hierarchical type on a unique new’ primitive sort BOOL with two 0-ary

operations true and false, interpreted as the boolean values true and false:

’ Th:5 means that BOOL is assumed to be different of all sorts of T.

154 M. Bray, M. Wirsing, C. Pair

_ for lzvery sort s of T, an operation D: s + BOOL; D(I) = true (abbreviated in the
sequel by D(r)) expresses the definedness of the term t;

_ axioms for D:

(ST) Strictness:

WW

(UN)

o(f(4, - l l 3 43 * Wi)

for every operation f: sl x 9 l . x s, + s, and i =I 7, . . , n.

Dejnedness of primitive terms:

D(P)

for all prilmitive terms p.

Unicit_y of undejnedness:

D(t)=false~ D(t’)=false a t=t’

for t, t’ of the same sort.

- transformation of the axioms of T:
Every axiom

with the free variables x,, . . . , x,, is replaced by

Then every algebra A of the partial type T can be made into an algebra A of 7
in the following way:
- for every sort s E S,

3 sA u { er,} if there exists a term t of sort s with 1.” undefined,
s =

s n otherwise,

where er, is a new element:

- for every operation ,f’: s, X - - - X s,, -+ s,

i

n if(a,, . . . , a,,) E (s;” X l 9 l X .s;,‘j

./“‘(u,, . . . , u,, 1 - ’
and j‘“(aI, . . . , II,,) = a,

I

er, if there exists an i E { I, . . . , II} with N, = U,
or-f”{ a,, . . . , tz,, 1 is undefined.

Systematic study of models of abstract data types 155

The total algebra A is called the totalisation of the partial algebra A: two distinct
algebras have two distinct totalisations.

Conversely, every algebra B of F verifying (ST) and (UN) is the totalisation of
an algebra k of T:
- if there exists a_n elennent er, of sB such that DB(er,) = false, then, from (UN),

er.V is unique: sB = s’ -- (er,) ; otherwise, s B = sB.
m S(‘a Ivm**9 a,) is defined, and equal to f*(u,, . . . , a,) iff DB(fB(u,, . . . , a,,)) =

true.
A structural induction using (ST1 shows that tB is defined, and t’ = t”, iff

D”(t*) = true. The verification that 6 = B is then immediate.

Proposition 5.2. Let T be a PAT and 7 the total type assoc;ated with T.

(I) [fA is an algebra of T, A its totalisation, and t a term of sort s, then t A dejned iff

D”(r”) = true avtd t” := t”.
(2) The models of 7 are the totalisations of the models of T.

Proof. Let A be’an algebra of T. Its totalisation A obviously satisfies (ST), (DP)
and (UN).

(1) Already proved with A = 6 and A = B.
(2) From (I), A verifies axiom (a) iff A verifies (OL): if A is a model of T, then

4 is a model of 7; if B is a model of 7, then B = i and 6 is a model of 7I El

Because of the l-l correspondence between (partial) models of T and (total)
models of T, the study of the former can be replaced by that of the latter. By
definition, the partial (hierarchical) congruence -A associated to a partial (hierar-
chical) algebra A will be the congruence -4 A associated to A. Thus, -A E -B means
that there exists an homomorphism p from A into B: ~(f”(x~, . . . , x,)) and

.1‘%(-0, - l l 1 rp(x,,)) are strongly equal, i.e., both defined and equal or both
undefined.

In the sequel we have to prove that some relations - on terms of F are congruences
verifying axioms. They will be given by:
_ an equivalence on the terms of sort BOOL, hierarchical in the sense that every

term is equivalent to true or false: it is completely defined by the condition for
which D(1) -true: this will be expressed by a unary relation R associated to - ,

D(r)-true r-4, RW:

-t- 1’ N t zqY I’ or (D(t) -false and D(t’) -false) where -iv is the syntActic
congruence of Z

Lemma 5.3. The preuious relation is a congruence verifying (ST) if (t =;;Y t’ trnd
R(t) * R(f)) and (R(f’(t,, . . . , t;, . . . , t,)) -+R(t,)). It verifies (DP) if R(p) for

all primitioe terms p. If uer$es (UN). It verifies \I:) $ R(t) =+ D(t) 3;~ true.

Proof. Relation - is obviously reflexive and symmetric. It is transitive because

156 M. Bray, M. Wining, C. Pair

=--.. ,’
t-y ’ and --d?(t) 3 TR(t’). It is a congruence because -=;G is, and

lR(ti) * 7R(f(t,, l l - 7 ti, l l l 3 tn)),

t

1

The other

=@ t’ * f(t,, . t . . , , . . . , t,) “syf(t,, . . . , t’, . . . , t,,),

=;$ t’ 3 (R(t) e R(t’)). -

results are immediate. Cl

A first application is the following proposition.

Proposition 5.4. D(t) is a theorem of 7 iff there exists a primitive context en qf t and
a primitive term p such that cn[t]= p is a theorem of T*

Proof. Since all primitive terms p are assumed to be defined, if cn[t] = p is a theorem,
then D(cn[t]) is a theorem and also D(t) by repeated applications of (ST).

For the converse let us consider the relation - defined as before with
R(t) rc~ 3cn3p, cn[t] =~y p. Then R(t) + D(cn[t]) =;i true for some context cn

anId by (ST) we obtain R(t) =+ D(t) =~y true. From Lemma 5.3, it is a congruence
satisfying axioms, thus stronger than =;i. Cl

Definition. A ground term t of a primitive sort of T is reducGk if t y p for some
primitive term p.

Thus, D(t) is a theorem i!I t is a subterm of a reducible term.

Remark 5.5. The proof system (II) of Section 3 extended by (ST), (DP) and (UN) is
also a proof system for z But this system can be simplified. For example, no
L)(t) = false can be proved since only the rule (COMP) can lead to such a formula, but
with another D(t) = false as a premise; therefore, (IJN) is unuseful. We shall now see
that a new system (I1 1) is sufficient; its formulae are of the form t = t’ and D(t), for I, t’
ground terms of T:
- miotns:

(Rw) t = t

(DP) D(p) for p primitive term.

(s:,lls 1-) -,,
tzs 1’

_^____ -_- .--- -
jt.r I,..., t ,‘.., tJ=f’(r I,..., I’,..., I,,)

for _f operation of T (i.e., j+ 11)

Systematic study of models of abstract data types 157

t=t’ D(t)
(SURSD) -

D(t’)

(STi)
D(S(tl,**=,zi,**=,t,)) fori

=

D(ti)
1

9***9 n

(<XI)
D(u,) . . . D(u,) D(t,). . . D(t,) t,= t; . . . tq= t;

2s t’

if /j 1% ,...y ?i = t: + t = I’ is obtained from an axiom of

T by substituting uI, . . . , u, for the free variables.

