
Theoretical Computer Science 371 (2007) 83–105
www.elsevier.com/locate/tcs

Universality results for P systems based on brane calculi operations

Shankara Narayanan Krishna

Department of Computer Science and Engineering, Indian Institute of Technology, Bombay, Powai, Mumbai 400 076, India

Abstract

Operations with membranes are essential both in brane calculi as well as in membrane computing. In this paper, we attempt
to express six basic operations of brane calculi, viz., pino, exo, phago, bud, mate, drip in terms of the membrane computing
formalism. We also investigate the computing power of P systems controlled by phago/exo, pino/exo, bud/mate as well as the
mate/drip operations. We give an improvement to a characterization of RE using mate/drip operations given in [L. Cardelli, Gh.
Paun, An universality result based on mate/drip operations, International Journal of Foundations of Computer Science (in press)].
We also give a characterization of RE using a new operation, called selective mate. We conjecture that it is not possible to obtain
Turing completeness using only one of the six operations. We also conjecture that the pairs of operations we have considered for
completeness, in this paper, are complete: it is impossible to obtain Turing completeness with any other pair of operations.
c© 2006 Elsevier B.V. All rights reserved.

Keywords: Brane calculi; Membrane computing; Universality; Matrix grammars

1. Introduction

Membrane computing [12] and brane calculi [3] start from the same reality, viz., the living cell, but they develop
in different directions and have different objectives. Membrane computing tries to abstract the computing power
of biologically inspired models in the Turing sense, whereas brane calculi work in the framework of process
algebra. Various operations on membranes appear in both areas. Quoting [4], the objectives of brane calculi and
membrane computing are different: While membrane computing is a branch of natural computing, which tries to
abstract computing models, in the Turing sense, from the structure and functioning of the cell, making especially
use of automata, languages and complexity theoretic tools, brane calculi pay more attention to fidelity to biological
reality, have as primary target systems biology, and use especially the framework of process algebra. Another
difference is concerned with the semantics of the two formalisms: whereas brane calculi are equipped with an
interleaving, sequential semantics (each computational step consists of execution of a single instruction), the semantics
in membrane computing is based on maximal parallelism (each computational step consists of a maximal set of
independent interactions). In membrane computing, membranes are supposed to be compartments of a cell, and
computation is carried out on the objects in these compartments. Brane calculi, on the other hand, put emphasis
on the structure, properties and evolution of membranes. All these similarities and differences have evoked interest in

E-mail address: krishnas@cse.iitb.ac.in.

0304-3975/$ - see front matter c© 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2006.10.016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82240468?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/tcs
mailto:krishnas@cse.iitb.ac.in
http://dx.doi.org/10.1016/j.tcs.2006.10.016

84 S.N. Krishna / Theoretical Computer Science 371 (2007) 83–105

Table 1
Summary of results

Operations Number of membranes Weight RE Where

Pino, exo 8 4, 3 Yes Theorem 6.1
Phago, exo 9 5, 2 Yes Theorem 6.2
Phago, exo 9 4, 3 Yes Theorem 6.2
Bud, mate 7 5, 3 Yes Theorem 6.3
Mate, drip 11 5, 5 Yes [4]
Mate, drip 4 3, 3 Yes Theorem 6.4
Sel. mate 5 3 Yes Theorem 7.1
Any other *,* * No? To be proved

bridging the gap between the two. A first attempt to bring together brane calculi and membrane computing was made
in [4]. In [4], the modelling was done precisely in the same way as happened in brane calculi: always working with
proteins embedded in the membranes, there were no ‘objects’ inside any of the membranes. A computation however,
was defined in the usual way that happens in the membrane computing area: rules are applied to the embedded proteins
in a maximally parallel manner, and halting configurations were used to interpret the results.

Two brane calculi viz., pino, exo, phago (PEP) and mate, drip, bud (MBD) were considered [1] and it was observed
that the first calculi is more expressible than the second (Turing universality in the first case, decidability in the
second). In [1], a deterministic encoding of RAMs in PEP (a basic brane calculus with interaction primitives inspired
by endocytosis and exocytosis) was investigated and it was shown that the universal as well as existential termination
problems for PEP were undecidable. It was further shown that in the case of MBD, universal termination is decidable.
The problem of existential termination of MBD was taken up in [2], by providing a non-deterministic encoding of
RAMs in MBD, and thereby showing the undecidability of existential termination for MBD. It was further observed
in [2] that the computational power of MBDs is increased by incorporating the maximal parallelism semantics of
membrane computing. By exploiting the maximal progress, a deterministic encoding of RAMs in MBD was given,
obtaining the undecidability of both existential and universal termination for MBD with maximal parallelism. This
also confirms the comparison of the computing power of sequential vs. parallel semantics of several variants of P
systems.

The power of the MBD (in fact only mate, drip) was investigated in [4] and it was shown that these systems are
Turing complete, thereby confirming the increase in power as observed in [2].

[11] is another instance where membrane computing and brane calculi have been brought together. Here, two
operations of brane calculi, endocytosis and exocytosis, were used in a membrane computing framework. As usual,
the objects were considered to be inside the compartments, but the operations available were (1) object evolution
(2) endocytosis, by which an elementary membrane enters another membrane, and (3) exocytosis, by which an
elementary membrane comes out of another membrane. This variant was shown to be computationally complete
with 9 membranes. This result was later improved to 4 membranes [9], and later to 3 membranes [10].

In this paper, we take a closer look at various operations of brane calculi from the perspective of membrane
computing. Precisely, we consider the pino–exo (PIE), phago–exo (PHE), bud–mate (BUM), mate–drip (MAD) calculi
and observe that all of them are Turing complete. In fact, we give a very good improvement to the mate–drip calculi
result obtained in [4]. Further, intuitively, it seems that without the exo and mate operations, it is impossible to obtain
universality, irrespective of the number of membranes used. We propose a new operation called selectively mate, and
prove that we can obtain completeness with this single operation. A summary of the results (existing as well as new
ones conjectured) are given in Table 1.

2. The pino/exo/phago/bud/mate/drip calculi

We give an informal introduction to the basic operations of brane calculi, as a prelude to their use later in P
systems. A detailed description and formal treatment can be found in [3]. A membrane structure is a collection of
nested membranes. Membranes are formed of patches s, where each patch can be a composition of sub patches s1, s2.
An elementary patch consists of an action a followed by another patch a.s. Actions often come in complementary
pairs causing interactions between subsystems.

S.N. Krishna / Theoretical Computer Science 371 (2007) 83–105 85

Each specific brane calculus has a specific set of actions with specific operational meanings. Let us first consider
the pino action, which has no complementary co-action. The action pino creates an empty bubble within the membrane
where the pino action resides. We can imagine that the original membrane buckles towards the inside and pinches off.
In the following→ stands for ‘reduces to’.

(pino) [P] (u|pino(s).t) → [P[] s] u|t.

The exo action however, comes with a complementary co-action: the operation models the merging of two nested
membranes, which starts with the membranes touching at a point.

(exo) [[P] u|(exo.t)Q] w|(co− exo.v) → P[Q] u|w|t |v.

In the process, the subsystem P gets expelled to the outside, and all residual patches become contiguous.
Next we consider the phago action, which also comes with a complementary co-action: this models a membrane

(one with Q) eating another membrane (one with P). It proceeds with the Q membrane wrapping around the P
membrane, and joining itself on the other side.

(phago) [P] u|(phago.t)[Q] w|(co− phago(s).v) → [[[P] u|t] s Q] w|v.

We now consider the following three operations

(drip) [P] u|(drip(s).t) → [P] u|t[] s,

(mate) [P] u|(mate.t)[Q] w|(co− mate.v) → [P Q] u|t |wv,

(bud) [[P] u|(bud.t)Q] w|(co− bud(s).v) → [[P] u|t] s[Q] w|v.

Drip produces an empty bubble like pino, but outside the membrane. Mate merges two membranes like exo, but here
the membranes are not nested. Bud expels a membrane from inside a membrane, wrapping an additional layer around
it.

3. Prerequisites

We refer to [8,14] for all notions of formal language theory. Details of matrix grammars can be found in [5,6].
For an alphabet V , we denote by V ∗ the set of all strings over V ; λ denotes the empty string. V ∗ is a monoid with

λ, the empty string as its unit element. The length of a string x ∈ V ∗ is denoted by |x |, and |x |a denotes the number
of occurrences of symbol a in x .

Parikh vector: For V = {a1, . . . , an}, the Parikh mapping associated with V is ψV : V ∗ → N defined by
ψV (x) = (|x |a1 , . . . , |x |an), for all x ∈ V ∗. For a language L , the Parikh set of L , ψV (L) = {ψV (x) | x ∈ L}
is the set of all Parikh vectors of all words x ∈ L . For a family F L of languages we denote by Ps F L the family
of sets of vector numbers in F L . Thus, for the four basic families of languages in the Chomsky hierarchy—regular
(REG), context-free (C F), context-sensitive (C S) and recursively enumerable (RE), the family of vectors computed
are denoted respectively by Ps REG, PsC F, PsC S and Ps RE .

Left derivative of a language: The left derivative of L ⊆ V ∗ with respect to a string x is defined as ∂ l
x (L) = {w ∈

T ∗ | xw ∈ L}.
Multisets: A multiset over an alphabet V = {a1, . . . , an} is a map m : V → N . Since the natural extension

of m to strings over V give the Parikh mapping, we can represent the multiset m by any string w ∈ V ∗ such that
ψV (w) = (m(a1), . . . ,m(an)).

3.1. Matrix grammars

In our proofs for universality, we characterize recursively enumerable languages by matrix grammars with
appearance checking. Such a grammar is a construct G = (N , T, S,M, F),where N , T are disjoint alphabets, S ∈ N ,
M is a finite set of sequences of the form (A1 → x1, . . . , An → xn), n ≥ 1, of context-free rules over N ∪ T (with
Ai ∈ N , xi ∈ (N ∪ T)∗, in all cases), and F is a set of occurrences of rules in M (we say that N is the nonterminal
alphabet, T is the terminal alphabet, S is the axiom, while the elements of P are called matrices).

