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ABSTRACT 

In a recent monograph (cf. No. 293 of the Memoirs of the Amer. Math. Sot. 47 (1984)) DeVore 
and Sharpley study maximal functions of integral type and their related smoothness spaces. One 
of their central results gives an embedding theorem for the smoothness spaces in terms of Besov 
spaces. In this paper we consider the related problem when the Besov spaces are substituted by the 
so-called A-spaces introduced by Popov (take the r-modulus instead of the w-modulus). We will 
define Lipschitz-type maximal functions whose smoothness spaces satisfy a corresponding 
embedding theorem in terms of A-spaces. By well-known results new insights can only be expected 
for functions satisfying low order smoothness conditions and, therefore, only function spaces 
generated by first order differences are considered. 

1. INTRODUCTION 

To get an impression of the problem considered in this paper we first of all 
state some well-known results concerning the w- and t-moduli and their related 
function spaces. For sake of brevity we restrict ourselves to the onedimensional 
trigonometric case. 

Let Lp, 1 sp< 00, be the space of all 2n-periodic functions f with lflP 
Lesbesgue integrable on [0,27r] and C the space of all 2rr-periodic continuous 
functions. The spaces may be normed in the usual way by 

llfllp: = { 1 Ifw~~Yp~ fEL*, lsp<co, 

Ilf llm : = mm {If(x)1 :x~tO,2nl}, fcC. 
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Finally, let AC be the space of all 2n-periodic absolutely continuous functions 
on IF?. 

For f: lT?+lR the r-th Riemann difference is defined by 

Aif( = i (- l)‘-k L f(x+kh), rEbJ, h>O, XEIR, 
k=O 0 

and the r-th local o-modulus by 

rS rfJ 
o,cf,x,6): =sup 

[ 
[Aif :t,t+rh~ x-2,x+x 

[ 11 , 6>0. 

Now, for f E LP, 1 sp < 00, or f E C the r-th o-modulus of smoothness is given 
by 

or,,cf,6): =sup {~~Ll;;fll,:O<hs3}, 6>0, 

and the r-th r-modulus by 

?JJ36): = IId..L ‘,411p, a>o. 

A detailed discussion of these moduli, especially the last one, may be found 
in [9]. 

Associated with these moduli of smoothness we have the Besov spaces Bzi, 
1 <p, q I 00, r E Ihl, 0 < 8 < r, which are defined as the collection of all functions 
f E L,,, 1 sp < 00, or f E C for which the integral 

1 tt- e~r,pu mq ;, lsq<oo, 

or the supremum 

sup(t-eoJ.m), q=@J, 
O<I 

respectively, are finite (cf. [2], pp. 228, 229). Moreover, we have the A-spaces 
A”’ l<p qsao, rclhl, 0<8<r, which are defined as those functions fEL,, 
1 zF< z, br f E C for which 

$ ct- eqpCf mq T, lsq<m, 

or 
sup(t-e~J.Ao), q=c=, 
o</ 

respectively, are finite (cf. Popov [7]). In general, we have A2'CBi& but for 
p = oo or 6p> 1, 1 sp< 00, the A-spaces coincide with the Besov spaces (cf. [7], 
[5]). By means of well-known reduction theorems concerning the smoothness 
characterization of functions belonging to Besov spaces (cf. [2], pp. 228, 229) 
we therefore can expect new specific results only for integral A-spaces which 
are generated by differences of first order (the crucial case 8 =p= 1, where 
second order differences may be involved, will not be considered in detail, 
here). So, from now on we put 1 sp< m and r= 1. 
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In [4] DeVore and Sharpley study integral maximal functions of type fz, 
0<8<1, 

max b4 tf 
fe*W: = s,;y ,xv;,l+g mi”{x,f) IfcrkL.M~ 

f * = j--&j- ,,c;; f(W, x,t * 

and the related smoothness spaces e : = {f~ Lp : fs* E LP} (see also Calderbn/ 
Scott [3], where maximal functions of this type seem to appear for the first 
time). Among various other results they prove that e are Banach spaces with 
respect to their corresponding norms 

lllf lllp$ : = Ilfllj7+ Ilffalp 
(cf. [4], p. 37, Lemma 6.1) and that e are embedded by the Besov spaces in 
the form 

with nontrivial inclusions (cf. [4], p. 48, Theorem 7.1). 
Now, it is convenient to consider the corresponding situation in case of the 

A-spaces, i.e., we want to define maximal functions whose related smoothness 
spaces are embedded by A;; and A?;. It is the aim of this paper to show that , 
the Lipschitz-type maximal functions f[ , 0 < ~9 5 1, 

(1.1) fo-(x): = sup If(x)-fQ)l 
f+x Ix-tls ’ 

f bounded and measurable, are appropriate. Let us note that f:sf< and that 
few may be interpreted as the limiting case (q = 00) of the maximal functions 
N@) considered in Chapter 5 of [4]. Moreover, we mention that the essential 
difference between these integral free maximal functions and the integral 
maximal functions fo* consists in the fact that removable points of 
discontinuity off are recognized by foe in form of a singularity of order 8 
while they are ignored by fe*. This behaviour corresponds exactly to the 
different sensitivity of the r-modulus resp. o-modulus in case of pointwise 
changes off (cf. [5]). 

