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There is a need for up-to-date assessments and maps of soil properties and land health at scales relevant for
decision-making and management, including for properties that are dynamic and hence change in response to
management. Also, there is a need for approaches to soil mapping that capture the ever increasing effects that
humans are having on the environment in general and specifically on soil properties worldwide. In this paper,
we developmodels for digital soil mapping based on remote sensing data from theModerate Resolution Imaging
Spectroradiometer (MODIS) platform for Africa. The article presents maps of soil organic carbon (SOC), pH, sand
and sum of exchangeable bases, as well as prevalence of root-depth restrictions in the upper 50 cm of the soil
profile. Prediction models were developed based on spatially balanced field survey data, representing all major
climate zones on the continent. The prediction models for soil property mapping performed well, with overall
RMSEP values of 10.6, 0.34, 9.1, and 6.5 for SOC, pH, sand, and sum of bases, respectively. The accuracy of the
prediction model for root-depth restrictions was 77%, with an AUC of 0.85 and Cohen's kappa value of 0.52
when averaged across predictions run on independent test data. The methods and maps developed can provide
much improved identification of soil and landhealth constraints, and spatial targeting of landmanagement inter-
ventions at various scales, informing both policy and practice.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

It is widely recognized that soil degradation is becoming increasing-
ly prevalent in many parts of sub-Saharan Africa (SSA), but its spatial
extents and severity from local to continental scales are in general poor-
ly understood (Bassett and Zuéli, 2000; Warren, 2002). Similarly,
although soil and ecosystemhealth are recognized as important compo-
nents of land and agricultural productivity, stakeholders such as farmers
and rural communities, policy makers and governments often lack sci-
entifically based information that is spatially and contextually explicit
enough to effectively target soil and land management strategies that
enhance and maintain critical ecosystem services (Chan et al., 2006).
Consistent biophysical data andmodels are needed to answer questions
related to the dynamics of key indicators of ecosystem health at multi-
ple spatial and temporal scales, including feedback loops within nested
hierarchies of socioeconomic and biophysical environments. This is par-
ticularly critical at present since humans are increasingly shaping the
environment and altering the soil system, which means that models
and maps are needed that capture the effects of anthropogenic impacts
. This is an open access article under
on soils (Grunwald et al., 2011). Patterns of various soil properties in
landscapes are complex (Scull et al., 2003), and efforts to achieve reli-
able estimates (i.e. reduce uncertainty) of statistical prediction models
for mapping of soil properties across a wide range of soil conditions re-
quire large sample sizes. Also, consistent sampling designs are needed,
as well as harmonized soil analytical methods across a wide range of
datasets. Indeed, some of the most important constraints to soil map-
ping to date, particularly on the African continent, include (i) a general
lack of or sparse soil data, (ii) dated information, and (iii) a lack of con-
sistency in available data, both in terms of field and laboratorymethods.

Themain reasons for increases in land degradation are often quoted
as a complex nexus of overpopulation, poverty, overgrazing and/or poor
agricultural practices and lack of appropriate policies (Drechsel et al.,
2001; Duraiappah, 1998), but little is known about the interactions
between these drivers and the biophysical environment, including
biophysical stability domains (Gunderson, 2000). Land degradation
also has important implications for climate change as it may lead to
increases in CO2 emissions through for instance deforestation, reduc-
tions in above- and below-ground storage of carbon (C), and through
its influences on the ability of ecosystems to regulate soil-vegetation-
atmosphere transfer (SVAT) processes (Cao et al., 2001) and to deliver
vital ecosystem services. In many cases, ecological changes are strongly
accelerated due to positive feedback mechanisms at various levels of
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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scale and between SVAT processes and the socioeconomic system that
destabilize the system and lead to its collapse (Alcock, 2003).

