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Abstract. TL.. term-generated models of an abstract data type can be represented by congruence
relations oii tihe term algebra. Total and partial heterogeneous algebras are considered as models
of hieracchical abstract data types.

Particular classes of models are studied and it is investigated under which conditions they form
a complete lattice. This theory allows also to describe programming languages (and their semantic
models) by abstract types. As example we present a simple deterministic stream processing
language.

1. Introdudtion

Abstract (data) types are formal specifications of (classes of) heterogeneous
algebras which are called the models of abstract types. Such a view of the semantics
of abstract types is important, in particular, for their applications; for instance, for
the incorporation of abstract types into programming languages [16, 15], the use of
abstract types for the definition of programming languages and for the specification
of compilers [3. 4, 8,9, 18, 33, 34, 421, or for the joint development of programs and
data structures [37, 17).

However, the study of the models of a type has rarely been done very systemati-
cally. The point of view of the ADJ-group [2] is that an abstract type specifies an
initial aigebra of a categorv of algebras. Wand [42] is interested in final algebras,
the Milano-group (Bertoni et al. [7]) in monoinitial algebras. The study of all
term-generated models of a type has been initiated by a group of Pisa (Giarratana
et al. [19]) and independently proposed by Bauer and then continued by the
CIP-group of Miinchen [11, 45]. The present study is based on this work; however,
the presentation (based on [34]) and several results are new.
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One often cited advantage of abstract types is their modularized, hierarchical
construction from already predefined types (cf. [14]). We call such types hierarchical
types and have made particular efforts for their definition and the study of their
models for total (Section 4) and partial algebra semantics (Section 5) as it is needed
for the specification of programming languages (cf. [8, 9, 34]).

We prove theorems of the following kind: under certain assumptions the models
of an abstract type form a complete lattice, or a semilattice; or if these assumptions
cannot be satisfied, we single out ‘well-behaved’ subclasses of models such as the
classes of extensionally equivalent models.

The assumptions concern the properties of a type. Let us first recall the definition
of 4 type used in this paper: an abstract type consists of a signature (Section 2) and
of axioms (Section 3).' The assumptions may concern the form of the axioms. We
do not try here to reach a maximal generality (cf. for this [11]), but only a generality
appropriate for particular applications. Moreover, we introduce other hypotheses,
also of ‘syntactic nature’, since evidently the interesting results connect syntactic
properties of a formal system, i.e., the abstract type, with semantic properties
concerning its models. For example, for hierarchical types, the sufficient completeness
of Guttag [23] and Guttag and Horning [24] ensures the extensional equivalence of
all models. But, for programming languages in particular, it is necessary (cf. [10, 34)) .
to study models of abstract types which are not sufficiently complete (Seciion 5).

A complete lattice is a nonempty set together with an ordering relation such that
every nonempty subset has a least upper bound and a greatest lower bound. In this
study the set will be the class of term-generated models and the ordering will be
based on the notion of homomorphism: Ac B if there exists a homomorphism from
A into B. In fact, this is not an ordering between models but between isomorphism
classes of models. The isomorphism classes of term-generated models can be rep-
resented by the congruence relations on the term algebra. We will use this tool
systematically, for it permits to work with the sct (the lattice) of congruences. So
we need not to make any use of category theory as, e.g., ADJ or Wand. In particular,
we prove that the isomorphism classes of the models of a consistent and sufficiently
complete hierarchical type T form a lower semilattice w.r.t. < (see Theorem 4.6);
they form a complete lattice if, furthermore, the premises of the axioms of T are
of primitive sort (see Theorem 4.7). But, if T is not sufficiently complete, then the
isomorphism classes split into disjoint and incomparable lattices of extensionally
equivalent models (see Theorem 4.8). By allowing partial functions as interpretations
of incompletely specified operations with primitive range, the situation remains the
same (see Proposition 5.9), but we can distinguish the class of locainy computable
models.

Such models exist in the more general framework of hierarchical partial types,
under the assumption of consistency and partial sufficient completeness (see
Theorem 5.111. But there a class of extensionally equivalent models does form only

For many authors, e.g., [ 1], an abstract data type is indeed a class of algebras specified by a signature
and axioms, what is called here the class of models of the type.
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an upper semilattice and not a complete lattice (see Theorem 5.10). Furthermore,
in the class & of all classes of extensional equivalence the locally computable models
are an initial element w.r.t. the generalised ‘less-definedness’ ordering of the fixed
point theory (see Proposition 5.7). We give syntactic conditions under which the
class & forms a lower semilattice w.r.t. this ordering (see Theorem 5.15).

Finally, as example we present a simple deterministic stream processing language.
This language can be used to write programs which consecutively read and consecu-
tively output finite or infinite sequences of integer numbers.

2. Signature and algebras

In this section we review the notions of signature, term: algebra and term-generated
heterogeneous algebra. In particular, we recall that the set of congruences associated
to the algebras of a certain signature forms a complete lattice with respect to set
inclusion. Its greatest element is called terminal element and is associated to the
algebras \ hiere “very carrier set contains (at most) one element whereas its least
element is called initial element and is associated to the term algebra.

A sigrature X = (S, F) consists of

- a (finite) set S of sorts sy,..., s, which will be interpreted as carrier sets,

- a (finite) set F of operation symbols f,, ..., f, together with their functionalities,
$, X+ X5, =>5, (p=0,5,,s € 8S), where every operation symbol f; will be inter-
preted as a function S, X---X§, > §; where S, is the interpretation (or carrier
set) associated with s, In Sections 2, 3 and 4 we assume that these functions are
total.

The operation symbols composed in accordance with the usual rules generate the
terms of the different sorts (unless stated otherwise, a ‘term’ does not contain any
variable). If W(X), is the sct of terms of sort s, then the n-tuple W(X)=
(W(I),,..., W(Z),,) is a heterogeneous algebra with the operations f*'*’ for the
symbols f of the following signature:

) e (W), WIS, ) S, up) e W(E),

W(X) is called the rerm algebra of the abstract typ..

An interpretation is an epimorphism from the term algebra; it uniquely determines
a term-generated heterogeneous X-algebra A: A heterogeneous X-algebra A is called
term-generated if there exists an epimorphism from W(Z2) into A. W(2) is initial
in the class of all such algebras. We denote by +* the image of term ¢ in the algebra
A w.rt. the interpretation homorphism W(X)- A. Obviously, at most one
homomorphism can exist from A into B, if A and B are term-generated 2-algé€bras:
if this homomorphism exists, it transforms t* into t”.

The notion of congruence over W(X) will be the tool for studying the category

of term-generated X-algebras. Every term-generated X-algebra is isomorphic to the
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quoticnt W(ZX)/ ~ 4 of the term algebra W(ZX) w.r.t. the congruence ~ 4:

t~at & "=
def

Conversely, every quotient of W(ZX) w.rt. a congruence is a term-generated
3 -algebra.

Therefore, we can reduce the study of this category of algebras to the study of
the set €(X) of congruences over W(2X). In particular we have

~AC ~p & there exists a homomorphism from A to B,

where < is the set inclusion (also called ‘finer than’, ‘stronger than’).

Proposition 2.1 (cf., for instance, Gritzer [22]). €(X) is a complete l...ice w.r.t. <.

Its minimum (or initial element) is the identity relation between terms (associated
to W(X)).

Its maximum (or terminal element) is the ‘universal congruence’ U where all
terms of a sort are congruent (associated to the algebras A where every carrier set
s is a singleton, or empty if W(ZX), =0). The greatest lower bound [ ], , ~, is the

A3 dabt B N PR BLE A S
¥

conjunction of the congruences

t~ gt & t~;t forall iel,

det
making €(X) a complete lower semilattice. Therefore, €(Y) is a complete lattice

(cf. Fig. 1) according to the following well-known lemma.

Lemma 2.2. A coinplete lower semilattice having a maximum forms a complete lattice.

Effectively a set E has a least upper bound
LIE=[1E",

where E’ is the set of upper bounds.

U Wx)/yg terminal algebras
- 4 o N ("singletons")
N 4 homomorphism
id g wW(r) x W) wix) initial algebras

Fig. 1. The lattice €(X) of term-generated X-algebras.
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3. Axioms and models

In this section, the form of the axioms for algebraic types is discussed. It is shown
that the set of congrmences associated to a type with positive conditional axioms
forms a complete lattice. Moreover, a sound and complete proof system (with respect
to ground equations) is given.

