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Abstract. lk term-generated models of an abstract data type can be represented by congruence 

relatiotls UI; &r term algebra. Total and partial heterogeneous algebras are considered as models 

af hierarchical abstract dalta types. 

Particular classes of moJels are studied and it is investigated under which conditions they form 

a complete lattice. This theory allows also to describe programming languages (and their semantic 

models) by abstract types. As example we present a simple deterministic stream processing 

language. 

1. htrodurtion 

Abstract (data) types are formal specifications of (classes of) heterogeneous 
algebras which are called the models of abstract types. Such a view of the semantics 

of abstract types is important, in particular, for their applications; for instance, for 
the incorporation of abstract types into programming languages [ 16, IS], the use of 

abstract types for the definition of programming languages and for the specification 
of compilers [3.4,8,9, I&33,34,42]. or for the joint development of programs and 
data structures [37, 171. 

However, the study of the models of a type has rarely been done very systemati- 

cally. The point of view of the ADJ-group [23 is that an abstract type specifies an 
initial dgebru of a categorv of algebras. Wand 1421 is interested in final algebras, 
the Milano-group (Bertoni et al. [7]) in monoinitkd algebras. The study of all 

term-generated models of a type has been initiated by a group of Pisa (Giarratana 

et al. ‘[19]) and independently proposed by Bauer and then continued by the 
Cl P-group of Munchen [ i 1,451. The present study is based on this work: however, 

the presentation-(based on [34]) and several results are new. 

U?O4-Y/75: WJI’S3.00 $3 1984, Elsevier Science Publishers B.V. (North-Holland) 
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One often cited advantage of abstract types is their modularized, hierarchical 

construction from already predefined types (cf. [ 141). We call such types hierarchical 
types and have made particular efforts for their definition and the study of their 

models for total (Section 4) and partial algebra semantics (Sectioti 5) as it is needed 
for the specification of programming languages (cf. [8,9,34]). 

W6 prove theorems of the following kind: under certain assumptions the models 
of an abstract type form a complete lattice, or a semilattice; or if these assumptions 

cannot be satisfied, we single out ‘well-behaved’ subclasses of models such as the 

classes of extensionally equivalent models. 
The assumptions concern the properties of a type. Let us first recall the definition 

of a type used in this paper: an abstract type consists of a signature (Section 2) and 
of axioms (Section 3).’ The assumptions may concern the ,fbm~ of fhe axioms. We 

do not try here to reach a maximal generality (cf. for this [I I]), but only a generality 
appropriate for particular applications. Moreover, we introduce other hypotheses, 

also of ‘syntactic nature’, since evidently the interesting results connect syntactic 

properties of a formal system, i.e., the abstract type, with semantic properties 
concerning its models. For example, for hierarchical types, the slcficic?nt conlpleteness 

of Guttag [23] and Guttag and Horning [24] ensures the extensional equivalence of 

all models. But, for programming languages in particular, it is necessary (cf. [ICI, 341) . 
to study models of abstract types which are not sufficiently complete (Sec;ion 5). 

A cwmpkte lattice is a nonempty set together rz+tk an ordering relatiort such that 

every nonempty subset has a least upper bound and a greatest lower bound. In this 

study the set will be the class of term-generated models and the ordering will be 
based on the notion of Ilomomo~j?hism: AL R if there exists a homomorphism from 

A into B. In fact, this is not an ordering between models but between isomorphism 
classes of models. The isomorphism classes of term-generated models can be rep- 

resented by the congruence relations on the terr?l algebra. We will use this tool 

systematically, for it permits to work with the set (the lattice) of congruences. So 

we need not to make any use of category theory as., e.g., ADJ or Wand. In particular, 

we prove that the isomorphism classes of the models of a consistent and suiliciently 
complete hierarchical type T form 3 lower semilattice w.r.t. c (see Theorem 4.6): 

they form a complete lattice if, furthermore, the premises of the axioms of T are 
of primitive sort (see Theorem 4.7). But, if 7’ is not sufficiently complete, then the 

isomorphism classes split into disjoint and incomparable lattices of extensionallq 
equivalent models (see Theorem 4.8). By allowing partial functions as interpretations 

of incompletely specified operations with primitive range, the situation remains the 
same (see Proposition K(3), but we can distinguish the class of locahy computable 

models. 

Such models exist in the more general framework of hierarchical partial types, 
under the assumption of consistency and partial sufficient completeness (see 

Theorem 5. I I !. Rut there a class of extensionally equivalent models does form or+ 
I 

.iRd 

( I]. 6311 dwtrsct data type is indeed a clilss 

here the class of models of the type. 

ot slgetrras specified 
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an upper semilattice and not a complete lattice (see Theorem 5. IO). Furthermore, 

in the class ‘%: of all classes of extensional equivalence the locally computable models 
are an initial element w.r.tt. the generalised ‘less-definedness’ ordering of the fixed 
point theory (see Proposition 5.7). We give syntactic conditions under which the 
class 8 forms a lower semikttice w.r.t. this ordering (see Theorem 5.15). 

Finally, as example we present a simple deterministic stream processing language. 
This language cau be used to write programs which consecutively read and consecu- 

tively output finite or infinite sequences of integer numbers. 

2. Signature and algebras 

In this section we review the notions of signature, term algebra and term-generated 
heterogeneous algebra. In particular, we recall that the se t cf congruences associated 
to the algebras of a certaitl signature forms a complete lattice with respect to set 

inclusion. Its greatest element is called terminal element and is associated to the 
algebras z iwe :very carrier set contains (at most) one element whereas its least 
element is called initial element and is associated to the term algebra. 

A ~@QTUW C = (S, F) consists of 

- a (finite) set S of sorts sI, . . . , s,, which will be interpreted as carrier sets, 

- a (finite) set F of opemtion symbols f,, . . . , fn togetkr with their functionalities, 

s,, x l l 
- x s,, --* s. ( p 2 0, s,~, s, E S), where every operation symbol J will be inter- ) 

preted as a kction S,, x 0 . 9 x S,, + Si where S, is the interpretation (or carrier 

set) associated with s,. In Sections 2, 3 and 4 we assume that these functions are 
total. 

The operation symbols composed in accordance with the usual rules generate the 

terms of the different sorts (unless stated otherwise, a ‘term’ does not contain any 
variable). If W(E), is the set of terms of sort s, then the n-tuple W(C) = 

( WC),,, l . l , W( Q,) is a heterogeneous algebra with the operations f”“’ for the 
symbols -1’ of the following signature: 

W 2 1 is called the term algebra of the abstract tji;;. 

An interpretation is an epimorphism from the term algebra; it uniquely determines 
;1 tcr~n-Kcnel.clleri~~te(f heterogeneous I-algebra A: A heterogeneous X-algebra A is called 

term-generated if there exists an epimorphism from W(Z) into A. W(E) is initial 

in the class of nil such algebras. We denote by t.4 the image of term t in the algebra 

.A w.r.t. the interpretation homorphism W( C ) -+ A. Obviously, at most one 

homomorphism can exist from A into B, if A and B are term-generated Z-algebras: 

if this homomorphism exists, it transforms tA into t ‘. 

The notion of congruence ouer W(E) will be the tool for studying the category 

of term-generated Z-algebras. Every term-generated Z-algebra is isomorphic to the 
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quotient W( 2 )/ -A of the term algebra W(Z) w&t. the congruence - ,& 

t - A t’ gf t A = t’A. 

Conversely, every quotient of W(Z) w.r.t. a congruence is a term-generated 
C-algebra. 

Therefore, we can reduce the study of this category of algebras to the study of 
the set Z(S) of congruences over W(S). In particular we have 

-AS -B e there exists a homomorphism from A to B, 

where E is the set inclusion (also called ‘finer than’, ‘stronger than’). 

Proposition 2.1 (cf., for instance, Gr5tzer [22]). V(C) is u complete lcs:ice w.r.t. C . 

Its minimum (or initial element) is the identity relation between terms (associated 

to W(E)). 
Its maximum (or terminal element) is the ‘universal congruence’ U where all 

terms of a sort are congruent (associated to the algebras A where every carrier set 

s” is a singleton, 3r empty if W( 2 j,. = 8). The greatest lower bound ni, , -, is the 
conjunction of the congruences 

t-_ijt’C3 t--J forall &I, 
del 

making ‘i;‘( 2) a complete lower semilattice. Therefore, St-V) is a complete lattice 
(cf. Fig. 1) according to the following well-known lemma. 

Lemma 2.2. A ccwlplete lower semilattice having a maximum jbrms a complete lattice. 

Effectively a set E has a least upper bound 

u E=n E’, 

where E’ is the set of upper bounds. 

terminal algebras 

("singletons") 

id C W(!') x W(L) W(!9 initial algebras 



Systematic study of models of abstract data typs 143 

3. Axioms and models 

In this section, the form of the axioms for algebraic types is discussed. It is shown 
that the set of con Emgptlces associated to a type with positive conditional axioms 
forms a complete lattice. Moreover, a sound and complete proof system (with respect 
to ground equations) is given. 