For w, z ∈ (N ∪ T)∗, we write w ⇒ z if there is a matrix (A1 → x1, . . . , An → xn) in M and the
strings wi ∈ (N ∪ T)∗, 1 ≤ i ≤ n + 1, such that w = w1, z = wn+1, and, for all 1 ≤ i ≤ n, either

86 S.N. Krishna / Theoretical Computer Science 371 (2007) 83–105

wi = w′i Aiw
′′

i , wi+1 = w′i xiw
′′

i , for some w′i , w
′′

i ∈ (N ∪ T)∗, or wi = wi+1, Ai does not appear in wi , and
the rule Ai → xi appears in F . The rules of a matrix are applied in order, possibly skipping the rules in F if they
cannot be applied; we say that these rules are applied in the appearance checking mode. If F 6= ∅, then the grammar
is said to be without appearance checking (and F is no longer mentioned).

We denote by⇒∗ the reflexive and transitive closure of the relation⇒. The language generated by G is defined
by L(G) = {w ∈ T ∗ | S ⇒∗ w}. The family of languages of this form is denoted by M ATac. When we use only
grammars without appearance checking, then the obtained family is denoted by M AT .

As an example of a matrix grammar with appearance checking, consider the grammar G =

({X, Y, Z ,U, A}, {a}, X,M) where M consists of the matrices

[Y → U, A→ U, X → Z Z], [X → U, Z → Y], [Z → U, Y → X],

[Y → U, Z → U, X → A], [X → U, A→ a].

Define the set F = {X → U, Y → U, Z → U, A→ U }. Then, it can be seen that L(G) = {a2n
| n ≥ 0}.

We shall briefly look at matrix grammars in the strong binary normal form. Such a grammar is a construct
G = (N , T, S,M, F), where N = N1 ∪ N2 ∪ {S, #}, with these three sets mutually disjoint, two distinguished
symbols B(1), B(2) ∈ N2, and the matrices in M of one of the following forms:

(1) (S→ X A), with X ∈ N1, A ∈ N2,

(2) (X → Y, A→ x), with X, Y ∈ N1, A ∈ N2, x ∈ (N2 ∪ T)∗,
(3) (X → Y, B(j)

→ #), with X, Y ∈ N1, j = 1, 2,
(4) (X → λ, A→ x), with X ∈ N1, A ∈ N2, x ∈ T ∗.

Moreover, there is only one matrix of type 1 and F consists of all the rules B(j)
→ #, j = 1, 2, appearing in matrices

of type 3; # is a trap-symbol, once introduced it is never removed. (Clearly, a matrix of type 4 is used only once, in
the last step of a derivation.)

In [7] it is proved that each recursively enumerable language can be generated by a matrix grammar in the strong
binary normal form.

If we ignore the empty string when comparing languages, then the rules of type 4 above can be considered of the
form (X → a, A→ x), for X ∈ N1, a ∈ T, A ∈ N2, and x ∈ T ∗.

Here is a (sketched) proof of this assertion from [11]. For a language L ∈ RE , L ⊆ T ∗, we write L =⋃
a∈T {a}∂a(L), where ∂a(L) = {w ∈ T ∗ | aw ∈ L} is the left derivative of L with respect to a. Consider a matrix

grammar Ga in the strong binary normal form for each language ∂a(L), and replace each matrix (X → λ, A → x)
of type 4 from Ga with (X → a, A → x). Let Ga = (Na, T, Sa,Ma, Fa) be the grammar obtained in this way,
L(Ga) = ∂a(L). Let us assume all sets Na,1, a ∈ T , mutually disjoint (we can “colour” each X ∈ Na,1 with a, for
instance, using symbols Xa). The sets Na,2 are left unchanged—in particular, the corresponding symbols B(1), B(2)

are denoted in the same way in all grammars. We construct the grammar G ′ = (N ′, T, S′,M ′, F ′), with

N ′ =
⋃
a∈T

Na ∪ {S′, X0, A0}, S′, X0, A0 are new symbols,

M ′ = {(S′→ X0 A0)}

∪ {(X0 → Xa, A0 → Aa) | (Sa → Xa Aa) ∈ Ma, a ∈ T }

∪

⋃
a∈T

(Ma − {(Sa → Xa Aa)}).

Obviously, L(G ′) = L(G) (because the alphabets Na,1, a ∈ T , are mutually disjoint, we cannot mix matrices from a
grammar Ga, a ∈ T , when deriving strings from L(Gb) with a 6= b (remember also that we ignore the empty string).
The grammar G ′ is in the strong binary normal form, and its matrices of type 4 are of the form (X → a, A→ x), for
some a ∈ T . A grammar with these properties is said to be in the improved strong binary normal form [11].

4. Pino/exo/mate/drip/phago/bud as membrane computing operations

We refer to [13,15] for details on membrane computing, we shall describe only the system of interest here. We
start by writing the six operations we use below in the formalism of membrane computing. As usual, we represent a
membrane by a pair of parentheses, [] . As in [4], we associate multisets of proteins with membranes to refer to them.

S.N. Krishna / Theoretical Computer Science 371 (2007) 83–105 87

A membrane having associated a multiset u of proteins is written in the form []u . We also say that the membrane is
marked with the multiset u.

Taking an alphabet V of proteins, we write the six operations as follows, of which 1–6 have been defined in [4]. In
this paper, we assume that u, x ∈ V ∗, a, b ∈ V, v ∈ V+ with uxv ∈ V+.

1. pinoi : [P]uav → [[]ux P]v
2. exoi : [[P]ua Q]v → P[Q]uxv

3. pinoe : [P]uav → [[]vP]ux

4. exoe : [[P]u Q]av → P[Q]uxv

5. mate : [P]ua [Q]v → [P Q]uxv

6. drip1 : [P]uav → []ux [P]v
7. drip2 : [P]uav → [P]ux []v

8. phagoi : [P]b [Q]uav → [[[P]b]ux Q]v
9. phagoe : [P]b [Q]uav → [[[P]b]vQ]ux

10. bud1 : [[P]b Q1 Q2]uav → [[P]b Q1]ux [Q2]v

11. bud2 : [[P]b Q1 Q2]uav → [[P]b Q1]v [Q2]ux .

Rules 1–11 are applied keeping in mind the following:

(1) P, Q1, Q2 represent the contents of the membranes. Thus, they may be objects if the membranes are elementary,
or may be membrane structures themselves.

(2) There is no ordering between adjacent membranes.
(3) If Q = [P1] [P2] [P3] , where P1, P2, P3 are membrane sub structures, then Q can be written as Q1 Q2, where
• Q1 = [Pi] [Pj] and Q2 = [Pk] with i, j, k ∈ {1, 2, 3}, i 6= j 6= k, or
• Q2 = [Pi] [Pj] and Q1 = [Pk] with i, j, k ∈ {1, 2, 3}, i 6= j 6= k, or
• Q1 = Q and Q2 is empty, or Q2 = Q and Q1 is empty.

(4) All membranes involved in a rule have non-empty multisets associated with them. In each case, multisets of
proteins are transferred from input membranes to output membranes as indicated in the rules, with protein a
evolving into the multiset x . Note that the multisets u, v, b and the protein a marking the left hand side membranes
correspond to the multisets u, v, b and x in the right hand sides.

(5) The difference between pinoi , pinoe (similarly for others like exo, phago) is that in the first case the main role
is played by the internal membrane, whereas in the second it is played by the external membrane. Note that the
two versions of bud indicate the choice of where the protein x can be placed: either as part of the ‘wrap around’
membrane or as part of the other one.

(6) A rule is applied to a membrane(s) if it(they) contain the multiset uav which have an applicable rule to them.
(7) All proteins in a membrane which do not form part of a rule are unaffected by the rule. In the case of pino, drip,

these proteins are randomly distributed between the two resulting membranes. In the case of phago and bud, the
contents of the membrane containing b is unaffected, the contents of the membrane containing uav is distributed
between the two membranes containing ux and v.

(8) Mate and Exo always have a unique resultant membrane, merging the contents of two membranes.

We will illustrate the above points by examples. In the following examples, let w1w2 be a distribution of w (which
means that the symbols of w1, w2 put together give the symbols of w). Note that there are several possible ways of
doing this, one possibility being w1 = λ or w2 = λ. Also, let x1, x2, x3 ∈ V ∗. Below, we examine the effect of a few
rules on some membrane structures.

(1) [P]uavw.
(a) pinoi : We get [P []w1ux]w2v

.
(b) pinoe : We get [P []w1v

]w2ux
(c) drip : we get either [P]w1ux []w2v

or []w1ux [P]w2v
.

(2) [[P]bx1
[Q] x2

[R] x3
]wuav .

(a) A bud1 operation [[P]bx1
]wav can result in

88 S.N. Krishna / Theoretical Computer Science 371 (2007) 83–105

• [[P]bx1
[Q] x2

]w1ux [[R] x3
]w2v

or
• [[P]bx1

[R] x3
]w1ux [[Q] x2

]w2v
or

• [[P]bx1
[Q] x2

[R] x3
]w1ux []w2v

or
• [[P]bx1

]w1ux [[Q] x2
[R] x3

]w2v
.

(b) The bud2 operation [[P]bx1
]wav is similar.

(3) [P] x1b [[Q] x2
[R] x3

]wuav .
(a) The phagoi operation [P] x1b []wuav gives [[[P] x1b]w1ux [Q] x2

[R] x3
]w2v

.

We shall henceforth refer only to the generic names of pino, exo, bud etc. instead of specifying pinoi , exoe, bud1 etc.
Note: In the operations of pino, drip, phago and bud, there is a non-deterministic distribution of the objects which do
not evolve. If we had restricted the definition so that all objects which are not part of a rule remain in their respective
membranes, unaffected, then it would have been easy to predict where a particular object can be found during a
computation. In all the results in this paper, we do not find any extra expressiveness due to the non-deterministic
distribution of objects, and in fact, write extra rules to keep track of the possible locations of objects, due to the
non-deterministic distribution. We would have had a lesser set of rules if we had not allowed the random distribution.

Anyway, the power of random distribution needs to be investigated more systematically.

5. P systems based on pino/exo/phago/mate/drip/bud operations

Using the rules defined above, we can define a P system as follows:

Π = (V, µ,w1, . . . , wm, R)

where

• V is the basic finite alphabet of proteins;
• µ is a membrane structure with m ≥ 2 membranes;
• w1, . . . , wm are multisets of proteins bound to the m membranes of µ at the beginning of the computation (we

assume that the membranes have a precise identification by means of their labels); the skin membrane is labeled 1
and is marked with the multiset λ;
• R is a finite set of pino/exo/phago/mate/drip/bud rules of the form specified above, with the proteins from the

alphabet V .

Note that here the skin membrane has no protein associated with it. It actually plays no role in the computation
other than forming a boundary to all membranes within it. Note that since none of our rules can be used with λ as
the sole content of any membrane, no rule can be applied to the skin membrane. There are no objects in any of the
compartments, they can contain other membranes inside.