Now, coming back to the functions f@-, let us note that they are measurable 
(see Theorem 1) and, therefore, their corresponding smoothness spaces 0: 
may be defined to consist of those functions f eLp, 1 rp< 00, which are 
bounded and satisfy 

(1.2) llfi-Ilp={ % S-(0)Pdt)l’p-. 

It should be noticed that 0; are normed linear subspaces of Lp with respect to 
the norms 

U-3) Ilf IIPJ : = llf lip+ IlfL Ilp 
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and that - in contrast to Lp or Ci - two functions fi, f2 E 0; satisfy 
[Ifi -f211,,B= 0 if and only if ft(x) =&(x) for all XE [0,2n]. Therefore, 0: are 
normed linear spaces without having any concept of equivalence classes in 
mind. 

II. MAIN RESULTS 

First of all we want to prove the measurability of the new Lipschitz-type 
maximal functions. The central ideas of the following proof may be found in 
the classical book of Saks (cf. [8], pp. 113, 114, Theorem (4.3)). 

THEOREM 1. Let f : P-+lR be bounded and measurable. Then the functions 
foe are measurable for all tl E (0, 11. 

PROOF. Fix 8 E (0, l] and define 

(2.1) fey&) : = sup ‘f(x)-f(t)’ , XEIR kER\1. , 
II-Xl>I/k 1x-q 

Obviously, we have 

(2.2) lim &i(x)=fL(x), xeR 
k-r- 

(2.3) fe;k+l(x)~fe:k(x), XE R, ke N. 
Now, let a E IR be given arbitrarily. We assume that f is constant on a measur- 
able set kc iR and consider the subset 

kP): ={xM:f[i((x)>a}, a 
k E trJ arbitrarily but fixed. Some easy continuity arguments show that for each 
x E M(,k) there exists an E(X) > 0 and a point t * = t*(x) E R such that for all 

r~~,(x)w: ={YER: Ix-rl<W> 

we have 

(a) 

(b) 
If(x)-f(t*)l 

I<--t*l ‘a* 
This implies Ml Uco(x)CM(,kk) and, moreover, by doing this for each point 
xdp: 

Therefore, tit) is measurable, i.e., f8yk, k E N, are measurable if f(lR) is a 
finite subset of IR cf is a simple function). Now, each bounded measurable 
function f may be written as the limit of a uniformly convergent sequence of 
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measurable functions cf,), E N with f,( IR) finite for each n E N. By means of the 
uniform convergence of this sequence for each 6>0 there exists a constant 
n,,eR\J such that for all n>ns and all x,t~iR, It-xl>l/k, we have 

Taking the supremum over all t E IT? with 1 t--x I > l/k (2.4) implies that fork is 
the uniform limit of a sequence of measurable functions for each fixed ke IN. 
Therefore, f[;( are measurable for all ks N and, finally, by (2.2) and (2.3) fO- 
is measurable, too. [7 

By the above theorem the smoothness spaces I$ are well-defined and we 
may start to examine them (again, in the trigonometric case). First of all, we 
will take a look at the saturation case 19= 1. Here we expect for 1 <p< 00, i.e., 
13p> 1, that 0; will coincide with some known smoothness spaces. 

THEOREM 2. For 1 <p < 00 and 8 = 1 we have 0; = Bj;L. For p = 19 = 1 we on@ 
have 0: c B,‘$ fl C. 

REMARK. Let us first mention that Bj;i is given by all functions f ELM 
satisfying 

sup (t-‘oJl,,Cf; 01 cm* 
I>0 

We remember that in case 1 <p-c 00 Bj$ consists of those functions f e LP 
which coincide almost everywhere with a function g E AC satisfying g’ E L,, . As 
usual in this context we identify each equivalence class of functions in Bj;,!,, 
with its absolutely continuous representative, i.e., 

B;;;: ={f~AC:f’~L,}, l<p<~. 

Finally, we note that B,‘$ is the space of functions which coincide almost 
everywhere with a 2n-periodic function of bounded variation on [0,2n] (for 
details compare [2], p. 230, Theorem 4.1.6). 

PROOF OF THEOREM 2. Let us first point to the fact that by (1.1) each dis- 
continuity of a bounded function f implies a singularity of f; of order 1. 
Therefore, by (1.2) we immediately have 0; C C for 1 rp< 00. 