In algebra the axioms are equations of the form t = 1’ where t and t’ are terms 
of the same sort: we refer to this as the equational case. For the applications in 
computer science, however, at least axioms with preconditions are reasonable (cf. 
[25] j: 

h=true * I=:’ 

if one of the sorts is BOOL, the SW of boolean values; and in order to avoid this 

particularioation ant: accepts conditions 

or, more generally, condltiurlal equations (cf. [ 1, 111) also called Horn clauses [26]: 

(920, for q=O we have 2s t’). 
We I+ Iii ~cx with this kind of axioms: the tj = t: are called the premises and 

t = t’ the conclusion of the axiom. 
Thus we obtain a jir~ order formal sys’tem with equality. Its theorems are called 

tkeorems of the abstract type. 

A X-algebra A satisjks an axiom of the preceding form if 1; = ?iA for i = 1, . . . , q 

implies tl” = 1’“: in other words, if 1, -A ti for i = I,. . . , q, then t sA 1’: we say also 

that the congruence CYA safisjes the axiom. 

A model A of a type is a term-generated L-algebra satisfying the axioms. The 

theorems of the type are also satisfied in A. 

Remark 3.1. In Sections 3 and 4 we only use axioms without variables. Indeed, a 

formula 

containing at most the free variables xl,. . . , x, of sort s,,, . . . ) s,;,, is satisfied by a 

Zalgehta A if, for all (I,, . . . , a, of the carrier sets St,. . . , St, 

1;[9,/?1,, -. . , tJ,lX,,] = t;“[U,/X,, . v . , U,,/X,,] fOrj = 1,. . . , 4 

implies P[U,/X,, . . . , U”/X”] = t’Aju,/x,, . . . , UJX,]. 

in the case of term-generated algebras this exactly means that A satisfies all’the 
ax:oms obtained by replacing each variable by term of the same sort. Thus, using 

axiIams with variables does not change the classes f>f models specified by abstract 
types. 
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Proposition 3.2. ?he congruences satisfying the axioms E form a complete lattice 

%(C),‘E. 

Proof. %(Z)/ E is a complete sub-iower-semilattice of %(A ) since if some con- 
gruences satisfy a Horn clause, then their conjunction satisfies this formula, too (cf. 
for instance [I]). Obviously, U satisfies the axioms: thus we can apply Lemma 
2.2. q 

By the way, the lattice %‘( 2 )/ E of congruences (cf. Fig. 2) satisfying the axioms 
E has an initial element the corresponding model of which is an initial algebra in 
the category of models (and even in the category of possibly not term-generated 
models, cf. [I I]). 

Proposition 3.3. The minimal congruence sati$j)ing the axioms is the ‘syntactic con- 
gruence’ = _ which is d&cd 6~ 

t = sv t’ Q t = t’ is a theorem of the type. 
drf 

Proof. (a j -sb is a congruence and satisfies the axioms since they are Horn clauses. 

(b) If - - is a congruence satisfying the axioms, then =,,. E -: indeed, if I = I’ is 
a theorem, then t” = t’.” in every model A, and thus t - t’ if - satisfies the axioms. El 

The proof is done considering the type as a first ordw fmnd system. t-hwer, 

it is dso true for ;I simpler formd system (1 I): 
- its formulas we the t z-z t’ where t. t’ are terms of the same sort, 

- its axioms are the t = t, 

- its rules of inference are: for each asiom A,. , . ‘, t, = t: * t = t’, the rule 

(C’OSlP) 
tz5 t’ t” 1” 

--,-*+r-- f 
( St! w-r) 

t tt 

t f( t,. . . . .-t, . . . , ‘J =.t’( 11, . . . , t’. - . . . 1,J’ 
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Symmetry and transitivity of =sY result from (CoMr): for instance, symmetry can 
be derived with t” =dcf 1: 

Transitivity then results fro.m symmetry combined with (COMP). 

Consequently, this system is also complete for the proof of I= t’ which is satisfied 
by every model. In fact, there exists a model, associated with the congruence zsy, 

where only the equalities which are provable are satisfied: this situation is rather 

remarkable for a formal system. 

We note that these rules are sound for heterogeneous types because of the absence 
of variables. In the presence of variables the transitivity may cause some problems 

and therefore, the rule!: have to be modified (according to Goguen and Meseguer 
[21] and Huet and Oppcn [28]). We also note that because of the restriction to 

term-generated models no complete proof system can exist w.r.t. formulas containing 

free variables (cf., e.g., [a]). 

Remark 3.4. TFe converse of part (b) of the proof of Proposition 3.3 is not true: if 
St- _ ,then - Goes not necessarily satisfy the axioms. Only if one restricts to the 

equiltional case, then every epimorphic inlge of the initial model is a model too: 

in the equational case, %( E))/ E is a complete sublattice of S(C). This is not true 
in the general case. If two congruences satisfy the axioms, their least upper bound 

does not necessarily do the same. For example, let single, married, widowed, true, 

false, be O-ary operations (i.e.. constants) with the axiom 

single = married - true = false. 

Then two congruences where 

single - widowed, single + married, true + false, 

married - widowed, single + married, true +false 

satisfy the axioms but not their least upper bound, for which 

single - widowed - married, true + false. 

4. Hierarchical abstract types 

The abstract types of the preceding chapter do not exclude trivial models, i.e., 
models defined by the congruence U, with (at most) one element for every carrier 

set. In particular, if one uses the boolean values, nothing specifies that, in every 

model of the type BOOL, true is different from faise. 

On the other hand, one often constructs types based on (known) data types the 
axiom:ltisation of which is presupposed to be known-cf. for instance finite sets of 
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integers [24], arrays of natural numbers [43], primitive recursive functions over 
natural numbers [44] or statements of a programming language over the expressions 
of the came language [38]. 

For these primitive types (integers, natural numbers, expressions) we assume a 

given model, or in other words a given congruence = P, called primitive congruence. 

This congruence could be the initial congruence of the primitive type (cf. [43,1 I]), 
but also other choices are feasible. 

A hierarchical type T is an abstract type (Z, E) together with a subsignature &C X, 

called primitive signature and a primitive congruence =p for this subsignature &. 

4.1. Primitive signature and hierarchical algebras 

In this section, hierarchical algebras (these are algebras respecting the primitive 

congruence) and their associated hierarchical congruences are discussed. Using the 
notion of primitive context we define whether two (hierarchical) congruences are 

extensionally equivalent. It is shown that the set V?(X) of all congruences (of 
signature C) is partitioned into disjoint sublattices of extensionally equivalent 
cpngruences. 

First we define the notions of primitive sort, operation and term. 

One designates in the signature 1 of a type a primitive signature & = ( Sp, FJ. 
The sorls s E SIB are called primitive sorts, the operations ,f~ FP are called primitive 
ofreratiajns and must have a functionality which uses only primitive sorts. 

The terms which are formed by the primitive operations are called primitive terms. 

Thus, every primitive term is an element of W(&)\ for some s E SIa, and also 

W(L),. But, in general, W(E), contains W( ,V,A, sroperly: there exist terms 
primitive sort s which are not primitive terms (see Fig. 31. 

of 

of 

terms of sort s 

An algebra A of a hierarchical type is called hiwarc~~icwl a/g&-u if A is a 

term-generated “- - algebra such that the primitive carrier sets and oprrations form 
an algebra Al & which is isomorphic to W(z’,)/ =p, i.e., which is an element of the 

isomorphkm class of those trrm-generated E,-algebras which satisfy exactly = p. 
The congruence relation illdL:ed by a hierarchical algebra on the term algebra is 
ca I led 3 hitwudkd cortgrutw~. 
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Emma 4.1. The restriction of a hierarchical congruence -A to the primitive terms 
coincides with the primitive congruence = p. 

Proof. For all primitive terms p and p’: 

p zpp’ @ pA”P ,_ pIA@, e p” = p’” (j p NAP’* 0 

’ But not every congrumce satisfying the condition of Lemma 4.1 is hierarchical 

(cf. Fig. 41. The following proposition will give an exact characterisation of such 

congruences. 

Proposition 4.2. The hierarchical congruences are exactly those congruences over W( C ) 
which satisfy that thepirimitive terms of eLery ( congruence) class of a term ofprimitive sort 
represents exactly and onl?, one class qf the primitive congruence = p. 

l oe 

*acI congruence classes of the primitive congruence =p 

\\1\_=f// congruence classes of a hierarchical congruence 

Fig. 4. 

)S 

Proof. Let A be a hierarchical algebra. Then, according to Lemma 4.1, every 

congruence class c, of a term t of primitive sort contains at most one class of =p. 
c, contains at least one class since t,” is an element of Al Cp which is isomorphic 

to W( &)/ = [a: hence, there exists a primitive term p ( E W( Ep)) such that 

t .A :’ /) A I 1,. = p .*I . 

Conversely if every class of a congruence - contains one and only one class of 

= lBr then the restriction of W( 2)/ .- to Zp is isomorphic to W( 2’,)/ = p. Ll 

Corollary. Jjhw hierarchical congruences - n and -- H verily - n C_ - L3, thw the... have 

the same restriction to the primitive sorts. 