It is clear that this system is sound, i.e., its theorems are theorems of 7:

(Ill t- r= 1’) * t y, I’ (Ill I-- D(l)) + D(Z) “kitrue.

The congruence induced by (II I) is the least congruence verifying the axioms (ST),

(DP) and (&) since (UN) can be removed without changing theorems.

We now prove that (111) is a (sound and complete) proof system for T, i.e., for

I, f’, t” ground terms, t = t’ and D(?“) are theorems of Ii= iff they are provable by

(I I i). K stc t,! A (II 1) is a proof system for ground atomic formulas. In general,

there does not exist a complete proof system for algebraic types w.r.t. formulas

contai!ting variables (cl’., e.g., [44]).

The soundness of (I 11) has already been proved- For the completeness, let us

consider the following congruence, hierarchical fat BOOL, uniquely defined by

II(r)-true @ 111 c D(r)

it is a congruence because oi (Suusr) and (Su~sr~). It satisfies (ST) because of

(STi), (UP), and (6) because of ((XI). Thus E,~c- -:

t _=\\ ,’ * 111 :--‘t ZE f’ WI “;y true * Ill I-- D(t).

5.2. Nonhierarchical partial models

Every total nonhierarchical type admits an initial algebra (see Proposition 3.2).

For partial. types we would like to have a similar property. Since initiality depends

cruciiilly on the notion of homomorphism we define in this section two notions of

homomorphisms for partial algebras- the so-called ‘total’ and ‘weak’ ones.

We show that the algebras which are initial (in the sense of total algebras) in the

class of ‘minimally defined’ algebras of a partial type ‘r (see Proposition 5.6) are

also initial in all models of T with respect to total homomorphisms (see Proposition

5.7). Moreover, definedness and equality (with respect to ground terms) in these

initial models coincides with the provable definedness and equality in T (see

Proposition 5.7). Hence this notion of initiality is also general as the one for total

types.

158 / 1. Bray, M. Wirsing, C. Pair

More specifically, let T be a nonhierarchical partial type. Using only axioms of
the fo,rm A ri = t: + t= t’ one cannot express any definedness. Hence we assume
that at ‘least certain terms are defined such as true and false of sort bod.

The totalisations of the (nonhierarchical models) of T are the models of E
hierarchical on BOOL. In general, F is not sufficiently complete on BOOL: it would
be the case only if D(t) is provable for all t. The syntactic congruence =ij, is thus
in general not associated with a model (see Theorem 4.6). The congruences associated
with models are divided into disjoint lower semilattices: each semilattice is formed
with those where the same terms are defined (see Theorem 4.8).

One of these semilattices corresponds to the minimally defined models, where t is
defirred only if D(t) ssj true. Let -A be a congruence of the following class:

- t =rry t’ =$ t -A t’;

-= l>(1) g,, true and n(t’) f ;, true + D(f) -r\ fake and D(t’) -A fake

=3 t-At’ (from (UN)).

A candidate for the initial congruence of the class is then sl:

- D(t) -, true e D(t) =+ true;
- t -, 1’ 0 t =iy t’ or (D(t) $sy true and D(t’) f,, true).

Because of Lemma 5.3 it is actually associated with a model.

Proposition 5.6. -, is a congruence associated with (z model 1 ctf‘ T, initial ita the

.wmilattice of minimally defined mode1.s.

For comparing congruences where defined terms are not the same, and thus
noncomparable by c , we consider two other orderings corresponding to two
different kinds of generalized homomorphisms (cf. [S, 39, I I]). For two partial
algebras A and B:
_- ‘.\ G - lI i fT t - ..l t’ and t” defined 3 t -!{ t’ and t” defined (in other words,

t” & p -A+ p & f”)

_- /I -N -7 -I1 iff t -,4 t’ and I” defined 3 t - Ij t’ and 1.” defined (this condition is
equivalent to (t -A t’ * t -H t’) and (1” defined =+ t” defined)).

A homorphism p: A -+ B for partial algebras is a partial opera’:ion which satisfies
the usual homorphism property on its domain:

s”(x,, l l * , x,,) defined * ~(fn(s,, . . . , s,,)) =.fH(cc,&), . l . , cc&,))-

A total hnmorphism also satisfies

./“‘I A-, Y) defined =+ _f“‘(&Q), . . . , C&Y,,)) defined. , - ,,

‘Total homorphisms correspond to the ordering c which preserves defined terms.

Systematic study of models of abstract data types 159

An initial congruence for c defines an initial algebra w.r.t. total homomorphisms
and will also be said initial. .

The relation =G preserves unde#Fned terms: for -A S cyB, if tA is undefined, t ’ is
undefined. It corresponds to the existence of a weak homomorphism (9, i.e., an
homomorphism which satisfies a condition converse to the previnus one:

fYcp(xA l l l 9 cp(x,)) defined + fA(x,, . . . ,x,) defined.

Thus a weak homomorphism can be a partial operation but it is surjective for
term-generated algebras.

Proposition 5.7. (1) D(t) and t = t’ are theorems of T tff t ’ 5 t”.

(2) D(t) is a theorem of F if t ! is dejrxd.

(3) =I is initial in the class of congruences associated with models of T
(4) Every sound and complete proof system n jor T (e.g., II I, Section 5.2) satisJies

the following properties: (for all terms t, t’)
(a) 7rt- D(t) @ t A is defined for all mod& A.
(b) w-t=t’a tAz t’ A holds in all models A.

In parfir ul,lr, property 4(b) says that only the existential equality can be proved (cf
Remark 5.5).

Proof

(1) I’6 t” e D(t) =, true and t =:I t’

e D(t) =iG true and t y; t’.

(2) Particular case of (1) with t, t’ identical.

(3) 1’ g t” --r, D(t) --A true and t -A t’ for every model A.

(4) Results from (2) and (1).