Moreover, in case 1 sp < 00 f E 0; implies (the norms always taken with 
respect to x): 

su~(t%,,Ut))= sup(t-’ ,“,“,r, IIf(x+Wf(x)ll,) 
t>o t>o 

f(x+h;-f(x) < sup 
- II h>O h 1 P 

5 If*-- llp<~, 

i.e., f E Bj$. 
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In the opposite direction f E Bj,‘L implies in case 1 Cp< 00: 

Ilf 1- P II = 11 
sup If(x) -fWl 
,+X /I Ix-t1 p 

I sup 
II 

fzx & ;;;;; lf.(r~l~~~~p~e,ll~llp~~. 

The last inequality follows from the fact that the Hardy-Littlewood maximal 
operator is of type (p, p) for 1 <p < 03. In conclusion, we have proved 
Dj=Bj$,, in case l<pcoo and D~cB~$ftCin casep=l. 0 

REMARK. It should be noticed that the inclusion Bi;L n CCD,’ is not valid. 
For example the function g, 

belongs to ACc Bf$ n C but 

i.e., geDj (for details compare [ll], p. 33). This example shows that the case 
8 =p = 1 is really difficult and that the characterization of 0: seems to require 
arguments similar to those used in connection with giving necessary and suffi- 
cient conditions for the L,-boundedness of the Hardy-Littlewood maximal 
operator (cf. [lo]). We conjecture that f ED: if and only if f is absolutely 
continuous and f’ belongs to the 2x-periodic analogue of the so-called 
Zygmund class L log L. 

Now, we start with the consideration of the non-saturation case. The 
following fundamental result corresponds to Lemma 6.1 of [4] and covers the 
case 8= 1, too. 

THEOREM 3. For 1 sp< CO and 0~ 13s 1 the subspaces 0: of Lp are Banach 
spaces with respect to their corresponding norms 

cw Ilf Ilp,e : = Ilf lip+ life- IIP’ 
PROOF. In the introduction we have already noticed that 0; are normed 
linear subspaces of Lp. Therefore, we only have to prove that each Cauchy 
sequence in Di with respect to II . II p, B converges in the norm to a function 
belonging to 0;. 



Let Um)mE M be a Cauchy sequence in 0: with respect to 11. I( P,B. Since Lp is 
complete there exists a function f E Lp such that 

(2.6) lim llf-fmllp=o m-a 
and a suitable subsequence - which we again denote by (jJrnEN - such that 

(2.7) lim f,(x) =f(x) 
m-m 

for almost every x E [0,2n]. 
Now, in a first step we will show that (2.7) is valid for all x E [0,2n] and that 

f is bounded. 
Since f is finite almost everywhere on [0,2n] there exists a point x0 E [0,2n] 

satisfying 

(2.8) If( < 00 and lim f,(xo) =f(xo). m-m 
This implies for all m, n E R\l and all x E [0,27r], x#x,: 

If,(x) -f,Wl 5 Icf, -.L)(xo)I + IV;, --f,)(x) - cfm -.Mxo)l 
= Icf, -f,Wo)I 

max kxo) 

+ s 
IG -f,)(x) - CL, -.Imo)I d<lx-xole-l 

min (*x0) Ix-XOT 

(2.9) < 5 Icf, -.Mxo)I 
mm L%xo} 

+ 5 Icf, -f,W) - cr;, -.m)I drlx-xol& ] 
min 14a2) Ix-U 

i 

Inax (x,x0) 
+ 5 

Icf,-f,)(xo)-um-f,)(~)l drlx-xole-l 

min {*x0) Ixo-rlS 
~ICfm-fn~~~o~l+~l~-~ole-llldfm-fn~eII,. 

Since U,(~O)), E N is a Cauchy sequence in IR and cf,),, N is a Cauchy se- 
quence with respect to II . II P, 0 (and, therefore, especially with respect to II + II r, 0) 
the right hand side of (2.9) converges to zero for m, n+co and all x2x0. This 
implies that cf,(x)), E M are Cauchy sequences for all XE [0,2n], i.e., (2.7) is 
valid for all x E [0,27r]. 

To prove that f is bounded we substitute the point x0 by another proper 
point x1 E [0,2n] satisfying Ix0 - x11 > 1. By the same arguments as used above 
wl get 

for all m, n E h\l and all XE [0,27r], x#xl . By the inverse triangle inequality and 
the boundedness off, for fixed m E R\l (2.9) and (2.10) immediately imply the 
uniform boundedness of cf,), E N. Together with the validity of (2.7) for all 
XE [0,27r] we obtain the desired result that f is bounded. 
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Since f is bounded all differences f(x) -f(t) are well-defined for all x, t E 
E [0,27r]. Moreover, by the above arguments we obtain for all XE [O,~R] and 
all t#x: 

I 

I lim f,(x)- lim f,(t)1 
If(x)-f(t)1 = m-m m-m 

Ix- ty lx- t18 

(2.11) = lim 
lfm(x) -f,Wl 

m+m Ix-t1° 

5 lim inf (&)S(x). 
m+m 

Taking the supremum over all t #x on the left side of (2.11) and going over to 
the p-th power we get by applying Fatou’s lemma: 

(2.12) lI.f~llp~ h inf IIG)SIIp<~, m-m 
i.e., f E Di. 