In algebra the axioms are equations of the form ¢= 1’ where ¢ and ¢’ are terms
of the same sort: we refer to this as the equational case. For the applications in
computer science, however, at least axioms with preconditions are reasonable (cf.
[25h:

b=true = 1=r'

if one of the sorts is BooL, the sort of boolean values; and in order to avoid this
particulansation onc accepts conditions

L=t = =t

or, more generally, conaitivaal equations (cf. [1, 11]) also called Horn clauses [26]:
A t=t]=> =1
i~ i<gq
(=0, for ¢ =0 we have := ().

We w ii wo:k with this kind of axioms: the ,=t] are called the premises and
1=1' the conclusion of the axiom.

Thus we obtain a first order formal system with equality. Its theorems are called
theorems of the abstract type.

A X-algebra A satisfies an axiom of the preceding form if 1*=1!*fori=1,...,q
implies t* = t'*: in other words, if ;, ~, t/fori=1,...,q,thent -,: wesayalso
that the congruence ~ 4 satisfies the axiom.

A model A of a type is a term-generated X-algebra satisfving the axioms. The
theorems of the type are also satisfied in A.

Remark 3.1. In Sections 3 and 4 we only use axioms without variables. Indeed, a
formula

A L=t = =1
1917 g

containing at most the free variables x,,..., x, of sort s;,...,s; is satisfied by a
3-algebra A if, for all a,,..., a, of the carrier sets S, ..., S7,
tMa/xh . a/x=0Na/x,, ... a,/x,) forj=1,...,4
implies  ("a,/x,,...,a./x.]=tMa/x,...,a./x.]
in the case of term-generated algebras this exactly means that A satisfies allthe

axioms obtained by replacing each variable by term of the same sort. Thus, using
axioms with variables does not change the classes of models specified by abstract

types.
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Proposition 3.2. The congruences satisfying the axioms E form a complete lattice
€(2)/E.

Proof. €(2)/E is a complete sub—lower—semilattice of 6(2) since if some con-
gruences satisfy a Horn clause, then their conjunction satisfies this formula, too (cf.
for instance [1]). Obviously, U satisfies the axioms; thus we can apply Lemma
22, O .

By the way, the lattice €(X)/E of congruences (cf. Fig. 2) satisfying the axioms
E has an initial element the corresponding model of which is an initial algebra in
the category of models (and even in the category of possibly not term-generated
models, cf. [11]).

Proposition 3.3. The minimal congruence satisfying the axioms is the *syntactic con-

gruence’ =, which is defined by

t=,1 & t=1"1is a theorem of the type.
; det

Proof. (a) =, is a congruence and satisfies the axioms since they are Horn clauses.
(b) If ~ is a congruence satisfying the axioms, then = < ~: indeed, if t=1"1is
atheorem, then (* = " in every model A, and thus 1 ~ ¢’ if ~ satisfies the axioms. [

U ("singletons",
terminal model)

€ e

?Sy(initial model )

Fig. 2. The lattice €(X)/E which is contained in ¢ (X)),

The proof is done considering the type as a first order formal system. However,
it is also true for a simpler formal system (11):
- its formulas are the r=¢" where ¢, ' are terms of the same sort,
- its axioms are the 1=,

- its rules of inference are: for each axiom AT S t;, = =1, the rule

=1, =T

. t=1t, 1=1" . t=1r'
(Conp) s (SuBsT) - . ; .
1=y S ... Lot =fln, o 0
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Symmetry and transitivity of =, resvit from (Comp): for instance, symmetry can
be derived with 1" =" 1:

Transitivity then results from symmetry combined with (Comp).

Consequently, this system is also complete for the proof of 1= t’ which is satisfied
by every model. In fact, there exists a model, associated with the congruence =,
where only the equalities which are provable are satisfied: this situation is rather
remarkable for a formal system.

We note that these rules are sound for heterogeneous types because of the absence
of variables. In the presence of variables the transitivity may cause some problems
and therefore, the ruies have to be modified (according to Goguen and Meseguer
[21] and Huet and Oppen [28]). We also note that because of the restriction to
term-generated models no complete proof system can exist w.r.t. formulas containing
free variables (cf., e.g., [44]).

Remark 3.4. The converse of part (b) of the proof of Proposition 3.3 is not true: if
= < ~, then ~ does not necessarily satisfy the axioms. Only if one restricts to the
equational case, then every epimorphic image of the initial model is a model too:
in the equational case, €(X)/E is a complete sublattice of ¢(X). This is not true
in the general case. If two congruences satisfy the axioms, their least upper bound
does not necessarily do the same. For example, let single, married, widowed, true,
false, be 0-ary opciations (i.e., constants) with the axiom

single = married = true = false.
Then two congruences where

single ~ widowed, single # married, true # false,
married ~ widowed, single # married, true #-false

satisfy the axioms but not their least upper bound, for which

single ~ widowed ~ married, true # false.

4. Hierarchical abstract types

The abstract types of the preceding chapter do not exclude trivial models, i.e.,
models defined by the congruence U, with (at most) one element for every carrier
set. In particular, if one uses the boolean values, nothing specifies that, in every
model of the type Boodl, true is different from faise.

On the other hand, one often constructs types baszd on (known) data types the
axiomatisation of which is presupposed to be known—cf. for instance finite sets of
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integers [24], arrays of natural numbers [43], primitive recursive functions over
natural numbers [44] or statements of a programming language over the expressions
of the same language [38].

For these primitive types (integers, natural numbers, expressions) we assume a
given model, or in other words a given congruence =, called primitive congruence.
This congruence could be the initial congruence of the primitive type (cf. [43, 11]),
but also other choices are feasible.

A hierarchical type T is an abstract type (2, E) together with a subsignature S, < 3,
called primitive signature and a primitive congruence =p for this subsignature .

4.1. Primitive signature and hierarchical algebras

In this section, hierarchical algebras (these are algebras respecting the primitive
congruence) and their associated hierarchical congruences are discussed. Using the
notion of primitive context we define whether two (hierarchical) congruences are
extensionally equivalent. It is shown that the set €(X) of all congruences (of
signature X) is partitioned into disjoint sublattices of extensionally equivalent
congruences.

First we define the notions of primitive sort, operation and term.

One designates in the signature 3 of a type a primitive signature 3, =(S;, F}.).
The soris s € S, are called primitive sorts, the operations f € F, are called primitive
operations and must have a functionality which uses only primitive sorts.

The terms which are formed by the primitive operations are called primitive terms.
Thus, every primitive term is an element of W(X,), for some s€ S, and also of
W(Y),. But, in general, W(X), contains W(Z3,). properly: there exist terms of
primitive sort s which are not primitive terms (see Fig. 3).

Wy )S terms of primitive sort s primitive terms of sort s

Fig. 1

An algebra A of a hierarchical type is called hierarchical algebra if A 1s a
term-generated Y-algebra such that the primitive carrier sets and operations form
an algebra A| X, which is isomorphic to W(2}p)/ =p, i.e., which is an element of the
isomorphism class of those tcrm-generated Yp-algebras which satisfy exactly =p.
The congruence relation induced by a hierarchical algebra on the term algebra is
called a hierarchical congruence.
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Lemma 4.1. The restriction of a hierarchical congruence ~ 4 to the primitive terms
coincides with the primitive congruence =,.

Proof. For all primitive terms p and p':

AlX

P=vp & p Az

r=p % o pl=pt o p~ap. O

But not every congrucnce satisfying the condition of Lemma 4.1 is hierarchical
(cf. Fig. 4). The following proposition will give an exact characterisation of such
congruences.

Proposition4.2. The hierarchical congruences are exactly those congruences over W(X)
which satisfy that the primitive terms of eLery (congruence) class of a term of primitive sort
represents exacily aad only one class of the primitive congruence =p.

W) .,: PRI B } Wiip)

wae congruence classes of the primitive congruence *p

\=#7

congruence classes of a hierarchical congruence

Fig. 4.

Proof. Let A be a hierarchical algebra. Then, according to Lemma 4.1, every
congruence class ¢, of a term ¢ of primitive sort contains at most one class of =.
¢, contains at least one class since 1* is an element of A|3, which is isomorphic
to W(Ip)/ =p: hence, there exists a primitive term p (€ W(Z;)) such that

Al

1= plir= p"_

Conversely if every class of a congruence ~ contains one and only one class of
=, then the restriction of W(X)/~ to X, is isomorphic to W(2Zp)/=p. [

Corollary. If two hierarchical congruences ~ 5 and —~ g verify ~ 5 < ~ p, then they have
the same restriction to the primitive sorts.