Definition. Two congruences are extensionally equivalent if they have the same 

restriction to the primitive sorts. Corresponding algebras are also said to be 

extensionally equivalent. 
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In some applications, an element of an algebra (e.g., a stack sr) is only considered 

through the functions of primitive sort (e.g., top( sl), top(pop( sf )), . . .). We call 
every term cn of primitive sort a (primitive) context of a term f if cn contains exactly 

one occurrence of one variable x9 the sort of t and x being the same: cn[t/x] will 

be simply written as cn[t]. Note that a context may contain nonprimitive functions, 

too, and that only the outermost function must range in a primitive sort. 
Extensionaiiy equivalent algebras ale tiiliistinguishable through the (primitive) 

contexts, i.e., they have the same ‘input-outplrt’ behavior. 

Lemma 4.3. The lattice Y(C) is partitioned in sublattices qf extensionally equivalent 

congruences: -for each of them, V, the maximum is the congruence @ dejined by 

t@ 1’ G for all contexts cn of 1, cn[ t] Ln[ t’], 

where g is the restriction to the primitive sorts of the congruences CJ~’ (4’ (thus, .tbr 

Proof. It is obvious that @ is a congruence. Let us study its restriction to terms 

t, t’ of a primitive sort: 

@f’ z+ f Lt’ (with s for err), 

Thus, (_3 belongs to ‘fO ‘. 

Now, if - is a congruence belonging to ‘f,“, 

t - I’ =3 cn[r]- cn[t’l --i cn[r] LI[ t’] 

for every (primitive) context 01 of t * t(.J I’ t -1 

A model of a hierarchical type is called hierarchical model if it is a hierarchical 

algebra satisfying the axioms. We shall study the hierarchical congruences satisfying 

the axioms and, from now, ‘hierarchical congruence’ will mean ‘hierarchical con- 

gruence satisfying the axioms‘. 

The formal system associated with a hierarchical type is the system of the 

nonhierarchical type extended by the axioms p - p’ for all p and p’ that are primitive 
terms with p -7 ,, p’. E:very hitx~rchical algebra b&ties these axioms. We shall study 

the hierarchical congruences. In particukr, ;I question is whether the syntactic 
Congruence -* \) defined by this formal system is a hierarchical conguence. We will 
see that ‘consistency’ and ‘suflkient completeness’ guarantee this. Then, all hierar- 

chical congruences are extensionally equivalent and form a complete lower semi- 
lattice with s,, as initial element (see Theorem 4.6). If, moreover, the premises of 

the Corns NC Ed’ primitive sort, then the hierarchical congruences form even a 
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complete lattice (see Theorem 4.7). On the other hand we show that for a consistent 
but not sufficiently complete type the set of hierarchical congruences is partitioned 

into disjoint and (w.r.t. E ) incomparable complete lower semilattices of extensional 

equivalent congruences. 

First, we can observe two simple facts. 

Fact 4.4. Every primitive ckzss ST =S4 contains at most one class of = p ifl for all 

primitioe !CVIS p and p’ 

P =,> p’ * p =p Pl, 

i.e., the hierarchical type is (hierarchy-) consistent [23]. This means that an equality 

between pri:r:itilje terms is provable in tile whole hierarchical type on137 if these terms are 

congruent in the primil’ice congruence. 

Fact 4.5. Every primitic,? class yf =,\ contains at least one class oj‘ = P ijf for ever! 

term oJprimitive sort t there exists a primitive term p with t =,\ p, i.e., the hierarchical 

type is suJkiendy complete [23]. Equivalently- one can say that every term of primitive 

sort can be proved to he corlgruent to a primitive term bv the proof system of the type. 

Moreover, if =., is a hierarchical! congrtience, it is the least one: then, by the 
conseqtsence of Proposit ion 4 2, all hierarchical congruences have the same restric- 

tion to the primitive sorts: they are extensionally equivalent. 

Theorem 4.6. Tlw syntactic congruence is associated with a hierarchical model @ the 

hierarchic’aI type i.v consistent and s@iciently complete. In this case, the hierarchical 

coIigru4nceq are e.~tensionally equivalent and jhrm a complete lower semilattice with 

the .yitcrcVic corlgrrcence us initial element. 

Proof. The tirst part of the tlllcorem follows from Facts 4.4 and 4.5. Let us consider 
the second ;,art. The hierarchical congruences are the elements of the complete 

lattice ‘fl(2’ I/’ E which are extensionally equivalent to =,\. Thus the intersection in 
the lattice f (2 b/ E of hierarchical congruences is a hierarchical congruence, too. Cl 

Consistency and suficient completeness do not yuarantee that the hierarchical 

congruences form a complete lattice. Consider e.g., the example of Remark 3.4 and 

assumt’ that true and false are different elements of primitive sort whereas single, 

married, widowed are not primitive. This type is consistent and sufficiently complete 
but doe\ not have any terminal algebra and, hence, cannot form a complete lattice. 

In the equational case, however, S’(6)/ E is the sublattice of %( 2) constituted 

by the congruences greater than =;4v (see Remark 3.4); the congruences extensionally 

equivalent to =,V L dso form a sublattice %’ of X’(C) : thus, the hierarchical congruences 

are those of the-intersection of these two sublattices, which is a sublattice of %(S ). 
Its maximum is that of (. ‘, given by Lemma 4.3. 
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All this remains true if the terms ti, t: of the premises of the axioms are of primitive 
SCM (we briefly say that premises are of primitive sort); indeed such a type has the 
same models as an equational one, its axioms are the conclusions t = I’ of the axioms 
the premises of which are satisfied by ssY. Wt ‘irave thus proved 
theorem. 

uxioms are qf Theorem 4.7. Let T be a hierarchical type such that all premises oj 
primitive sort. Then f T is consistent and suflciently complete, the hierarchical wngruert- 
ces form a complete lattice. The terminal congruence is the exterrsiod congruence 

the following 

t@ t’ a _hr all (primitive) contexts cn qf t, cn[t] =>, cnrt’]. 

@ terminal congruence 

-* hierarchical congruences 

syntactic congruence 

O- identity id 

Fig. 5. The lattice of hierarchical congruences of a consistent, sufficiently complete hierarchical type. 

Therefore, the hierarchical type T has initial models determined by the syntactic 
equality sS,, and terminal models determined by the extensional congruence (cf. 
Fig. 5). The terminal models are _fitII_v abstract in the sense of [32]. 

As a consequence of Theorems 4.6 and 4.7, a method can be given to prove an 
equality t rM = trTM in a terminal model TM of 3 type T verifying the hypotheses of 
Theorem 4.7: add t = t’ to the axioms of T and prove the consistency of the obtained 
type T’. Indeed, if T’ is consistent, it possesses 3 model .9 which is also a model 
of T: t n = t’A and thus tvrM = CT”. Tools to prove consistency are well known, 
essentially by proving the confluence of an equivalent rewriting system [3 I, 271. 

If a type is inconsistent, then no hierarchical congruence can exist which contains 
=,,,. An inconsistent type does not have any hierarchical model. 

On the other hand, consider consistent hierarchical types which are not sufficiently 
complete-as, e.g., a type SKI- over integers together with a function some: set-+ 

integer and the axiom isempty = false ==+ some(s) E s. 
The syntactic congruence of such a type does not correspond to a hierurshicul 

model (cf. Theorem 4.6). Every congruence - associated with a hierarchical ma&l 
must properly contain the syntactic congruence: the restriction of - to the primitive 
sorts is obtained by grouping together every class of =,V without primitive term 
(‘nonstandard class’) together wrth a class conreining a primitive term (standard 
class), to verify the assumptions olr Proposition 4.2 (see Fig. 6). 

Every I-egrouping p determines a class ESI-,, of extensionally equivalent hierar- 
chical models. If we add the equations for the regrouping ta the axioms, we obtain 



Swtematic study of models of abstract data types 

nonstandard classes 
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nonstandard class 

witt a standard class 

standard classes 

Fig. 6. 

a sufficiently complese hierarchicai type having exactly the elements of EXT, as 
hierarchical models, ExT,, being nonempty iff this type is consistent. According to 
Theorems 4.6 and 4.7 tihe congruences associated with EXT, form a complete lower 
semil.aGcir ;dnd, if the terms of the premises of the axioms are of primitive sort, 
then they even form a completle lattice. If p and p’ are two different regroupings, 
the congruences of ,p and p) are incomparable w.r.t. the set inclusion C_ (cf. Fig. 
7). We obtain the following theorem. 

Theorem 4.8, Let T 04 a consistent hierarchical type. Then every class of extensionally 

eqddent hierarchical congruences Jorms a complete lower semilattice. These semi- 
lattices are disjoint arrd incomparable w.r. t. c_ . I the axioms have premises of primitive 

sort, therr eveq class is a complete sublattice of %‘I( C )/ E. 

class of extensionally equivalent congruences 

Fig. 7. The classes of congruences associated with a not sufficiently complete type. 
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NOW, unlike the cases of sufficient completeness, a first order proof system, or 
the proof system II (cf. Proposition 3.3), is no more complete: if t = t’ is satisfied 
by eLery model, it is not always provable. For example, let us consider a type with: 
- a primitive sort S, having one constant JJ 
- a nonprimitive sort S2 and operations a : + SJ: S2 + S, without any axiom. Every 

hierarchical model satisfies f(a) = p, but ,f( a) = p is not provable (for a study of 
these questions, see [6]). 