5.4. Hierarchical partiai models

Hierarchical total types admit initial models if they are consistent and suffciently
complete. If the premises of the axioms are of primitive sort, then the hierarchi ,a1

F
congruences form a complete lattice. In the case of hierarchical partial types we
will see that the existence of initial models is ensured already under weaker condi-
tions: apart from consistency ;Jnly the so-called ‘partial completeness’ is needed
(see Theorem 5.8). The lattice property, however, is not so easily reached. *For a
consistent partial type with premises of primitive sort any class of extensionally
equiva1er.t congruences only forms a complete upper semilattice with respect to
weak homomorphisms (see Theorem 5.10). Only if all functions of nonprimitive
range are total, then any class of extensionally equivalent congruences forms a
complete c-lattice (see Proposition 5.9). Finally we show in this section that the
initial models of a partially complete type are locally computable.

160 M. Bray, M. Wirsing, C. Pair

First let us recall that a partial model A is hierarchical for a given primitive

congrllence =p iff:
(a) if t is a term of primitive sort and tA is defined, there exists a primitive term

p such that t” = p”.
(b) for p,, p’ primitive terms $ = P’~ 3 p =p p’.
We recall that to study hierarchical models we add p = p’ to the axioms whenever

p, p’ are primitive terms verifying p =g’ (4.2).
The role played by the initial congruence s.5~ in (4.2) can here be played by the

initial congruence = I: it verifies condition (b) iff T is consistent: it verifies condition

(a) iff, for t of primitive sort,

D(t) -i> true @ 3p primitive: t =;i p.

Definition. T is partially complete if every ground term t of primitive sort with
D(t) =,\ true is reducible.

‘Partially complete’ is a weaker condition than ‘suffuziently complete’. It is sufficient
for the existence of a model. From Proposition 5.4, a type is partially complete itf
every subterm of primitive sort of a reducible term is reducible, too. We have thus
proved the following theorem.

Let US now study the structure of the citiss of hieriirchical piirtial congruences,
or more exactly of their totalisations. This class can be divided in subclasses of
extensionally equivalent congruences relatively to the pl imitive sorts and BOOL,

each subclass being a lower semilattice w.r.t. c , or even ;i lattice if’ the premises o!‘
axioms are of primitive sort.

Two models are extensionally equivalent for 77 when
- they are extensionally equivalent for the primitive sorts of T,

- they have the same defined terms.

,

If only tht first c-Jndition is verified, the models (;lnd their ;Issociated congruences)
are said to be extensionally equivalent for T.

As an example of application, let us consider the models where only the functions
having a primitive range can be interpreted as partial. Then, the detined terms are

those which con :ain no tindefined terms of primitive sort. Thus, two estensionaily
equivalent models for T have the same defined terms, and are extensionally

equivalent for ?: We have therefore proved the following.

Systematic study of models of abstract data types I61

axioms are of primitive sort. The set of congruences associated with models where
functions having a nonprimitive range are total, is divided into disjoint complete
c -lattices of extensionalRy equivalent congruences for T.

A class of congruences associated with models extensionally equivalent for T i,
constituted, in general, of several semilattices corresponding to different defined
nonprimitive terms (see Fig. 8). It is uniquely defined by the common restriction p

-+-- total homomorphism

l 0% l weak homomorphism

Fig. 8. A class of extensionally equivalent partial congruences.

of the congruences to the Iprimitive sorts (i.e., by a regrouping of classes of syntacti-

cally eqGvakt primitive terms, such that some classes without primitive terms are

grouped together and any other class is grouped together with a class of reducible

terms, see Fig. 9). Such a class of congruences is denoted by ExT,,.

0 1

i Q ;I(

0 2 n

w

Fig. 9. Two ditfercnt regroupings into p : @ leads to locally computable models.

Theorem 5.10. ,4 class of extensional!)) equivaleilt models of’ a type T has an initial
element. If the premises oj- the axioms are of primitive sort, then the congruences
associated to the models oj’ the class form a complete upper semilattice w.r. t. < ; th&

terminal element is the terminal minimally defined congruence of the class.

Proof. We consider a class ExT,,.

162 M. Broy, M. Wirsing, C. Pair

(a) If p is a primitive term and t a term of the same sort, the models of ExT,,
satisfy the equation t = p if t p p. .4dding these equations to the axioms, we obtain
a partia!ly complete type Tp: indeed, if D(t) is a theorem, tA is defined for every
model A of ExT,, thus t pp for some primitive term p. Therefore, TP has an initial
congruence (which is the initial congruence of the semilattice of the minimally
defined congruences of T,).

(b) We suppose now that premises of axioms are of primitive sort. Extensionally
equivalent congruences satisfying axioms (ST), (DP) and (UN) form a complete
lattice w.r.t. E (see Theorem 4.7). If two of these congruences verify -A =G -8 and
if -A satisfies axiom (OL), then -B satisfies this axiom. Thus, ExT,, is an upper
semilattice w.r.t. < .

(c) There exists in EXT, a s-terminal congruence which is one of the terminal
congruences 0; of the semilattices %‘i constituting ExT,: from Theorems 4.7 and 4.8,

t 0, I’ @ for 211 contexts cn of z and t’, cn[t] p cn[f] and t, t’ both defined
or both undefined in the models of ‘ci

(because, for 7, D is a context). For the minimally defined models, t is defined if,
for some context, cn[r] is reducible in TP: then, for the terminal congruence 0:

10 I’ G for all contexts cn of t and t’, cn[t] p cn[t’].

Consequently, f 0; f’ =3 f @ f’. Moreover D(t)@true a D(t) 0, true. Therefore,
o,<o. cl

An interesting class of extensionally equivalent models is defined by grouping in

p all terms of primitive sort which are not reducible (Fig. 9). They are the models
A verifying for p primitive and t of the same sort,

f “=p” * ryyp

(and therefore 1” = p* G t =+, p since the converse is always true). Such models
(and congruences) can be called locallv computable in the following sense: if I” is *
defined, and thus equivalent to a primitive term p, t = p is provable? If the type is
partially complete, the initial model I is locally computable.

Theorem 5.11. A consistent hierarchical PAT has a loc@ly computable model #’ it is
parfiallj7 complete. Then, /he initial model I is locally computable. !J moreover the
premises oJ axioms are of‘ primitive sort, the locally computable congruences jbrm a
complete upper semilattice w.r. t. =S ; the terminal congruence @ of this semilattice ver$es

D(t)@true t-4 D(f) =,,true

w _fiw some context cn of t, cn[t] is reducible.

’ Therefore, every function kfith prinlitive range can be sf.xn 9s a partiill recursive function (CC 161).