Definition. Two congruences are extensionally equivalent if they have the same
restriction to the primitive sorts. Corresponding algebras are also said to be
extensionally equivalent.
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In some applications, an element of an algebra (e.g., a stack st) is only considered
through the functions of primitive sort (e.g., top(st), top(pop(st)),...). We call
every term cn of primitive sort a (primitive) context of a term t if cn contains exactly
one occurrence of one variable x, the sort of t and x being the same: cn[t/x] will
be simply written as cn[t]. Note that a context may contain nonprimitive functions,
too, and that only the outermost function must range in a primitive sort.

Extensionaily equivalent algebras ai. uidistinguishable through the (primitive)
contexts, i.e., they have the same ‘input-output’ behavior.

Lemma 4.3. The lattice €(X) is partitioned in sublattices of extensionally equivalent
congruences: for each of them, €', the maximum is the congruence @ defined by

t&1t & for all contexts cn of t, cn[t] -—P-cn[t'],

where = is the restriction to the primitive sorts of the congruences of ¢’ (thus, for
. . . [ N « aa
hierarchical congruences, =, is the restriction of = to the primitive terms).

Proof. It is obvious that © is a congruence. Let us study its restriction to terms
{, 1" of a primitive sort:

91 =1 Iy (with x for cn),
. S , .
120 = cen[t] =cn[t’] forall cn = &1t

Thus, @ belongs to ¢’
Now, if ~ is a congruence belonging to ¢,

t~1t = cn[t]~cen[t']| = cnt] gm[r']

for every (primitive) context en of t = 1. U}

4.2. Hierarchical models

A model of a hierarchical type is called hierarchical model if it is a hierarchical
algebra satisfying the axioms. We shall study the hierarchical congruences satisfying
the axioms and, from now, ‘hierarchical congruence’ will mean “hierarchical con-
gruence satisfying the axioms'.

The formal system associated with a hierarchical type is the system of the
nonhierarchical type extended by the axioms p = p’ for all p and p' that are primitive
terms with p =, p'. Every hierarchical algebra satisfies these axioms. We shall study
the hierarchical congruences. In particular, a question is whether the syntactic
congruence = defined by this formal system is a hierarchical congruence. We will
see that "consistency’ and ‘sufficient completeness’ guarantee this. Then, all hierar-
chical congruences are extensionally equivalent and form a complete lower semi-

the axioms are of primitive sort, then the hierarchical congruences form even a
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complete lattice (see Theorem 4.7). On the other hand we show that for a consistent
but not sufficiently complete type the set of hierarchical congruences is partitioned
into disjoint and (w.r.t. € ) incomparable complete lower semilattices of extensional
equivalent congruences.

First, we can observe two simple facts.

Fact 4.4. Every primitive class of =, contains at most one class of =; iff for all
primitive terms p and p’

P=.P = p=pp,

i.e., the hierarchical tvpe is (hierarchy-) consistent [23]. This means that an equality
between pri:nitive ternis is provable in the whole hierarchical type only if these terms are
congruent in the primitive congruence.

Fact 4.5. Every primitive class of =, contains at least one class of = iff for every
term of primitive sort t there exists a primitive term p with t = p, i.e., the hierarchical
type is sufficiently complete (23). Equivalently one can say that every term of primitive
sort can be proved to be congruent to a primitive term by the proof system of the type.

Moreover, if = is a hierarchica! congruence, it is the least one; then, by the
consequence of Proposition 4.2, all hierarchical congruences have the same restric-
tion to the primitive sorts: they are extensionally equivalent.

Theorem 4.6. The syntactic congruence is associated with a hierarchical model iff the
hierarchical type is- consistent and sufficiently complete. In this case, the hicrarchical
congruences are extensionally equivalent and form a complete lower semilattice with
the syntactic congruence as initial element.

Proof. The first part of the thicorem follows from Facts 4.4 and 4.5. Let us consider
the second part. The hierarchical congruences are the elements of the complete
lattice €(X)/ E which are extensionally equivalent to = . Thus the intersection in
the lattice €(X)/ E of hierarchical congruences is a hierarchical congruence, too. [

Consistency and sufficient completeness do not guarantee that the hierarchical
congruences form a complete lattice. Consider e.g., the example of Remark 3.4 and
assume that true and false are diflerent elements of primitive sort whereas single,
married, widowed are not primitive. This type is consistent and sufficiently complete
but does not have any terminal algebra and, hence, cannot form a complete lattice.

In the equational case, however, €(X)/E is the sublattice of €(X) constituted
by the congruences greater than =, (see Remark 3.4); the congruences extensionally
equivalentto =, also form a sublattice €’ of €(X); thus, the hierarchical congruences
are those of the intersection of these two sublattices, which is a sublattice of 6(X).
Its maximum is that of €', given by Lemma 4.3.
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All this remains true if the terms ¢, ¢/ of the premises of the axioms are of primitive
sort (we briefly say that premises are of primitive sort); indeed such a type has the
same models as an equational one, its axioms are the conclusions f = ' of the axioms
the premises of which are satisfied by =,,. We have thus proved the following
theorem.

Theorem 4.7. Let T be a hierarchical type such that all premises of axioms are of
primitive sort. Then if T is consistent and sufficiently complete, the hierarchical congruen-
ces form a complete lattice. The terminal congruence is the extensional congruence & :

t@t & for all (primitive) contexts cn of t, ca[t] =, cn[t'].

-~

(® terminal congruence
£(x) ~y hierarchical congruences
= v syntactic congruence

S
\ «-@————— identity id

Fig. 5. The lattice of hierarchical congruences of a consistent, sufficiently complete hierarchical type.

Therefore, the hierarchical type T has initial models determined by the syntactic
equality =, and terminal models determined by the extensional congruence © (cf.
Fig. 5). The terminal models are fully abstract in the sense of [32].

As a consequence of Theorems 4.6 and 4.7, a method can be given to prove an
equality "™ =™ in a terminal model TM of a type T verifying the hypotheses of
Theorem 4.7: add ¢t = t' to the axioms of T and prove the consistency of the obtained
type T'. Indeed, if T’ is consistent, it possesses a model A which is also a model
of T: t"=+¢" and thus "™ ="™. Tools to prove consistency are well known,
essentially by proving the confluence of an equivalent rewriting system {31, 27].

If a type is inconsistent, then no hierarchical congruence can exist which contains
=,. An inconsistent type does not have any hierarchical model.

On the other hand, consider consistent hierarchical types which are not sufficiently
complete—as, e.g., a type St.T over integers together with a function some:set -
integer and the axiom isempty(s) == false => some(s)¢€ s.

The syntactic congruence of such a type does not correspond to a hierarchical
model (cf. Theorem 4.6). Every congruence ~ associated with a hierarchical mode!
must properly contain the syntactic congruence; the restriction of ~ to the primitive
sorts is obtained by grouping together every class of =, without primitive term
(‘nonstandard class’) together with a class comaining a primitive term (standard
class), to verify the assumptions of Proposition 4.2 (see Fig. 6).

Every regrouping p determines a class ExT, of extensionally equivalent hierar-
chical models. If we add the equations for the regrouping to the axioms, we obtain
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nonstandard classes

==~ auping of a
nonstandard class
witt a standard class

standard classes

Fig. 6.

a sufficiently complete hierarchicai type having exactly the elements of ExT, as
hierarchical models, ExT, being nonempty iff this type is consistent. According to
Theorems 4.6 and 4.7 the congruences associated with Ext, form a complete lower
semi aiiicc and, if the terms of the premises of the axioms are of primitive sort,
then they even form a complete lattice. If p and p’ are two different regroupings,
the congruences of p and p’ are incomparable w.r.t. the set inclusion < (cf. Fig.
7). We obtain the following theorem.

Theorem 4.8. Let T ke a consistent hierarchical type. Then every class of extensionally
eguizalent hierarchical congruences forms a complete lower semilattice. These semi-
lattices are disjoint and incomparable w.r.t. < . If the axioms have premises of primitive
sort, then every class is a complete sublattice of €(2)/ E.

@ class of extensionally equivalent congruences

Fig. 7. The classes of congruences associated with a not sufficiently complete type.
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Now, unlike the cases of sufficient completeness, a first order proof system, or
the proof system IT (cf. Proposition 3.3), is no more complete: if 1=1t'is satisfied
by every model, it is not always provable. For example, let us consider a type with:
- a primitive sort S, having one conswant p,

- a nonprimitive sort S, and operations a: > S, f: S,~ S, without any axiom. Every
hierarchical model satisfies f(a) = p, but f(a)= p is not provable (for a study of

these questions, see [6]).

