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SUMMARY

The cellular mechanisms controlling infection-in-
duced emergency granulopoiesis are poorly defined.
Here we found that reactive oxygen species (ROS)
concentrations in the bone marrow (BM) were ele-
vated during acute infection in a phagocytic NADPH
oxidase-dependent manner in myeloid cells. Gr1+

myeloid cells were uniformly distributed in the BM,
and all c-kit+ progenitor cells were adjacent to Gr1+

myeloid cells. Inflammation-induced ROS produc-
tion in the BM played a critical role in myeloid pro-
genitor expansion during emergency granulopoiesis.
ROS elicited oxidation and deactivation of phospha-
tase and tensin homolog (PTEN), resulting in upre-
gulation of PtdIns(3,4,5)P3 signaling in BM myeloid
progenitors. We further revealed that BM myeloid
cell-produced ROS stimulated proliferation of
myeloid progenitors via a paracrine mechanism.
Taken together, our results establish that phagocytic
NADPH oxidase-mediated ROS production by BM
myeloid cells plays a critical role in mediating emer-
gency granulopoiesis during acute infection.

INTRODUCTION

Neutrophils are important participants in the innate immune sys-

tem. They are mobilized from the bone marrow (BM) in response

to acute infection or inflammation, and they protect their host by

phagocytosing, killing, and digesting bacterial and fungal patho-

gens. Neutrophil mobilization results in an immediate reactive

neutrophilia, followed by accelerated ‘‘emergency’’ granulo-

poiesis in the BM. Emergency granulopoiesis is a critical host

response to restore neutrophil homeostasis after acute infection

and inflammation (Manz and Boettcher, 2014).
The mechanisms that regulate emergency granulopoiesis

remain incompletely defined. Recent studies suggest that

emergency granulopoiesis can be regulated by granulopoietic

factors, such as interleukin-6 (IL-6), IL-3, granulocyte colony-

stimulating factor (G-CSF), and granulocyte-macrophage CSF

(GM-CSF), which are often upregulated during acute infection

(Hirai et al., 2006; Manz and Boettcher, 2014; Walker et al.,

2008). In vitro, IL-6, IL-3, G-CSF, and GM-CSF promote prolif-

eration and granulocytic differentiation of myeloid progenitors

(Caracciolo et al., 1989; Donahue et al., 1988; Koike et al.,

1986). However, mice deficient for G-CSF, the G-CSF receptor

(G-CSF-R), G-CSF and IL-6, or G-CSF and GM-CSF displayed

normal emergency granulopoiesis elicited by sterile inflamma-

tion (Hibbs et al., 2007). In addition, both steady-state and

inflammation-induced emergency granulopoiesis are intact in

mice deficient for the common b-chain of the IL-3R, GM-CSF

receptor, and IL-5R (Nishinakamura et al., 1996). Taken

together, these results indicate that the granulopoietic factors

might be dispensable for inflammation-elicited emergency

granulopoiesis, and there might be other factors that control

the process.

It is well established that reactive oxygen species (ROS) can

play a regulatory role in hematopoiesis (Haneline, 2008; Ito

et al., 2004; Ito et al., 2006; Jang and Sharkis, 2007; Lewandow-

ski et al., 2010). It has been reported that ROS can prime

Drosophila hematopoietic progenitors for differentiation

(Owusu-Ansah and Banerjee, 2009). ROS induced by oncogenic

Ras are able to promote growth factor-independent proliferation

in human CD34+ hematopoietic progenitors (Hole et al., 2010). In

addition, recent studies suggest that the regulation of hemato-

poiesis by Akt and G-CSF is at least partially mediated by ROS

(Juntilla et al., 2010; Zhu et al., 2006). Culturing mouse BM in

the presence of catalase dramatically alters hematopoiesis; after

2 to 3 weeks, there are over 200-fold more LSK cells (Lin�Sca-
1+c-kit� cells; primitive HSCs) in catalase treated cultures than

in controls, suggesting that, protected from hydrogen peroxide

(H2O2), hematopoietic progenitors multiply and become quies-

cent (Gupta et al., 2006). Physiologic oxidative stress in the
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BM needs to be controlled in order to maintain the quiescence

and survival of the HSC compartment, a function that is required

for its long-term regenerative potential. The FoxO proteins play

essential roles in the response to oxidative stress, and it has

been shown that FoxO-deficient BM has defective long-term re-

populating activity that correlates with increased cell cycling and

apoptosis of HSCs (Tothova et al., 2007). Jang and Sharkis

recently reported that HSCs can be fractioned into two major

subpopulations based on the cellular content of ROSs: the ROSlo

population has a higher self-renewal potential, while the ROShi

population undergoes significant HSC exhaustion following se-

rial transplantation, which is restored with treatment with an anti-

oxidant or rapamycin (Jang and Sharkis, 2007).

Here we examined the role of ROS in emergency granulo-

poiesis using heat-inactivated E. coli. We show that ROS con-

centrations in the BM are significantly elevated during acute

infection, which is dependent on the expression of NADPH

oxidase in myeloid cells. We further demonstrate that NADPH

oxidase-dependent ROS production by BM myeloid cells is

essential for acute infection-induced myeloid progenitor expan-

sion. In addition, using a BM transplantation model, we reveal

that ROS produced by BM myeloid cells regulate myeloid pro-

genitor expansion in emergency granulopoiesis via a paracrine

mechanism.

RESULTS

Acute Inflammation Induces Emergency Granulopoiesis
In order to examine microbial infection-driven emergency gran-

ulopoiesis, we utilized heat-inactivated E. coli to induce perito-

nitis (Jia et al., 2007; Subramanian et al., 2007). The use of

heat-inactivated E. coli rather than live bacteria eliminates the ef-

fect of variable host bactericidal capability. E. coli-induced acute

peritoneal inflammation elicited instant neutrophil mobilization

from the bone marrow, leading to an increased peripheral blood

neutrophil count and a reduced BM neutrophil count (Figure 1A).

However, at the late stage of acute inflammation (32 hr after

E. coli injection), the BM neutrophil count was consistently

elevated compared to unchallenged mice due to inflammation-

induced emergency granulopoiesis (Figure 1B).