5 S. Partial abstract types ?Z 

Roughly speaking, a type is not sufficiently complete, if an external operation ,A 
i.e., an operation with values in a primitive sort, is not completely specified. Then 
there exist terms t such that f(t) is not syntactically equivalent to any primitive 
term: one can say that the value of _f( t) is not significant and, therefore, may be 
interpreted as undefined. This leads us to considering partiul heterogeneous algebras : 

the only difference with total ones is that the operations can be interpreted as partial 
functions. For simplicity we assume that the given model of the primitive type is a 
total algebra. 

5 1. Partial models 

In this section the interpretation of the equality symbol = in partial algebras as 
well as the interpretation of universal quantifier in partial algebras will be discussed. 

For a partial algebra A, we write t.” = t’.“’ if t*” and t’” are both defined and equal 
or if they are both undefined. And we write V’ s t”’ if f” and 1”’ are both defined 
;ind equal; otherwise t” f I’.” does not hold. ( = is the so-called strorlg equality 
(cf. [q5]) and 2 the existential equulitv (cf. [S]).) An axiom t = t’ is satisfied by a 
partial algebra 11 if t” = t”‘. This verification condition is strong: axioms t = I’ are 
excluded where 1” and t’” are not both defined or both undefined as e.g., mult(f, 0) = 
I) where t is a term which is undefined in A. In order to avoid such situations one 
can employ preconditions (cf. also errors in [3]). In contrast to Rroy and Wirsing 
[ I I ] we take here the following position: The undefbedness of terms in the precondi- 
tions should not imply the equality of two terms in the conclusion: otherwise, one 
could obtain (partial) initial algebras which are not recursively enumeruble.’ Thus, 
we say that a partial algebra A satisfies an axiom 

without Ivariables if ti’ s ,:” for i = 1, . . . , q implies t ” = Y”‘. As pointed out in [ 1 I), 
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the strong equality is expressible by the existential equality together with a defined- 
ness predicate and vice versa. However, allowing the strong equality in the premises 
we get a more powerful specification method leading to specifications with noncom- 
putable (hyperarithmetic) algebras. 

Let us now examine the case where axioms may contain variables. Free variables 
in a formula are interpreted as universally quantified. They must hold for all elements 
of the carrier set of the algebra: a (term-generated) partial algebra A satisfies a 
formu& F -64th free variables xl,. . . , x, if A satisfies F( f,/x,, . . . , t,Jx,) for all 
terms t,, . . . , t, of appropriate sort which are dejned in A: t,, . _ . , t, are ground 
terms, i.e., terms without variables. 

Remark 5.1, Partial functions are strict: f( t) Is undefined when the interpretation 
of t is undefined. it is, however, possible to use ‘conditionals’ in the sense of 
programming languages. Instead of introducing an operation if-then-else into the 
type (which we do not want to be strict) we may consider an axiom 

u = if h then f else t’ 

as abbreviation of the two axioms 

b=ttrue * w= t and 6 f false a u = t’. 

Another possibility ‘is to define the semantics of if-then-else by an evaluation 
function (as in denotational semantics). This has been done in [8,9] where the 
semantics of simple programming languages is completely algebraicaily defined. 
In general, fixed point theory (cf. [41]) considers also models with nonstrict 
operations. This can be done within the algebraic approach by considering general- 
ized heterogeneous partial algebras (,cf. [ 121). 

5.2. The associated total type 

In this section, the connections between partial types and total types are studied: 
to any partial type T (for short, PAT T) a total type T is associated by introducing 
a so-called ‘definedness predicate’. Similarly to any partial algebra a total algebra 
is associated by introducing new ‘bottom’ elements. Then the totalisations of the 
models of T are exactly the models of ?; (see Proposition 5.2). Moreover, we use 
the total type T to give a criterion whether a term is defined in T (see Proposition 
5.4) tied even to establish a sound and complete proof system (with respect to 
ground atomic formulas) for T. 

Now, let a partial type T be given. We extend it to a total type r in the following 
way: 
- 7 is a hierarchical type on a unique new’ primitive sort BOOL with two 0-ary 

operations true and false, interpreted as the boolean values true and false: 

’ Th:5 means that BOOL is assumed to be different of all sorts of T. 
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_ for lzvery sort s of T, an operation D: s + BOOL; D(I) = true (abbreviated in the 
sequel by D(r)) expresses the definedness of the term t; 

_ axioms for D: 

(ST) Strictness: 

WW 

(UN) 

o(f(4, - l l 3 43 * Wi) 

for every operation f: sl x 9 l . x s, + s, and i =I 7, . . , n. 

Dejnedness of primitive terms: 

D(P) 

for all prilmitive terms p. 

Unicit_y of undejnedness: 

D(t)=false~ D(t’)=false a t=t’ 

for t, t’ of the same sort. 

- transformation of the axioms of T: 
Every axiom 

with the free variables x,, . . . , x,, is replaced by 

Then every algebra A of the partial type T can be made into an algebra A of 7 
in the following way: 
- for every sort s E S, 

3 sA u { er,} if there exists a term t of sort s with 1.” undefined, 
s = 

s n otherwise, 

where er, is a new element: 

- for every operation ,f’: s, X - - - X s,, -+ s, 

i 

n if(a,, . . . , a,,) E (s;” X l 9 l X .s;,‘j 

./“‘( u,, . . . , u,, 1 - ’ 
and j‘“( aI, . . . , II,, ) = a, 

I 

er, if there exists an i E { I, . . . , II} with N, = U, 
or-f”{ a,, . . . , tz,, 1 is undefined. 
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The total algebra A is called the totalisation of the partial algebra A: two distinct 
algebras have two distinct totalisations. 

Conversely, every algebra B of F verifying (ST) and (UN) is the totalisation of 
an algebra k of T: 
- if there exists a_n elennent er, of sB such that DB( er,) = false, then, from (UN), 

er.V is unique: sB = s’ -- (er,) ; otherwise, s B = sB. 
m S( ‘a Ivm**9 a,) is defined, and equal to f*(u,, . . . , a,) iff DB(fB(u,, . . . , a,,)) = 

true. 
A structural induction using (ST1 shows that tB is defined, and t’ = t”, iff 

D”( t*) = true. The verification that 6 = B is then immediate. 

Proposition 5.2. Let T be a PAT and 7 the total type assoc;ated with T. 

( I ) [fA is an algebra of T, A its totalisation, and t a term of sort s, then t A dejned iff 

D”(r”) = true avtd t” := t”. 
(2) The models of 7 are the totalisations of the models of T. 

Proof. Let A be’an algebra of T. Its totalisation A obviously satisfies (ST), (DP) 
and (UN). 

( 1) Already proved with A = 6 and A = B. 
(2) From ( I), A verifies axiom (a) iff A verifies (OL): if A is a model of T, then 

4 is a model of 7; if B is a model of 7, then B = i and 6 is a model of 7I El 

Because of the l-l correspondence between (partial) models of T and (total) 
models of T, the study of the former can be replaced by that of the latter. By 
definition, the partial (hierarchical) congruence -A associated to a partial (hierar- 
chical) algebra A will be the congruence -4 A associated to A. Thus, -A E -B means 
that there exists an homomorphism p from A into B: ~(f”(x~, . . . , x,)) and 

.1‘%(-0, - l l 1 rp(x,,)) are strongly equal, i.e., both defined and equal or both 
undefined. 

In the sequel we have to prove that some relations - on terms of F are congruences 
verifying axioms. They will be given by: 
_ an equivalence on the terms of sort BOOL, hierarchical in the sense that every 

term is equivalent to true or false: it is completely defined by the condition for 
which D( 1) -true: this will be expressed by a unary relation R associated to - , 

D(r)-true r-4, RW: 

-t- 1’ N t zqY I’ or ( D( t) -false and D( t’) -false) where -iv is the syntActic 
congruence of Z 

Lemma 5.3. The preuious relation is a congruence verifying (ST) if ( t =;;Y t’ trnd 
R(t) * R(f)) and (R(f’(t,, . . . , t;, . . . , t,)) -+R( t,)). It verifies (DP) if R(p) for 

all primitioe terms p. If uer$es (UN). It verifies \I:) $ R( t) =+ D( t ) 3;~ true. 

Proof. Relation - is obviously reflexive and symmetric. It is transitive because 
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=--.. ,’ 
t-y ’ and --d?(t) 3 TR(t’). It is a congruence because -=;G is, and 

lR(ti) * 7R(f(t,, l l - 7 ti, l l l 3 tn)), 

t 

1 

The other 

=@ t’ * f(t,, . t . . , , . . . , t,) “syf( t,, . . . , t’, . . . , t,,), 

=;$ t’ 3 (R(t) e R( t’)). - 

results are immediate. Cl 

A first application is the following proposition. 