5. Partial abstract types

Roughly speaking, a type is not sufficiently complete, if an external operation f,
i.e., an operation with values in a primitive sort, is not completely specified. Then
there exist terms t such that f(¢) is not syntactically equivalent to any primitive
term: one can say that the value of f(¢) is not significant and, therefore, may be
interpreted as undefined. This leads us to considering partial heterogeneous algebras ;
the only difference with total ones is that the operations can be interpreted as partial
functions. For simplicity we assume that the given model of the primitive type is a
total algebra.

3.1. Partial models

In this section the interpretation of the equality symbol = in partial algebras as
well as the interpretation of universal quantifier in partial algebras will be discussed.

For a partial algebra A, we write t* = ¢V if t* and " are both defined and equal
or if they are both undefined. And we write t* = ¢'*if +* and ¢'* are both defined
and equal; otherwise " = '* does not hold. (= is the so-called strong equality
(cf. [45]) and = the existential equality (cf. [5]).) An axiom 1=t is satisfied by a
partial algebra A if +* = '*. This verification cendition is strong: axioms = t' are
excluded where 1" and ' are not both defined or both undefined as e.g., mult(4, 0) =
0 where ¢ is a term which is undefined in A. In order to avoid such situations one
can employ preconditions (cf. also errors in [3]). In contrast to Broy and Wirsing
[11]we take here the following position: The undefinedness of terms in the precondi-
tions should not imply the equality of two terms in the conclusion: otherwise, one
could obtain (partial) initial algebras which are not recursively enumerable.” Thus,
we say that a partial algebra A satisfies an axiom

N

'

)‘]
i

L=t =t

q

{
without variables if ¢! = t;* fori=1,..., g implies ¢ = ¢'*. As pointed out in [11],

* Informally this can be understood by the following axiom: 7=t => ¢ = b 1f the evaluation of 1
and £ loops in some algebra A (thus 1, ' are undefined in A), then @ and b must be equal in A, Thus
the noncomputability of some term implies an equality with the immediate effect thet in general this
cyquality will not be recursively enumerable.
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the strong equality is expressible by the existential equality together with a defined-
ness predicate and vice versa. However, allowing the strong equality in the premises
we get a more powerful specification method leading to specifications with noncom-
putable (hyperarithmetic) algebras.

Let us now examine the case where axioms may contain variables. Free variables
in a formula are interpreted as universally quantified. They must hold for all elements
of the carrier set of the algebra: a (term-generated) partial algebra A satisfies a
formula F with free variables x,,..., x,, if A satisfies F(t,/x,,..., t,/x,) for all
terms t,,...,t, of appropriate sort which are defined in A: t,,...,1t, are ground
terms, i.e., terms without variables.

Remark S.1. Partial functions are strict: f(t) is undefined when the interpretation
of t is undefired. it is, however, possible to use ‘conditionals’ in the sense of
programming languages. Instead of introducing an operation if-then-else into the
type (which we do not want to be strict) we may consider an axiom

u=if b then 1 else ('
as abbreviation of the two axioms

b=true = u=t and b=false = u=t'.

Another possibility is to define the semantics of if-then—else by an evaluation
function (as in denotational semantics). This has been done in [8, 9] where the
semantics of simple programming languages is completely algebraicaily defined.
In general, fixed point theory (cf. [41]) considers also models with nonstrict
operations. This can be done within the algebraic approach by considering general-
ized heterogeneous partial algebras (cf. [12]).

5.2. The associated toral type

In this section, the connections between partial types and total types are studied:
to any partial type T (for short, PAT T) a total type T is associated by introducing
a so-called ‘definedness predicate’. Similarly to any partial algebra a total algebra
is associated by introducing new ‘bottom’ elements. Then the totalisations of the
models of T are exactly the models of T (see Proposition 5.2). Moreover, we use
the total type T to give a criterion whether a term is defined in T (see Proposition
5.4) and even to establish a sound and complete proof system (with respect to
ground atomic formulas) for T.

Now, let a partial type T be given. We extend it to a total type T in the following
way:

- T is a hierarchical type on 2 unique new’ primitive sort BooL with two 0-ary
operations true and false, interpreted as the boolean values true and false:

* This means that Boot is assumed to be different of all sorts of T.
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- for 2very sort s of T, an operation D:s-BooL; D(t)=true (abbreviated in the
sequel by D(1)) expresses the definedness of the term ¢;

- axioms for D:

(ST) Strictness:

D(f(t,,..., 1)) = D(1)
for every operation f:s, X---Xs,»s,and i=1{,.. ,n
(DP) Definedness of primitive terms:
D(p)
for all primitive terms p.
(UN) Unicity of undefinedness:
D(t)=false r D(t') =false = t=r'
for t, t' of the same sort.

- transformation of the axioms of T:
Every axiom
() AN L=t =>1t=r
I<1--gq
with the free variables x|, ..., x, is replaced by
(@) AN Dx)n A (D)a=1) = 1=t

1~ k-p I~iq

Then every algebra A of the partial type T can be made into an algebra A of T
in the following way:
- for every sort s€ S,

— A

P {s" u{er,} if there exists a term ¢ of sort s with " undefined,
s .
s otherwise,

where er, is a new element:

_ D.A\(a):

3 { true ifaes”,
false ifa=er;

- for every operation f:§, X+ - Xs, -5,
. A A
a if(a,,....a,)e(s;) X+ +xs5,)
and f(a,,....a,) = a,

er, ifthereexistsanie{l,..., n}witha, =er,
or fMa,,...,a,)is undefined.
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The total algebra A is called the totalisation of the partial algebra A: two distinct
algebras have two distinct totalisations.

Conversely, every algebra B of T verifying (ST) and (UN) is the totalisation of
an algebra B of T:
- if there exists an element er, of s? such that D?®(er,) = false, then, from (UN),

lI rs . - - n n

erg is umque S - --{er}; otherwise, S" s,

B \ sav w~R,s rB/ \
-fay,...,a,) is aennea and equal to fo (a.,... a,) iff D"(f"(a,, ,ay)) =

iruc :

A cteuctneai inductinn ncing (CT) chawe that 8 ic dafinad and B_-4+B ;g

N Dl uLviuiIal 11nuuviLiIvn uolus \QIL SQIIUYWY LiiaGl 1D uvillivu, anwu i,
D®(1?) =true. The verification that B = B is then immediate.

Proposition 5.2. Let T be a PAT and T the total type associated with T.

(1) IfAisanalgebraof T, A its totalisation, and t a terrm of sort s, then t* defined iff
D*(t") = true and t* = t*.

(2) The models of T are the totalisations of the models of T.

Proof. Let A be an aigebra of T. lis totalisaiion A obviously satisfies (ST), (DP)
and (TTN)
atug \wvivw)

(1) Alrealv nraved wit _ ﬁ and A— R

\®y llllw‘l\l.} ‘Il\l'\vu YV RRLEL 4R A7 QLIS 2 rr.

(2) From (1), A verifies axiom (a) iff A verifies (a): if A is a model of T, then
A is a model of T if B is a model of 7, then B=R and B is a model of T. [

Because of the 1-1 correspondence between (partial) models of T and (total)
models of T, the study of the former can be replaced by that of the latter. By
definition, the partial (hierarchical) congruence ~ 4 associated to a partial (hierar-
chical) algebra A will be the congruence ~ 4 associated to A. Thus, ~, < ~ means

b a aL _ 1 _ P ry n. ¢ rA¢ I N |
that there exists an homomorphism ¢ from A into B: ¢{f"(x,,...,x,)) and
By ) sl v W nen ctonmaly amiial o hath Aafacd and amiia 1 A~ hath

A\ LAY, s Y\ARpJ))] alic >Suvu lsly cqual, 1.C., UULIl Uuviilcu ainu cqual Ul vbvulll
undefined

- an equwalence on the terms of sort BooL, hierarchical in the sense that every
terin is equivalent to true or false: it is completely defined by the condition for
which D(1) ~ true; this will be expressed by a unary relation R associated to ~,

-t~1 & t=,1 or (D(t)~false and D(t')~false) where =, is the syntactic
congruence of T.

Lemma 5.3. The previous relation is a congruence verifving (ST) if (t =1t and
R(t) = R(1")) and (R(f(t\,..., t;...,1,)) =R(1)). It verifies (DP) tfR(')) for

all primitive terms p. It verifies (UN). It verifies (%) if R(t) = D(1) =g true.