The following notions are important while applying rules:

• The membrane(s) in the left hand side of a rule are said to be “involved”, and the membranes on the right hand side
are “produced”.
• The protein a specified in the left hand side of a rule is said to be consumed and is replaced by x . Note that the

other proteins which mark the membranes remain unchanged, and are reproduced in the new membranes produced.
• In the case of the exo and mate rules, all proteins from both the membranes are inherited by the new membrane. In

the case of pino, drip, bud, phago etc. (as described in the previous section), the proteins of the membrane which
are not involved are non-deterministically distributed to the new membranes.

5.1. Evolution of the system

The evolution of the system is through transitions among configurations, based on non-deterministic maximal
parallel use of rules. A configuration consists of the membrane structure as well as all multisets marking the
membranes. The initial configuration is µ,w1, . . . , wm . In each step, a membrane may be part of at most one rule,
with the restriction that the choice of the rules must be maximal (after choosing some rules to apply, no further rule
can be applied to the membranes not involved in the chosen rules). A membrane remains unchanged if not evolving

S.N. Krishna / Theoretical Computer Science 371 (2007) 83–105 89

by a rule. Note that evolution is parallel at the level of membranes, but sequential at the level of multisets marking
each membrane: at most one protein a evolves by a rule, and at most one rule is applied to each membrane.

A sequence of transitions forms a computation. A computation which starts from the initial configuration is
successful if it halts, i.e, reaches a configuration wherein no rule can be applied. The result of a successful computation
is given by the multiset which marks the membrane just below the skin membrane in a halting computation. If there
are several membranes just below the skin membrane, then we take the multiset obtained by putting together the
multisets of all such membranes as the output. We consider the vector describing the multiplicity of proteins in this
multiset to be computed by Π . Note that unlike [4], the acceptance condition given here does not bother about the
number of membranes and the structure of µ at the end of a halting configuration, and hence is more general.

Since rules are applied non-deterministically, we can get several computations starting from the initial
configuration, of which many may be successful. The set of all vectors computed this way by Π is denoted Ps(Π).
Convention: When comparing the power of two systems Π ,Π ′, we consider Ps(Π) = Ps(Π ′) if and only if
Ps(Π) − {(0, 0, . . . , 0)} = Ps(Π ′) − {(0, 0, . . . , 0)}, that is, the null vector is ignored. This corresponds to the fact
that, in many cases in language theory, when comparing two grammars or automata the empty string is ignored—and
this assumption holds good here since we have assumed uxv to be nonempty.

The length of the string uxv is called the weight of a rule.
In what follows, we shall investigate the power of P systems using pino/exo, phago/exo, mate/drip and bud/mate

operations. The family of all sets of vectors Ps(Π) computed by P systems Π using at any moment during a halting
computation at most m membranes, and any of the rules r1, r2 ∈ { mate, drip, exo, bud, pino, phago } of weight at
most r, s, respectively, is denoted by PsO Pm(r1(r), r2(s)). When one of the parameters is not bounded, we replace it
with a *.

5.2. Examples

We consider the following pairs of rules: pino/exo, phago/exo, bud/mate, drip/mate. We will consider some intuitive
examples of the maximal parallelism possible while using these pairs of rules:

(1) Consider a membrane structure [[[]a]b []e f]c and rules
(i) []e f →pino [[]e] f (ii) [[]b]c →exo []bd .
Applying (i) and (ii) in parallel, we obtain []a [[]e] f]bd .

(2) Consider the structure [[[[[]a]b]c]d]e, and rules
(i) [[]c]d →exo []cd (ii) [[]a]b →exo []ab. We obtain [[]ab []cd]e.

(3) Consider [[]a []e f [[]b]c]d , and rules
(i) []a []e f →phago [[[]a]e′] f (ii) [[]c]d →exo []d . Then we obtain [[[[]a]e′] f []b]d .

Lemma 5.1. • PsO Pm(r1(i), r2(j)) ⊆ PsO Pm′(r1(i ′), r2(j ′)), for all m ≤ m′, i ≤ i ′, j ≤ j ′.
• PsO P∗(r1(∗), r2(∗)) ⊆ Ps RE .

The above result can be easily proved based on the following observation: Given a system Π with m membranes, and
rules of type r1, r2, with weights i, j , it is easy to construct another system Π ′ with m′ ≥ m membranes, and having
rules of type r1, r2 with weights i ′ ≥ i, j ′ ≥ j such that PsΠ ⊆ PsΠ ′ as follows: keep the initial contents of the
m membranes of Π unaltered as it is in Π ′, and let the initial contents of the extra m′ − m membranes be empty. Do
not involve these membranes in any rules. Now, coming to the rules of Π ′, add all rules of Π and any extra rules of a
greater weight, as required. Clearly, Π ′ can generate all vectors that Π can generate.

6. Universality results

In this section, we explore the power of P systems in the mate/drip, pino/exo, phago/exo and bud/mate cases. The
power of mate/drip was already investigated in [4], we give an improvement here.
Note 1: In all results in the following section, we shall denote by a →ph b, a →pin b, a →exo b, a →bud b, and
a→mate b, the evolution of a into b using phago (phagoi or phagoe), pino (pinoi or pinoe), exo (exoi or exoe), or bud,
mate rules. Here a, b are the corresponding membrane structures.
Note 2: While specifying a P system Π , we shall write the multisets associated to membranes in an initial configuration
as bound to the membranes, instead of writing them separately.

90 S.N. Krishna / Theoretical Computer Science 371 (2007) 83–105

Note 3: In all the proofs below, we use the notation C1 →
r1,...,rn C2 to denote that configuration C1 has evolved into

configuration C2 by application of rules r1, . . . , rn in parallel. Similar are the cases with C1 and C2 ←
r1,...,rn C1.

↓
r1,...,rn

C2
Note 4: In all the universality proofs (Sections 6 and 7), we consider a matrix grammar G = (N , T, S,M, F) in
the improved strong binary normal form (hence with N = N1 ∪ N2 ∪ {S, #}), having n1 matrices of types 2,4 (that
is, not used in appearance checking mode), and n2 matrices of type 3 (with appearance checking rules). Let B(1)

and B(2) be the two objects in N2 for which we have rules B(j)
→ # in matrices of M . The matrices of the form

(X → Y, B(j)
→ #) are labeled by m′i , with i ∈ lab j , for j ∈ {1, 2}, such that lab1, lab2 and lab0 = {1, 2, . . . , n1}

are mutually disjoint sets.

6.1. The PIE calculus

In this section, we look at the computing power of pino–exo operations, and prove their universality.

Theorem 6.1. Ps RE = PsO Pm(pino(r), exo(s)), for all m ≥ 8, r ≥ 4, s ≥ 3.

Proof. In view of Lemma 5.1, we only prove the inclusion Ps RE ⊆ PsO P8(pino(4), exo(3)), using the equality
Ps RE = Ps M ATac, by considering a matrix grammar with appearance checking in the improved strong binary
normal form [11].

We construct a P system

Π = (V, [[[] E A []D1 Q []D2 Q [] L] X]λ, R)

with the alphabet

V = {X, Xl , X (i)l , X ′l | X ∈ N1, 1 ≤ l ≤ n1 + n2, 1 ≤ i ≤ 2}
∪ {α, α′, | α ∈ N2 ∪ T } ∪ {Za | a ∈ T }

∪ { f, g, D, D′, D1, D2, E, Q, Q′, Q1, Q2, Q3, Q4, Q5, H, H ′, H ′′, H ′′′, L}.

Any computation starts from the initial configuration [[[] E A []D1 Q []D2 Q [] L] X]λ where S → X A is the
initial matrix of G.
Proof idea: We give an overview of the proof before going into the details. The membranes labeled E A and X are
used in the simulation of a non-terminal type 2 matrix. All symbols of N1 ∪ N2 ∪ T will be distributed between these
two membranes. The membranes labeled D1 Q, D2 Q are used for checking if the symbols B(1), B(2) appear during
simulation of a type 3 matrix. The membrane labeled L is used for testing if all symbols A ∈ N2 are replaced by
terminals after simulation of the terminal matrix. If any A ∈ N2 is found, an infinite computation is induced by L ,
giving no result.

The set R of rules is constructed as follows:

(1) Simulation of a non-terminal matrix ml : (X → Y, A→ x), X, Y ∈ N1, A ∈ N2, x ∈ (N2 ∪ T)∗, 1 ≤ l ≤ n1.

1. [[] AE] X →exo [] Xl AE ,

[[] E] X A →exo [] Xl E A,

2. [] Xl AE →pin [[] x ′E] Xl , if x 6= λ,

(If ml : (X → Y, A→ α1α2), then, x ′ = α′1α2 or α1α
′

2,

and if ml : (X → Y, A→ α1), then x ′ = α′1.)

[] Xl AE →pin [[] f E] Xl , if x = λ,

3. [[]α′E] Xl →exo []α′E X ′l
, α ∈ N2 ∪ T

[[] f E] Xl →exo [] f E X ′l
,

4. []α′E X ′l
→pin [[]αg] X ′l E , α ∈ N2 ∪ T

[] f E X ′l
→pin [[] g] X ′l E ,

5. [[] g] X ′l E →exo []Y gE ,

S.N. Krishna / Theoretical Computer Science 371 (2007) 83–105 91

6. [] EgY →pin [[] E]Y ,

7. [[] E] X →exo []#E ,

(X does not correspond to a type 3 matrix)
8. []#β →pin [[]#]#, β ∈ V ∪ {#},
9. [[]#]# →exo []##,

10. [[]D j Q →pin [[]D j]Q1
,

11. [[]D j]Q1
→exo []D j Q2

,

12. []D j Q2
→pin [[]D j]Q3

,

13. [[]D j]Q3
→exo []D j Q4

,

14. []D j Q4
→pin [[]D j]Q5

,

15. [[]D j]Q5
→exo []D j Q .