Proposition 5.4. D(t) is a theorem of 7 iff there exists a primitive context en qf t and 
a primitive term p such that cn[t]= p is a theorem of T* 

Proof. Since all primitive terms p are assumed to be defined, if cn[ t] = p is a theorem, 
then D( cn[t]) is a theorem and also D(t) by repeated applications of (ST). 

For the converse let us consider the relation - defined as before with 
R(t) rc~ 3cn3p, cn[t] =~y p. Then R( t) + D( cn[ t]) =;i true for some context cn 

anId by (ST) we obtain R(t) =+ D(t) =~y true. From Lemma 5.3, it is a congruence 
satisfying axioms, thus stronger than =;i. Cl 

Definition. A ground term t of a primitive sort of T is reducGk if t y p for some 
primitive term p. 

Thus, D( t) is a theorem i!I t is a subterm of a reducible term. 

Remark 5.5. The proof system (II) of Section 3 extended by (ST), (DP) and (UN) is 
also a proof system for z But this system can be simplified. For example, no 
L)( t ) = false can be proved since only the rule (COMP) can lead to such a formula, but 
with another D(t) = false as a premise; therefore, (IJN) is unuseful. We shall now see 
that a new system (I1 1) is sufficient; its formulae are of the form t = t’ and D( t ), for I, t’ 
ground terms of T: 
- miotns: 

(Rw) t = t 

(DP) D( p) for p primitive term. 

(s:,lls 1-) -,, 
tzs 1’ 

_^____ -_- .--- - 
jt.r I,..., t ,‘.., tJ=f’(r I,..., I’,..., I,,) 

for _f operation of T (i.e., j+ 11) 
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t=t’ D(t) 
(SURSD) - 

D( t’) 

(STi) 
D(S(tl,**=,zi,**=,t,)) fori 

= 

D(ti) 
1 

9***9 n 

(<XI) 
D(u,) . . . D(u,) D(t,). . . D(t,) t,= t; . . . tq= t; 

2s t’ 

if /j 1% ,...y ?i = t: + t = I’ is obtained from an axiom of 

T by substituting uI, . . . , u, for the free variables. 

It is clear that this system is sound, i.e., its theorems are theorems of 7: 

(Ill t- r= 1’) * t y, I’ (Ill I-- D(l)) + D(Z) “kitrue. 

The congruence induced by (II I ) is the least congruence verifying the axioms (ST), 

(DP) and (&) since (UN) can be removed without changing theorems. 

We now prove that (111) is a (sound and complete) proof system for T, i.e., for 

I, f’, t” ground terms, t = t’ and D( ?“) are theorems of Ii= iff they are provable by 

(I I i ). K stc t,! A (II 1) is a proof system for ground atomic formulas. In general, 

there does not exist a complete proof system for algebraic types w.r.t. formulas 

contai!ting variables (cl’., e.g., [44]). 

The soundness of (I 11) has already been proved- For the completeness, let us 

consider the following congruence, hierarchical fat BOOL, uniquely defined by 

II(r)-true @ 111 c D(r) 

it is a congruence because oi (Suusr) and (Su~sr~). It satisfies (ST) because of 

(STi), (UP), and (6) because of ((XI). Thus E,~c- -: 

t _=\\ ,’ * 111 :--‘t ZE f’ WI “;y true * Ill I-- D(t). 

5.2. Nonhierarchical partial models 

Every total nonhierarchical type admits an initial algebra (see Proposition 3.2). 

For partial. types we would like to have a similar property. Since initiality depends 

cruciiilly on the notion of homomorphism we define in this section two notions of 

homomorphisms for partial algebras- the so-called ‘total’ and ‘weak’ ones. 

We show that the algebras which are initial (in the sense of total algebras) in the 

class of ‘minimally defined’ algebras of a partial type ‘r (see Proposition 5.6) are 

also initial in all models of T with respect to total homomorphisms (see Proposition 

5.7). Moreover, definedness and equality (with respect to ground terms) in these 

initial models coincides with the provable definedness and equality in T (see 

Proposition 5.7). Hence this notion of initiality is also general as the one for total 

types. 
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More specifically, let T be a nonhierarchical partial type. Using only axioms of 
the fo,rm A ri = t: + t= t’ one cannot express any definedness. Hence we assume 
that at ‘least certain terms are defined such as true and false of sort bod. 

The totalisations of the (nonhierarchical models) of T are the models of E 
hierarchical on BOOL. In general, F is not sufficiently complete on BOOL: it would 
be the case only if D(t) is provable for all t. The syntactic congruence =ij, is thus 
in general not associated with a model (see Theorem 4.6). The congruences associated 
with models are divided into disjoint lower semilattices: each semilattice is formed 
with those where the same terms are defined (see Theorem 4.8). 

One of these semilattices corresponds to the minimally defined models, where t is 
defirred only if D(t) ssj true. Let -A be a congruence of the following class: 

- t =rry t’ =$ t -A t’; 

-= l>( 1) g,, true and n( t’) f ;, true + D(f) -r\ fake and D( t’) -A fake 

=3 t-At’ (from (UN)). 

A candidate for the initial congruence of the class is then sl: 

- D(t) -, true e D(t) =+ true; 
- t -, 1’ 0 t =iy t’ or (D(t) $sy true and D( t’) f,, true). 

Because of Lemma 5.3 it is actually associated with a model. 

Proposition 5.6. -, is a congruence associated with (z model 1 ctf‘ T, initial ita the 

.wmilattice of minimally defined mode1.s. 

For comparing congruences where defined terms are not the same, and thus 
noncomparable by c , we consider two other orderings corresponding to two 
different kinds of generalized homomorphisms (cf. [S, 39, I I]). For two partial 
algebras A and B: 
_- ‘.\ G - lI i fT t - ..l t’ and t” defined 3 t -!{ t’ and t” defined (in other words, 

t” & p -A+ p & f”) 

_- /I -N -7 -I1 iff t -,4 t’ and I” defined 3 t - Ij t’ and 1.” defined (this condition is 
equivalent to (t -A t’ * t -H t’) and (1” defined =+ t” defined)). 

A homorphism p: A -+ B for partial algebras is a partial opera’:ion which satisfies 
the usual homorphism property on its domain: 

s”(x,, l l * , x,,) defined * ~(fn(s,, . . . , s,,)) =.fH( cc,& ), . l . , cc&,))- 

A total hnmorphism also satisfies 

./“‘I A-, Y ) defined =+ _f“‘( &Q ), . . . , C&Y,,)) defined. . . . . , - ,, 

‘Total homorphisms correspond to the ordering c which preserves defined terms. 
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An initial congruence for c defines an initial algebra w.r.t. total homomorphisms 
and will also be said initial. . 

The relation =G preserves unde#Fned terms: for -A S cyB, if tA is undefined, t ’ is 
undefined. It corresponds to the existence of a weak homomorphism (9, i.e., an 
homomorphism which satisfies a condition converse to the previnus one: 

fYcp(xA l l l 9 cp(x,)) defined + fA(x,, . . . ,x,) defined. 

Thus a weak homomorphism can be a partial operation but it is surjective for 
term-generated algebras. 

Proposition 5.7. ( 1) D(t) and t = t’ are theorems of T tff t ’ 5 t”. 

(2) D(t) is a theorem of F if t ! is dejrxd. 

(3) =I is initial in the class of congruences associated with models of T 
(4) Every sound and complete proof system n jor T (e.g., II I, Section 5.2) satisJies 

the following properties: (for all terms t, t’) 
(a) 7rt- D( t) @ t A is defined for all mod& A. 
(b) w-t=t’a tAz t’ A holds in all models A. 

In parfir ul,lr, property 4(b) says that only the existential equality can be proved (cf 
Remark 5.5). 

Proof 

(1) I’6 t” e D(t) =, true and t =:I t’ 

e D(t) =iG true and t y; t’. 

(2) Particular case of (1) with t, t’ identical. 

(3) 1’ g t” --r, D(t) --A true and t -A t’ for every model A. 

(4) Results from (2) and (1). 

5.4. Hierarchical partiai models 

Hierarchical total types admit initial models if they are consistent and suffciently 
complete. If the premises of the axioms are of primitive sort, then the hierarchi ,a1 

F 
congruences form a complete lattice. In the case of hierarchical partial types we 
will see that the existence of initial models is ensured already under weaker condi- 
tions: apart from consistency ;Jnly the so-called ‘partial completeness’ is needed 
(see Theorem 5.8). The lattice property, however, is not so easily reached. *For a 
consistent partial type with premises of primitive sort any class of extensionally 
equiva1er.t congruences only forms a complete upper semilattice with respect to 
weak homomorphisms (see Theorem 5.10). Only if all functions of nonprimitive 
range are total, then any class of extensionally equivalent congruences forms a 
complete c-lattice (see Proposition 5.9). Finally we show in this section that the 
initial models of a partially complete type are locally computable. 
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First let us recall that a partial model A is hierarchical for a given primitive 

congrllence =p iff: 
(a) if t is a term of primitive sort and tA is defined, there exists a primitive term 

p such that t” = p”. 
(b) for p,, p’ primitive terms $ = P’~ 3 p =p p’. 
We recall that to study hierarchical models we add p = p’ to the axioms whenever 

p, p’ are primitive terms verifying p =g’ (4.2). 
The role played by the initial congruence s.5~ in (4.2) can here be played by the 

initial congruence = I: it verifies condition (b) iff T is consistent: it verifies condition 

(a) iff, for t of primitive sort, 

D(t) -i> true @ 3p primitive: t =;i p. 