Proof. Relation ~ is obviously reflexive and symmetric. It is transitive because
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t =5 " and "R(1) = —R(t"). It is a congruence because =g is, and
-1R(tl) = —‘R(f(lh AR | tl’a L | tn)),

=gt = flty,..o ) =g fh,. 0 ),

~
-
o
Q
-
-
D
-
-
5]
@
—
7]
[+°]
)
(g3
3
3
le]
2,
[N
-
o
d

A first application is the following proposition.

Proposition 5.4. D(t) is a theorem of T iff there exists a primitive context cn of t and
a primitive term p such that cn[t]=p is a theorem of T.

Proof. Since all primitive terms p are assumed to be defined, if cn[t]= p is a theorem,
then D(cn[t]) is a theorem and also D(t) by repeated applications of (ST).

For the converse let us consider the relation ~ defined as before with
R(1) & 3cn3p, cen[t] =g p. Then R(t) = D(cn[t]) = true for some context cn
and by (ST) we obtain R(r) = D(t) = true. From Lemma 5.3, it is a congruence
satisfying axioms, thus stronger than =;. [

Definition. A ground term t of a primitive sort of T is reducidle if 1t = p for some
primitive term p.

Thus, D(1t) is a theorem iff ¢ is a subterm of a reducible term.

Remark 8.5, The proof system (I1) of Section 3 extended by (ST), (DP) and (UN) is
also a proof system for 7. But this system can be simplified. For example, no
D(t)=false can be proved since only the rule (Comp) can lead to such a formula, but
with another D(t) = false as a premise; therefore, (UN) is unuseful. We shall now see
thatanew system (I11) is sufficient its formulae are of the form t = t'and D(1),for 1, t'
ground terms of T:

- axioms:

(REF) =1
(DP) D(p) for p primitive term,

- rules of inference:
(Conp)

t=y
(Sunsr) —  — : ‘ B
'f(lll"..,r""‘rﬂ)sé.f(’lq-..,Ig---yln)

for f operation of T (i.e., f# D)
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1=r_D()
(Sussp) D
. D(f(f],...,t,-,...,t,,)) .
(STi) D) fori=1,...,n
(@) D(w,))...D(u,) D(t))...D(t,)) t,=1,...1,=1t,

=t

if A, g i = t! = t=1t"1is obtained from an axiom of
T by substituting u,, ..., u, for the free variables.

It is clear that this system is sound, i.e., its theorems are theorems of T:

Mret=r) = 1=r (It = D(1)) = D(1) =g true.

The congruence induced by (I11) is the least congruence verifying the axioms (ST),
(DP) and (a) since (UN) can be removed without changing theorems.

We now prove that (Iil1) is a (sound and complete) proof system for T, i.e., for
t, ', 1" ground terms, t=1" and D(t") are theorems of T iff they are provable by
(ITE). Note thut (111) is a proof system for ground atomic formulas. In general,
there dues not exist a complete proof sysiem for algebraic types w.r.t. formulas
containing variables (cf, e.g., [44]).

The soundness of (111) has already been provecd. For the completencss, let us
consider the following congruence, hierarchical for Boot, uniquely defined by

i~ o ll=r=1
D(1)~true < 111+~ D(1).

It is a congruence because of (Susst) and (Sussp). It satisfies (ST) because of
(STi), (DP), and (a) because of (&,). Thus =, < ~:

=10 =2 ll=1=r D(t) = true = 111+ D(1).

5.3. Nonbhierarchical partial models

Every total nonhierarchical type admits an initial algebra (see Proposition 3.2).
For partial. types we would like to have a similar property. Since initiality depends
crucially on the notion of homomorphism we define in this section two notions of
homomorphisms for partial algebras—the so-called ‘total’ and ‘weak’ ones.

We show that the algebras which are initial (in the sense of total algebras) in the
class of ‘minimally defined’ algebras of a partial type T (see Proposition 5.6) are
also initial in all models of T with respect to total homomorphisms (see Proposition
5.7). Moreover, definedness and equality (with respect to ground terms) in these
initial models coincides with the provable definedness and equality in T (see
Proposition 5.7). Hence this notion of initiality is also general as the one for total
types.
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More specifically, let T be a nonhierarchical partial type. Using only axioms of
the form A r,=1t, = t=t' one cannot express any definedness. Hence we assume
that at lcast certain terms are defined such as true and false of sort bool.

The totalisations of the (nonhierarchical models) of T are the models of T,
hierarchical on Boov. In general, T is not sufficiently complete on Boot: it would
be the case only if D(t) is provable for all ¢. The syntactic congruence =g is thus
in general not associated with a model (see Theorem 4.6). The congruences associated
with models are divided into disjoint lower semilattices: each semilattice is formed
with those where the same terms are defined (see Theorem 4.8).

One of these semilattices corresponds to the minimally defined models, where t is
defined only if D(t) =g true. Let ~ 4, be a congruence of the following class:

S AN B RN
- D(t) #,, true and D(t') 2, true = D(1) ~, false and D(t') ~ , false

= t~,1t' (from (UN)).

A candidate for the initial congruence of the class is then = :

- D(t) =,true & D(1) = true;
-t=1 & 1=t or (D(t) #,,true and D(1') #, true).

Because of Lemma 5.3 it is actually associated with a model.

Proposition 5.6. =, is a congruence associated with a model 1 of T, initial in the
semilattice of minimally defined models.

For comparing congruences where defined terms are not the same, and thus
noncomparable by <, we consider two other orderings corresponding to two
different kinds of generalized homomorphisms (cf. [§, 39, 11]). For two partial
algebras A and B:

s ~a~y iff t~,t and 1" defined = t ~,t and t? defined (in other words,

NE A ot e t'")

~a<~giff t~,1t and 1" defined = ¢ ~, ¢ and 1" defined (this condition is
equivalent to (1 ~41' = t~,t') and (+" defined = 1" defined)).

A homorphism ¢: A~ B for partial algebras is a partial operation which satisfies
the usual homorphism property on its domain:

SMNx, ., x) defined = @ (X X)) =106 L @),
A total homorphism also satisfies
SHx o x,) defined = P (e(x), .., ¢(x,)) defined.

Total homorphisms correspond to the ordering = which preserves defined terms.
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An initial congruence for = defines an initial algebra w.r.t. total homomorphisms
and will also be said initial.

The relation < preserves undeined terms: for ~ , < ~, if t* is undefined, ¢® is
undefined. It corresponds to the existence of a weak homomorphism ¢, i.e., an
homomorphism which satisfies a condition converse to the previous one:

2e(x),...,e(x,)) defined = fA(x,,...,x,) defined.

Thus a weak homomorphism can be a partial operation but it is surjective for
term-generated algebras.

Proposition 5.7. (1) D(t) and t=1t' ure theorems of T iff t' = t'".

(2) D(t) is a theorem of T iff t' is defirzd.

(3) =, is initial in the class of congruences associated with models of T.

(4) Every sound and complete proof system m jor T (e.g., I11, Section 5.2) satisfies
the following properties: (for all terms t, t')

(a) 7—D(1) & t* is defined for all models A.

(b) w—t=t & 1t = ' holds in all models A.
In particular, property 4(b) says that only the existential equality can be proved (cf.
Remark 5.5). '

Proof
(D ' =" © D(t)=,trueand t =, '
< D(t)=gtrueand t = .
(2) Particular case of (1) with ¢, t’ identical.
3) t' =1 = D(t)~4trueand t ~ 4 t' for every model A.

(4) Results from (2) and (1).
5.4. Hierarchical partiai models

Hierarchical tota! types admit initial models if they are consistent and sufficiently
complete. If the premises of the axioms are of primitive sort, then the hierarchii.al
congruences form a complete lattice. In the case of hierarchical partial types wve
will see that the existence of initial models is ensured already under weaker condi-
tions: apart from consistency only the so-called ‘partial completeness’ is needed
(see Theorem 5.8). The lattice property, however, is not so easily reached. .For a
consistent partial type with premises of primitive sort any class of extensionally
equivaleri congruences only forms a complete upper semilattice with respect to
weak homomorphisms (see Theorem 5.10). Only if all functions of nonprimitive
range are total, then any class of extensionally equivalent congruences forms a
complete <-lattice (see Proposition 5.9). Finally we show in this section that the
initial models of a partially complete type are locally computable.
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First let us recall that a partial model A is hierarchical for a given primitive
congruence =p iff:

(a) if t is a term of primitive sort and t* is defined, there exists a primitive term
p such that *=p*.

(b) for p, p’ primitive terms p*=p'* = p=pp".