We shall now examine the simulation. We start with rule 1. Initially, the symbol A ∈ N2 corresponding to the initial
matrix will be part of the inner membrane. In later steps, however, since we use pino rules, the corresponding A
may be found along with X as well. In any case, we replace X by Xl marking the beginning of the simulation. This
is followed by rule 2, wherein the symbols Xl , A are used to replace A by either x ′ or f (in case x = λ). Next,
we apply rule 3, replacing Xl by X ′l ; this prevents replacing any more A’s. Now, using X ′l , we replace α′ by α (or
erase f), as the case may be, simultaneously introducing a new symbol g. The new symbol g is used to replace
X ′l by Y . The last step involves removal of g while coming back to the original configuration (having membrane
labeled E inside the membrane labeled Y). Note that while we apply rules 1 to 6, we also use in parallel, rules
10 through 15. These rules play an important role in the simulation of type 3 matrices. But anyway, when we end
the simulation with rule 6, we also use rule 15 in parallel, thereby preserving the initial membrane structure. Note
that rule 7 introduces a trap symbol if the corresponding A ∈ N2 is not present. We now illustrate the evolution of
the configurations during one simulation of a type 2 matrix.

[[[] E A []D1 Q []D2 Q [] L] X]λ →
1,10
[[[[]D1

]Q1
[[]D2

]Q1
[] L] Xl E A]λ

↓
2,11

[[[[]D1
]Q3
[[]D2

]Q3
[] L] X ′l Eα′]λ ←

3,12
[[[] Ex ′ []D1 Q2

[]D2 Q2
[] L] Xl]λ

↓
4,13

[[[[]αg []D1 Q4
[]D2 Q4

[] L] X ′l E]λ →
5,14
[[[[]D1

]Q5
[[]D2

]Q5
[] L]Y gE]λ

↓
6,15

[[[] E []D1 Q []D2 Q [] L]Y]λ.

(2) Simulation of a type 3 matrix m′l : (X → Y, B(j)
→ #), n1 + 1 ≤ l ≤ n2

We start once again from [[[] E []D1 Q []D2 Q [] L] X]λ.

16. [[] E] X →exo [] X (j)
l E ,

17. [] X (j)
l E →pin [[] E] X (j)

l
,

18. [[] B(j)] X (j)
l
→exo []#B(j) ,

19. [[] E] B(j)X (j)
l
→exo []#B(j)E ,

20. [[]D j Q4
] X (j)

l
→exo []D j Q′X (j)

l
,

21. []D j Q′X (j)
l
→pin [[]D j Q′]Y ,

22. []D j Q′ →pin [[]D j]Q1
.

Rule 16 starts the simulation replacing X by X (j)
l , thereby remembering the index l of the matrix. Rule 10 will

be applied in parallel. This is followed by using rules 11,17. Now, we need to check if the corresponding symbol

92 S.N. Krishna / Theoretical Computer Science 371 (2007) 83–105

B(j)
∈ N2 is present. The symbol B(j), if present, will be either part of the membrane labeled X (j)

l or part of the
membrane labeled E . It cannot be present in the membrane labeled D j , Qi since these membranes have never
interacted with any other membrane so far. If B(j) is present, rules 18 or 19 will be applied (in parallel we use rule
12). In the next step, if the symbol X (j)

l is still there, it means that the corresponding B(j) was not present in the
previous step. We now apply rule 13, introducing the symbol Q4. We can now either use rule 14 or rule 20. If we
use rule 14, Q4 will be replaced by Q5, and subsequently by Q. This will be followed by the whole chain of rules
10–13 again, with X (j)

l and other symbols remaining the same. The simulation can be progressed only by using
rule 20. To ensure progress, let us assume we use rule 20. This renames the Q4 in D j Q4 into D j Q′. In the next
step, rule 21 (and in parallel rule 15 for the other Di Q) is used. This replaces X (j)

l by Y and sends []D j Q′ inside
the membrane labeled Y , adjacent to the membrane labeled Di Q. We will now illustrate the simulation, assuming
j = 1.

[[[] E A []D1 Q []D2 Q [] L] X]λ →
16,10

[[[[]D1
]Q1
[[]D2

]Q1
[] L] X (1)l E]λ

↓
17,11

[[[] E [[]D1
]Q3
[[]D2

]Q3
[] L] X (1)l

]λ ←
12
[[[] E []D1 Q2

[]D2 Q2
[] L] X (1)l

]λ

↓
13

[[[] E []D1 Q4
[]D2 Q4

[] L] X (1)l
]λ →

14,20
[[[] E [[]D2

]Q5
[] L]D1 Q′X (1)l

]λ

↓
21

[[[] E []D1 Q′ []D2 Q [] L]Y]λ.

Note the use of the exo rule 20, wherein we unify the contents of the two membranes. Certainly, B(j) is not part of
this membrane. When we segregate D j Q4 using the pino rule 21, non-deterministically some symbols of N2 ∪ T
other than (B(j)) may get mixed up with it. Note that this does not create any future problem for appearance
checking, since rule 20 can be applied only in the absence of B(j), but we might have a scenario wherein a symbol
A ∈ N2 becomes part of this inner membrane. If this happens, we may be unable to use the occurrence of this
A ∈ N2, since when we simulate matrices of type 2, we use rule 1, wherein we always look for E to occur with
A ∈ N2. Clearly, E will not be part of the membranes labeled D j Q, and hence, we will not be able to use rule 1.
However, in such a case, rule 7 will be used leading to an infinite computation.

(3) For each terminal matrix ml : (X → a, A → x), X, Y ∈ N1, A ∈ N2, x ∈ T ∗, a ∈ T , with 1 ≤ l ≤ n1, we
consider the rules:
First use rules 1 and 2, obtaining [[[]α′E []D1 Q2

[]D2 Q2
[] L] Xl]λ or [[[] f E []D1 Q2

[]D2 Q2
] Xl [] L]λ.

Now consider the following rules:

23. [[]α′E] Xl →exo []α′Xl H , α ∈ N2 ∪ T,

[[] f E] Xl →exo [] f Xl H ,

24. []α′Xl H →pin [[]α′H] Za ,

[] f Xl H →pin [[] f H] Za ,

25. [[]α′H] Za →exo [] ZaαH ,

[[] f H] Za →exo [] Za H ,

26. [] Za H →pin [[]H]aH ′ ,

27. [[]D1 Q]H ′ →exo []H ′D1
,

28. [[]H]H ′D1
→exo []H ′D1

,

29. [[]D2 Q2
]H ′D1

→exo []H ′D1 D2
,

30. []H ′D1 D2
→pin [[]D′]H ′D2

,

31. [[]D′]H ′D2
→exo []H ′D′ ,

32. []aH ′D′ →pin [[]aD′]H ′′ ,

33. [[]aD′]H ′′ →exo []aH ′′ ,

S.N. Krishna / Theoretical Computer Science 371 (2007) 83–105 93

34. []aH ′′ →pin [[]a]H ′′′ ,

35. [[]a]H ′′′ →exo []a,

36. [[] L]a A →exo []a#L , A ∈ N2,

37. [[]#]β →exo []##, β ∈ V ∪ {#}.

We need to simulate the terminal matrix as well as remove all the auxiliary symbols at the end of a halting
configuration. We start with rules 1 and 2. This is followed by rules 23–25, wherein we replace Xl by Za and α′

by α. The symbol Za indicates that the terminal matrix has been simulated. Rules 27–35 assist in the removal of
the remaining auxiliary symbols like D1, D2, Q etc. giving [[[] L]w]λ. This will be clear from the following
sequence of configurations:

[[[] E A []D1 Q []D2 Q [] L] X]λ →
1,10
[[[[]D1

]Q1
[[]D2

]Q1
[] L] Xl E A]λ

↓
2,11

[[[[]D1
]Q3
[[]D2

]Q3
[] L] Xl Hα′]λ ←

23,12
[[[] Ex ′ []D1 Q2

[]D2 Q2
[] L] Xl]λ

↓
24,13

[[[]α′H []D1 Q4
[]D2 Q4

[] L] Za]λ →
25,14

[[[[]D1
]Q5
[[]D2

]Q5
[] L] ZaαH]λ

↓
26,15

[[[]H [[]D2
]Q1
[] L]aH ′D1

]λ ←
27,10

[[[]H []D1 Q[]D2 Q [] L]aH ′]λ

↓
28,11

[[[]D2 Q2
[] L]aH ′D1

]λ →
29,12

[[[] L]aH ′D1 D2
]λ →

30
[[[]D′ [] L]H ′D2

]λ

↓
31

[[[] L]aH ′′′]λ ←
33
[[[]aD′ [] L]H ′′]λ ←

32
[[[] L]aH ′D′]λ

↓
34

[[[] L []a]H ′′′]λ →
35
[[[] L]a]λ.

Rules 36, 37 should be used if any A ∈ N2 exists after simulation of a terminal matrix, leading to an infinite
computation. It is enough if we check the applicability of rule 36, after applying all other rules (after rule 35).
There may be cases where rule 36 is applicable before, but we can avoid the use of rule 36 till the very end, thereby
getting a correct result, if one exists, by assuming that all symbols of N2 ∪ T are stored in the inner membrane
containing E (this assumption is fair since the pino rules distribute symbols non-deterministically). Note also the
fact that when E (and all other symbols part of the inner membrane are unified with the outer membrane, then in
all scenarios previously, there are other rules applicable, like rules 2, 4, 6, 17), and hence we can say that rule 36
need be applied only after rule 35. �

6.2. The PHE calculus

Now we examine the effect of the phago–exo operations.

Theorem 6.2. Ps RE = PsO Pm(phago(r), exo(s)), for all m ≥ 9, r ≥ 5, s ≥ 2, and Ps RE =

PsO Pm(phago(r), exo(s)), for all m ≥ 9, r ≥ 4, s ≥ 3.

Proof. As in Theorem 6.1, we shall only prove the inclusion Ps RE ⊆ PsO P9(phago(5), exo(2)), using a matrix
grammar G in the strong binary normal form. The second characterization of RE using phago(4), exo(3) can be
obtained by a slight variation of rules, which we will mention towards the end of the proof.

Construct a P system

Π = (V, [[] X F [] AE [[] L [] I]K M []N]λ, R)

with alphabet

V = {X, Xl , X (i)l , X (i)l
′

, 〈X 〉 | X ∈ N1, 1 ≤ l ≤ n1 + n2, 1 ≤ i ≤ 2}

94 S.N. Krishna / Theoretical Computer Science 371 (2007) 83–105

∪ {α, α′, α′′ | α ∈ N2 ∪ T }

∪ {E, E ′, E ′′, F, F ′, F ′′, I, K , K ′, L ,M, N , f, f ′} ∪ {El | 1 ≤ l ≤ n1}.