Systematic study of models of abstract data types 163

Proof. If the type is partially complete, I is a locally computable model. Conversely,
if A is a locally computable model and D(f) ~6 true, t is defined for A, tA = pA
for some primitive ii=rm p and therefore t =+p. The last part of the theorem results
from Theorem 5.10 and from Proposition 5.4. Cl

5.5. Structure of the set of classes of extensionally equivalent models

For total algebras, all lattices of extensionally equivalent models were disjoint
and incomparable. For partial algebras the ‘less defined’ ordering of the fixed 1; $nt
theory would be a natural candidate for structuring such classes. We say that a c&s
EXT~ of extensionally equivalent models is less defined than ExT,~ (for short
EXT, G ExQ if for some congruence of EXT, and some congruence of ExT,~, p is
partjally weaker than ,p’ (p E p’). I

Smce the restrictions to the primitive sorts of all congruences of one class are the
same, this definition is independent of the particular models. If there exist total
models, their classes are maximal.

Proposition 5- 12. The . following properties are equivalent :
(1) Ex -rs, G kTpp.
(2) The initial congruence of ExT,,.: =, p r_ = 1 PI'
(3) EXT, contains a cangruence partially weaker than some congruence of ExT,~.
Moreover, for a consisilent and partially complete hierarchical PAT, the class qf all

locally computable models is C_ -initial in the class of all nonempt_y classes of extensionally
equivalent models.

Proof. (1 + 2): The models of ExT,, are obtained by adding axioms t = p for every
primitive term p with t p p ; if p c p’, t p p implies t p’ p. Therefore, the syntactical
congruence obtained by adding these axioms is contained in the syntactical con-
gruence associated with p’ in the same way. Then, from the definition of the initial
congruence (Proposition 5.6), =‘rp r_ = Ip’.

(2 =$ 3): Obvious.
(3 * 1): If hI) E EXT, is partially weaker than --,*E ExT,,~, it is also true for then

restrictions p and p’ to primitive sorts. \

In particular, the class of locally computable models of a partially complete PAT
is initial for c . Cl

Unfortunately, the general form of our axioms- even restricted to premises of

primitive sort- does not imply a c-lower semilattice structure as the following

example shows.

Example. Let T be a PAT with primitive subtype P such that P consists of two
0-ary operations a, b: -+ P with a # b and T extends P by three 0-ary operations

164 .M. Bwy, M. Wit-sing, C. Pair

L: + P and a function J: P + I? Furthermore, .f is defined by the axioms
Fyf,:’ ;!, f(t2) = t2 and f, = t, + .,‘(lo) = f2 (i.e., if t, is defined, J(to) is equal to L).

Consider the following congruences of T:

For Ci and G, every term is defined; for C3 and C?, there exists a class of undefined
terms. C, and C, are two incomparable maximal G-lower bounds of C, and C2.
-v-= reason is that to and thus f‘(to) must be undetined in every lower bound (since II r*t

I,, is identified with two inequivalent primitive terms in C, and C,); but then,
according to the last axiom, either t, has to be undefined or t-, must be identified
with _f(fJ which is undefined. The undefined terms of the greatest lower bound
cannot be uniquely determined.

By restricting the form of the axioms, however, sufficient conditions for the
existence of a semilattice structure will be obtained in the next paragraph. The idea
is that no term t occurring in the conclusion of an axiom shouid contain any proper
subterm the undefinedness of which could be created by ‘ambiguity’, as t,, in the
example above where lo = a in CI and to = h in C2 where a and b are ditrerent
primitive terms. A sufficient syntactic condition is that t does not contain any
nonprimitive proper subterm of primitive sort.

5.6. Tli e case of simple axioms

Partial completeness is a syntactic property which in general is only semidecidable.
In this section we will give a (linearly) decidable criterion for partial completeness:
the ‘simple’ form of the axioms (see Proposition 5.14). Consistent partial types with
such axioms have an additional property: the set of their hierarchical congruences
forms a complete lower semilattice with respect to total homomorphisms, the initial
congruence being the least element (see Theorem 5.15). The example of the previous
section (kctioil 5.5) shows that the ‘simple axiom condition’ is also the weakest
condition w.r.t. the form of axioms ensuring the semi-lattice-property.

Definitioai. We cdl a term f simple if every proper subterm of primitive sort of f is
primitive. An a.Com is called simple if both terms of its conclusion are simple.

In the following we will p+*ove that the models of a consistent partial type T with
Gmple axioms forms a complete lower semilattice w.r.t. cz : T contains locally
computable models and its classes of extensionallv equivalent models form a lower w
wmilattice w.r.t. tlie ‘less delired‘ otdering 2.

Sysremaric study oJmodels of abstract data types 165

The proof will proceed in three steps. First we show that T is partially complete,
then that the models form a semilattice and consequently that the classes of
extensional equivalence form a semilattice.

Definition. A ground term t is called fuZ!y reducible if every subterm of primitive
sort of t is reducible.

Lemma 5.H. is! T be a hierarchical PAT with simple axioms and let t be a fully
reducible ground term. Then, for all ground terms t’,

t = s; t ’ + t ’ is fully reducible.

Proof. Let FR the set of fully reducible terms and let us consider the congruence,
hierarchical for BOOL, uniquely defined by

t-f at=,, t’ and ((t E FR and t’E FR) or (t E FR and t’e FR)),

D(t)-true e D(t) =$rue and tEFR.

It ic a c’>ngrusnce because

rqit’and fEFRand ?kFRandf(t)@FR

* f(f) f ;,.f(f ‘) and f(t), f(t’) nonreducible,

teFR =$ j’(r)gFR.

We shall prove t‘lat this congruence satisfies axioms (ST), (DP) and (6) of Section
5.2. Then the proposition results of the fact that zsl i, the least congruence verifying

these axioms (in fact, - and =s are identical).
- (ST) and (DP) clre obviously satisfied.
* For (ii;): if t is obtained by substituting, into a simple term, fully reducible terms

for the variables, t is fully reducible or is a nonreducible term of priniitive sort;
the same holds for t’.
if moreover t =+ t’, then t and t’ are both fully reducible or both nom-educible.

Thus (6) is also satisfied by the congruence. 0

Proposition S.14. A hierarchical PAT with simple ax;‘o,my is partially complete.

Proof. Since a primitive term is fully reducible, from Lemma 5.13, a reducible
ground term is fully reducible; each of its subterms of primitive sort is reducible.
Therefore the type is partially complete (see Theorem 5.8). q

Theorem 5.15. 77~ set qf hierarchical congruences qf a consistent hierarchical PAT
with simple axioms is a complete lower semilattice w.r. t. rz ; its initial element is the
initicrl congnrence.