Definition. T is partially complete if every ground term t of primitive sort with 
D( t ) =,\ true is reducible. 

‘Partially complete’ is a weaker condition than ‘suffuziently complete’. It is sufficient 
for the existence of a model. From Proposition 5.4, a type is partially complete itf 
every subterm of primitive sort of a reducible term is reducible, too. We have thus 
proved the following theorem. 

Let US now study the structure of the citiss of hieriirchical piirtial congruences, 
or more exactly of their totalisations. This class can be divided in subclasses of 
extensionally equivalent congruences relatively to the pl imitive sorts and BOOL, 

each subclass being a lower semilattice w.r.t. c , or even ;i lattice if’ the premises o!‘ 
axioms are of primitive sort. 

Two models are extensionally equivalent for 77 when 
- they are extensionally equivalent for the primitive sorts of T, 

- they have the same defined terms. 

, 

If only tht first c-Jndition is verified, the models (;lnd their ;Issociated congruences) 
are said to be extensionally equivalent for T. 

As an example of application, let us consider the models where only the functions 
having a primitive range can be interpreted as partial. Then, the detined terms are 

those which con :ain no tindefined terms of primitive sort. Thus, two estensionaily 
equivalent models for T have the same defined terms, and are extensionally 

equivalent for ?: We have therefore proved the following. 



Systematic study of models of abstract data types I61 

axioms are of primitive sort. The set of congruences associated with models where 
functions having a nonprimitive range are total, is divided into disjoint complete 
c -lattices of extensionalRy equivalent congruences for T. 

A class of congruences associated with models extensionally equivalent for T i, 
constituted, in general, of several semilattices corresponding to different defined 
nonprimitive terms (see Fig. 8). It is uniquely defined by the common restriction p 

-+-- total homomorphism 

l 0% l weak homomorphism 

Fig. 8. A class of extensionally equivalent partial congruences. 

of the congruences to the Iprimitive sorts (i.e., by a regrouping of classes of syntacti- 

cally eqGvakt primitive terms, such that some classes without primitive terms are 

grouped together and any other class is grouped together with a class of reducible 

terms, see Fig. 9). Such a class of congruences is denoted by ExT,,. 

0 1 

i Q ;I( 

0 2 n 

w 

Fig. 9. Two ditfercnt regroupings into p : @ leads to locally computable models. 

Theorem 5.10. ,4 class of extensional!)) equivaleilt models of’ a type T has an initial 
element. If the premises oj- the axioms are of primitive sort, then the congruences 
associated to the models oj’ the class form a complete upper semilattice w.r. t. < ; th& 

terminal element is the terminal minimally defined congruence of the class. 

Proof. We consider a class ExT,,. 
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(a) If p is a primitive term and t a term of the same sort, the models of ExT,, 
satisfy the equation t = p if t p p. .4dding these equations to the axioms, we obtain 
a partia!ly complete type Tp: indeed, if D(t) is a theorem, tA is defined for every 
model A of ExT,, thus t pp for some primitive term p. Therefore, TP has an initial 
congruence (which is the initial congruence of the semilattice of the minimally 
defined congruences of T,). 

(b) We suppose now that premises of axioms are of primitive sort. Extensionally 
equivalent congruences satisfying axioms (ST), (DP) and (UN) form a complete 
lattice w.r.t. E (see Theorem 4.7). If two of these congruences verify -A =G -8 and 
if -A satisfies axiom (OL), then -B satisfies this axiom. Thus, ExT,, is an upper 
semilattice w.r.t. < . 

(c) There exists in EXT, a s-terminal congruence which is one of the terminal 
congruences 0; of the semilattices %‘i constituting ExT,: from Theorems 4.7 and 4.8, 

t 0, I’ @ for 211 contexts cn of z and t’, cn[t] p cn[f] and t, t’ both defined 
or both undefined in the models of ‘ci 

(because, for 7, D is a context). For the minimally defined models, t is defined if, 
for some context, cn[r] is reducible in TP: then, for the terminal congruence 0: 

10 I’ G for all contexts cn of t and t’, cn[t] p cn[t’]. 

Consequently, f 0; f’ =3 f @ f’. Moreover D( t)@true a D( t) 0, true. Therefore, 
o,<o. cl 

An interesting class of extensionally equivalent models is defined by grouping in 

p all terms of primitive sort which are not reducible (Fig. 9). They are the models 
A verifying for p primitive and t of the same sort, 

f “=p” * ryyp 

(and therefore 1” = p* G t =+, p since the converse is always true). Such models 
(and congruences) can be called locallv computable in the following sense: if I” is * 
defined, and thus equivalent to a primitive term p, t = p is provable? If the type is 
partially complete, the initial model I is locally computable. 

Theorem 5.11. A consistent hierarchical PAT has a loc@ly computable model #’ it is 
parfiallj7 complete. Then, /he initial model I is locally computable. !J moreover the 
premises oJ axioms are of‘ primitive sort, the locally computable congruences jbrm a 
complete upper semilattice w.r. t. =S ; the terminal congruence @ of this semilattice ver$es 

D(t)@true t-4 D(f) =,,true 

w _fiw some context cn of t, cn[ t] is reducible. 

’ Therefore, every function kfith prinlitive range can be sf.xn 9s a partiill recursive function (CC 161). 
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Proof. If the type is partially complete, I is a locally computable model. Conversely, 
if A is a locally computable model and D(f) ~6 true, t is defined for A, tA = pA 
for some primitive ii=rm p and therefore t =+p. The last part of the theorem results 
from Theorem 5.10 and from Proposition 5.4. Cl 

5.5. Structure of the set of classes of extensionally equivalent models 

For total algebras, all lattices of extensionally equivalent models were disjoint 
and incomparable. For partial algebras the ‘less defined’ ordering of the fixed 1; $nt 
theory would be a natural candidate for structuring such classes. We say that a c&s 
EXT~ of extensionally equivalent models is less defined than ExT,~ (for short 
EXT, G ExQ if for some congruence of EXT, and some congruence of ExT,~, p is 
partjally weaker than ,p’ (p E p’). I 

Smce the restrictions to the primitive sorts of all congruences of one class are the 
same, this definition is independent of the particular models. If there exist total 
models, their classes are maximal. 

Proposition 5- 12. The . following properties are equivalent : 
( 1) Ex -rs, G kTpp. 
(2) The initial congruence of ExT,,.: =, p r_ = 1 PI' 
(3) EXT, contains a cangruence partially weaker than some congruence of ExT,~. 
Moreover, for a consisilent and partially complete hierarchical PAT, the class qf all 

locally computable models is C_ -initial in the class of all nonempt_y classes of extensionally 
equivalent models. 

Proof. ( 1 + 2): The models of ExT,, are obtained by adding axioms t = p for every 
primitive term p with t p p ; if p c p’, t p p implies t p’ p. Therefore, the syntactical 
congruence obtained by adding these axioms is contained in the syntactical con- 
gruence associated with p’ in the same way. Then, from the definition of the initial 
congruence (Proposition 5.6), =‘rp r_ = Ip’. 

(2 =$ 3): Obvious. 
(3 * 1): If hI) E EXT, is partially weaker than --,*E ExT,,~, it is also true for then 

restrictions p and p’ to primitive sorts. \ 

In particular, the class of locally computable models of a partially complete PAT 
is initial for c . Cl 

Unfortunately, the general form of our axioms- even restricted to premises of 

primitive sort- does not imply a c-lower semilattice structure as the following 

example shows. 

Example. Let T be a PAT with primitive subtype P such that P consists of two 
0-ary operations a, b: -+ P with a # b and T extends P by three 0-ary operations 
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L: + P and a function J: P + I? Furthermore, .f is defined by the axioms 
Fyf,:’ ;!, f( t2) = t2 and f, = t, + .,‘( lo) = f2 (i.e., if t, is defined, J( to) is equal to L). 

Consider the following congruences of T: 

For Ci and G, every term is defined; for C3 and C?, there exists a class of undefined 
terms. C, and C, are two incomparable maximal G-lower bounds of C, and C2. 
-v-= reason is that to and thus f‘( to) must be undetined in every lower bound (since II r*t 

I,, is identified with two inequivalent primitive terms in C, and C,); but then, 
according to the last axiom, either t, has to be undefined or t-, must be identified 
with _f(fJ which is undefined. The undefined terms of the greatest lower bound 
cannot be uniquely determined. 

By restricting the form of the axioms, however, sufficient conditions for the 
existence of a semilattice structure will be obtained in the next paragraph. The idea 
is that no term t occurring in the conclusion of an axiom shouid contain any proper 
subterm the undefinedness of which could be created by ‘ambiguity’, as t,, in the 
example above where lo = a in CI and to = h in C2 where a and b are ditrerent 
primitive terms. A sufficient syntactic condition is that t does not contain any 
nonprimitive proper subterm of primitive sort. 