The initial configuration is [[] X F [] AE [[] L [] I]K M []N]λ, where X ∈ N1, A ∈ N2 correspond to the initial
matrix S→ X A.
Proof idea: The membranes labeled X F, AE are used in the simulation of a type 2 matrix. The membrane labeled
K M is used (i) to induce an infinite computation if a symbol A ∈ N2 does not occur during a type-2 matrix simulation,
and (ii) to check for the appearance of symbols B(j) during simulation of a type-3 matrix. The membranes labeled
L , I, N are used at the end, after simulation of a terminal matrix, to remove all auxiliary symbols, and to check if any
more symbols A ∈ N2 remain.

The rules R are as follows:

(1) For each non-terminal matrix ml : (X → Y, A→ x), X, Y ∈ N1, A ∈ N2, x ∈ (N2 ∪ T)∗, with 1 ≤ l ≤ n1, and
x 6= λ, we consider the rules:

1. [] E [] X F →ph [[[] E] Xl] F ,

2. [[] Xl] F →exo [] Xl F ,

3. [] Xl [] AE →ph [[[] Xl] x ′] E ,

(If ml : (X → Y, A→ α1α2), then, x ′ = α′1α2 or α1α
′

2,

and if ml : (X → Y, A→ α1), then x ′ = α′1.)

4. [[]α′] E →exo []α′E ′ , α ∈ N2 ∪ T,

5. [] E ′ [] Xl F →ph [[[] E ′]Y] F ,

6. [[]Y] F →exo []Y F ,

7. []Y []α′E ′ →ph [[[]Y]α] E ′ ,

8. [[]α] E ′ →exo []αE ,

9. []K [] Xl F →ph [[[]K]#] F ,

10. [[]#]β →exo []##, β ∈ V ∪ {#},
11. []β []#α →ph [[[]β]#]#, β, α ∈ V ∪ {#}.

(2) If x = λ, i.e, if ml : (X → Y, A→ λ) then we have the following rules: Apply 1, 2 as above. Then consider the
following rules:

12. [] Xl [] AE →ph [[[] Xl] A] E ′′El ,

13. [[] A] El →exo [] El ,

14. [] El [] Xl F →ph [[[] El]Y] F ,

16. []Y F [] El E ′′ →ph [[[]Y F] El] E ,

17. [[] El] E →exo [] E .

We begin the simulation with rule 1, replacing X by Xl . The membrane labeled AE enters the membrane labeled
Xl and rule 2 brings it out. This is followed by replacing A by x ′ using rule 3. Now, to prevent any more A’s from
being replaced, rule 4 replaces E by E ′. This is followed by replacing x ′ by x and Xl by Y to finish the simulation
correctly. This is done by first replacing Xl by Y using rule 5, followed by rules 6,7 which replace α′ by α, and
finally rule 8 replaces E ′ by E . We depict a simulation by the following sequence of configurations:

[[] X F [] AE [[] L [] I]M K []N]λ →
1
[[[[] AE] Xl] F [[] L [] I]M K []N]λ

↓
2

[[[[] Xl] x ′] E [[] L [] I]M K []N]λ ←
3
[[] Xl F [] AE [[] L [] I]M K []N]λ

↓
4

[[] Xl F []α′E ′ [[] L [] I]M K []N]λ →
5
[[[[] E ′]Y] F [[] L [] I]M K []N]λ

↓
6

S.N. Krishna / Theoretical Computer Science 371 (2007) 83–105 95

[[[[]Y F]α] E ′ [[] L [] I]M K []N]λ←
7
[[]Y F []α′E ′ [[] I]M K []N]λ

↓
8

[[]Y F []αE [[] L [] I]M K []N]λ.

Note that rule 9 is an exception, which can be used in a scenario when the corresponding A ∈ N2 does not occur.
This leads to an infinite computation using rules 10, 11.

(3) For each type 3 matrix m′l : (X → Y, B(j)
→ #), n1 + 1 ≤ l ≤ n2, we have the following rules:

18. [] E [] X F →ph [[[] E] X (j)
l
] F ,

19. [[] X (j)
l
] F →exo [] X (j)

l F ′ ,

20. [] E [] X (j)
l F ′ →ph [[[] E] X (j)

l
′] F ′ ,

21. [[] B(j)]
X (j)

l
′ →exo []#B(j) ,

22. [[]
X (j)

l
′] F ′ →exo [] X (j)

l
′′

F ′
,

23. [] E [] X (j)
l
′′

F ′
→ph [[[] E] X (j)

l
′′] F ′′ ,

24. [[] B(j)]
X (j)

l
′′ →exo []#B(j) ,

25. [] F ′′ []K M →ph [[[] F ′′]K ′]M ,

26. [[] F ′′]K ′ →exo [] F ′′ J ,

27. []
X (j)

l
′′ [] F ′′ J →ph [[[] X (j)

l
′′] F] F ′′ ,

28. [[] F ′′]M →exo []K M ,

29. [[]
X (j)

l
′′] F →exo [] FY ,

30. [[]
X (j)

l
′′]M J →ph [[[] X (j)

l
′′]#]M .

The simulation is done as follows: We start with rule 18 replacing X by X (j)
l . This is followed by the rule 19,

wherein F is replaced by F ′. Rule 20 replaces X (j)
l by X (j)

l
′

and starts the appearance checking process. Rule 21
can be applied now if the corresponding B(j) is present. However, we can non-deterministically choose rule 22
and continue. By this, we replace X (j)

l
′

by X (j)
l
′′

. In rule 23, we replace F ′ by F ′′.
The next few steps are crucial and will ensure that if B(j) actually occurs, then the trap symbol will be

introduced. For these next few steps, we preserve the structure [[] E] X (j)
l
′′ so that rule 24, if applicable,

will certainly be applied. In the meantime, we do the following: We use rule 25 so that the entire structure
[[[] E] X (j)

l
′′] F ′′ enters []K M by a phago rule. This is followed by rule 26, which makes [[] E] X (j)

l
′′ to be

adjacent to [] F ′′ J , both structures being inside the membrane labeled M . Rule 27 is applicable now, by which we
replace J by F and obtain the structure [[[[[] E] X (j)

l
′′] F] F ′′]M]λ. Note that rule 28 is also an applicable

rule. However, if we use rule 28 over rule 27, we would end up using rule 30, giving an infinite computation.
Following rules 26, 27, we apply the two exo rules 28, 29 in parallel, collapsing the hierarchical membrane

structure and getting back to the original structure we started with. It is obvious that during the time we used rules
25–28, rule 24 if applicable, would have been used. We now give the steps involved in a type-3 matrix simulation
below:
(a) [[] E [] X F [[] L [] I]K M []N]λ ↓

18

(b) [[[[] E] X (j)
l
] F [[] L [] I]K M []N]λ ↓

19

(c) [[] E [] X (j)
l F ′ [[] L [] I]K M []N]λ ↓

20

(d) [[[[] E] X (j)
l
′] F ′ [[] L [] I]K M []N]λ ↓

22

(e) [[] E [] X (j)
l
′′

F ′
[[] L [] I]K M []N]λ ↓

23

(f) [[[[] E] X (j)
l
′′] F ′′ [[] L [] I]K M []N]λ ↓

25

96 S.N. Krishna / Theoretical Computer Science 371 (2007) 83–105

(g) [[[[[[] E] X (j)
l
′′] F ′′]K ′ [] L [] I]M []N]λ ↓

26

(h) [[[[] E] X (j)
l
′′ [] F ′′ J [] L [] I]M []N]λ ↓

27

(i) [[[[[] E] X (j)
l
′′] F] F ′′ [] L [] I]M []N]λ ↓

28,29

(j) [[] E []Y F [[] L [] I]K M []N]λ.

(4) For each terminal matrix ml : (X → a, A → x), 1 ≤ l ≤ n1, X ∈ N1, A ∈ N2, a ∈ T, x ∈ T ∗, we consider
the following rules: (We denote by x ′′ either a′′1 a2 or a1a′′2 when x = a1a2, and x ′′ = a′′1 when x = a1, for
A→ x ∈ ml , A ∈ N2)

31. []K M [] X F →ph [[[]K M] F]a,

32. [[]K M] F →exo []M F ,

33. [[]M F]a →exo []aM ,

34. []aM [] AE →ph [[[]aM] E] x ′′ , if x 6= λ, or
[]aM [] AE →ph [[[]aM] E] f ′ if x = λ.

35. [[] I]aM →exo []aI ,

36. [[] AE]α′′ →exo []#A, α ∈ T,
[[] AE] f ′ →exo []#A,

[[] E] A →exo []#A,

37. [[]aI] E →exo []aI ,

38. [[] L]α′′ →exo [] Lα, α ∈ N2 ∪ T
[[] L] f ′ →exo [] L ,

39. [[]aI] L →exo []aL ,

40. []N [] La →ph [[[]N] L]a,

41. [[]N] L →exo []N ,

42. [[]N]a →exo []a,

43. [] E []aI →ph [[[] E]#]a,

44. [] E []aM →ph [[[] E]#]a .

Termination: Here, we start by making use of the membranes [] X F and []K M . Rule 31 is used, by which we
replace X by a. This is followed by rules 32, 33, wherein K , F are eliminated respectively. Rule 32 ejects out the
membranes [] L , [] I making them adjacent to []M F . Rule 34 now replaces the A ∈ N2 corresponding to the terminal
matrix. Note that rule 35 is also applicable in this step, since both involve the membrane []aM . However, if we use
rule 35, we obtain []aI [] E which leads to an infinite computation (rule 43). After application of rule 34, rules
35, 36 should be applied in parallel, checking if any more A ∈ N2 are present. If none are present, then we obtain
[[[]aI] E] x ′′ . Next, rule 37 is used to eliminate E , and this makes rule 38 applicable in the next step. This is
followed by rules 39–42, removing all auxiliary symbols. Note that while simulating the terminal matrix, if A ∈ N2
does not occur, we use rule 44. Below, we illustrate the sequence of configurations during the simulation of a terminal
matrix.

[[] AE [] X F [[] L [] I]K M []N]λ →
31
[[] AE [[[[] L [] I]K M] F]a []N]λ

↓
32

[[] AE [[] L [] I]aM []N]λ ←
33
[[] AE [[]M F [] L [] I]a []N]λ

↓
34

[[[[[] L [] I]aM] E] x ′′ []N]λ →
35,−
[[[[[] L]aI] E] x ′′ []N]λ

↓
37

[[]aL []N]λ ←
39
[[[]aI] Lx []N]λ ←

38
[[[]aI [] L] x ′′ []N]λ

↓
40

[[[[]N] L]a]λ →
41
[[[]N]a]λ →

42
[[]a]λ.