Most studies involving the prediction of soil properties based on
remote sensing have been conducted based on data collected at the
plot scale (b1 km2) (Mulder et al., 2011). Other efforts at mapping soil
properties are based on dated soil survey reports that often lack accu-
rate geospatial locations and where a number of different analytical
techniques have been used, confounding analysis (e.g. Hengl et al.,
2014). In contrast, this study draws on a coordinated collection of field
data on a range of land health metrics, including soil condition and
land degradation status, using a network of land degradation surveil-
lance sites in SSA. The sites were sampled and characterized using
consistent sampling protocols referred to as the Land Degradation Sur-
veillance framework (LDSF) implemented as part of multiple projects
during the period from January 2010 to July 2014, including the Bill
and Melinda Gates funded Africa Soil Information Service (AfSIS) pro-
ject (Vågen et al., 2010). These methods and projects have resulted in
the availability of data at nested spatial scales, from plots (1000 m2),
to sampling clusters (1 km2), and sites (100 km2) covering the major
climate zones of SSA. In the current paper we present an approach
that combines the use of laboratory soil reference measurements, soil
spectroscopy, remote sensing, and statistical modeling to predict and
map both soil functional properties and root-depth restrictions. The
aim of the study was to map soil functional properties and land degra-
dation risk for SSA at a spatial scale of 500 m by applying data from
the moderate resolution imaging spectroradiometer (MODIS) sensor.

The approach used in this study differs from traditional geostatistical
models often used for soil mapping (e.g. Hengl et al., 2004; Heuvelink
and Webster, 2001) which assume that points closer together are more
Fig. 1.Mapof Africa showing the location of the LDSF sites (N=114) included in the current stu
is sinusoidal.
related than points farther apart. As this assumption presents some chal-
lenges (Curriero, 2007)weused an approachwhere no assumptionswere
made in terms of the proximity of sampling points, but rather relied on
the spectral properties of individual MODIS pixels by training statistical
models basedon anetworkof LDSF sites covering different (agro-)ecosys-
tems in SSA. Predictionmodelswere developed for themapping of soil or-
ganic carbon (SOC), pH, sumof exchangeable bases (SB), and sand,which
are important soil properties for management of soil health.

We also developed models to determine the likelihood of root-depth
restrictions in each MODIS pixel. Effective rooting depth for agricultural
crops such as wheat and maize range from 60 to 180 cm when grown
in unrestricted conditions (Kirkegaard and Lilley, 2007), and hence root-
depth restrictions in the upper 50 cmof the soil profile present challenges
for agricultural management by potentially limiting plant growth (Unger
and Kaspar, 1994) and soil infiltration capacity both in agricultural and
forest systems (Lull, 1959). The developed maps set the stage for the de-
velopment of contextual indicators of soil and ecosystem health that are
sensitive to land use andhence applicable for spatially explicitmonitoring
of ecosystem health. The digital soil property maps presented are sensi-
tive to the effects of land management and hence better reflect on-the-
ground realities facing farmers and land managers.

2. Materials and methods

2.1. Field data collection

A network of 114 LDSF sites (Fig. 1), each covering a 10 by 10 km
(100 km2) area, were surveyed between February 2010 and June
2013, 62 of the sites representing a stratified random sample of
dy (each square on themap represents a 100 km2 site,with 160 sampling plots). Projection



218 T.-G. Vågen et al. / Geoderma 263 (2016) 216–225
African landscapes sampled as part of the Africa Soil Information Service
(AfSIS) project (Vågen et al., 2010).Major climate zones (Köppen, 1918;
Kottek et al., 2006; Rubel and Kottek, 2010) were used to stratify the
sampling of the AfSIS sites, while 52 additional sites were sampled as
part of other projects applying the LDSF. These projects are usually ap-
plying the LDSF in the context of for example assessments of rangeland
health, forest transition zones or land degradation and hence the sites
are purposefully located to cover parts of project areas, either for base-
line assessment or monitoring purposes. Within each LDSF site, cluster
(N=16) and plot (N=160) locationswere generated using a stratified
random sampling approach (Vågen et al., 2010, 2013), making a total of
160 sampling plots in each site. The clusters represent 1 km2 areas,
each cluster consisting of 10 (1000 m2) plots, which again have four
sub-plots, each 100 m2 in size.
Fig. 2. Boxplots showing a summary of lab measured topsoil pro
A total of 10,473 topsoil samples were available for this
study, collected at 0–20 cm depth from 71 of the 114 sites,
while data on root-depth restrictions in the upper 50 cm of
the soil profile (RDR50) was available for all 114 sites. The mea-
surements of RDR50 were done using a soil auger in each LDSF
sub-plot and recording the depth at which restrictions made it
impossible to auger further within the upper 50 cm of the soil
profile. If 50 cm depth was reached, this was recorded as “no
restriction”.