We next measured the number and type of hematopoietic

progenitor cells using fluorescence-activated cell sorting

(FACS) analysis. The number of BM granulocyte/macrophage
Figure 1. Acute Inflammation Leads to Increased Progenitor Cell Proli

(A) WTmice were i.p. injected with PBS or 13 107 heat-inactivated E. coli. Periphe

of neutrophils in the PB was measured using a Hemavet-950FS Hematology sys

(B) The BM was flushed out from the femurs and tibia at the indicated times after

Wright-Giemsa staining method. Data shown are means ± SD of n = 5 mice. *p <

(C) Flow cytometry-based lineage analysis of the BM cells. The experiments wer

(D) The percentage of each cell population among BM-derived mononuclear cel

(E) The absolute cell number per femur. Data shown are means ± SD of n = 5 mi

(F) Measurement of cycling cells in each progenitor population by incorporatio

administrated by i.p. injection as a single dose 24 hr before sacrifice.

(G) The percentages of BrdU+ cells in each progenitor compartment are shown.

(H) The number of myeloid progenitors analyzed using an in vitro CFU-GM colo

cultured in semisolid medium containing rm SCF, rm IL-3, or rh IL-6 for 7 days. R

(I) Total colony numbers from 20,000 BMMCs.

(J) The size of colony was analyzed at day 7.

(K) The number of indicated colonies from 20,000 BMMCs. Data are means ± SD
progenitors (GMPs), as measured by the percentage of

Lin�Sca-1loc-kit+CD34+FcgRhi cells in the BM, increased grad-

ually in response to E. coli-induced acute inflammation. Be-

cause the common myeloid progenitor (CMP) (Lin�Sca-1loc-
kit+CD34+FcgRlo) population was unchanged, the increase in

GMPs suggested enhancement of cell differentiation and pro-

liferation of myeloid progenitor cells in E. coli-treated mice

(Figures 1C–1E). In addition, E. coli treatment did not alter the

number of megakaryocyte/erythroid progenitors (MEPs)

(Lin�Sca-1loc-kit+CD34�FcgR�) in the BM (Figures 1C–1E),

suggesting that E. coli-induced acute inflammation specifically

modulates myelopoiesis. However, similar to data previously re-

ported (King and Goodell, 2011), E. coli-elicited inflammation

either directly or indirectly modulated the HSC properties and

led to a drastic expansion of LSK cells (Figure S1). We examined

the proportion of cycling cells by measuring incorporation of

bromodeoxyuridine (BrdU), a pyrimidine analog of thymidine

that is incorporated into DNA in the S-phase of the cell cycle.

BrdU injected intraperitoneally (i.p.) is only incorporated into

nuclei when DNA is being actively replicated. E. coli treatment

specifically augmented proliferation of GMPs, but not MEPs or

CMPs (Figures 1F and 1G). To further confirm E. coli-induced

elevation of myelopoiesis, we used a quantitative granulocyte–

monocyte colony-forming unit (CFU-GM) assay to functionally

assess the number of committed myeloid progenitors in the

BM (Figures 1H–1K). As expected, BM from E. coli-treated

mice contained more CFU-GM (63/20,000 BM cells) than un-

treated controls (42/20,000 BM cells), and the size of the col-

onies originating from E. coli-treated animals was also larger.

Taken together, our results demonstrate that E. coli-induced

acute peritoneal inflammation can efficiently elicit emergency

granulopoiesis.

ROS Concentrations in the BM Are Elevated during
Acute Inflammation
To explore the role of ROS in emergency granulopoiesis, we first

measured the level of ROS in the BM using the Amplex� Red re-

agent, a colorless substrate that reacts with hydrogen peroxide

(H2O2) with a 1:1 stoichiometry to produce highly fluorescent

resorufin (excitation/emission maxima = 570/585). During

E. coli-induced acute inflammation, the concentration of H2O2

in the BM extracellular space increased gradually, reaching a

peak by 48 hr (Figure 2A).
feration in the Bone Marrow

ral blood was collected at the indicated times after E. coli injection. The number

tem. Data shown are means ± SD of n = 5 mice. *p < 0.01 versus time 0.

E. coli injection. The number of neutrophils in the BM was measured using the

0.01 versus control (0 hr).

e conducted 36 hr after the E. coli injection.

ls (BMMCs).

ce. *p < 0.01 versus control (PBS treated mice).

n of BrdU. Mice were sacrificed 36 hr after the E. coli injection. BrdU was

Data shown are means ± SD of n = 5 mice. *p < 0.01 versus control.

ny-forming assay. BMMCs were prepared 36 hr after the E. coli injection and

epresentative pictures of cell clusters and colonies are shown.

of n = 5 mice. Also see Figure S1.
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Figure 2. Hydrogen Peroxide Concentrations Increase in the BM during E. coli-Elicited Acute Inflammation

(A) The BM was flushed out from the femurs and tibia at the indicated times after E. coli injection. The extracellular ROS were measured using the Amplex� Red

assay. Data shown are means ± SD of n = 5 mice. *p < 0.01 versus time 0.

(B) E. coli-elicited elevation of ROS production in the BM was abolished in CGDmice (48 hr after E. coli injection). Data shown are means ± SD of n = 3 mice. *p <

0.01 versus control (PBS treated mice).

(C) gp91phox (encoding NOX2) expression in hematopoietic cells in the BM. BM CD45+ hematopoietic cells, CD45� nonhematopoietic cells, Gr1+ myeloid cells,

endothelial cells (EC) (Sca-1+CD31+CD45�Ter119�), CXCL12-abundant reticular (CAR) cells (PDGFR-b+Sca-1�CD31�CD45�Ter119�), and PaS multipotent

stromal cells (CD45�Ter119�CD31�PDGFRa+Sca-1+) were obtained by flow cytometry sorting using specific antibodies. gp91mRNA expression wasmeasured

by quantitative real time RT-PCR and normalized to GAPDH. Data shown are means ± SD of n = 3 mice.

(D) Acute inflammation elicited ROS production in mice depleted of neutrophils. Two days after injection of anti-Gr1 antibody, peritonitis was induced by E. coli.