S.N. Krishna / Theoretical Computer Science 371 (2007) 83–105 97

Note: To obtain the characterization Ps RE = PsO P9(phago4, exo3), observe that in the above, rule 34 is the only
phago rule having weight 5. We can replace this by a rule []aM [] AE →ph [[[]aM] E] 〈x〉, where 〈x〉 ∈ V , for
all A→ x . Now this phago rule has weight 4. Then, correspondingly, instead of rule 38 replacing α′′, we will have to
replace 〈x〉 by a rule [[] L] 〈x〉 →exo [] Lx of weight 3. �

6.3. The BUM calculus

The bud–mate interplay is examined below.

Theorem 6.3. Ps RE = PsO Pm(bud(r),mate(s)), ∀m ≥ 7, r ≥ 5, s ≥ 3.

Proof. As before, we shall only prove the inclusion Ps RE ⊆ PsO P7(bud(5),mate(3)), using a matrix grammar G
in strong binary normal form. Construct a P system

Π = (V, [[[[]Q]DR [] P] X F A]λ, R)

with alphabet

V = {X, Xl , X (j)
l , 〈X〉 | X ∈ N1, 1 ≤ l ≤ n2, j = 1, 2}

∪ {α, α′ | α ∈ N2 ∪ T } ∪ { f, D, D1, D2, D3, F, Q, R, P}.

The initial configuration is [[[[]Q]DR [] P] X F A]λ where X ∈ N1, A ∈ N2 and (S → X A) is the initial matrix
of G.
Proof idea: The membrane labeled X F A in conjunction with the membrane labeled P simulate a type-2 matrix. The
membranes labeled DR and X F A are used to begin simulation of a type-3 matrix. The membrane labeled P tests for
the presence of the symbol B(j) during simulation. Finally, the membranes labeled DR and P , mate, eliminating the
symbol R, during simulation of the terminal matrix. This new membrane containing D P is then used to check for the
presence of any A ∈ N2 in the upper membrane. If none exists, and the terminal matrix is simulated successfully, we
stop with [[[[]Q]D P]w]λ, where Ps w is the output.

The rules are as follows:

(1) For each non-terminal matrix ml : (X → Y, A→ x), 1 ≤ l ≤ n1, X, Y ∈ N1, A ∈ N2, x ∈ (N2 ∪ T)∗, consider
the following rules:

1. [[] P] X AF →bud [[] P] Xl [] AF ,

1′. [[] P] X F →bud [[] P]# [] F ,

2. [] Xl [] A →mate [] Xl f , if x = λ,

[] Xl [] A →mate [] Xl x ′ , if x 6= λ,

(If ml : (X → Y, A→ α1α2), then, x ′ = α′1α2 or α1α
′

2,

and if ml : (X → Y, A→ α1), then x ′ = α′1.)

3. [[] P] Xlα′F →bud [[] P]Y []α′F , α ∈ N2 ∪ T,

[[] P] Xl f F →bud [[] P]Y [] f F ,

4. []Y []α′ →mate []Yα, α ∈ N2 ∪ T,

[]Y [] f →mate []Y .

Consider the following rules as well, which happen as part of type 2/3/4 matrix simulation:

5. [[]Q]DR →bud [[]Q]D1
[] R,

6. []D1
[] R →mate []D2 R,

7. [[]Q]D2 R →bud [[]Q]D3
[] R,

8. []D3
[] R →mate []DR .

We have the rules 1 through 4 mimicking the simulation as well as rules 5 through 8 that act in parallel. Rules
5 through 8 play a major role while simulating type 3 matrices, so at the moment, it is enough to concentrate on

98 S.N. Krishna / Theoretical Computer Science 371 (2007) 83–105

rules 1–4. The simulation is straightforward, replacing X by Xl , followed by replacing the corresponding symbol
A ∈ N2 by x ′ or f , followed by finally replacing Xl and x ′ or f , as the case may be. Note that in the case
the symbol A ∈ N2 is not present during simulation, the rule 1′ is used, inducing an infinite computation. The
sequence of configurations below give a better idea of the simulation:

[[[[]Q]DR [] P] X F A]λ →
1,5
[[[] P] Xl [[[]Q]D1

[] R] AF]λ

↓
2,6

[[[] P]Y [[[]Q]D3
[] R]α′F]λ ←

3,7
[[[[]Q]D2 R [] P] Xl Fx ′]λ

↓
4,8

[[[[]Q]DR [] P]Y Fx]λ.

(2) For each matrix ml : (X → Y, B(j)
→ #), n1 + 1 ≤ l ≤ n2, we have the following rules:

9. [[]D] X F →bud [[]D] X (j)
l
[] F ,

10. [] X (j)
l
[] F →mate [] X (j)

l F ,

11. [[] P] X (j)
l B(j) →bud [[] P]# [] B(j) ,

12. []# []β →mate []##, β ∈ V ∪ {#},
13. [[] P]#β →bud [[] P]# []#, β ∈ V ∪ {#}
14. [[]D3

] X (j)
l F →bud [[]D3

] 〈Y 〉 [] F ,

15. [] 〈Y 〉 [] F →mate []Y F .

To start the simulation, we need the membranes labeled D as well as X ∈ N1. So, rules 5, 9 are applicable. If rule
5 is chosen, then we need to wait till rule 8 is completed, in order to apply 9. Let us assume that we start with rule
9.

[[[[]Q]DR [] P] X F]λ →
9
[[[[]Q]DR] X (j)

l
[[] P] F]λ

↓
5,10

[[[[]Q]D2 R [] P] X (j)
l F]λ ←

6
[[[[]Q]D1

[] R [] P] X (j)
l F]λ

↓
7

[[[[]Q]D3
[] R [] P] X (j)

l F]λ →
14
[[[[]Q]D3

] 〈Y 〉 [[] P [] R] F]λ

↓
15

[[[[]Q]D3
[] R [] P]Y F]λ.

Rules 10, 5 can be applied in parallel: one mates the outer membranes whereas the other one is a bud with respect
to D, Q. In the next step, rule 11 if applicable, will be applied, since there are no other rules applicable to X (j)

l , P .
In parallel, we apply rule 6, which mates the two membranes labeled D1, R. In the next step, again, we use rule 7,
replacing D2 by D3. With D3, we can apply rule 14, provided X (j)

l is present (i.e, if B(j) is absent). We also have
a choice of using rule 8 for D3, but this will mean that we apply rules 5–7 again before applying rule 14. Clearly,
the computation does not progress with respect to X (j)

l unless rule 14 is used. Rule 15 completes the simulation,
replacing 〈Y 〉 by Y .
Note that in the above configurations, we have non-deterministically chosen to direct the inner membranes into
different components while using bud rules. It is interesting to note that while this does not affect the results,
in the last two configurations above, had we chosen to put both the membranes labeled R and D3 inside the
membrane labeled 〈Y 〉, we could have used rules 8 and 15, in parallel. The illustration given above should make
the computation clear while simulating a type-3 matrix.

(3) For each terminal matrix ml : (X → a, A→ x), X ∈ N1, A ∈ N2, a ∈ T, x ∈ T ∗, 1 ≤ l ≤ n1,
First apply rules 1–4, replacing Y by Za . Then consider the following:

16. []DR [] P →mate []D P ,

S.N. Krishna / Theoretical Computer Science 371 (2007) 83–105 99

17. [[]D P] Za F →bud [[]D P] Za []aF ′ ,

18. [] Za [] F ′ →mate [] F ′ ,

19. [[]D P]aF ′ →bud [[]D P]a [] F ′′ ,

20. []a [] F ′′ →mate []a,

21. [[]D P]βF →bud [[]D P]# [] F , β 6= Za,

22. [[]D P]aβ →bud [[]D P]# []β , β ∈ N2.

Termination: Use rule 16 which mates the membranes labeled DR and P , some time after using rules 1–4. This
prevents any further application of rules 5 through 8.

[[[[]Q]DR [] P] X F]λ →
1···4
[[[[]Q]DR [] P] Za F]λ

↓
16

[[[[]Q]D P] Za []aF ′]λ ←
17
[[[[]Q]D P] Za F]λ

↓
18

[[[[]Q]D P]aF ′]λ →
19
[[[[]Q]D P]a [] F ′′]λ

↓
20

[[[[]Q]D P]a]λ.

Next use rule 17, replacing F by aF ′ (we had Za F earlier, and now F is replaced by aF ′). Rule 18 follows,
wherein F ′ helps to eliminate Za . Now we need to eliminate F ′. Rule 19 first replaces F ′ by F ′′. This is followed
by rule 20, wherein F ′′ is eliminated as well. Thus, we obtain a configuration [[[[]Q]D P]w]λ.

Note that in the above sequence of configurations, we have chosen to use rule 16 after rules 1–4 (5–8), but in
general, it does no harm to use this anytime during the last simulation when both membranes []DR, [] P are
free. However, using this any time before the terminal matrix is simulated will lead to no output (Note the use of
D3 in rule 14 to complete a type-3 matrix simulation. In the case R is removed, there will be no D3, and in such a
scenario, rule 21 will be used, leading to an infinite computation). �

6.4. The MAD calculus

Finally, we improve the universality result of mate–drip operations, as given in [4].

Theorem 6.4. Ps RE = PsO Pm(mate(r), drip(s)), for all m ≥ 4, r ≥ 3, s ≥ 3.

Proof. We prove only Ps RE ⊆ PsO P4(mate(3), drip(3)). Let G be a matrix grammar with appearance checking in
the strong binary normal form. Construct the P system

Π = (V, [[] X AE []d []e]λ, R)

with alphabet

V = {X, X ′, X ′′, 〈X〉, 〈〈X〉〉, Xl , X ′l | X ∈ N1, 1 ≤ l ≤ n1}

∪ {X (j)
l | X ∈ N1, n1 + l ≤ n2} ∪ {α, α

′
| α ∈ N2 ∪ T }

∪ {d, d1, d2, d3, d4, e, e′, e′′, e′′′, 〈e〉, f, f ′, g} ∪ {Za, Z ′a, Z ′′a | a ∈ T }.

The initial configuration is [[] X AE []d []e]λ where X ∈ N1, A ∈ N2, and (S→ X A) is the initial matrix of G.
Proof idea: The membrane labeled X AE contains all the symbols of N1 ∪ N2 ∪ T during a simulation. The two
membranes labeled d, e assist the membrane labeled X AE in simulation. For simulation of a type-2 matrix, the
membrane X AE drips initially, replacing X and then mates, by replacing a single A ∈ N2. The d, e membranes help
in completing the simulation successfully. Similarly, a type-3 matrix simulation is also initiated by the membrane
labeled X E , and the membranes d, e help in the appearance checking process. Finally, to terminate, a couple of mate
rules are used, eliminating all auxiliary symbols d, e, E etc. in the process, and finally obtaining [[]w]λ.