2.2. Laboratory analysis

Soil analyses were conducted using traditional wet chemistry
methods for the determination of SOC (dry combustion), pH (1:1
perties (0–20 cm depth) across the 71 sites with soil data.



Fig. 3. Red vs NIR reflectance for the MODIS spectral library used in the study. Size of points and color reflect NDVI.

Table 1
Ranges in soil property values and summary of accuracy statistics (R2 and RMSEP) for the
RFmodel prediction of soil propertieswhen applied to the three test datasets (averaged by
sampling cluster) and compared to wet chemistry analysis results.

Variable Soil property Test Wet chemistry

Set 1 Set 2 Set 3 (N = 826)

Range SOC (g kg−1) 3.5–114.0 3.6–117.1 3.3–139.6 1.3–161.6
pH 4.3–8.6 4.4–8.7 4.3–8.8 3.4–10.5
Sand (%) 3.1–83.4 5.7–83.2 3.9–84.5 1.0–98.7
SB (cmolc kg−1) 3.4–99.7 3.2–111.6 2.9–91.7 0.7–179.2

R2 SOC (g kg−1) 0.69 0.75 0.77 0.75–0.82
pH 0.87 0.87 0.89 0.81–0.82
Sand (%) 0.81 0.82 0.81 0.75–0.79
SB (cmolc kg−1) 0.81 0.82 0.85 0.76–0.83

RMSEP SOC (g kg−1) 11.46 10.67 9.60 9.30–11.05
pH 0.35 0.36 0.32 0.47–0.48
Sand (%) 9.24 8.99 9.17 12.81–13.67
SB (cmolc kg−1) 6.76 6.74 6.12 9.00–10.58
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solution in water), base cations (Melich-3 extraction), and texture on
10% of the samples collected. Mid-infrared Spectroscopy (MIRS),
which has become a well-established methodology for predicting
important soil properties such as soil organic carbon (SOC), pH,
base cations (SB), and texture (Madari et al., 2006; Reeves et al., 2006;
Terhoeven-Urselmans et al., 2010; Vågen et al., 2006, 2013), was used
to predict these properties on the remaining full set of soil samples.
Soil MIRS is a non-destructive, rapid, and cost-effective methodology,
enabling landscape-level assessments of soil health.

2.3. Remote sensing data processing

For this study we used Bidirectional Reflection Distribution Function
(BRDF) corrected MODIS (MCD43A4) data for the calendar year 2012.
This MODIS product is generally more stable and consistent since view
angle effects have been removed from thedirectional reflectance values.
To get consistent annual compo site reflectance values we opted to
identify the date with the highest fractional vegetation cover based on
the soil adjusted total vegetation (SATVI) index (Qi et al., 1994, 2002)
and extracted the reflectance of each pixel for these dates in order to
build a MODIS image spectral library for all of the sampled LDSF plots.
TheMODIS reflectance values (bands 1–7) were then used in the devel-
opment of predictions models for soil properties and RDR50,
respectively.

2.4. Prediction model development

We used Random Forest (RF) ensemble models (Breiman, 2001) for
the prediction of soil properties and occurrence of RDR50. The main
principle behind ensemble modeling techniques in is that a group of
“weak learners” can be combined or bagged to form a “strong learner”.
A RF model uses a “decision tree” approach, which is a common
machine learning technique, but rather than building one decision
tree it builds several trees by creating subsets of the input data, each
subset representing about two thirds of the total dataset. The individual
decision trees were grown according to the CART algorithm (Breiman
et al., 1984) and soil property values were predicted by averaging
individual regression model predictions. In the case of RDR50, the
dependent variable is binary (Yes or No) and predictions were made
by counting the Yes votes in the ensemble and simply calculating the
percent Yes votes received, which is the predicted probability of having
RDR50 in each image pixel.