The concentration of H2O2 in the BM was measured 24 hr after the E. coli injection. Data shown are means ± SD of n = 5 mice. *p < 0.01. Also see Figure S2.
Acute Inflammation-Elicited ROS Production Is
Mediated by Phagocytic NADPH Oxidase
During infection, myeloid cells produce a large amount of ROS to

kill invading pathogens. In the BM, over half of the cells are

myeloid cells, in which ROS are mainly produced by phagocytic

NADPH oxidase (NOX2), a multisubunit enzyme (Subramanian

and Luo, 2009). During cell activation, the cytosolic components

of the enzyme, p47phox, p67phox, Rac2, and p40phox, are re-

cruited to the membrane to form a complex with its membrane

components, p22phox and gp91 (gp91phox or cytochrome-b

558 complex) (Dinauer, 2005). Assembly of the oxidase complex

(holoenzyme) catalyzes the conversion of molecular oxygen to

superoxide. To elucidate the role of NADPH oxidase in emer-

gency granulopoiesis, we investigated peritonitis-induced gran-

ulopoiesis in the chronic granulomatous disease (CGD) mouse,

in which the gp91 subunit of NADPH oxidase holoenzyme is

deleted (Pollock et al., 1995), and therefore chemokine-elicited

superoxide production is completely abolished (Hattori et al.,

2010). Disruption of NOX2 abolished E. coli-elicited ROS pro-

duction in the BM (Figure 2B). Because phagocytic NADPH ox-

idase NOX2 is mainly expressed in myeloid cells (Henderson

andChappel, 1996; Segal et al., 2000) (Figure 2C), our result sug-

gests that acute inflammation-elicited myeloid progenitor

expansion mainly relies on NOX2-mediated ROS production by

myeloid cells. In further support of this hypothesis, depletion of

neutrophils with anti-Gr1 antibody inhibited acute inflamma-

tion-elicited ROS production (Figure 2D and Figure S2).

NADPHOxidase-Dependent ROSProduction Is Required
for Emergency Granulopoiesis
To explore whether ROS are critical for the proliferation of

myeloid progenitor cells in emergency granulopoiesis, we used

the ROS scavenger N-acetyl-cysteine (NAC) to reduce ROS con-

centrations. Culture of myeloid progenitor cells with NAC

reduced their colony-forming capability (Figure S3A). NAC was

also able to reduce ROS in vivo. The reduction of ROS in the

BM was confirmed using the Amplex assay (Figure S3B). Treat-

ment with NAC suppressed E. coli-elicited expansion of GMPs
162 Immunity 42, 159–171, January 20, 2015 ª2015 Elsevier Inc.
(Figures 3A–3C) and LSK cells (Figure S3C). Similar results

were observed in the CGDmice, in which NADPH oxidase-medi-

ated ROS accumulation in the BM was abolished (Figure 3C and

Figure S3D). In addition, there was a lower percentage of cycling

cells over time in the GMP population of E. coli-challenged CGD

mice compared toWTmice (Figure 3E) measured by BrdU incor-

poration. E. coli-induced neutrophilia in PB and the BMwere also

abolished in the CGD mice (Figures 3F and 3G). Consistent with

this, inhibition of NADPH oxidase-dependent ROS production

also reduced the number of committed myeloid progenitors in

the BM in CFU-GM assays (Figures 3H–3J). Despite its critical

role in emergency granulopoiesis, phagocyte NADPH oxidase

is not absolutely required for homeostatic hematopoiesis,

because unchallenged CGD mice had normal granulopoiesis,

BM cellularity, and peripheral blood counts (Figures 3D–3G, Fig-

ure S3E, Table S1).

ROS and G-CSF Regulate Emergency Granulopoiesis
Parallelly
Both ROS and G-CSF can elevate granulopoiesis. However,

ROS- andG-CSF-mediated pathways appear to be independent

from each other in infection-elicited emergency granulopoiesis.

Inhibition of NADPH oxidase-dependent ROS production did

not alter E. coli-elicited elevation of G-CSF expression in Gr1+

myeloid cells (Figure S4A) and serum G-CSF concentrations

(Figure S4B), suggesting that the effect of ROSwas notmediated

by G-CSF. Blocking G-CSF signaling with an anti-G-CSF anti-

body inhibited G-CSF-elicited neutrophil mobilization from the

BM (Figure S4C), as well as G-CSF-elicited expansion ofmyeloid

progenitors (Figure S4D). However, the same treatment did not

inhibit acute infection-elicited ROS production (Figure S4E),

and did not inhibit E. coli-elicited emergency granulopoiesis (Fig-

ure S4F). These results are consistent with the published findings

that G-CSF is not indispensable for emergency myelopoiesis,

although mice deficient for G-CSF show markedly reduced

and delayed kinetics of neutrophilia (Basu et al., 2000; Hibbs

et al., 2007; Nishinakamura et al., 1996; Walker et al., 2008).

G-CSF can induce granulopoiesis in the absence of acute
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Figure 3. NADPH Oxidase-Mediated ROS Production Is Essential for E. coli-Induced Granulopoiesis

(A) Flow cytometry-based lineage analysis. Mice were treated with NAC (100 mg/kg, ip) 3 hr before E. coli injection. Thirty-six hr after E. coli injection, BM cells

were isolated and the percentage of each cell population among BMMCs was analyzed.

(B) Statistical analysis of absolute cell number per femur of different cell populations based on lineage analysis (n = 5 for each group).

(C) Measurement of cycling cells in each progenitor population by incorporation of BrdU.

(D–G) E. coli-induced granulopoiesis in CGDmice. The CGDmice were i.p. injectedwith PBS or 13 107 heat inactivated E. coli. (D) Flow cytometry-based lineage

analysis of the BM cells. Data shown are means ± SD of n = 3 mice. *p < 0.01 versus control (PBS treated mice). (E) Measurement of cycling cells in each

progenitor population by incorporation BrdU. The percentages of BrdU+ cells in each progenitor compartment are shown. Data shown are means ± SD of n = 3

mice. *p < 0.01 versus control (PBS treated mice). (F) The number of neutrophils in PB. Data shown are means ± SD of n = 5 mice. *p < 0.01 versus time 0. (G) The

number of neutrophils in the BM. Data shown are means ± SD of n = 5 mice. *p < 0.01 versus time 0.