166 M. BF~Y, M. Wirsing, C. Pair

Proof. Let A be a nonempty set of congruences associated to models of T. To show

the existence of a greatest lower bound for A w.r.t. C, we consider the type TM
obtained from T by adding the axioms t = t’ for t, t’ simple terms and tA g t’A in
all models A such that - A E J#. The models associated to .& are models of T& The
axioms of TM are all simple. Hence, by Proposition 5.14, T& is partially complete.
Let FR be the set of fully reducible terms of TN

Let us consider the congruence - defined by
- D(r)-tfUe e D(+Atrueforall -,&A and ?EFR,

- t - t’ e t = t’ is a theorem of TN or (D(t) -false and D(t’) -false).
From Lemma 5.4 it is actually a congruence satisfying (ST), (DP) and (UN): indeed,
t = t’ is a theorem of TM and D(t) -A trye and t E FR * D(t’) -A true and 2% FR
(see Lemma 5.13).

Relation - verifies (G), too, because, for all -& A:
(1) D(U+tfUe + D(U,) -_AtrUe and UkEFR;
(2) ti-2: and D(fi)-ttrUe + ti -~,t: and D(fi)~AtIUe.

Then, t -A t’ for -A E .M ; t and t’ are obtained by substituting, in simple terms,
fully reducible terms for variables: they are equivalent to simple terms and therefore
I = I’ is a theorem of ru. Thus t - t’.

Condition (2) above also means that - is a lower bound of .M w.r.t. c_.
Moreover, let -M be partially weaker than every congruence of .&. We first prove

that

fM defined * ~EFR

by structural induction on t.he ground term I =.f(u,, . . . , u,,): if t ” is defined, then
all uf’ are defined and tr f’ E FR. Thus, t E FR unless it is a nonreducible term of
primitive sort. But tM defined implies tA defined for all A E 4. Hence, the partial
completeness of r,$, implies t -A p for some primitive term p in all A E .&. Thus t

is reducible.
Now, t -,,, t’ and t” defined + v -A E & t hr.4 t’ and t” defined and l E FR

and t’E FR. Then t = t’ is a theorem of T,; therefore, t - t’, and D(t) -true.
Relation - is the greatest lower btiund of A.

The hierarchical congruences form a complete lower semilattice. Since T is
partially complete (see Proposition 5.14).. the initial congruence belongs to this
lattice and is its initial element. 0

Corollary. 77ze classes qf extensionally equivalent models qf a consistent hierarchical
PAT with simple axioms form a complete lower semilattice wxt. the ‘less defined’
ordering; its initial c/emenl is the class qf local/y computable models (WC Fig. 10).

Proof. 1 -et 7’ 5 ; 3 set of classes of extensionally equivalent models, and .& the set
of their initial congruences. .& has a greatest lower bound -, which belongs to class
EXl,,& ExT,,~. is a lower bound of 9’ (Proposition 5.12).

Conversely, if bq is a lower bound of Y, its initial congruence is partially
weaker than those of .M, thus than -, and Ex-r,,~ ExT~>,,. 0

Systematic study of models of abstract data types 167

_ tota' homomorphism

of extensionally equivalent congruences of i

0 initial congruence zI

Fig. IO. The c-semilattice of classes of extensional equivalence.

6. Algebraic specification u f a deterministic stream processing language

To demonstrate how the algebraic specification of a simple, nontrivial program-
ming language looks like, a specification of a deterministic stream processing
language DSPL is given. This language can be used to write programs which
consecutively read (possibly infinite) sequences of integers and consecutively output
(possibly infinite) sequences of integers.

Two sorts are supposed as primitive:
_ int, the sort of integers together with the usual operations.
_ id, the sort of identifiers, with an equality

eq : id x id --) int : eq(x, x) = 1, eq(x, y) = 0 for x, y distinct.

From these two primitive sorts the sort exp is firstly constructed. exp is the sort
of expressions built from integers (the operation intexp: int + exp converting an
integer into an expression), identifiers and the usual operations, together with a
substitution function

esubst : exp x exp x id -+ exp

(where esubst(e, e’, x) denotes the substitution of every occurrence of x by e’ in e)
and an evaluation function

val : exp + int

168 M. Bray, M. Wirsing, C. Pair

with axioms like

val(intexp(n)) = n

val(add(e, t?‘)) = val(e) +val(e’) etc.

For identifiers x’ the value of val(x) remains unspecified. Hence the sort exp is
sufficiently complete: in locally computable models the interpretation valf e)
expressions e containing free identifiers is undefined whereas in
interpretation might take an integer value.

Now, the type contains two other nonprimitive sorts seq and
simultaneously defined. Intuitively, an agent transforms an input
output sequence.

other models

not
for
the

agent which are
sequence into an

The sort seq comprises the following operations and axioms (which are typical

for jequences !):

sort seq

empty : + seq

isempty : seq -+ int

append : int x seq + seq

top : seq -+ int

rest : seq + seq

isempty(empty) = 1

isempty(append(n, s)) = 0

top(append(n, s)) = n

rest,(append(n, s)) s s.

Note, that the value of top(empty) and rest(empty) is not specified. It will be
interpreted to undefined in locally computable models.

Only finite sequences can be generated in this way. However, agents will also
generate infinite sequences. Hence, sort seq cannot be taken as primitive since the
set of finite and infinite sequences is not a (finitely generated) model of seq.

sort agent

stop : + agent

input: id x agent + agent

output: exp X agent + agent

def: id x exp x agernt -+ agent

if: exp X agent x agent + agent

Systematic study of models of abstract data types 169

ret : id x agent + agent

call : id + agent

process : agent x seq + seq.

The language of agents can be viewed as a procedural language by writing

stop for stop

reac!(x) ; Q

print(e) ; a

x :=e;a

if e then a 1 else a2 fi

for input(x, a)

for output(e, a)

for def(x, e, a)

for if(e, al, a2)

p:: a

call p

for rec(p, a)

for call(p).

The language allows to write just mutually recursive procedures in tail-recursion.
So we have a classical sequential input/output stream oriented, iterative, procedural
p rogramrt ing I? 9guage.

Examples. (1) The following agent computes the infinite sequence of the
numbers 2’ :

def(x, I, rec(p, output(x, def(x, 2 * x, call(p))))).