The application of RF models in ecology (Lawrence et al., 2006; Zhu,
2011) and soil science (Grimmet al., 2008; Kim et al., 2012; Vågen et al.,
2013) is a relatively recent phenomenon, but has the potential to be a
powerful approach for digital soil mapping, particularly when modeled
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relationships have high levels of dimensionality. Random Forestmodels
can be applied both for regression and classification and are not prone to
overfitting as the resampling does not use weighting (Gislason et al.,
2006). The approach used here is similar to that applied in Vågen et al.
(2013) for Landsat data.

The internal out-of-bag (OOB) prediction in the RF model, which is
generated through bootstrapping, provides an estimate of model fit or
Fig. 4.Validation results for the predictions of SOC (g kg−1), pH, sand (%), and exchangeable bas
each MODIS pixel.
accuracy across the decision trees in the model and was used for initial
assessment of model performance. However, for the final prediction
models, we used 2:1 cross-validation by randomly drawing two thirds
of the data for calibration (N = 6982) and using the remaining one
third of the samples (N = 3491) for validation (testing), without re-
placement. In other words, the three test datasets were independent
of each other. This approach, while not perfect, gives reasonable
es (cmolc kg−1) based onMODIS. Prediction results are averaged to represent themean for
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estimates of uncertainty in the developed models overall, including
their stability across different sampling domains and leads to better
model performance overall, while guarding against catastrophically
poor model performance (Schaffer, 1993). The above RF regression
models were applied to the MODIS reflectance image library for hori-
zontal tiles 16 to 23 and vertical tiles 5 through 13 in order to create pre-
dictive maps of SOC, pH, sand, and SB for the African continent. Finally,
the results from each calibration model were tested against wet chem-
istry analysis results for plots with complete reference analysis of SOC,
pH, SB, and sand (N = 826). This additional validation step is helpful
in testing for potential errors propagated through the MIR prediction
of soil properties.

The probability of RDR50 in each pixel wasmapped using the devel-
oped RF classification model (see also Vågen et al., 2013) based on field
observations from 17,514 LDSF plots (from 114 sites). Accuracy statis-
tics were calculated for each predicted outcome, using independent
2:1 cross-validation following the same procedure as that used for soil
Fig. 5. Distributions of measured soil properties (light gra
property predictions to assess model performance. We also assessed
overall model performance by calculating precision (positive predicted
value) and sensitivity (recall) for each validation run through Receiver
Operating Characteristic (ROC) analysis. Overall model accuracy was
assessed by calculating the area under the ROC (AUC) curve for each val-
idationmodel run. The AUC is ameasure of discrimination, or the ability
of the model to correctly classify RDR50. We also calculated Cohen's
kappa index (Cohen, 1960) for each validation run, which measures
agreement corrected for chance on a scale from zero (no agreement)
to one (total agreement).

3. Results and discussion

The individual sampling plots included in this studywere representa-
tive of a wide range of conditions in terms of topsoil properties (Fig. 2),
ranging in SOC concentrations from 1.5 to 300 g kg−1 (mean =
22.1 g kg−1), pH from 3.7 to 9 (mean = 6.1), sand content from 2 to
y) and MODIS predicted soil properties (dark gray).
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91% (mean = 33%), and SB from 1 to 138 cmolc kg−1 (mean =
15 cmolc kg−1). Mean annual precipitation (MAP) in the sampled sites
ranged from about 276 to 2900mm (mean=1100mm), based on Trop-
ical Rainfall Monitoring Mission (TRMM) data for the period 1998
to 2012. The study also builds on sites from a diverse range of different
ecosystems, from humid tropical forests, dry forests such as Miombo
woodlands, natural savannah systems, semi-arid rangelands and crop-
lands and arid ecosystems, as reflected in the range of MODIS spectral
properties and NDVI values shown in Fig. 3.