(H–J) The number of myeloid progenitors analyzed using an in vitro CFU-GM colony-forming assay. Data shown are mean ± SD of n = 5 mice. *p < 0.01 versus

CGD. (H) Total colony numbers from 20,000 BMMCs. (I) The size of colony was analyzed at day 7. (J) The number of indicated colonies from 20,000 BMMCs. Data

are means ± SD of n = 5 mice. Also see Figure S3, Figure S4, and Table S1.
inflammation. However, treatment with G-CSF did not signifi-

cantly elevate ROS concentrations in the BM (Figure S4G).

Consistently, G-CSF-induced neutrophilia was not altered in

the CGD mice (Figure S4H). Thus NADPH oxidase-mediated

ROS production by the BM Gr1+ cells is not a required mecha-

nism for G-CSF-induced granulopoiesis.

G-CSF has been demonstrated in multiple clinical studies to

be elevated upon sepsis or severe bacterial infection and is clin-

ically used to increase the production of granulocytes. The pub-

lished and our own result that blocking G-CSF does not abolish

emergency granulopoiesis is somewhat surprising. This could be
simply caused by compensation from other granulopoietic cyto-

kines and/or growth factors in the absence of G-CSF. Alterna-

tively, it could be due to the relatively low concentration (about

3 ng/ml serum) of endogenously produced G-CSF during acute

inflammation in our E. coli induced system. Indeed, when emer-

gency granulopoiesis was induced in mice by higher dose of

heat-inactivated E. coli, a much higher concentration of G-CSF

is detected in the serum (Figure S4B). As a result, the infec-

tion-elicited neutrophilia became less dependent on neutrophil

ROS production, because significant elevation of neutrophil

count in PB (Figure S4I) and BM (Figure S4J) was still detected
Immunity 42, 159–171, January 20, 2015 ª2015 Elsevier Inc. 163
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Figure 4. ROS Promotes Granulopoiesis Both In Vitro and In Vivo

(A) BM cells isolated from WT mice were cultured in semisolid medium in the presence or absence of BSO (500 nM) for 7 days. Representative pictures of cell

clusters and colonies are shown.

(B) Statistical analysis of CFU-GM colony number from 20,000 BMMCs. BM cells isolated from WT mice were cultured in the presence of indicated amount of

BSO for 7 days. (C) The number of indicated colonies from 20,000 BMMCs.

(D) The size of colony was analyzed at day 7. Data shown are means ± SD of n = 5 mice. *p < 0.01 versus untreated.

(E–G) Granulopoiesis in vivo. Mice were treated with BSO (10 mg/kg, i.p.) 3 hr before E. coli injection. Flow-cytometry-based lineage analysis of the BM cells was

conducted 36 hr after E. coli injection. The percentage of each cell population among BM-derived mononuclear cells (E), the absolute cell number per femur (F),

and the percentages of BrdU+ cells in each progenitor compartment (G) are shown. Data represent the means ± SD of n = 5mice per group. *p < 0.01 versus PBS

control. Also see Figure S5.
in the CGD mice. Interestingly, the increase of myeloid progeni-

tor number (Figure S4K) and elevated proliferation of progenitor

cells (Figure S4L) in the BM was completely abolished in the

same CGDmice, suggesting that the increased myeloid progen-

itor proliferation and measurably increased neutrophil pro-

duction might be regulated independently. This notion was

also supported by a recent seminal study from Boettcher et al.

(2014, 2012).

Elevated ROS Is Sufficient to Promote Proliferation
of Myeloid Progenitor Cells
We first augmented intracellular ROS concentrations in the

cultured myeloid progenitor cells by treating them with L-buthio-

nine-S,R-sulfoximine (BSO), a GSH biosynthesis inhibitor. This

led to increased CFU-GM colony number, accompanied by a

drastic increase in the number of cells per colony (Figures 4A–

4D). After 7 days of culturing, the average diameter of the col-

onies growing in the presence of 500 nM BSO was 450 mm,

compared to less than 150 mm for colonies growing in the

absence of BSO. These results indicate that proliferation of

myeloid progenitor cells is enhanced in the presence of high

ROS concentrations. We next examined whether BSO treatment

can elevate granulopoiesis in vivo. Treatment with BSO alone

increased ROS levels in the BM more than 3-fold, which is com-

parable to inflammation-elicited ROS elevation in the BM (Fig-
164 Immunity 42, 159–171, January 20, 2015 ª2015 Elsevier Inc.
ure S5A). The same treatment specifically expanded the GMP

(Figures 4E–4G) and LSK (Figures S5B and S5C) populations in

the BM, even in the absence of inflammation. These results

demonstrate that elevating BMROS concentrations alone is suf-

ficient to increase proliferation of myeloid progenitor cells.

ROS-Elicited PTEN Oxidation and Deactivation
Participates in Emergency Granulopoiesis
It has been reported that ROS can enhance PtdIns(3,4,5)P3

signal transduction by inhibiting the lipid phosphatase activity

of PTEN in some cell types (Connor et al., 2005; Covey et al.,

2007; Kwon et al., 2004; Lee et al., 2002; Leslie et al., 2003; Silva

et al., 2008), and the role of PTEN in hematopoiesis is well docu-

mented (Yilmaz et al., 2006; Zhang et al., 2006). We therefore

investigated whether PTEN oxidation and activation is altered

in inflammation-induced emergency granulopoiesis. PTEN oxi-

dation was assessed in sorted LK progenitor cells by measuring

accelerated mobilization of oxidized PTEN protein using non-

reducing SDS-PAGE (Silva et al., 2008). Consistent with the

elevated ROS production in emergency granulopoiesis, almost

all PTEN molecules were converted to their oxidized form 16 hr

after i.p. E. coli injection. Separating proteins on a reducing

SDS-PAGE gel in the presence of dithiothreitol (DTT) abolished

the inflammation-induced electrophoretic mobility shift, consis-

tent with the decrease in oxidized PTEN (Figure 5A). Because
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Figure 5. Inflammation-Induced Gra-

nulopoiesis Is Mediated by ROS-Elicited

Deactivation of PTEN and Subsequent Akt

Activation

(A) E. coli-elicited PTEN oxidation in hematopoietic

progenitor cells. WT mice were i.p. injected with

PBS or E. coli. The experiments were conducted at

each indicated time points after the E. coli injec-

tion. LK cells were sorted and the protein lysates

from 0.5 3 106 LK cells (from three mice) were

resolved using non-reducing SDS-PAGE. PTEN

protein was detected using a PTEN specific anti-

body. Reduced and oxidized forms of PTEN are

indicated. Data shown are representative of mul-

tiple experiments with similar results.