(2) The following agent merges the iilfiilk sequence of numbers 2’ with every
ordered (infinite) sequence:

def(x, 1, input(y, rec(p, if(x - y, outptlt(y, input(y, call(p))),

output(x, def(x, 2 * x, call(p)))))))

(3) The agents may be sequentially composed. Assuming a 1 and a2 are agents,
then the function

camp : agent x agent + agent

is specified partially completely by

process(comp(a 1, a2), s) = process(a2, process(a1, s)).

We give now the axioms:

process(stop, s) = empty

process(input(x, a), append(n, s)) = process(def(x, intexp(n), a), s) l

val(e) = n + process(output(e, a), s) = append(n, process(a, s))

def(x, e, stop) = stop

170 M. Bray, M. Wirsing, C. Pair

def(x, e, input(x, a)) = input(x, a)

eq(x, y) = 0 3 def(x, e, input(y, a)) = input(y, def(x, e, a))

def(x, e, output(e’, a)) = output(esubst(e’, e, x), def(x, e, u))

def(x, e, if(e’, a 1, ~2)) = if(esubst(e’, e, x), def(x, e, u I), def(x, e, ~2))

val(e)>O * if(e, al, a2)VZl

val(e)sO * if(e, al, u2)sa2

rec(p, a) = asubst(a, rec(p, a), p).

Relation asubst : agent x agent x id + agent is a hidden auxiliary operation with
the axioms

asubst(stop, a, p) = stop

asubst(call(p), Q, p) s Q

eqb, 9) -- r\ :- asubst(call(q), u, p) = call(9)

asubst(input(x, a’), a, p) = input(x, asubst(u’, U, pN

asubst(output(e, a’), a, p) = output(e, asubst(a’, a, p))

asubst(if(e, u 1, u2), a, p) = if(e, asubst(u 1, a, p), asubst(a2, a, p 1).

DSPL defines an abstract type that can be seen as a specification of a programming
language. However, DSPL provides only an abstract syntax (i.e., the term algebra).
The relationship to existing programming languages may not be seen immediately.
Act:lally_ the:: are several ways of classifying DSPL and relating it to more common
notations. It uafi be seen as an ‘assignment-oriented’ language, if we write

x:= 4 :a

for def(Y e, a). However, it can also be seen as an ‘applicative’ language, if we write .- T

(As.a)(e)

for def(.u, e, a). In any case it is rather a ‘data flow’ language, since it is not required

that W!(C) is defined for instance in the axiom

deft _I-, e, input(s, a)) = input(x, cl b

which certainly does not hold in a classical procedural language like PASCN..
Objects of sort agent are programs that take finlae or infinite sequences as input

and produce finite or infinite sequences. Terms of sort agent built without using
the functions ret and call can be seen as trees with stop at the termin; leaves. A
computation is a path through such a tree. using an input sequence., chosen in
accordance with the if-statements. After elimination of the if-statements, a sequence
of applications of input, output and def remains, applied to stop (the ending agent).

Systematic study of models of abstract data t_vpes 171

Using the functions ret and call also infinite trees can be represented. They may
be obtained via an iterated replacement of all occurrences of call(p) in the agent

a by the agent rec(p, a).
The axioms of the type are simple. Therefore, the type DSPL is partially complete.
Moreover, the rewriting system obtained by orienting axioms from left to right

is confluent [27]. Indeed,, it is easy to see that the conflicting left-hand sides are
directly confluent; for example, if val(e) = n and val(e’) > 0

/
def(x, e, if(e’, al, a2))

/
J \

if(esubst(e’, e, x), def(x, e, a 1 j, def(x, e, a2)) ------+ def(x, e, a 1)

since, if val(& is detined,

val(esubst(e’, e, x)) = val(e’).

Therefore, a reducible term cannot be equivalent to two different primitive terms:
the type is consistent. Thus, there exist models.

But we have to avoid,models where infinite sequences, like

(1) procef4 def(x, 1, rec(p, output& def(x, 2 * x, call(p))))), empty),

would be interpreted as undefined. Mord generally, we intend that every process
gives a defined result.

To ensure that, we introduce two definedness functions

Dl:seq+b 02 : agent -, b

where b is a primitive sort with one element tr, and the (simple) axioms

D 1 (process(a, s)) = tr, D2(call(p)) = tr,

D2(stop) = tr, D2(input(i, a j) = tr, D2(output(e, Q j) = tr,

D2(def(i, e. a)) = tr, D2(if(e, Q 1, a2)) = tr, D2(rec(p, a)) = tr.

Thus, process and the operations generating agents have to be interpreted as total
functions.

For example, these axioms ensure definedness of term (1) and therefore

top(process(def(.x, 1, rec(p, output(x, def(x, 2 * x, call(p))))), empty))

can be reduced to 1.
The new axioms keep consistency, because they can be only applied in proofs of

equations oC sort b.
Thztirems 5.11 and 5.15 then imply:
(1) The type DSPL has an initial model which is locally computable (in fact, the

only partial functions in this model are val, top and rest).
(2) Tl-e set of the hierarchical partial congruences of DSPL forms a complete

lower s:;AGttice w.r.t. c.

i?2 ha. Pray, M. Wirsing, C. Pair

(3) Every class of extensionally equivalent congruences is a ccmplett: upper
semilatti ce w.r.t. S.

(4) The classes of extensionally equivalent models of DSP! fol m a complete

lower semilattice w.r.t. the ‘less-definedness ordering’ with the locally computable

models as initial element.

The different models define ditierent semantics for the language. Another proof
for partial completeness and consistency of the language DSPL can be found in

[39] where a term-rewrite system for DSPL is derived for which the connuence has

been checked by machine.