Model performances for the prediction of soil properties based on
MODIS are satisfactory overall (Table 1 and Fig. 4) and similar to those
achieved in other studies using remote sensing for the mapping of
SOC (Vågen et al., 2013; Wiesmeier et al., 2010). Model performance,
when applied to the test datasets, for SOC shows a r2 value of 0.74,
with RMSEP between 9.6 and 11.46, which is also comparable to that
achieved based on a globally distributed laboratory mid-infrared spec-
tral library (Terhoeven-Urselmans et al., 2010). The results for pH are
excellent with r2 = 0.88 and RMSEP between 0.32 and 0.36 (Table 1).
This is comparable to studies using proximal sensing in precision
Fig. 6.Maps of sum of bases (SB), pH, SOC, and sand
agriculture (Tekin et al., 2013). The RMSEP values for sand (8.99–9.24)
and SB (6.12–6.76) are also similar to those reported by Terhoeven-
Urselmans et al. (2010). Prediction performance was also good for
all soil properties when the individual calibration model results were
tested against laboratory measured soil properties (Table 1). We inves-
tigated prediction performance further by calculating the distributions
of the measured and predicted values, respectively (Fig. 5). The results
confirm the good correspondence between modeled and measured
soil properties.

We proceeded with fitting the above RF prediction models to the
MODIS image library described in Section 2.3, producing a set of soil
property maps for the African continent for 2012 (Fig. 6). In brief, the
maps show high SB and neutral to alkaline pH in arid to semi-arid
ecosystems, including parts of the great Rift Valley of East Africa,
while predictions for humid tropical regions are towards lower pH
values. Predictions of SOC are highest in tropical forest systems,
including montane forests in East Africa, the Congo basin, and the
eastern rainforests of Madagascar, while predicted sand content
is highest in dry lands (e.g. deserts and semi-deserts), as well as on
content using MODIS reflectance data for 2012.
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granitic complexes such as in central Tanzania. The predicted SOC
concentrations also reflect recent conversions following deforestation
events.
Fig. 7. Relationships between MODIS predicted soil properties based on a random sample of 5
show SOC (g kg−1) vs sand (%) and pH vs SB (cmolc kg−1), respectively. The lower panels show
Holdridge life zones (based on maps from Leemans, 1990) in Africa.
In order to explore the relationships between predicted soil properties
further, we randomly sampled the soil property maps using 5000 points
(Fig. 7, top-left panel). The relationship between predicted sand and
000 image pixels (points) from the predicted maps (top-left panel). The top-right panels
MODIS SOC, sand, and pH by Köppen climate zones andMODIS SOC for themost common



Table 2
Accuracy statistics for the prediction of root-depth restrictions (RDR50) based on the
validation test sets.

Test set 1 Test set 2 Test set 3

AUC 0.85 0.85 0.86
Precision (0/1) 0.75/0.76 0.79/0.74 0.76/0.74
Sensitivity (0/1) 0.83/0.67 0.81/0.72 0.81/0.69
Accuracy (overall) 0.77 0.77 0.75
Cohen's kappa 0.50 0.54 0.50
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SOC (Fig. 7, top-right) in this study showsmarkedly lower SOC content as
sand content increases beyond about 40 to 50%, and follows the samepat-
tern as that found for laboratory measured SOC and sand. This relation-
ship can be explored using the maps of SOC and sand in Fig. 6
to identify key constraints in terms of the potential for increasing SOC
through management interventions. Generally, rates of increase or
accumulation of SOC in soils following changes in management such as
reduced cultivation intensity are inversely related to sand content in
soils (Lugo et al., 1986). In other words, sand content forms an important
constraint envelope in terms of SOC sequestration potential.