(B) E. coli-elicited PTEN oxidation in CGD he-

matopoietic progenitor cells.

(C) E. coli-elicited Akt activation in hematopoietic

progenitor cells. Protein lysates were resolved on a

reducing SDS-PAGE gel. Phosphorylated and to-

tal Akt were detected byWestern blotting analysis.

(D) Akt phosphorylation was expressed as ratio of

phospho-Akt to total Akt. Data represent the

means ± SD of n = 5 mice per group.

(E) Mice were treated with NAC (100 mg/kg, i.p.)

3 hr before E. coli injection. Akt phosphorylation in

hematopoietic progenitor cells (LK) and HSC (LSK)

was analyzed 36 hr after E. coli injection. For BSO

treatment, Akt phosphorylation was analyzed 27 hr

after the BSO (10 mg/kg, i.p.) injection. Data

represent the means ± SD of n = 5 mice per group.

*p < 0.01.

(F) Mice were either untreated or treated with PI3

kinase inhibitors LY294002 (i.p. 50 mg/kg body

weight), IC87114 (i.p. 25 mg/kg body weight), or

AS605240 (i.p. 50 mg/kg body weight) and then

challenged with E. coli for 36 hr. Shown are the

percentage of each cell population among

BMMCs. Data represent the means ± SD of n = 5

mice per group. *p < 0.01 versus PBS control.

(G) The percentages of BrdU+ cells in each pro-

genitor compartment. Data shown aremeans ± SD

of n = 5 mice. *p < 0.01 versus control. Also see

Figure S6.
emergency granulopoiesis-associated ROS are mainly pro-

duced by NADPH oxidase, we next measured PTEN oxidation

in LK progenitor cells isolated from CGD mice. As expected,
Immunity 42, 159–171
disruption of NOX2 prevented PTEN

oxidation during acute inflammation. Pro-

genitor cells isolated from CGD mice only

showed background concentrations of

oxidized PTEN after i.p. E. coli injection

(Figure 5B). Taken together, these results

show that NADPH oxidase-dependent

ROS production induces PTEN oxidation

in inflammation-induced emergency

granulopoiesis.

We next measured PtdIns(3,4,5)P3

signaling in LK progenitor cells using Akt

phosphorylation as a reporter (Figures

5C and 5D). Akt phosphorylation in wild-

type (WT) progenitor cells was elevated
over 3-fold (30 hr) by E. coli-induced acute inflammation. In

contrast, acute inflammation-elicited augmentation of Akt phos-

phorylation was abolished in CGD progenitor cells (Figure 5C
, January 20, 2015 ª2015 Elsevier Inc. 165



and 5D). Treatment of mice with the antioxidant NAC also sup-

pressed inflammation-elicited augmentation of Akt phosphoryla-

tion in the progenitor cells, further supporting the role of ROS in

regulating PtdIns(3,4,5)P3 signaling in emergency granulopoie-

sis. On the other hand, elevation of ROS appeared to be suffi-

cient to induced Akt phosphorylation, since BSO treatment

induced a greater than 4-fold increase in Akt phosphorylation

in the absence of any inflammation (Figure 5E). These results

are consistent with the role of PTEN as a PtdIns(3,4,5)P3 phos-

phatase that is negatively regulated by ROS and suggest that

PTEN is a major mediator of inflammation-induced emergency

granulopoiesis.

To further investigate whether the upregulation of PtdIns(3,4,5)

P3 signaling during acute inflammation is essential for emer-

gency granulopoiesis, we suppressed PtdIns(3,4,5)P3 signaling

using several specific inhibitors of PI3 kinases (PI3Ks). It is well

documented that PI3Kd andPI3Kg operate as partners in distinct

signaling pathways in hematopoietic cells (Rommel et al., 2007).

The pan-PI3K inhibitor LY294002, and a specific PI3Kd inhibitor

IC87114, suppressed inflammation-induced expansion of GMP

(Figures 5F and 5G) and LSK (Figure S6) populations, while

AS605240, a specific inhibitor of PI3Kg, was essentially ineffec-

tive. These results demonstrate that PtdIns(3,4,5)P3 signaling is

critical for emergency granulopoiesis and that PtdIns(3,4,5)P3

signaling in the progenitor cells is mainly maintained by PI3Kd.

It is noteworthy that a catalytically inactive PI3Kd mutant

(p110-deltaD910A) mouse has been generated. However, B and

T cell maturation is significantly impaired and immune responses

attenuated in this mouse (Okkenhaug et al., 2002). This mutant

mouse also developed inflammatory bowel disease (Koyasu,

2003; Okkenhaug and Vanhaesebroeck, 2003), making it difficult

to use in the current experiment. Thus here we used isoform-

specific PI3K inhibitors to minimize the long-term effect caused

by PI3K inhibition. PI3K inhibitors are emerging as a new gener-

ation of therapeutics and are being used in clinical trials. The in-

hibitors used in current study are of proven high specificity and

low toxicity.

ROS Regulate Proliferation of Myeloid Progenitor Cells
via a Paracrine Mechanism
Our results show that phagocytic NADPH oxidase, which is

predominately expressed in the myeloid lineage, mainly medi-

ates the elevation of ROS levels during acute inflammation.

Components of the NOX2 complex are gradually expressed

during myeloid cell differentiation and maturation. The ROS

produced by the differentiating myeloid progenitors or imma-

ture myeloid cells could either control granulopoiesis in an

autonomous manner or via a paracrine mechanism (Fig-

ure S7A). In order to test whether the ROS effect was autono-

mous or paracrine, we conducted a BM transplantation exper-

iment, in which proliferation of transplanted WT progenitors

was examined in CGD recipient mice during acute inflammation

(Figure S7B). If the ROS produced by the differentiating

myeloid progenitors or immature neutrophils control granulo-

poiesis autonomously, the proliferation of transplanted WT pro-

genitors should still be augmented by acute inflammation in the

CGD recipient mice.