7. Concluding remarks

It has been one of‘ the contributions of denotational semantics to d(~mon~tr;rte

that pro,~rarns can be viewed as functions and, therefore, mapped onto particuliir

f‘unction ~pace:~ in mtithematical (denotational) semantics. Abstract types, howe*er,

\pxiCy ;t class of’ possible semantic models. In this class, particular models mq be

dih,tinguished, sulzh as terminal o r initial ones. They may be used to characterize

~l;i:~eh of isomorphic semantic mod&, i.e., to specify the semantics up to isomorph-

ism. In particular, the algebraic tippro:lch promises sever:)1 advantages. First, in this

WY the description of data structures and progr;ims ~1 tw done in ow coherent

I‘WIIIA fr;lmework by a hierarchy of :ibstr:ict types. Second, it fallows for a proper

tk-nrrl deiinition without considering any unwarned details ot‘concrettl represent+

tier;% just talking :&out the intended functions and their ch;lr;icteristic properties.

l‘hirri. otl wch ;I bitsis se\.eritI ditferent concrete scm:lntic detinitions (m~~thtmati~:~l

3em3ntic3, operational semantics, axiomatic S~Ill~IltiC~, CiC.) nl;iy conveniently be

compared and proved to be estensionall~ equivalent. Fourth, ;I description of ;1

programming language a11 be given without detining an explicit domain ;lnd parti;ll

ordering, which is genrally necess;q, if it tised point semantics is looked for. Note

that in some important cases (such ;1s for nondetcrministic and concurrent progriims)

the rcshpecti\:e tlomains arld orderings ;it-e estremel>~ dit\ic‘ult to be found.

Of c‘ourst’, we do not say that the algebraic, ;Ibsfr;lct approach to the detinition

01’ :t progriimmirlg Iq+;\gc milkes other methods for description superfluous. We

r‘lther propose abstract types ;IS ml important tool for the stepwise design and

\emartic ?;pecitiMion of programming languiiges, independent of purticular sytit;lc-

trc or cem:lr~!ic representrltion, only oriented towards the biisic concepts, which may

bc expressed by algebraic properties. If one has finished the esperimental design

phase, where s~~rtl possible closely related languages might be considered, ;ind ;t

%prcification by itbstract tvpes is completed. one should trv to gi\,c dcnotational, r _
qwr~ttion:iI and axiomatic winantics. ‘This second de+n ph:ise can be wed to

~iiw-w+ particulx- ;tl;pects ot‘the I;tnpuaptz. SimuItancou~l~ 11 concrete svnt:ls can bc _
gii m.

S~*stemafic study of models oj‘ab.+lract data types 173

Finally, the algebraic approach allows for a systematic classification and com-
parison of data structures and control structures in programming languages. This
may lead into an algehrsis theory of language concepts (cf. the work of Peter Mosses).

References

[I] J.W. I-hatcher, E.G. Wagner and J.B. Wright, Specification of abstract data types using conditional
axic)m~, I r3M Res. Rep’. RC-62 14, 1976.

121 J.A. Goguen, J.W. Thatcher and E.G. Wagner, An initial algcora approach to the specification,
correctness and implementation of abstract data types. in: R. Yeh, ed., C’rtrrenl Trends in Progrumming

iClctlroddog_v IV: Dafa Strwruring l Prenticp I-tall, E‘nglewood Cliffs, NJ. 1978) pp. 80-144.

[j] E.G. Wagner, J.W. Thatcher and J.R. Wright, Programming Languages as mathematical objects,
7111 h1FC.5. Lecture No&s in Computer Science 64 (Springer, Berlin, 1978).

[41 J.W. Thatcher, E.G. Wagner and J.B. Wright, More on itdvice on structuring compilers and proving
their correctnecs, in: H. A. Maurer, ed., Yroc. 6tB Colloquium on Automata. Languages and ProgrLlm-

ming. Lecture Notes in Computer Science 71 (Springer, Berlin, 1979) pp. WV-61 5.

151 H. Andreha, B. Burmeister 2nd 1. Nemeti, Quasivarteties of partial algebras-a unifying approach

towards a two-valued model theory for partial algebras, Preprint Nt. 557, FB Mathematik. TH
Darmctadt. 1980.

\6] J.A. Berpstra. 11. Bray, J.V. Tucker and M. Wirsing, On the power of algebraic specifications, /Of11

nfF(1 ‘S. Lecture Notes in C‘omputer Science I I8 (Springer, Berlin. 198 1) pp. 193~204.

[? 1 A Bertolll. C. Mauri and P.A. Miglioli, A rharacterisation of abstract data types as model-theoretic

invari:luts, in: H.A. hlaurer, ed., froc. 6th Colloquium 011 Automata. Langutrgcs and Programming,

Lecture Notes in Computer Science 71 (Springer, Berlin, 1979) pp. 26-27.

[S] %I. Bray and M. Wining, Algebraic definition of a functional programming language, TUM I XOW,
TU \liinchen, lnstitut fiir Informatik, 1980; Revised version: R.A.I.R.O. Irzfhrmatiquc Theoriqur

17 (21 I1983) 137-161.

191 %I. Bray and M. Wirsing, Programming languages as abstract data types. Chne Cdl. Les Arhres 411

.-Ilpht~ rv f-‘rr~grummafirm. Lille (1980) pp. 160-l 77,
[IOj hl. Bray and hl. M’irhing, Partial recursive furwtions and abstract data types, EATC‘S Rullcfin I I

(1080) M-41.
[I 11 hl. Bray and hl Wirsing, Initial versus terminal algebra semantics for partially defined abstract

types, TU M-l &i K. Trchnische Universitiit Miinchen, lnstitut fiir Informatik, 1980; Revised version:
M. Ijroy and M. Wirsinp. Partial abstract types, Acra Infhrma~ica 18 i I) (1983) 47-64.

i 121 hl. I3rq ;lnd hl. Wirsing, Generalized heterogeneous algebras, in: G. Ausiello and M. Protasi, eds.,
Srh (‘011. OII Trees uml Algebra ill Programming, Lecture Notes in Computer Science 159 (Springer,

New York 1983 1 pp. I-34.
1 I.21 hl. Bray, W. Bosch, H. Parts&, P. Pepper and M. Wirsing, Existential quantifiers in Ltbstract data

t;pch. in: H.A. Maurer, ed., Proc. 6th <‘olloquium OH A~rtomata, Lurtguuges and Programming.

Lecture Votes in C’omputer Science 71 (Springer, Berlin 1979) pp. 73-87.

[141 K.M. Burstall and J.A. Goguen, An informal introduction to specifications using C’l.t.rZK, in: R. Bayer

and .I. hloorc, cds., 7’hc~ C ‘orrvcInes.s Problem in (‘ompc,!er Science (Academic Press, New York, 1% I).
1 151 I-.1.. B;ruer, hl. I3roy. M’. Dosch. B. Krieg-Briickner, :‘\. Laut, M. Luckmann, T. Matzner, B. Miiller,

H. Partxh. 1’. Pepper. K. Samelson, R. Steinbriiggen, M. Wirsing and H. Wtissner, Programming

in ,I ,.tide spectrum language: A collection of examples, Sci. Compur. Progmmm. 1 (1) (1% 1 1 73-I ! 4.
[lb] H. Liskov. 4. Sn\des, R. Atkinson and C. Schaffert, Abswwion mechanism in C’LU, comm. A(‘Rq

20 (1077) 546-576.
1 I? 1 W. I>owh, M. Wirsing. G. Ausiello and G.F. Mascari, Polynomials-the specification, analysis and

development of an abstract dat;t type, in: R. Wilhelm, ed., Gi-IO Jahrestagung Saarbrticken,

infirrrwfik Fachbericht 33 (Springer, Berlin. 19bO) pp. 306-320.