We recall that to study hierarchical models we add p = p’ to the axioms whenever
p, p' are primit.ve terms verifying p =, p' (4.2).

The role played by the initial congruence =;; in (4.2) can here be played by the
initial congruence =: it verifies condition (b) iff T is consistent: it verifies condition
(a) iff, for t of primitive sort,

D(t) = true < 3p primitive: t = p.

Definition. T is partially complete if every ground term t of primitive sort with
D(1) = true is reducible.

‘Partially complete’ is a weaker condition than ‘sufficiently complete’. Itis sufficient
for the existence of a model. From Proposition 5.4, a type is partially complete iff
every subterm of primitive sort of a reducible term is reducible, too. We have thus
proved the following theorem.

Theorem 5.8. (a) The initial congruence =, is associated with a hierarchical partial
model of a PAT T iff T is consistent and partially complete.

(b) T is partially complete iff, in a reducible term, every subterm of primitive sort is
also reducible.

Let us now study the structure of the class of hierarchical partial congruences,
or more exactly of their totalisations. This class can be divided in subclasses of
extensionally equivalent congruences relatively to the primitive sorts and Boot,
each subclass being a lower semilattice w.r.t. <, or even a lattice if the premises of
axioms are of primitive sort.

Two models are extensionally equivalent for 7 when ‘
- they are extensionally equivalent for the primitive sorts of T,

- they have the same defined terms.
If only the first condition is verified, the models (and their associated congruences)
are said to be extensionally equivalent for T.

As an example of application, let us consider the models where only the functions
having a primitive range can be interpreted as partial. Then, the defined terms are
those which conizin no undefined terms of primitive sort. Thus, two extensionaily
equivalent models for T have the same defined terms, and are extensionally
equivalent for T. We have therefore proved the following.

Proposition 5.9. Let T be a consistent hierarchical PAT such that premises of the
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axioms are of primitive sort. The set of congruences associated with models where
Junctions having a nonprimitive range are total, is divided into disjoint complete
¢ -lattices of extensionally equivalent congruences for T.

A class of congruences associated with models extensionally equivalent for T i,
constituted, in general, of several semilattices corresponding to different defined
nonprimitive terms (see Fig. 8). It is uniquely defined by the common restriction p

— 3= -- total homomorphism

o o>» o weak homomorphism

Fig. 8. A class of extensionally equivalent partial congruences.

of the congruences to the primitive sorts (i.e., by a regrouping of classes of syntacti-
cally equivaient primitive terms, such that some classes without primitive terms are
grouped together and any other class is grouped together with a class of reducible
terms, see Fig. 9). Such a class of congruences is denoted by ExT,.

Fig. 9. Two different regroupings into £ ; (D leads to locally computable models.

Theorem 5.10. A class of extensionally equivalext models of a type T has an initial
element. If the premises of the axioms are of primitive sort, then the congruences
associated to the models of the class form a complete upper semilattice w.r.t.<; the
terminal element is the terminal minimally defined congruence of the class.

Proof. We consider a class Exr,,
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(a) If p is a primitive term and ¢ a term of the same sort, the models of ExT,
satisfy the equation t=p if t p p. Adding these equations to the axioms, we obtain
a partia!ly complete type T,: indeed, if D(t) is a theorem, t* is defined for every
model A of Ext,, thus 1 p p for some primitive term p. Therefore, T, has an initial
congruence (which is the initial congruence of the semilattice of the minimally
defined congruences of T,).

(b) We suppose now that premises of axioms are of primitive sort. Extensionally
equivalent congruences satisfying axioms (ST), (DP) and (UN) form a complete
lattice w.r.t.< (see Theorem 4.7). If two of these congruences verify ~,<~p and
if ~ 4 satisfies axiom (&), then ~p satisfies this axiom. Thus, ExT, is an upper
semilattice w.r.t. <. '

(c) There exists in ExT, a <-terminal congruence which is one of the terminal
congruences & ; of the semilattices €; constituting Ext,: from Theorems 4.7 and 4.8,

1O, & forall contexts cn of £ and t', cn[t] p cn[t'] and ¢, ¢’ both defined
or both undefined in the models of €,

(because, for T, D is a context). For the minimally defined models, ¢ is defined if,
for some context, cn[t] is reducible in T,: then, for the terminal congruence &:

te1t & for all contexts cn of t and t', cn[t] p cn[1'].

Consequently, t ©,t' = t&t'. Moreover D(t)Strue = D(t) &, true. Therefore,
e,<6e. O

An interesting class of extensionally equivalent models is defined by grouping in
p all terms of primitive sort which are not reducible (Fig. 9). They are the models
A verifying for p primitive and ¢ of the same sort,

t/\:p/\ = IEsyp

(and therefore 1% =p* & 1 =, P since the converse is always true). Such models
(and congruences) can be called locally computable in the following sense: if 1" is
defined, and thus equivalent to a primitive term p, t = p is provable.* If the type is
partially complete, the initial model [ is locally computable.

Theerem S.11. A consistent hierarchical PAT has a locally computable model iff it is
partially complete. Then, the initial model 1 is locally computable. If moreover the
premises of axioms are of primitive sort, the locally computable congruences form a
complete upper semilattice w.r.1. < ; the terminal congruence © of this semilattice verifies

1St < for all contexts cn of t and ', en[t]= - cn[t'] or cn[1), cn[t'] not
reducible,

D(1)©true & D(1) = true
& for some context cn of t, cn[t] is reducible.

3 - . . . e . . ~ . .
Therefore, every function with primitive range can be seen as a partial recursive function (cf. [6]).
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Proof. If the type is partially complete, I is a locally computable model. Conversely,
if A is a locally computable model and D(r) =g true, ¢ is defined for A, t*=p"*
for some primitive icrm p and therefore ¢ = p. The last part of the theorem results
from Theorem 5.10 and from Proposition 5.4. [

5.5. Structure of the set of classes of extensionally equivalent models

For total algebras, all lattices of extensionally equivalent models were disjoint
and incomparable. For partial algebras the ‘less defined’ ordering of the fixed  »int
theory would be a natural candidate for structuring such classes. We say that a ciass
ExT, of extensionally equivalent models is less defined than Exr, (for short
ExTt,= ExT,) if for some congruence of Ext, and some congruence of ExT,, p is
part:ally weaker than p' (p=p’). '

Since the restrictions to the primitive sorts of all congruences of one class are the
same, this definition is independent of the particular models. If there exist total
~ models, their classes are maximal.

Proposition 5.12. The following properties are equivalent:
(1) Ext,=LxT,.
(2) The initial congruence of Ext,: =, ,==,.
(3) ExT, contains a congruence partially weaker than some congruence of EXT,,.
Moreaver, for a consistent and partially complete hierarchical PAT, the class of all
locally computable models is = -initial in the class of all nonempty classes of extensionally

equivalent models.

Proof. (1 = 2): The models of ExT, are obtained by adding axioms t = p for every
primitive term p with tpp; if p=p’, tpp implies tp' p. Therefore, the syntactical
congruence obtained by adding these axioms is contained in the syntactical con-
gruence associated with p’ in the same way. Then, from the definition of the initial
congruence (Proposition 5.6), =\, ==,,.

(2 = 3): Obvious.

(3 = 1): If ~, € Ex7, is partially weaker than ~, € ExT,, it is also true for their
restrictions p and p’ to primitive sorts. N

In particular, the class of locally computable models of a partially complete PAT
is initial for . [0

Unfortunately, the general form of our axioms—even restricted to premises of
primitive sort—does not imply a =-lower semilattice structure as the following
example shows. '

Example. Let 7 be a PAT with primitive subtype P such that P consists of two
0-ary operations a, b: > P with a# b and T extends P by three 0-ary operations



164 M. B-oy, M. Wirsing, C. Pair

t,, t,, t.: > P and a function f: P- P. Furthermore, f is defined by the axioms
fly=t, fi)=t,and t,=1, = f(tr) =1, (i.e., if t, is defined, (1) is equal to 1,).

Consider the following congruences of T:
Ci:{a, t, 1y, 1, f1o), f(11), (1)}, {b},
Cai{a, 1y, 1, fU15), 1 (1), f(12)}, {b, to},
Ci:{a, 1, f(1)}, {b}, {to, f(10), 1, f(12)},
Cs:{a, 12, f(2)}, {b}, {0y, f(11), to, f(1o)}.