The rules R are as follows:

100 S.N. Krishna / Theoretical Computer Science 371 (2007) 83–105

(1) For each non-terminal matrix ml : (X → Y, A→ x), 1 ≤ l ≤ n1, consider the following rules:

1. [] X A →drip [] Xl [] A,

2. [] A [] Xl →mate [] f Xl , if x = λ,

[] A [] Xl →mate [] x ′Xl , if x 6= λ,

(If ml : (X → Y, A→ α1α2), then, x ′ = α′1α2 or α1α
′

2,

and if ml : (X → Y, A→ α1), then x ′ = α′1.)

3. [] Xlα′ →drip [] X ′l
[]α′ , α ∈ N2 ∪ T,

[] Xl f →drip [] X ′l
[] f ,

4. []α′ [] X ′l →mate []αgX ′l
,

[] f [] X ′l
→mate [] gX ′l

,

5. [] X ′l g []e′ →mate []Y ′ge′ ,

6. []Y ′ge′ →drip []Y ′ [] g,

7. []Y ′ [] g →mate []Y ′′g,

8. []Y ′′gE →drip []Y ′′ [] E ,

9. []Y ′′ [] E →mate []Y E ,

10. []d []e →mate []d1e,

11. []d1e →drip []d1
[]e,

12. []d1
[]e →mate []d1e′′ ,

13. []d1e′′ →drip []d1e′′′ []e′ ,

14. []d1e′′′ →drip []d2
[]e′′′ ,

15. []d2
[]e′′′ →mate []d2e,

16. []d2e →drip []d3
[]e,

17. []d3
[]e →mate []d4e,

18. []d4e →drip []d []e.

Starting with [[] X AE []d []e]λ, we first apply rules 1, 8 in parallel. The computation follows deterministically:
Whenever we have an X ∈ N1 and its corresponding A ∈ N2 together, we replace X by Xl through a drip
operation. This is followed by a mate, wherein the A is rewritten by x ′. In the next step, we need to rename Xl to
prevent any more A’s being replaced by x ′ as in rule 2. This is done by rule 3, and rule 4 changes α′ back to α.
The new symbol g introduced helps to replace X ′l by Y ′, which is in subsequent steps replaced by Y .

[[] X AE []d []e]λ →
1,10

[[] Xl [] A []d1e]λ

↓
2,11

[[] X ′l
[] x ′ []d1e′′]λ ←

3,12
[[] x ′Xl E []d1

[]e]λ

↓
4,13

[[] xgX ′l E []d1e′′′ []e′]λ →
5,14

[[] xY ′gEe′ []d2
[]e′′′]λ

↓
6,15

[[]Y ′′gE []d3
[]e]λ ←

7,16
[[]Y ′ [] g []d2e]λ

↓
8,17

[[]Y ′′ [] E []d4e]λ →
9,18

[[]Y E []d []e]λ.

The membranes labeled with d and e in the initial configuration, evolve in parallel during the simulation and help
in the process as can be seen above from the sequence of configurations.

S.N. Krishna / Theoretical Computer Science 371 (2007) 83–105 101

(2) For every matrix ml : (X → Y, B(j)
→ #), n1 + 1 ≤ l ≤ n2, consider the following rules:

19. [] X E →drip [] X (j)
l
[] E ,

20. [] X (j)
l
[] E →mate [] X (j)

l E j
,

21. [] X (j)
l B(j) →drip []## [] B(j) ,

22. [] X (j)
l E j
[]e′ →mate [] X (j)

l Ee′ ,

23. [] X (j)
l e′ →drip [] 〈Y 〉 []e′ ,

24. [] 〈Y 〉 []e′ →mate [] 〈〈Y 〉〉e′ ,

25. [] Ee′〈〈Y 〉〉 →drip [] E [] 〈〈Y 〉〉,

26. [] 〈〈Y 〉〉 [] E →mate []Y E .

We start with a configuration [[] X E []d []e]λ and first apply rules 19, 10. As in the above case, the evolution of
the membranes labeled d, e happen hand in hand with the simulation of the type 3 matrix. We use a drip operation
in 19 replacing X by X (j)

l . This is followed by 20 or 21. Rule 21 will be applied only if the corresponding symbol
B(j) is present, otherwise, rule 20 is applied. The next applicable rule is rule 22, for which we need the symbol e′

will is generated at the 4th step (starting from rule 10).

[[] X E []d []e]λ →
19,10

[[] X (j)
l
[] E []d1e]λ

↓
20,11

[[] X (j)
l E j
[]d1e′′]λ ←

12
[[] X (j)

l E j
[]d1
[]e]λ

↓
13

[[] X (j)
l E j
[]d1e′′′ []e′]λ →

22,14
[[] X (j)

l Ee′ []d2
[]e′′′]λ

↓
23,15

[[] 〈〈Y 〉〉e′E []d3
[]e]λ ←

24,16
[[] 〈Y 〉 []e′ []d2e]λ

↓
25,17

[[] 〈〈Y 〉〉 [] E []d4e]λ →
26,18

[[]Y E []d []e]λ.

That means, the symbol X (j)
l has at least one idle step waiting for e′. This waiting time ensures that if B(j)

l was
present, rule 21 would have been certainly used. Thus, rule 22 would be applicable only if B(j)

l was not present.
Now, we replace X (j)

l by 〈Y 〉 and in subsequent steps, obtain Y , completing the simulation. Note that, if rule 21
were applied, we would have got a never ending computation due to rule 37.

(3) For each terminal matrix ml : (X → a, A→ x), 1 ≤ l ≤ n1, consider the rules: Use rules 1 through 9, replacing
Y ′, Y ′′ by Z ′a, Z ′′a and Y by Za .

27. [] Za A []e′ →mate [] Ae′#, A ∈ N2,

28. [] Za E []d3
→mate [] Z ′a Ed3

,

29. [] Z ′a E []e′ →mate [] Z ′ae′ ,

30. [] Z ′ae′d3
→drip [] Z ′′a []e′d3

,

31. []e′d3
[]e →mate []d3e,

32. [] Z ′′a []d3e →mate [] Z ′′a e,

33. [] Z ′′a e →drip [] Z ′′a [] 〈e〉,

34. [] Z ′′a [] 〈e〉 →mate []a f ′〈e〉,

35. []a f ′〈e〉 →drip []a [] f ′ ,

36. []a [] f ′ →mate []a .

102 S.N. Krishna / Theoretical Computer Science 371 (2007) 83–105

Termination: Now we examine the simulation of a terminal matrix and the subsequent removal of all auxiliary
symbols used, d, e, E . . . so that an output over T ∗ is obtained. The simulation of a terminal matrix is same as
case 1, the only change being that when we stop, we replace Y ′, Y ′′ by Z ′a, Z ′′a and Y by Za . Now, using Za , we
simplify the membrane structure as well as remove all intermediate symbols.

The configuration to begin with, after obtaining Za , is [[] ZawE []d []e]λ. Now we continue with rules
10–13 until e′ is obtained. Once e′ is obtained, we check if there is any A ∈ N2 along with Za , and if yes, rule 27
is used. Otherwise, we wait till d3 is obtained at the end of rule 15. Using d3, we rename Za to Z ′a . The first thing
we do using Z ′a is to mate with e′, removing E , getting Z ′ad3e′. Now, we rename Z ′a into Z ′′a , using rule 30. Note
that rule 31 is also applicable in this step since d3e′ is available. If we use rule 31 before 30, we obtain [] Z ′ad3e.
However, this leads to an infinite computation due to rule 39. Note also that by using rule 17 to [] Z ′ad3

, []e, we
can obtain Z ′ae′d4e eventually, which also leads to an infinite computation by rule 39 (see below). Assuming that
we use rule 30, followed by 31, we obtain [] Z ′′a []d3e to which we can apply rule 32, eliminating d3. Now, rules
33–36 follow, eliminating e and replacing Z ′′a to a f ′ and finally to a.

(4) Exceptions:
The following are some cases when we get an infinite computation.
1. While simulating (X → Y, A→ x), A is absent, and there is no type 3 matrix corresponding to X . (Rule 37)
2. There is an A ∈ N2 remaining after simulation of the terminal matrix.

37. [] X E →drip []## [] E ,

38. []β# →drip []## []#, β ∈ V ∪ {#}.
39. [] Z ′aedi →drip []#[]e′di , i = 3, 4. �

In all the results so far, we saw that we need at least 2 operations to obtain completeness. In this section, we try to
figure out if we can obtain completeness using just one of the six operations. Intuitively, this is not possible, since all of
the six operations, when used iteratively, change the initial membrane structure (viz., the hierarchy of the membranes
with respect to each other). Hence, we need some complementary operations to restore the membrane structure in
future steps. Further, we feel that it is impossible to obtain universality without using one of the operations mate, exo.

In the next section, we look at a new ‘stand alone’ operation which gives completeness.

7. Universality with a single operation

In this section, we introduce a new operation ‘selective mate’, which is similar to the mate operation, but mates a
selected multiset of proteins in the two membranes. We shall explain this operation in more detail below.

The selective mate operation: Let a ∈ V, u, x, w,w′ ∈ V ∗, v ∈ V+. Consider two membranes []w′ua and []wv .
The selective mate operation on []w′ua and []wv is defined as []w′ua []wv → []w′ []wuxv . The selective mate
operation selects multisets ua, v in two membranes for mating. The multiset ua evolves into ux and mates with v
in the second membrane. The multisets of both the membranes which are not part of the selective mating remain
unchanged in their original membranes. Note that unlike mating, selective mating does not merge the contents of the
two participating membranes, and hence does not change the structure of the membranes.

The weight of the operation, as before, is the length of uxv. We shall, from now on, write the operation only
as []ua []v → [] []uxv , since the multisets w,w′ are not involved. Since we do not change the structure
of membranes, we can always refer to a particular membrane as the output membrane at the end of a halting
configuration. Thus, a P system using the selective mate operation is a tuple Π = (V, µ,w1, . . . , wm, R, []w j)

where []w j denotes that the membrane with initial contents w j will be the output membrane. If there are two or more
membranes with the same initial contents w j , then any one of them is chosen as the output membrane.

The family of all sets of vectors Ps(Π) computed by P systems Π using at any moment during a halting
computation at most m membranes, and and using selective mate rules of weight at most r , is denoted by
PsO Pm(selmate(r)). When one of the parameters m, r is not bounded, we replace it with a *.