BM LK cells, isolated and sorted from WT C57BL/6.CD45.1

mice, were transplanted into congenic C57BL/6.CD45.2 CGD
166 Immunity 42, 159–171, January 20, 2015 ª2015 Elsevier Inc.
or WT (as control) mice to generate mixed chimeric mice.

Because the purpose of this experiment was to test the effect

of myeloid cells on the proliferation of transplanted progenitor

cells in the recipient BM, and irradiation leads to myeloid deple-

tion in the BM, we used non-irradiated mice as recipients. Donor

and recipient cells were distinguished by CD45.1 and CD45.2

expression. CD45.1 LK cells successfully engrafted non-irradi-

ated mice with stable chimerism of 0.4% over 6 weeks (Fig-

ure S7B). Engraftment efficiency was slightly lower than, but

comparable to, other reported similar BM transplantation sys-

tems (Bhattacharya et al., 2009; Takizawa et al., 2011). E. coli-

induced peritonitis was induced 6 weeks after BM transplan-

tation, and lineage analysis was conducted for both donor

(CD45.1+) and recipient (CD45.2+) populations. Inflammation-

induced expansion of the GMP population appeared solely

dependent on NADPH oxidase in the recipient mice. In these

CGD recipient mice, transplanted WT progenitor cells did not

produce the phenotype seen in WT mice, and these NADPH ox-

idase-intact donor progenitors did not expand in CGD recipient

mice (Figure 6A). This result was further confirmed using the

BrdU incorporation assay (Figure 6B); acute inflammation-

induced cell cycling of transplanted WT progenitors was sup-

pressed in CGD recipient mice. Taken together, these results

suggest that the ROS produced by the BMmyeloid cells regulate

proliferation and differentiation ofmyeloid progenitors via a para-

crine mechanism.

Because gp91 is predominately expressed in the myeloid line-

age and disruption of gp91 abolished inflammation-elicited ROS

production (Figure 2), we hypothesize that acute inflammation-

elicited emergency granulopoiesis mainly relies on NOX2-medi-

ated ROS production by myeloid cells. However, to definitively

rule out the possibility that gp91-mediated ROS production by

BM mesenchymal cells is also involved in emergency granulo-

poiesis, we conducted another BM transplantation experiment,

in which proliferation of transplanted WT progenitors was exam-

ined in lethally irradiated WT and CGD recipient mice during

acute inflammation 6 weeks after the BM transplantation (Fig-

ure S7C). In this setup, the proliferation of WT GMP progenitors

still increased during acute inflammation in the CGD recipient

mice, suggesting that gp91-mediated ROS production by BM

non-hematopoietic cells is not critical for emergency granulopoi-

esis (Figures 6C and 6D).

c-kit+ Progenitor Cells Are Adjacent to Gr1+

Myeloid Cells
To further explore the role of BMmyeloid cells, in particular Gr1+

cells in emergency granulopoiesis, we next examined the local-

ization of Gr1+ myeloid cells in the BM using a laser scanning

cytometer (LSC). Gr1+ myeloid cells were evenly distributed in

the BM and accounted for 45% of BM cellularity (Figure 7A).

We co-stained bone sections with an anti-Gr1 antibody and

antibodies against the vasculature marker laminin and the oste-

oblastic marker osteopontin. Consistent with the uniform distri-

bution of Gr1+ cells in the BM, these cells were not preferentially

localized in either the perivascular or periendosteal regions

(Figure 7B).

LSC also allows analyses of whole tissue sections at the sin-

gle-cell level, thereby permitting quantitative statistical analysis

of even extremely rare cells (<1%), which has hitherto been
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Figure 6. ROS Regulate Inflammation-Induced Granulopoiesis via a Paracrine Mechanism

(A) Flow-cytometry-based lineage analysis of the CD45.1 (donor) and CD45.2 (recipient) BM cells. To investigate the proliferation of transplanted WT progenitors

in CGD recipient mice during acute inflammation, we transplanted the sorted LK cells of CD45.1 WTmice into non-irradiated CD45.2 CGDmice or WTmice (as a

positive control). The BM cells were prepared and analyzed 36 hr after the E. coli injection. The percentage of each cell population among BM-derived CD45.1 or

CD45.2 mononuclear cells are shown. Data shown are mean ± SD of n = 5 mice. *p < 0.01 versus control (PBS treated mice).

(B)Measurement of cycling cells in each progenitor population by incorporation of BrdU. BrdUwas administrated by i.p. injection 24 hr before sacrificing themice.

The percentages of BrdU+ cells in each CD45.1 or CD45.2 progenitor compartment are shown. Data shown are means ± SD of n = 5mice. *p < 0.01versus control

(PBS treated mice).

(C andD) The effect of ROSproduced byBMmesenchymal cells on emergency granulopoiesis. (C) Flow-cytometry-based lineage analysis of the CD45.1+ (donor)

BM cells. Data shown are means ± SD of three experiments. *p < 0.01versus control (PBS treated mice). (D) Measurement of cycling cells in each CD45.1+

progenitor population by incorporation of BrdU. Data shown are means ± SD of n = 3 mice. *p < 0.01 versus control. Also see Figure S7.
very difficult using conventional image analysis techniques. Us-

ing LSC, we identified rare cKit+ progenitor cells in the bone

marrow. All Kit+ HSC or progenitor cells were in the proximity

of evenly distributed Gr1+ myeloid cells (<50 mm) (Figure 7C).