Given that the predicted soil properties are based on remote sensing
data alone and do not incorporate climate information in the models ex-
plicitly, we explored the predictions for the most dominant Köppen–
Geiger climate zones and Holdridge life zones on the continent (Fig. 7).
The middle-left panel in Fig. 7 shows the distribution of predicted SOC
from the 5000 plots sampled earlier using MODIS relative to
the dominant Köppen–Geiger climate zones on the continent, while the
middle-center panel shows sand by Köppen–Geiger climate zone. The
predicted concentrations of SOC are highest in equatorial (Am, Aw) and
warm temperate (Csa, Cwa) climates, lower in arid steppe (BSh) and low-
est in arid desert climates (BWh). Arid desert climates also have the
highest sand contents, while cold arid climates (BSk) have similar ranges
Fig. 8. Predicted maps of root-depth restrictions (R
of predicted sand as equatorial and warm temperate climates and inter-
mediate SOC contents (Fig. 7).

As shown in the lower panel in Fig. 7, subtropical and tropical dry and
moist forests have the highest predicted SOC based on Holdridge life
zones (Leemans, 1990; Prentice et al., 1992). These results are
consistent with a number of other studies showing increasing SOC with
increasing precipitation and decreasing temperature for different levels
of precipitation (Post et al., 1982), as well as studies of SOC in various bi-
omes globally (Jobbágy and Jackson, 2000).

The predicted maps for SB and pH show higher SB in areas with
alkaline soils (i.e. pH N 7), which is a well-established relationship
(Fig. 7, middle-right) and in drier climate zones (Fig. 7). The maps of pH
and SB in Fig. 6 can be used to identify areas with soil constraints such
as acidity (i.e. pH b 5.5) or alkalinity (i.e. pH N=8.0), as well as soil fertil-
ity constraints (i.e. areas with SB b 8). Predicted pH values are highly var-
iable within Köppen–Geiger climate zones, but lowest in equatorial
monsoonal climates (Am), as expected given the more highly weathered
nature of soils in these climate zones.

Overall accuracy for the prediction of RDR50was about 77% (kappa=
0.52), as shown in the summary of themodeled results in Table 2. Impor-
tantly, the RF model produced consistent results across the independent
test data sets, indicating that it is stable across a wide range of conditions.
Also,measured and predicted frequencies of RDR50 occurrence at the site
level are consistent.

The resulting maps of predicted occurrence of RDR50 show root-
depth restriction hotspots in for example southern Africa, as well as east-
ern Kenya (e.g. parts of the Tana River basin) (Fig. 8). Predictions show
low prevalence of RDR50 in parts of the Sahel and in the Kalahari sands
and wetlands of western Zambia, as well as for example the Okavango
delta (Fig. 8). From a management perspective, identifying areas that
have high prevalence of RDR50 will be important in order to target inter-
ventions that reduce soil compaction in agricultural areas more
DR50) using MODIS reflectance data for 2012.
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effectively, but also for identifying areas of high risk of developing such
restrictions.

4. Conclusions

Combining laboratory IR spectroscopic soil analysis, MODIS remote
sensing data and statistical methods, soil properties such as SOC, pH,
sand content, and SB, as well as root-depth restrictions were mapped
with unprecedented accuracy and spatial resolution for the African conti-
nent. The results indicate a strong relationship between predicted and
measured values, with distributions of predicted soil property values sim-
ilar tomeasured values. Also, prediction results for themapping of restric-
tions to root-growthwere satisfactory. The resultingmaps can be used to
identify areaswith important soil fertility constraints, acidity or alkalinity,
and for determining constraint envelopes for SOC sequestration by com-
bining spatial predictions of SOC and sand. By combining predicted sur-
faces of soil properties, including cut-offs for various soil constraints,
and the prevalence of root-depth restrictions, spatial patterns of soil deg-
radation risk can be determined andmanagement options better targeted
both contextually and spatially.

The spatial resolution of themaps produced in this studyhave utility for
assessments andmonitoring of soil health at continental, regional, national
and sub-national scales, andasprior estimates atmore local scale. However,
for applications in local assessments requiring finer resolution maps, ap-
proaches such as those shown in Vågen et al. (2013) or using high-
resolution remote sensing data will be needed. A key challenge in future
work will be to develop approaches for the prediction of soil health and
landdegradation risk that provide consistent estimates across spatial scales.
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