7.1. Universality with selective mate

In this section, we give a universality result obtained by using the selective mate operation.

S.N. Krishna / Theoretical Computer Science 371 (2007) 83–105 103

Theorem 7.1. Ps RE = PsO Pm(selmate(r)), for all m ≥ 5, r ≥ 3.

Proof. Construct a P system

Π = (V, [[] X F [] AP [] L N []M]λ, R, [] AP)

where X ∈ N1, A ∈ N2 correspond to the initial matrix (S → X A). The output membrane is the one containing
the multiset AP in the initial configuration. Note that the AP may not be present in this membrane in a halting
configuration. The alphabet consists of

V = {X, X ′, X ′′, X0, X1, 〈X〉, X (j)
l , X (j)

l
′

, X (j)
l
′′

| X ∈ N1, n1 + 1 ≤ l ≤ n2}

∪ {〈α〉 | α ∈ (N2 ∪ T)∗, |α| ≤ 2}
∪ { f, 〈 f 〉, P, F, L , N ,M, K }.

Proof idea: The membranes containing the multisets X F and AP are used to simulate type-2 and type-4 matrices.
The X is replaced by Y ′′ initially and it becomes part of the membrane containing A. The A is then replaced with x in
the presence of Y ′′, and using the membrane labeled L N . The Y ′′ then becomes part of the membrane labeled L N , so
that no more A’s are replaced. Y ′′ is replaced finally by Y , using membranes labeled L N and M . The simulation of a
type 3 matrix again starts using the membranes labeled X and P . Appearance checking is done using the membranes
labeled L and F . Finally, termination is achieved by introducing a special symbol Za and checking if there are any
A ∈ N2 in the membrane labeled AP , and if not, the symbol P is transferred to the membrane labeled M , thereby
retaining only terminals.

The rules R as follows:

(1) For each non-terminal matrix ml : (X → Y, A→ x), 1 ≤ l ≤ n1, X, Y ∈ N1, A ∈ N2, x ∈ (N2 ∪ T)∗, we have

1. [] X [] AP → [] []Y ′′AP ,

2. []Y ′′A [] L → [] []Y ′′〈x〉L ,

3. [] 〈x〉 [] P → [] [] x P ,

4. []Y ′′ [] P → [] []Y ′P ,

5. []Y ′ [] F → [] []Y 0 F ,

6. []Y 0 []M → [] []Y 1 M ,

7. []Y 1 [] F → [] []Y F .

We first examine how a non-terminal type 2 matrix is simulated. Start with rule 1 rewriting X ∈ N1, and obtaining a
configuration [[] F []Y ′′AP [] L N []M]λ. This is followed by the following sequence of configurations obtained
by using rules 1–7 in order:

[[] X F [] AP [] L N []M]λ → [[] F []Y ′′AP [] L N []M]λ

↓

[[] F [] x P []Y ′′L N []M]λ← [[] F [] P []Y ′′〈x〉L N []M]λ

↓

[[] F []Y ′x P [] L N []M]λ → [[]Y 0 F [] x P [] L N []M]λ

↓

[[]Y F [] x P [] L N []M]λ ← [[] F [] x P [] L N []Y 1 M]λ.

Note that we may obtain the same end result by another sequence of configurations, viz., when rule 4 is used
before rule 3.

(2) For each matrix ml : (X → Y, B(j)
→ #), n1 + 1 ≤ l ≤ n2, consider the following rules:

8. [] X [] P → [] [] X (j)
l P ,

9. [] X (j)
l
[] F → [] []

X (j)
l
′

QF
,

104 S.N. Krishna / Theoretical Computer Science 371 (2007) 83–105

10. []
X (j)

l
′ [] P → [] []

X (j)
l
′′

P
,

11. []
X (j)

l
′′

B(j) []M → []#B(j)M ,

12. []Q [] L → [] []Q′L ,
13. []Q′L []M → [] []Q′′L M ,

14. []Q′′L []N → [] []Q′′′L N ,

15. []Q′′′ [] F → [] [] SF ,

16. []
X (j)

l
′′ [] S → [] [] 〈Y 〉S,

17. [] 〈Y 〉S [] L → [] [] 〈Y 〉L ,

18. [] 〈Y 〉L [] F → [] []Y F .

We start with rule 8, replacing X ∈ N1 by a symbol X (j)
l so that we remember the matrix index l as well as labl .

It needs to be checked if the corresponding B(j) exists in the membrane containing P , and if so, a trap symbol is
introduced. Otherwise, we just need to replace the X (j)

l by Y and ensure that Y is part of the membrane containing
F . The following is a sequence of possible configurations:

[[] X F [] P [] L N []M]λ →
8
[[] F [] X (j)

l P [] L N []M]λ

↓
9

[[]
X (j)

l
′

F
[] P []Q′L N []M]λ ←

12
[[]

X (j)
l
′

QF
[] P [] L N []M]λ

↓
13,10

[[] F [] X (j)
l
′′

P
[]N []Q′′L M]λ →

14
[[] F [] X (j)

l
′′

P
[]Q′′′L N []M]λ

↓
15

[[] SF [] X (j)
l
′′

P
[] L N []M]λ ←

16
[[] 〈Y 〉SF [] P [] L N []M]λ

↓
17

[[] F [] P [] 〈Y 〉L N []M]λ →
18
[[]Y F [] P [] L N []M]λ.

In the above, note that along with rule 15, 11 would have been applicable if the corresponding B(j) were present,
leading to an infinite computation. The reader can check that any other order of using the rules viz., choosing 10
over 12, would definitely give rise to the same scenario.

(3) For each terminal matrix ml : (X → a, A→ x), 1 ≤ l ≤ n1, X ∈ N1, A ∈ N2, a ∈ T, x ∈ T ∗, do the following:
First use rules 1 through 6, followed by 7 replacing Y by Za . This gives the configuration
[[] Za F []wP [] L N []M]λ, w ∈ (N2 ∪ T)∗. Now consider the rules:

19. [] Za [] P → [] []aK P ,

20. []K P []M → [] []K P M ,

21. []a A []K P → [] []a#K P ,

22. []# []β → [] []##β , β ∈ V ∪ {#}.

To terminate, we have to simulate a terminal matrix ml : (X → a, A → x), 1 ≤ l ≤ n1. This simulation is
exactly same as what we saw in (1), with the exception that we now need to remove all non-terminal symbols
from the membrane containing P so that we get a meaningful output. Note that, at the end of every type-2 matrix
simulation, the string over (N2 ∪ T)∗ is directed towards the membrane containing P , so that at the end, this
contains the multiset representing the output. This is illustrated below:

[[] X F [] AP [] L N []M]λ →
1···7
[[] Za F [] x P [] L N []M]λ

↓
19

[[] F [] xa [] L N []K P M]λ ←
20
[[] F [] xaK P [] L N []M]λ. �

S.N. Krishna / Theoretical Computer Science 371 (2007) 83–105 105

8. Conclusion and future work

In this paper, we have investigated the power of different brane calculi operations in the context of membranes.
We have obtained different characterizations of RE using various combinations of operations from brane calculi.
All operations involved changing the structure of membranes, and hence, a ‘reverse’ operation is required to retain
the membrane structure. Based on this observation, we conjecture that none of the basic six operations can give
completeness by themselves and that without using either mate or exo, it is impossible to obtain completeness, while
working in the framework of P systems. In this regard, we have introduced a new ‘stand alone’ operation, which can
give completeness.

It is an open problem whether the universality results given above can be improved, and whether there exist new
combinations of operations giving universality. The power of the basic operations, and whether there are restrictions
on operations which can characterize language classes which are not RE , is an interesting open problem. Again,
the power of these systems when operated in a ‘minimally parallel’ way, as compared to the maximal parallel way
considered here, remains to be seen.

References

[1] N. Busi, R. Gorrieri, On the computational power of brane calculi, in: Third Workshop on Computational Methods in Systems Biology,
Edinburgh, 2005.

[2] N. Busi, On the computational power of mate, bud, drip brane calculus: Interleaving vs. maximal parallelism, in: Pre-Proceedings of WMC6,
Vienna, 2005, pp. 235–252.

[3] L. Cardelli, Brane calculi, interactions of biological membranes, in: Proceedings of Computational Methods in Systems Biology, 2004.
[4] L. Cardelli, Gh. Paun, An universality result based on mate/drip operations, International Journal of Foundations of Computer Science (in

press).
[5] J. Dassow, Gh. Paun, Regulated Rewriting in Formal Language Theory, Springer, 1989.
[6] J. Dassow, Gh. Paun, A. Salomaa, Grammars with Controlled Derivations, in: Handbook of Formal Languages, vol. 2, Springer, 1997

(Chapter 3).
[7] R. Freund, Gh. Păun, On the number of non-terminals in graph-controlled, programmed, and matrix grammars, in: Conf. on Universal

Machines and Computations, in: LNCS, vol. 2055, Springer-Verlag, Chişinău, 2001, pp. 214–225.
[8] M. Harrison, Introduction to Formal Language Theory, Addison-Wesley, Reading, MA, 1978.
[9] S.N. Krishna, The power of mobility: Four membranes suffice, in: Proceedings of CiE 2005, in: LNCS, vol. 3526, 2005, pp. 242–251.

[10] S.N. Krishna, Upper and Lower Bounds for the Computational Power of P Systems with Mobile Membranes, 2006 (submitted for publication).
[11] S.N. Krishna, Gh. Paun, P systems with mobile membranes, Natural Computing 4 (3) (2005) 255–274.
[12] Gh. Paun, Computing with membranes, Journal of Computer and System Sciences 61 (1) (2000) 108–143.
[13] Gh. Paun, Membrane Computing. An Introduction, Springer, 2002.
[14] A. Salomaa, Formal Languages, Academic Press, 1973.
[15] The membrane computing web page. http://psystems.disco.unimib.it.

http://psystems.disco.unimib.it

	Universality results for P systems based on brane calculi operations
	Introduction
	The pino/exo/phago/bud/mate/drip calculi
	Prerequisites
	Matrix grammars

	Pino/exo/mate/drip/phago/bud as membrane computing operations
	P systems based on pino/exo/phago/mate/drip/bud operations
	Evolution of the system
	Examples

	Universality results
	The PIE calculus
	The PHE calculus
	The BUM calculus
	The MAD calculus

	Universality with a single operation
	Universality with selective mate

	Conclusion and future work
	References