For €, and C,, every term is defined; for C; and C,, there exists a class of undefined
terms. C, and C, are two incomparable maximal =-lower bounds of C, and C..
The reason is that f, and thus f(t,) must be undefined in every lower bound (since
1, is identified with two inequivalent primitive terms in C, and C,); but then,
according to the last axiom, either ¢, has to be undefined or ¢, must be identified
with f(1,) which is undefined. The undefined terms of the greatest lower bound
cannot be uniquely determined.

By restricting the form of the axioms, however, sufficient conditions for the
existence of a semilattice structure will be obtained in the next paragraph. The idea
is that no term ¢ occurring in the conclusion of an axiom should contain any proper
subterm the undefinedness of which could be created by ‘ambiguity’, as 1, in the
example above where ty=a in C, and t,=b in C, where a and b are different
primitive terms. A sufficient syntactic condition is that 1 does not contain any
nonprimitive proper subterm of primitive sort.

5.6. The case of simple axioms

Partial completeness is a svntactic property which in general is only semidecidable.
In this section we will give a (linearly) decidable criterion for partial completeness:
the ‘simple’ form of the axioms (see Proposition 5.14). Consistent partial types with
such axioms have an additional property: the set of their hierarchical congruences
forms a complete lower semilattice with respect to total homomorphisms, the initial
congruence being the least element (see Theorem 5.15). The example of the previous
section (Section 5.5) shows that the ‘simple axiom condition’ is also the weakest
condition w.r.t. the form of axioms ensuring the semi-lattice-property.

Definition. We call a term 1 simple if every proper subterm of primitive sort of ¢ is
primitive. An axiom is called simple if both terms of its conclusion are simple.

In the following we will prove that the models of a consistent partial type T with
simple axioms forms a complete lower semilattice w.r.t. ©; T contains locally

computable models and its classes of extensionally equivalent models form a lower
semilattice w.r.t. the ‘'less defired’ ordering =.



Systematic study of models of abstract data types 165

The proof will proceed in three steps. First we show that T is partially complete,
then that the models form a semilattice and consequently that the classes of
extensional equivalence form a semilattice.

Definition. A ground term ! is called fully reducible if every subterm of primitive
sort of t is reducible.

Lemma 5.13. iL¢! T be a hierarchical PAT with simple axioms and let t be a fully
reducible ground term. Then, for all ground terms t’,

t=gt" = t'is fully reducible.

Proof. Let FR the set of fully reducible terms and let us consider the congruence,
hierarchical for Boot, uniquely defined by

t~t' & tr=g5t and ((1e FR and '€ FR) or (12 FR and ' ¢ FR)),
D(t)~true & D(t) =g true and e FR.
It is a congrucnce because
t=;t and re FR and '€ FR and f(r)¢ FR
= f(1) =g f(1") and f(1), f(t') nonreducible,
t2 FR = f(1)2 FR.

We shall prove t'iat this congruence satisfies axioms (ST), (DP) and (&) of Section
5.2. Then the proposition results of the fact that = i- the least congruence verifying
these axioms (in fact, ~ and =g are identical).

- (ST) and (DP) are obviously satisfied.

- For (&): if ¢ is obtained by substituting, into a simple term, fully reducible terms
for the variables, t is fully reducible or is a nonreducible term of primitive sort;
the same holds for t'.

If moreover  =; ', then  and 1’ are both fully reducible or both nonreducible.

Thus (&) is also satisfied by the congruence. [
Proposition 5.14. A hierarchical PAT with simple axioms is partially complete.

Proof. Since a primitive term is fully reducible, from Lemma 5.13, a reducible
ground term is fully reducible; each of its subterms of primitive sort is reducible.
Therefore the type is partially complete (see Theorem 5.8). [l

Theorem 5.15. The set of hiercrchical congruences of a consistent hierarchical PAT
with simple axioms is a complete lower semilattice w.r.t. = its initial element is the
initial congruence.



166 M. Broy, M. Wirsing, C. Pair

Proof. Let .# be a nonempty set of congruences asscciated to models of T. To show
the existence of a greatest lower bound for # w.r.t. =, we consider the type Ty
obtained from T by adding the axioms t=t' for ¢, t' simple terms and t* =% in
all models A such that ~ 4 € 4. The models associated to .4 are models of T,. The
axioms of T, are all simple. Hence, by Proposition 5.14, T, is partially complete.
Let FR be the set of fully reducibie terms of T,.
Let us consider the congruence ~ defined by
- D(t)~true & D(t) ~ 4 true for all ~,€ M and te FR,

-t~t & t=1¢is a theorem of T, or {D(1) ~false and D(¢') ~false)
13 [ 2 [ 3 10 QA uilVUINVIIL VUL 2 g Vi \u\l’ TSV GiIN &8s\ ¢ ) TWIow J.

From Lemma 5.4 it is actually a congruence satisfying (ST), (DP) and (UN): indeed,
t=1t"is a theoremof T, and D(t) ~,trhneand te FR = D(t') ~, true and t'€ FR
(see Lemma 5.13).

Relation ~ verifies (@), too, because, for all ~,€ #:

(1) D(u,)~true = D(u,) ~,true and u, € FR;

(2) t;~1t; and D(t;)~true = t;, ~,t; and D(¢;) ~ 4 true.
Then, t ~,t' for ~4,€ #; t and 1’ are obtained by substituting, in simple terms,
fully reducible terms for variables: they are equivalent to simple terms and therefore
t=1is a theorem of T,. Thus t~1'.

Condition (2) above also means that ~ is a lower bound of # w.r.t. =

Moreover, let ~,, be partially weaker than every congruence of .#{. We first prove
that

M defined = teFR

by structural induction on the ground term ¢ = f(u,,..., u,): if tM is defined, then
all u™ are defined and u}" € FR. Thus, 1€ FR unless it is a nonreducible term of
primitive sort. But t" defined implies t* defined for all Ae.#. Hence, the partia!
completeness of T, implies t ~ 4 p for some primitive term p in all A€ . Thus ¢
is reducible.

Now, t ~yt' and t™ defined = V ~ €4, t ~ 41" and t* defined and te FR
and '€ FR. Then t=1t"is a theorem of T, therefore, t~1t', and D(t)~ true.
Relation ~ is the greatest lower bound of .

The hierarchical congruences form a complete lower semilattice. Since T is
partially complete (see Pioposition 5.14). the initial congruence belongs to this
lattice and is its initial element. [J

Corollary. The classes of extensionally equivalent models of a consistent hierarchical
PAT with simple axioms form a complete lower semilattice w.r.t. the ‘less defined’
ordering ; its initial element is the class of locally computable models (see Fig. 10).

Proof. l.et °° L. a set of classes of extensionally equivalent models, and # the set
of their initial congruences. 4 has a greatest lower bound ~, which belongs to class
ExT,: ExT,. is a lower bound of & (Proposition 5.12).

Conversely, if Ext, is a lower bound of ¥, its initial congruence is partially
weaker than those of ., thus than ~, and ExTt,2ExT, [
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——8= total homomorphism

class of extensionally equivalent congruences of T

L initial congruence 1

Fig. 10. The c-semilattice of classes of extensional equivalence.

6. Algebraic specification ¢f a deterministic stream processing language

To demonstrate how the algebraic specification of a simple, nontrivial program-
ming language looks like, a specification of a deterministic stream processing
language DSPL is given. This language can be used to write programs which
consecutively read (possibly infinite) sequences of integers and consecutively output
(possibly infinite) sequences of integers.

Two sorts are supposed as primitive:

- int, the sort of integers together with the usual operations.
- id, the sort of identifiers, with an equality

eq:id xid > int:eq(x, x) =1, eq(x, y) =0 for x, y distinct.

From these two primitive sorts the sort exp is firstly constructed. exp is the sort
of expressions built from integers (the operation intexp:int—exp converting an
integer into an expression), identifiers and the usual operations, tcgether with a
substitution function

esubst: exp Xexp Xid—> exp

(where esubst(e, €', x) denotes the substitution of every occurrence of x by e’ in ¢)
and an evaluation function

val:exp—int
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with axioms like
val(intexp(n))=n
val(add(e, ¢')) =val(e) +val(e’) etc.

For identifiers x the value of val(x) remains unspecified. Hence the sort exp is not
sufficiently complete: in locally computable models the interpretation val(e) for
expressions e containing free identifiers is undefined whereas in other models the
interpretation might take an integer value.

Now, the type contains two other nonprimitive sorts seq and agent which are
simultaneously defined. Intuitively, an agent transforms an input sequence into an
output sequence.