Considering that H2O2 can diffuse as far as 1,500 mm from its

site of origin in the extracellular space (Winterbourn, 2008), the

ROS produced by BM myeloid cells are easily capable of regu-

lating proliferation and differentiation of the myeloid progenitors

via the paracrine mechanism.
DISCUSSION

Physiologic numbers of mature neutrophils are maintained by

‘‘steady-state’’ granulopoiesis. Infection and inflammation alter

normal leukocyte production by promoting accelerated, or emer-

gency, granulopoiesis over lymphopoiesis (Ueda et al., 2005;

Ueda et al., 2004). Steady-state and emergency granulopoiesis

appear to be regulated by different cellular mechanisms. For

example, steady-state granulopoiesis is absolutely dependent
Immunity 42, 159–171, January 20, 2015 ª2015 Elsevier Inc. 167



A

B

C

Figure 7. Gr1+ Myeloid Cells Are Uniformly

Distributed in the BM, and All c-kit+ Progen-

itor Cells Are Adjacent to Gr1+ Myeloid Cells

(A) Distribution of Gr1+ cells in the BM analyzed by

laser scanning cytometry (LSC). Data shown are

representative of multiple experiments with similar

results.

(B) LSC imaging of the trabecular region of a femur

from a WT mouse. BM sections were costained

with anti-Gr1, anti-osteopontin (a marker of oste-

oblasts), or anti-laminin (marker of vasculature)

antibodies.

(C) Gr1+ myeloid cells (green) and c-kit+ cells (red)

were stained using specific antibodies against Gr1

and c-kit, respectively. Slides were counterstained

with DAPI (blue). The distance of a c-kit+ cell to the

closest Gr1+ cell was quantified. Data shown are

means ± SD of n = 5 mice.
on the C/EBPalpha, but not the C/EBPbeta transcription factor

(Hirai et al., 2006; Zhang et al., 1997). In contrast, emergency

granulopoiesis is mainly controlled by C/EBPbeta (Hirai et al.,

2006; Ueda et al., 2009). In the current study, we provide direct

evidence that NADPH oxidase-dependent ROS production by

BM myeloid cells is required to initiate acute infection-induced
168 Immunity 42, 159–171, January 20, 2015 ª2015 Elsevier Inc.
emergency granulopoiesis. Emergency

granulopoiesis is generally thought to

represent increased GMP proliferation

(Hirai et al., 2006; Manz and Boettcher,

2014). Consistent with this, we observed

significant increases in GMP numbers

two days after E. coli injection, accompa-

nied by increased BrdU uptake and

augmented GM colony-forming capa-

bility. Depletion of ROS suppressed acute

infection-elicited expansion of GMP cells

and abolished their GM colony-forming

capability.

Enhanced granulopoiesis can be driven

by bothmicrobial infection-induced emer-

gency granulopoiesis and sterile inflam-

mation-elicited reactive granulopoiesis

(Manz and Boettcher, 2014). How an

‘‘emergency’’ state, such as acute inflam-

mation, sends the message to the BM to

trigger granulopoiesis remains incom-

pletely defined. It was reported that pref-

erential pathogen-mediated stimulation

of myeloid differentiation pathways in-

volves Toll-like receptor (TLR) signaling,

and might provide a means to rapidly

replenish the innate immune system dur-

ing infection (Nagai et al., 2006). TLRs

are expressed in some early hematopoiet-

ic progenitors, and TLR signaling via the

Myd88 adaptor protein can drive differen-

tiation of myeloid progenitors, bypassing

some normal growth and differentiation

requirements, as well as lymphoid
progenitors, to become dendritic cells. A recent study, using

tissue-specific Myd88-deficient mice and in vivo LPS admini-

stration to model severe bacterial infection, Boettcher et al.

demonstrated that endothelial cells, but not hematopoietic cells,

hepatocytes, pericytes, or BM stromal cells, are essential cells

for infection-induced emergency granulopoiesis (Boettcher



et al., 2014). Another study proposed that inflammation initiates

emergency granulopoiesis via a density-dependent feedback

mechanism. In an alum-induced inflammation model, IL-1RI-

dependent production of G-CSF and G-CSF-G-CSF-R signals

are necessary for both the proliferative responses of hematopoi-

etic stem and progenitor cells (HSPCs) and the mobilization of

BM neutrophils (Ueda et al., 2009). Depletion of neutrophil re-

serves during acute inflammation activates a feedback mecha-

nism that further increases G-CSF production and availability

and accelerates neutrophil production (Cain et al., 2011). In this

way, alum elicits a transient increase in G-CSF production via

IL-1RI to mobilize BM neutrophils, but density-dependent feed-

back sustains G-CSF for accelerated granulopoiesis. It appears

that the induction of neutropenia, via depletionwith aGr-1mono-

clonal antibody or myeloid-specific ablation of Mcl-1, also trig-

gers G-CSF production and increases HSPC proliferation, lead-

ing to emergency granulopoiesis. Finally, clearance of apoptotic

neutrophils at the site of inflammation by tissue macrophages

and dendritic cells, a process known as efferocytosis, also plays

an essential role in regulation of neutrophil production. Efferocy-

tosis leads to reduced phagocyte secretion of IL-23, a cytokine

that controls IL-17 production by gdT cells and unconventional

abT cells (Smith et al., 2007). Reduction of IL-17 results in

reduced G-CSF production and decreased granulopoiesis (Stark

et al., 2005).

The role of PTEN in hematopoiesis is well documented (Yilmaz

et al., 2006; Zhang et al., 2006). A recent study showed that the

effect of PTEN on hematopoiesis might be indirect (Tesio et al.,

2013). Disruption of PTEN gene in hematopoietic system causes

an upregulation of the PI(3,4,5)P3 signal in myeloid cells, but not

in HSCs. PTEN-deficient myeloid cells secrete higher amounts of

G-CSF, leading to mobilization of HSCs from the bone marrow.

Here we show that ROS-induced transient and partial deactiva-

tion of PTEN in myeloid progenitors was sufficient to accelerate

the proliferation of these cells during acute inflammation. This

effect was directly caused by augmentation of PI(3,4,5)P3 sig-

naling in the progenitor cells (Figure 5), because the concentra-

tion of G-CSF was not altered in the CGD mice (Figure S6B).

Thus, our finding reveals a mechanism by which ROS and

PTEN regulate granulopoiesis during acute inflammation and fills

an important gap in our understanding of how ROS regulate

granulopoiesis. Although it is well established that ROS can

play a regulatory role in hematopoiesis, the underlying mecha-

nism is largely unknown. It has been reported that the FoxO

proteins play essential roles in the response to oxidative stress

(Tothova et al., 2007). However, the direct downstream target(s)

of ROS has not been identified. The PTEN-Akt pathway identified

in current study is, by far, the only proven pathway that directly

links ROS to hematopoiesis and granulopoiesis.