Using the same arguments once more but replacing f by f-f,, n E N 
arbitrarily, we get the inequality 

(2.13) IIWf,)i llpl lim inf IIcf,-fn)i Up. ill-m 
Since cf,), E M is a Cauchy sequence with respect to /( + ]I p, B the right hand side 
of (2.13) converges to zero as n+ ~0. 

In conclusion, we have shown that cf,),. N converges to f with respect to 
II * Ilp,e* cl 

The following result gives the embedding theorem for the new smoothness 
spaces in terms of A-spaces (the corresponding result in case of smoothness 
spaces embedded by Besov spaces is given in [4], p. 48, Theorem 7.1). 

THEOREM 4. For 1 sp< m and 0~ 8 c 1 we have the embeddings 

(2.14) A~;cD;cA~~. 

PROOF. The right hand embedding is an easy consequence of the following 
inequality (the norms again taken with respect to x): 

sup (t - e71, pv; 0) 
I>0 
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The left hand embedding follows by 

IV e- p II =I1 sup If(x) -9-w 
II f#X lx-qe p 

I sup 
II 

0lc.L x, 24 
h>O /I he P 

REMARK. The embeddings of Theorem 4 are in general not trivial, i.e., we do 
not have A$b>Di or Dj>A$ 

(1) To prove A”’ 
at least in the interesting case t?p< 1. 

hPa 0: we consider the continuous but nowhere differ- 
entiable Weierstrab function W,, 0 < 0 < 1, 

(2.15) We(x): = i 5-Ok cos Px, XEIR. 
k=l 

In [l], pp. 203, 204, Achieser proves that W, satisfies a Lipschitz condition of 
order 8, i.e., that there exists a constant M,> 0 such that for all x, x’ E R we 
have 

(2.16) 1 W,(x)- W,(x’)l Molx-x’l’. 

This immediately implies We E Di. 
On the other hand Achieser shows that there exists a constant me>0 such 

that in each interval one may find two points x,x’ satisfying 

(2.17) IWO(X)- W,&d)l>m,ylX-X’le. 

Analyzing the proof of (2.17) (cf. [l], pp. 204-206) we see that the inequality 
may be sharpened in the form 

(2.18) CLl,(Wg,X,t)lg&‘, XE[O,271],t>O, 
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with a constant go>0 independent of x and t. This implies 

i.e., WettAzL. 
(We note that a trigonometric analogue of the example given by DeVore and 

Sharpley (cf. [4], pp. 51-53) would work, too.) 
(2) To prove D;aA$L, 19p< 1, we consider the continuous piecewise linear 

function &, introduced by Ivanov [5]. This function is defined as follows: 
First of all, we choose K#, p E IN such that for all k E IN, k 1 Ke,p, the points 
xk: =kea, 0: =ep/(2-2ep), and ok: =eek satisfy 

xk-ak>xk+l+ak+l, klKos,. 

Now, with Yk : = k-e’2 the function ZO,, is defined by: 

1 

b&k): =yk, k~Ke,,s 

le,p(xk+ak): =le,,(xk-a,): =o, klKe,p, 

(2.19) 

Ie, p is linear in [xk, xk + a,], [xk - ak, xk], k 1 Ko, p, 

1e.p is linear in [Xk+i+ak+r,&-a,& klKe,p, 

10,,(O): =ze,p(7r): =o, 

&~,~(x): =O for XE [x~~,,+a~~,,,4, 

Ie,p is n-periodic. 

In [5] Ivanov shows that IO,, belongs to A2i. On the other hand an easy cal- 
culation yields: 

(k-‘“-(k+ l)-a)‘-e~(k+l)-e~‘2 
l/P 

= 3- 

=+[ k=io,, (1 -(l - -$--~)‘eepp(eqk+ l)-eP~2]1’p. 

Since it is well-known that 

(2.20) ;+E (k+l)(l-(1-&)‘)=s, s>O, 
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we finally get with &,E N sufficiently large: 

k=ko 

+)l’p-e[ *s (k+ l)-yp=oo, 
i.e., ZB,pt$D;. 

ANNOTATION. An application of the maximal functions few in connection 
with one-sided approximation by algebraic polynomials may be found in [6]. 
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