The sort seq comprises the following operations and axioms (which are typical
for sequences !):

sort seq

empty: - seq

isempty : seq - int
append:int X seq - seq
top:seq—int

rest:seq- seq
isempty(empty) = |
isempty(append(n, s))=0
top(append(n, s))=n

rest(append(n, s))=s.

Note, that the value of top(empty) and rest(empty) is not specified. It will be
interpreted to undefined in locally computable models.

Only finite sequences can be generated in this way. However, agents will also
generate infinite sequences. Hence, sort seq cannot be taken as primitive since the
set of finite and infinite sequences is not a (finitely generated) model of segq.

sort agent

stop: - agent

input:id X agent - agent
output:exp Xagent - agent
def:id X exp X agent - agent |

if:exp X agent x agent - agent
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rec:id X agent - agent
call:id > agent
process:agent X seq - seq.

The language of agents can be viewed as a procedural language by writing

stop for stop
read(x) ;a for input(x, a)
print(e) ;a for output(e, a)
x=e;a for def(x, e, a)
if e then al else a2 fi forif(e, al, a2)
p:a forrec(p, a)
call p for call( p).

The language allows to write just mutually recursive procedures in tail-recursion.
So we have a classical sequential input/output stream oriented, iterative, procedural
programr ing lauguage.

Examples. (1) The following agent computes the infinite sequence of the
numbers 2';

def(x, 1, rec( p, output(x, def(x, 2 * x, call( p))))).

(2) The following agent merges the infinitc sequence of numbers 2' with every
ordered (infinite) sequence:

def(x, 1, input(y, rec(p, if(x — y, output(y, input(v, call( p))),
output(x, def(x, 2 * x, call( p)))))))

(3) The agents may be sequentially composed. Assuming al and a2 are agents,
then the function

comp:agent X agent - agent
is specified partially completely by
process(comp(al, a2), s) = process(a2, process(al, s)).
We give now the axioms:
process(stop, s) = empty
process(input(x, a), append(n, s)) = process(def(x, intexp(n), a), s) -
val(e)=n => process(output(e, a), s) = append(n, process(a, s))

def(x, e, stop) = stop
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def(x, e, input(x, a)) = input(x, a)

eq(x, y) =0 = def(x, ¢, input(y, a)) = input(y, def(x, e, a))

def(x, e, output(e’, a)) = output(esubst(e’, e, x), def(x, e, a))

def(x, e, if(e’, al, a2)) =if(esubst(e’, e, x), def(x, e, al), def(x, e, a2))
val(e)>0 = if(e, al, a2)=al

val(e)<0 = if(e al, a2)=a2

rec( p, a) = asubst(a, rec( p, a), p).

Relation asubst: agent X agent xid - agent is a hidden auxiliary operation with
the axioms

asubst(stop, a, p) = stop

asubst(call(p), a,p)=a

eq(p,q)~° . asubst(call(q), a, p) = call(q)
asubst(input(x, a’), a, p) = input(x, asubst(a’, a, p))
asubst(output(e, a’), a, p) = output(e, asubst(a’, a, p))

asubst(if(e, al, a2), a, p) =if(e, asubst(al, a, p), asubst(a2, a, p)).

ESPL defines an abstract type that can be seen as a specification of a programming
language. However, DSPL provides only an abstract syntax (i.e., the term algebra).
The relationship to existing programming languages may not be seen immediately.
Actually. therc are several ways of classifying DSPL and relating it to more common
notations. It can be seen as an ‘assignment-oriented’ language, if we write

x=e.a
for def(x, e, a). However, it can also be seen as an ‘applicative’ language, if we write
(Ax.a)(e)

for def(x, e, a). In any case it is rather a ‘data flow’ language, since it is not required
that val(e) is defined for instance in the axiom

def(x, e, input(x, a)) = input(x, a)

which certainly does not hold in a classical procedural language like Pascat.
Objects of sort agent are programs that take finite or infinite sequences as input
and produce finite or infinite sequences. Terms of sort agent built without using
the functions rec and call can be seen as trees with stop at the terminal leaves. A
computation is a path through such a tree, using an input sequence, chosen in
accordance with the if-statements. After elimination of the if-statements, a scquence
of applications of input, output and def remains, applied to stop (the ending agent).
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Using the functions rec and call also infinite trees can be represented. They may
be obtained via an iterated replacement of all occurrences of call( p) in the agent
a by the agent rec(p, a).

The axioms of the type are simple. Therefore, the type DSPL is partially complete.

Moreover, the rewriting system obtained by orienting axioms from left to right
is confluent [27]. Indeed, it is easy to see that the conflicting left-hand sides are
directly confluent; for example, if val(e)=n and val(e’)>0

def(x, e, if(e’, al, a2))
/
/
if(esubst(e’, e, x), def(x, e, al), def(x, e, a2)) —— def(x, ¢,al)
since, if val(e’) is detined,
val(esubst(e’, e, x)) = val(e’).

Therefore, a reducible term cannot be equivalent to two different primitive terms:
the type is consistent. Thus, therc exist models.
But we have to avoid models where infinite sequences, like

(H) process(def(x, 1, rec( p, output(x, def(x, 2 * x, call(p))))), empty),

would be interpreted as undefined. Micic generally, we intend that every process
gives a defined result.
To ensure that, we introduce two definedness functions

Dl:seq-b D2:agent—> b

where b is a primitive sort with one element tr, and the (simple) axioms
D1(process(a, s)) =tr, D2(call(p))=tr,
D2(stop) =tr, D2(input(i, a)) =tr, D2(output(e, a)) =tr,
D2(def(i, e. a)) =tr, D2(if(e, al, a2))=tr, D2(rec{p, a))=tr.

Thus, process and the operations generating agents have to be interpreted as total
functions.
For example, these axioms ensure definedness of term (1) and therefore

top(process(def(x, 1, rec( p, output(x, def(x, 2 * x, call(p))))), empty))

can be reduced to 1.

The new axioms keep consistency, because they can be only applied in proofs of
equations of sort b.

Theurems S.11 and 5.15 then imply:

(1) The type DSPL has an initial model which is locally computable (in fact, the
only partial functions in this model are val, top and rest).

(2) The set of the hierarchical partial congruences of DSPL forms a complete
lower scinilattice w.r.t. .
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(3) Every class of extensionally equivalent congruences is a ccraplete upper
semilattice w.r.t. <.

(4) The classes of extensionally equivalent models of DSP! form a complete
lower semilattice w.r.t. the ‘less-definedness ordering’ with the locally computable
models as initial element.

The ditferent models define different semantics for the language. Another proof
for partial completeness and consistency of the language DSPL can be found in
[29] where a term-rewrite system for DSPL is derived for which the confluence has
been checked by machine.

7. Concluding remarks

It has been one of the contributions of denotational semantics to demonstrate
that programs can be viewed as functions and, therefore, mapped onto particular
function spaces in mathematical (denotational) semantics. Abstract types, however,
specify a class of possible semantic models. In this class, particular models may be
distinguished, such as terminal or initial ones. They may be used to characterize
classes of isomorphic semantic modcls, i.e., to specify the semantics up to isomorph-
ism. In particular, the algebraic approach promises several advantages. First, in this
wav the description of data structures and programs can be done in one coherent
formal framework by a hierarchy of abstract types. Second, it allows for a proper
formal definition without considering any vnwamed details of concrete representa-
tions just talking about the intended functions and their characteristic properties.
Third. on such a basis several different concrete semantic definitions (tmathematical
semantics, operational semantics, axiomatic semantics, cic.) may conveniently be
compared and proved to be extensionally equivalent. Fourth, a description of a
programming language can be given without defining an explicit domain and partiat
ordering, which is genrally necessary, if a fixed point semantics is looked for. Note
that in some important cases (such as for nondeterministic and concurrent programs)
the respective domains and orderings are extremely difticult to be found.

Of course, we do not say that the algebraic, abstract approach to the detinition
of a programming language makes other methods tfor description superfluous. We
rather propose abstract types as an important tool for the stepwise design and
semantic specification of programming languages, independent of particular syntac-
tic or semantic representation, only oriented towards the basic concepts, which may
be expressed by algebraic properties. If one has finished the experimental design
phase, where several possible closely related languages might be considered, and a
specification by abstract types is completed. one should try to give denotational,
operational and axiomatic semantics. This second design phase can be used to
discuss particular aspects of the language. Simultaneously a concrete syntax can be
gnven,
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Finally, the algebraic approach allows for a systematic classification and com-
parison of data structures and control structures in programming languages. This
may lead into an algebrzic theory of language concepts (cf. the work of Peter Mosses).
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