[I $] 31 .C‘. Gaudel, Gineration et preuve de compilateLxs basees sur une semantique formelle des langages

cl.r: programmatiop, Thirse d’Etat, Nancy, 1980.

i?4 M. Brqv, M. Wirsing, C. Pair

(19) V. (iiarratana, F. Gimona and U. Montanari, Observability concepts in abstract data type specifica-
tions, 5th MFCS, Lecture Notes in Computer Science 45 (Springer, Berlin, 1976) pp. 576-587.

[20] J.A. Goguen, Abstract errors for abstract data types, UCLA Semantics and Theory of Computation
Rep\xt 46, 1977 ; Proc. IFIP Working CnnJ: on Formal Description yf Programming Language Concepts,

i977.

[III] J.A. Goguen and J. Meseguer, Completeness of many-sorted equational logic, SIGPLAN Notices

16 (7) (1981 i 24-32.

[22] H. Grtitzer, Universal Algebra (Van Nostrand, Princeton, 1968).
[23] J.V. Guttag, The specification and application to programming of abstr \ct data types, Ph.D. Thesis,

University of Toronto, 1975.

[24] J.V. Guttag and J.J. Horning, The algebraic specification of abstract data types, Acta Ir$wmatica

10 (1978) 27-Q.

1251 J.V. Guttag, Notes a,n type abstraction, in: F.L. Bauer and M. Broy, eds., Program Constru~*tinn,

Lecture Notes in Computer Science 69 (Springer, Berlin, 1979) pp. 593-616.

[261 A. Horn, On sentences which are true of direct unions of algebras, .I. Synbolic Logic 16 (I95 I) 14-2 I.
1271 G. Huet, Confluent reductions: abstract properties and applications to term rewriting systems, 18th

IEEE Swp. on Fo:dndations qf Computer Science (19?7) 30-45.

[28] G. Huet and II. Opgen, Equations and rewrite rules: A sumey, in: R. Book, ccl., Grmal Languages:

Pwbpectives and Open Problems (Academic Press, New York, 1980).

[291 H. Hussmann, Operativitgtskriterien fiir algebraische Typen, Diplomarbeit, Tcchnische Universittit
Miinchen, lnstitut fi.ir Informatik, 1983.

I S. Kamin, Some definitions for algebraic data type specltications, SIGPLAN Mfices I4 (31 (1979)

28-37.

I D. Knuth and P. Bendix, Simple word problems in abstract algebras, in: Leech. rd., (‘ompurationc~l

Prvhlerns in Abstract A/gehras (Pergamon, Oxford, 1970) pp. 262-297.

R. Milner, Fully abstract ;nodel.s of typed A-calculi, Tlleoret. Comput. Sci. 4 (1977) 1 22

P. Mosses, A constructive approach to compiler correctness, in: J. de Bakker ,tnd J.i.d. Leeuwerl.
eds., Pm*. 7th Collquiur~~ OII Automata, Languages and Programming, Lecture Notes in Computer

Scic:nce 89 (Springer, B.:rlin, I979). _
[_34! C’. Pair, Types abstraits et semantique algCbrique des langages de proprammation, Rept. SO-R-01 I,

C’entre de Recherche en lnformatique de Nancy, IWO.

[351 C’. Pair. Sur les mod&s de types &straits ~Ig&riques, Rept. X0-P-052. <‘entre de Recherche en
Informatique de Nancy. 1980.
(‘. Pair, Abstract data types and algebraic semantics of programming languages, Thrt~f. ~‘w~~prcf.

hi. 18 I 1982 I t .- 13.

&I. Ptirrhch and M. Bray, Examples for change of types and ob-iect btructures, in: F.L. Bauer and

111. Bray, eds., Progmw (‘onsfruction, Lecture Note> in Computer Science 69 (Springer. Berlin,

1979) pp. 421-463.

P. Pepper, A study on transformational semantics, in: F.L. Bauer and M. Bray, eds., Progwm

(‘cmcfrucfion, Lecture Nores in (‘omputer Science 69 (Sprinpcr, Berlin, 1979) pp. 322--#~5.

!.‘g,J tf. Reichcl, Theorie der Aequoide. Wsertation, B. Humboldt liniverhlt;it 13etlin. 1979.
1401 K. Schiirre, Ae,r.ci.crhtr)r-ic (Srlringer, Ijerlin, 1960).

141] il. Scott, C’ontinuous lattices, Proc. 1’171 fkilhousii~ C’nnl:, Lecture Notes ILlilttle~ll~~tiCS 274 (Springer,
Berlin, I97 1 1 pp. 07 -I 36.

jjZJ M. W’and. t-irst order identitich ‘1 c .- ‘i defining Iilngt!iige, Tech. Rept. _ ‘9, !zdi;tn;l l!ni\erhity. (‘ornputer
Scienctr Deportment, 1977 (see also: Acta fr+rmuficn 14 (1980) 33Y’-3571.

i-0j Xi. !V;flld, Final algebra sema!ltics and data type extensions, ‘Tech. Kept. 05, Indiilnil I.lni\ tx’rit!,
1978 f 46’~ also: J. (‘ompuf. S~*vfcw.v Sci. 19 (1’470 I 27-t-l).

[jj] X-1. \+*irying ;tnd hl. Brob. Abstract d:tta types ;I> Iatticc 1.h of tinitelj generated models. 0th :11/-X‘S,

I c’~lurc Noth in (‘c,nputer Scieiictl 88 I Springer, IIerliii. IWO\ pp. b7.7--6SC.
[-Ir] %i. U’irying, P. Pepper. H. Pnrtsch, W. Do>ch and M. Bray, On hierarchies of ;tbsir‘lt; data type>.

Tech. Rept. WM- IWO?, Tl! Miinchen, IOHO; re\lsed \x!rsion: -\cfcl lr~fhwwfiril 20 (Ic)SZ 1 l-33.