5.6. Tli e case of simple axioms 

Partial completeness is a syntactic property which in general is only semidecidable. 
In this section we will give a (linearly) decidable criterion for partial completeness: 
the ‘simple’ form of the axioms (see Proposition 5.14). Consistent partial types with 
such axioms have an additional property: the set of their hierarchical congruences 
forms a complete lower semilattice with respect to total homomorphisms, the initial 
congruence being the least element (see Theorem 5.15). The example of the previous 
section (kctioil 5.5) shows that the ‘simple axiom condition’ is also the weakest 
condition w.r.t. the form of axioms ensuring the semi-lattice-property. 

Definitioai. We cdl a term f simple if every proper subterm of primitive sort of f is 
primitive. An a.Com is called simple if both terms of its conclusion are simple. 

In the following we will p+*ove that the models of a consistent partial type T with 
Gmple axioms forms a complete lower semilattice w.r.t. cz : T contains locally 
computable models and its classes of extensionallv equivalent models form a lower w 
wmilattice w.r.t. tlie ‘less delired‘ otdering 2. 
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The proof will proceed in three steps. First we show that T is partially complete, 
then that the models form a semilattice and consequently that the classes of 
extensional equivalence form a semilattice. 

Definition. A ground term t is called fuZ!y reducible if every subterm of primitive 
sort of t is reducible. 

Lemma 5.H. is! T be a hierarchical PAT with simple axioms and let t be a fully 
reducible ground term. Then, for all ground terms t’, 

t = s; t ’ + t ’ is fully reducible. 

Proof. Let FR the set of fully reducible terms and let us consider the congruence, 
hierarchical for BOOL, uniquely defined by 

t-f at=,, t’ and ((t E FR and t’E FR) or (t E FR and t’e FR)), 

D(t)-true e D(t) =$rue and tEFR. 

It ic a c’>ngrusnce because 

rqit’and fEFRand ?kFRandf(t)@FR 

* f(f) f ;,.f( f ‘) and f( t), f( t’) nonreducible, 

teFR =$ j’(r)gFR. 

We shall prove t‘lat this congruence satisfies axioms (ST), (DP) and (6) of Section 
5.2. Then the proposition results of the fact that zsl i, the least congruence verifying 

these axioms (in fact, - and =s are identical). 
- (ST) and (DP) clre obviously satisfied. 
* For (ii;): if t is obtained by substituting, into a simple term, fully reducible terms 

for the variables, t is fully reducible or is a nonreducible term of priniitive sort; 
the same holds for t’. 
if moreover t =+ t’, then t and t’ are both fully reducible or both nom-educible. 

Thus (6) is also satisfied by the congruence. 0 

Proposition S.14. A hierarchical PAT with simple ax;‘o,my is partially complete. 

Proof. Since a primitive term is fully reducible, from Lemma 5.13, a reducible 
ground term is fully reducible; each of its subterms of primitive sort is reducible. 
Therefore the type is partially complete (see Theorem 5.8). q 

Theorem 5.15. 77~ set qf hierarchical congruences qf a consistent hierarchical PAT 
with simple axioms is a complete lower semilattice w.r. t. rz ; its initial element is the 
initicrl congnrence. 
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Proof. Let A be a nonempty set of congruences associated to models of T. To show 

the existence of a greatest lower bound for A w.r.t. C, we consider the type TM 
obtained from T by adding the axioms t = t’ for t, t’ simple terms and tA g t’A in 
all models A such that - A E J#. The models associated to .& are models of T& The 
axioms of TM are all simple. Hence, by Proposition 5.14, T& is partially complete. 
Let FR be the set of fully reducible terms of TN 

Let us consider the congruence - defined by 
- D(r)-tfUe e D(+Atrueforall -,&A and ?EFR, 

- t - t’ e t = t’ is a theorem of TN or (D(t) -false and D( t’) -false). 
From Lemma 5.4 it is actually a congruence satisfying (ST), (DP) and (UN): indeed, 
t = t’ is a theorem of TM and D(t) -A trye and t E FR * D( t’) -A true and 2% FR 
(see Lemma 5.13). 

Relation - verifies (G), too, because, for all -& A: 
(1) D(U+tfUe + D(U,) -_AtrUe and UkEFR; 
(2) ti-2: and D(fi)-ttrUe + ti -~,t: and D(fi)~AtIUe. 

Then, t -A t’ for -A E .M ; t and t’ are obtained by substituting, in simple terms, 
fully reducible terms for variables: they are equivalent to simple terms and therefore 
I = I’ is a theorem of ru. Thus t - t’. 

Condition (2) above also means that - is a lower bound of .M w.r.t. c_. 
Moreover, let -M be partially weaker than every congruence of .&. We first prove 

that 

fM defined * ~EFR 

by structural induction on t.he ground term I =.f( u,, . . . , u,,): if t ” is defined, then 
all uf’ are defined and tr f’ E FR. Thus, t E FR unless it is a nonreducible term of 
primitive sort. But tM defined implies tA defined for all A E 4. Hence, the partial 
completeness of r,$, implies t -A p for some primitive term p in all A E .&. Thus t 

is reducible. 
Now, t -,,, t’ and t” defined + v -A E & t hr.4 t’ and t” defined and l E FR 

and t’E FR. Then t = t’ is a theorem of T,; therefore, t - t’, and D(t) -true. 
Relation - is the greatest lower btiund of A. 

The hierarchical congruences form a complete lower semilattice. Since T is 
partially complete (see Proposition 5.14).. the initial congruence belongs to this 
lattice and is its initial element. 0 

Corollary. 77ze classes qf extensionally equivalent models qf a consistent hierarchical 
PAT with simple axioms form a complete lower semilattice wxt. the ‘less defined’ 
ordering; its initial c/emenl is the class qf local/y computable models (WC Fig. 10). 

Proof. 1 -et 7’ 5 ; 3 set of classes of extensionally equivalent models, and .& the set 
of their initial congruences. .& has a greatest lower bound -, which belongs to class 
EXl,,& ExT,,~. is a lower bound of 9’ (Proposition 5.12). 

Conversely, if bq is a lower bound of Y, its initial congruence is partially 
weaker than those of .M, thus than -, and Ex-r,,~ ExT~>,,. 0 
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_ tota' homomorphism 

of extensionally equivalent congruences of i 

0 initial congruence zI 

Fig. IO. The c-semilattice of classes of extensional equivalence. 

6. Algebraic specification u f a deterministic stream processing language 

To demonstrate how the algebraic specification of a simple, nontrivial program- 
ming language looks like, a specification of a deterministic stream processing 
language DSPL is given. This language can be used to write programs which 
consecutively read (possibly infinite) sequences of integers and consecutively output 
(possibly infinite) sequences of integers. 

Two sorts are supposed as primitive: 
_ int, the sort of integers together with the usual operations. 
_ id, the sort of identifiers, with an equality 

eq : id x id --) int : eq( x, x) = 1, eq( x, y ) = 0 for x, y distinct. 

From these two primitive sorts the sort exp is firstly constructed. exp is the sort 
of expressions built from integers (the operation intexp: int + exp converting an 
integer into an expression), identifiers and the usual operations, together with a 
substitution function 

esubst : exp x exp x id -+ exp 

(where esubst( e, e’, x) denotes the substitution of every occurrence of x by e’ in e) 
and an evaluation function 

val : exp + int 
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with axioms like 

val(intexp( n)) = n 

val(add( e, t?‘)) = val( e) +val( e’) etc. 

For identifiers x’ the value of val(x) remains unspecified. Hence the sort exp is 
sufficiently complete: in locally computable models the interpretation valf e) 
expressions e containing free identifiers is undefined whereas in 
interpretation might take an integer value. 

Now, the type contains two other nonprimitive sorts seq and 
simultaneously defined. Intuitively, an agent transforms an input 
output sequence. 

other models 

not 
for 
the 

agent which are 
sequence into an 

The sort seq comprises the following operations and axioms (which are typical 

for jequences !): 

sort seq 

empty : + seq 

isempty : seq -+ int 

append : int x seq + seq 

top : seq -+ int 

rest : seq + seq 

isempty(empty) = 1 

isempty( append( n, s)) = 0 

top(append( n, s)) = n 

rest,(append( n, s)) s s. 

Note, that the value of top(empty) and rest(empty) is not specified. It will be 
interpreted to undefined in locally computable models. 

Only finite sequences can be generated in this way. However, agents will also 
generate infinite sequences. Hence, sort seq cannot be taken as primitive since the 
set of finite and infinite sequences is not a (finitely generated) model of seq. 

sort agent 

stop : + agent 

input: id x agent + agent 

output: exp X agent + agent 

def: id x exp x agernt -+ agent 

if: exp X agent x agent + agent 
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ret : id x agent + agent 

call : id + agent 

process : agent x seq + seq. 