During emergency granulopoiesis, ROS are predominantly

produced by BM myeloid cells; the BM is the major reservoir of

myeloid cells, and over 95% of granulocytes are stored in the

BM. The signals that relay the remote inflammatory message

to the BM and stimulate ROS production during inflammatory re-

sponses remain elusive. Proinflammatory chemokines such as

keratinocyte chemoattractant (KC) and macrophage inflam-

matory protein (MIP)-2, as well as certain cytokines such as G-

CSF and tumor necrosis factor-a (TNF-a) can all elicit NADPH

oxidase activation, leading to elevated ROS production.
CGD is an inherited genetic disorder in which mutations in the

genes encoding components of the NADPH oxidase complex

cause diminished ROS release by neutrophils (Heyworth et al.,

2003). The classical explanation for the severe infection seen in

CGDpatients is due to a lack of ROS-dependent pathogen clear-

ance bymature neutrophils. Because NADPH oxidase-mediated

ROS accumulation also plays a critical role in emergency granu-

lopoiesis, impaired pathogen clearance in CGDmight also occur

as a result of defective infection-induced granulopoiesis. This

mechanism explaining the pathogenesis of CGDmight be helpful

for developing alternative therapeutic strategies that specifically

target ROS-mediated granulopoiesis.

Infection-induced emergency granulopoiesis is a unique pro-

cess with specific features compared to normal (homeostatic)

hematopoiesis. In the current study, we, for the first time, estab-

lish a role of NADPH oxidase-mediated ROS production by BM

myeloid cells in infection-induced emergency granulopoiesis,

and thismechanism does not play any role in homeostatic hema-

topoiesis. We show that it is the ROS in the microenvironment

that contribute to the maintenance and proliferation of stem

and progenitor cells emergency granulopoiesis, rather than

those within stem or progenitor cells as classically thought.

This study provides a mechanism to target in various physiologic

and pathologic conditions in which neutrophil homeostasis re-

quires rebalancing, such as immune reconstitution after BM

transplantation.

EXPERIMENTAL PROCEDURES

Mice

X-linked CGD mice, mice conditionally expressing EGFP (eGFP loxP/loxP),

and the myeloid-specific Cre mice were purchased from Jackson Labora-

tories. All animal manipulations were conducted in accordancewith the Animal

Welfare Guidelines of the Children’s Hospital Boston.

E. coli-Elicited Peritoneal Inflammation

CGD or WT mice were left uninjected or i.p. injected with 200 ml of heat inacti-

vated E. coli (strain 19138, ATCC) in PBS. At various times after injection, the

mice were sacrificed and inflammation induced granulopoiesis was analyzed

using the BM cells. To prepare heat inactivated E. coli, we first cultured bacte-

ria in LB broth at 37�C for 16 hr and then washed and resuspended in PBS.

E. coli were killed by heating suspensions to 60�C for 1 hr.

BM Cell Transplantation

Age-matching C57BL/6 and CD45.1 mice were purchased from Jackson Lab-

oratories. Donor whole BM cells (WBM) were prepared by spinning femurs and

tibias under sterile conditions, and red blood cells were lysed using ACK lysing

buffer. LK progenitor cells were sorted using a FACS AriaII equipped with

FACSDiva software (BD Bioscience). The transplantation was conducted us-

ing non-irradiated WT (CD45.2) and CGD (CD45.2) recipient mice. The donor

LK cells (CD45.1, 2 3 105) were transplanted into each non-irradiated WT

(CD45.2) and CGD (CD45.2) recipient mouse via tail vein injection. To increase

the efficiency of engraftment, we transplanted LK cells into recipient mice

every 2 days for 1 week. The acute peritonitis was induced using heat-inacti-

vated E. coli (1 3 107) 6 weeks after the first BM transplantation. The emer-

gency granulopoiesis elicited by inflammation was assessed 36 hr after the

E. coli injection.

Granulocyte and Monocyte Colony-Forming Unit Assays

Bone marrow cells (2 3 104) from WT or CGD mice were seeded in semisolid

Methocult GFM3534medium containing rmSCF, rmIL-3, and rhIL-6 for detec-

tion of CFU-GM (Stem Cell Technologies). L-butionine-sulfoxamine (BSO,

Sigma-Aldrich) was added to methylcellulose media at the indicated concen-

trations at the time of plating.
Immunity 42, 159–171, January 20, 2015 ª2015 Elsevier Inc. 169



Detection of Hydrogen Peroxide using Amplex Red

WT and CGD mice were i.p. injected with 1 ml of heat-inactivated E. coli

(1 3 107) in PBS. ROS accumulation in the BM was measured in freshly iso-

lated BM using an Amplex Red Hydrogen Peroxide Assay Kit (Invitrogen).

Analysis of In Vivo Cell Proliferation by BrdU Incorporation

Cell proliferation was determined using a BrdU labeling kit (BD Bioscience).

Twenty four hr before sacrifice, BrdU was administrated by i.p. injection

(2 mg/mouse in 200 ml PBS) as a single dose. At indicated time points, LSK,

GMP, CMP, and MEP cells were sorted and the mean frequencies of BrdU+

cells in the HSC and each progenitor populations were measured.

Expression of gp91phox in Hematopoietic and

Nonhematopoietic Cells

BM CD45+ hematopoietic cells, CD45� nonhematopoietic cells, Gr1+ myeloid

cells, PaS cells (CD45�Ter119�CD31�PDGFRa+Sca-1+), endothelial cells

(Sca-1+CD31+CD45�Ter119�), and CXCL12-abundant reticular (CAR) cells

(PDGFR-b+Sca-1�CD31�CD45�Ter119�) (Omatsu et al., 2014) were obtained

by flow cytometry sorting. Total RNA was extracted with the TRIzol reagent

and the quantitative RT-PCR was performed using a SYBRGreen Quantitative

RT–PCR Kit (Sigma).

Statistical Analysis

Analysis of statistical significance for indicated data sets was performed using

the Student’s t test capability on Microsoft Excel and GraphPad Prism.
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