The language of agents can be viewed as a procedural language by writing 

stop for stop 

reac!( x) ; Q 

print(e) ; a 

x :=e;a 

if e then a 1 else a2 fi 

for input(x, a) 

for output( e, a) 

for def(x, e, a) 

for if(e, al, a2) 

p:: a 

call p 

for rec( p, a) 

for call( p). 

The language allows to write just mutually recursive procedures in tail-recursion. 
So we have a classical sequential input/output stream oriented, iterative, procedural 
p rogramrt ing I? 9guage. 

Examples. ( 1) The following agent computes the infinite sequence of the 
numbers 2’ : 

def( x, I, rec( p, output( x, def( x, 2 * x, call(p))) )). 

(2) The following agent merges the iilfiilk sequence of numbers 2’ with every 
ordered (infinite) sequence: 

def( x, 1, input( y, rec( p, if( x - y, outptlt( y, input( y, call( p))), 

output( x, def( x, 2 * x, call(p))))))) 

(3) The agents may be sequentially composed. Assuming a 1 and a2 are agents, 
then the function 

camp : agent x agent + agent 

is specified partially completely by 

process(comp(a 1, a2), s) = process(a2, process(a1, s)). 

We give now the axioms: 

process( stop, s) = empty 

process(input(x, a), append( n, s)) = process(def(x, intexp( n), a), s) l 

val( e) = n + process(output( e, a), s) = append( n, process(a, s)) 

def(x, e, stop) = stop 
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def( x, e, input(x, a)) = input(x, a) 

eq(x, y) = 0 3 def(x, e, input(y, a)) = input(y, def(x, e, a)) 

def( x, e, output( e’, a)) = output(esubst( e’, e, x), def( x, e, u)) 

def(x, e, if( e’, a 1, ~2)) = if(esubst( e’, e, x), def(x, e, u I), def( x, e, ~2)) 

val(e)>O * if(e, al, a2)VZl 

val(e)sO * if(e, al, u2)sa2 

rec( p, a) = asubst( a, rec( p, a), p). 

Relation asubst : agent x agent x id + agent is a hidden auxiliary operation with 
the axioms 

asubst( stop, a, p) = stop 

asubst(call( p), Q, p) s Q 

eqb, 9) -- r\ :- asubst( call( q), u, p) = call( 9) 

asubst( input( x, a’), a, p) = input( x, asubst(u’, U, pN 

asubst(output( e, a’), a, p) = output( e, asubst( a’, a, p)) 

asubst( if( e, u 1, u2), a, p) = if( e, asubst(u 1, a, p), asubst(a2, a, p 1). 

DSPL defines an abstract type that can be seen as a specification of a programming 
language. However, DSPL provides only an abstract syntax (i.e., the term algebra). 
The relationship to existing programming languages may not be seen immediately. 
Act:lally_ the:: are several ways of classifying DSPL and relating it to more common 
notations. It uafi be seen as an ‘assignment-oriented’ language, if we write 

x:= 4 :a 

for def( Y e, a). However, it can also be seen as an ‘applicative’ language, if we write .- T 

(As.a)( e) 

for def( .u, e, a). In any case it is rather a ‘data flow’ language, since it is not required 

that W!(C) is defined for instance in the axiom 

deft _I-, e, input(s, a )) = input( x, cl b 

which certainly does not hold in a classical procedural language like PASCN.. 
Objects of sort agent are programs that take finlae or infinite sequences as input 

and produce finite or infinite sequences. Terms of sort agent built without using 
the functions ret and call can be seen as trees with stop at the termin; leaves. A 
computation is a path through such a tree. using an input sequence., chosen in 
accordance with the if-statements. After elimination of the if-statements, a sequence 
of applications of input, output and def remains, applied to stop (the ending agent). 
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Using the functions ret and call also infinite trees can be represented. They may 
be obtained via an iterated replacement of all occurrences of call(p) in the agent 

a by the agent rec( p, a). 
The axioms of the type are simple. Therefore, the type DSPL is partially complete. 
Moreover, the rewriting system obtained by orienting axioms from left to right 

is confluent [27]. Indeed,, it is easy to see that the conflicting left-hand sides are 
directly confluent; for example, if val( e) = n and val( e’) > 0 

/ 
def(x, e, if(e’, al, a2)) 

/ 
J \ 

if(esubst( e’, e, x), def(x, e, a 1 j, def(x, e, a2)) ------+ def(x, e, a 1) 

since, if val(& is detined, 

val( esubst( e’, e, x)) = val( e’). 

Therefore, a reducible term cannot be equivalent to two different primitive terms: 
the type is consistent. Thus, there exist models. 

But we have to avoid,models where infinite sequences, like 

(1) procef4 def( x, 1, rec( p, output& def( x, 2 * x, call( p))))), empty), 

would be interpreted as undefined. Mord generally, we intend that every process 
gives a defined result. 

To ensure that, we introduce two definedness functions 

Dl:seq+b 02 : agent -, b 

where b is a primitive sort with one element tr, and the (simple) axioms 

D 1 (process( a, s)) = tr, D2( call( p)) = tr, 

D2( stop) = tr, D2(input( i, a j) = tr, D2( output( e, Q j) = tr, 

D2( def( i, e. a)) = tr, D2(if( e, Q 1, a2)) = tr, D2( rec( p, a )) = tr. 

Thus, process and the operations generating agents have to be interpreted as total 
functions. 

For example, these axioms ensure definedness of term (1) and therefore 

top(process(def(.x, 1, rec( p, output(x, def(x, 2 * x, call(p))))), empty)) 

can be reduced to 1. 
The new axioms keep consistency, because they can be only applied in proofs of 

equations oC sort b. 
Thztirems 5.11 and 5.15 then imply: 
( 1) The type DSPL has an initial model which is locally computable (in fact, the 

only partial functions in this model are val, top and rest). 
(2) Tl-e set of the hierarchical partial congruences of DSPL forms a complete 

lower s:;AGttice w.r.t. c. 
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(3) Every class of extensionally equivalent congruences is a ccmplett: upper 
semilatti ce w.r.t. S. 

(4) The classes of extensionally equivalent models of DSP! fol m a complete 

lower semilattice w.r.t. the ‘less-definedness ordering’ with the locally computable 

models as initial element. 

The different models define ditierent semantics for the language. Another proof 
for partial completeness and consistency of the language DSPL can be found in 

[39] where a term-rewrite system for DSPL is derived for which the connuence has 

been checked by machine. 

7. Concluding remarks 

It has been one of‘ the contributions of denotational semantics to d(~mon~tr;rte 

that pro,~rarns can be viewed as functions and, therefore, mapped onto particuliir 

f‘unction ~pace:~ in mtithematical (denotational) semantics. Abstract types, howe\*er, 

\pxiCy ;t class of’ possible semantic models. In this class, particular models mq be 

dih,tinguished, sulzh as terminal o r initial ones. They may be used to characterize 

~l;i:~eh of isomorphic semantic mod&, i.e., to specify the semantics up to isomorph- 

ism. In particular, the algebraic tippro:lch promises sever:)1 advantages. First, in this 

WY the description of data structures and progr;ims ~1 tw done in ow coherent 

I‘WIIIA fr;lmework by a hierarchy of :ibstr:ict types. Second, it fallows for a proper 

tk-nrrl deiinition without considering any unwarned details ot‘concrettl represent+ 

tier;% just talking :&out the intended functions and their ch;lr;icteristic properties. 

l‘hirri. otl wch ;I bitsis se\.eritI ditferent concrete scm:lntic detinitions (m~~thtmati~:~l 

3em3ntic3, operational semantics, axiomatic S~Ill~IltiC~, CiC.) nl;iy conveniently be 

compared and proved to be estensionall~ equivalent. Fourth, ;I description of ;1 

programming language a11 be given without detining an explicit domain ;lnd parti;ll 

ordering, which is genrally necess;q, if it tised point semantics is looked for. Note 

that in some important cases (such ;1s for nondetcrministic and concurrent progriims) 

the rcshpecti\:e tlomains arld orderings ;it-e estremel>~ dit\ic‘ult to be found. 

Of c‘ourst’, we do not say that the algebraic, ;Ibsfr;lct approach to the detinition 

01’ :t progriimmirlg Iq+;\gc milkes other methods for description superfluous. We 

r‘lther propose abstract types ;IS ml important tool for the stepwise design and 

\emartic ?;pecitiMion of programming languiiges, independent of purticular sytit;lc- 

trc or cem:lr~!ic representrltion, only oriented towards the biisic concepts, which may 

bc expressed by algebraic properties. If one has finished the esperimental design 

phase, where s~~rtl possible closely related languages might be considered, ;ind ;t 

%prcification by itbstract tvpes is completed. one should trv to gi\,c dcnotational, r _ 
qwr~ttion:iI and axiomatic winantics. ‘This second de+n ph:ise can be wed to 

~iiw-w+ particulx- ;tl;pects ot‘the I;tnpuaptz. SimuItancou~l~ 11 concrete svnt:ls can bc _ 
gii m. 
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Finally, the algebraic approach allows for a systematic classification and com- 
parison of data structures and control structures in programming languages. This 
may lead into an algehrsis theory of language concepts (cf. the work of Peter Mosses). 
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