
Article
Parallel Evolution of Chem
okine Binding by
Structurally Related Herpesvirus Decoy Receptors
Graphical Abstract
Highlights
d Crystal structures of RHVP R17 alone and in complex with

CCL3 have been determined

d R17 is similar to MHV-68 M3 although the location of

chemokine binding is distinct

d Chemokine residues that stabilize R17 complexes have been

mapped by mutagenesis

d Pathogen decoys mimic GPCRs in engagement of invariant

chemokine determinants
Lubman & Fremont, 2016, Structure 24, 57–69
January 5, 2016 ª2016 Elsevier Ltd All rights reserved
http://dx.doi.org/10.1016/j.str.2015.10.018
Authors

Olga Y. Lubman, Daved H. Fremont

Correspondence
fremont@wustl.edu

In Brief

Lubman and Fremont describe the

atomic structure of the herpesvirus-

encoded chemokine binding protein R17

alone and in complex with a high-affinity

ligand, CCL3. The study offers novel

insights into the conserved and unique

mechanisms that different pathogens use

to undermine host chemokine signaling

networks.

mailto:fremont@wustl.edu
http://dx.doi.org/10.1016/j.str.2015.10.018
http://crossmark.crossref.org/dialog/?doi=10.1016/j.str.2015.10.018&domain=pdf


Structure

Article
Parallel Evolution of Chemokine Binding
by Structurally Related Herpesvirus
Decoy Receptors
Olga Y. Lubman1 and Daved H. Fremont1,2,3,*
1Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
2Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
3Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
*Correspondence: fremont@wustl.edu

http://dx.doi.org/10.1016/j.str.2015.10.018
SUMMARY

A wide variety of pathogens targets chemokine
signaling networks in order to disrupt host immune
surveillance and defense. Here, we report a struc-
tural and mutational analysis of rodent herpesvirus
Peru encoded R17, a potent chemokine inhibitor
that sequesters CC and C chemokines with high af-
finity. R17 consists of a pair of b-sandwich domains
linked together by a bridging sheet, which form an
acidic binding cleft for the chemokine CCL3 on the
opposite face of a basic surface cluster that binds
glycosaminoglycans. R17 promiscuously engages
chemokines primarily through the same N-loop de-
terminants used for host receptor recognition while
residues located in the chemokine 40s loop drive
kinetically stable complex formation. The core fold
adopted by R17 is unexpectedly similar to that of
the M3 chemokine decoy receptor encoded by
MHV-68, although, strikingly, neither the location of
ligand engagement nor the stoichiometry of binding
is conserved, suggesting that their functions evolved
independently.

INTRODUCTION

Chemokines are a group of small cytokines that orchestrate

host defense against microorganisms in vertebrates (Esche

et al., 2005; Gerard and Rollins, 2001). Pro-inflammatory che-

mokines play an essential role in the clearance of a broad array

of pathogens through the recruitment of effector leukocytes

(Luster, 1998). Chemokines establish gradients through specific

interactions with glycosaminoglycans (GAGs), and direct target

cell migration and activation by binding to G-protein-coupled

chemokine receptors (Allen et al., 2007; Handel et al., 2005).

Chemokine networks are characterized by ligand-receptor pro-

miscuity, antagonistically acting ligands, and non-signaling

decoy receptors (Allen et al., 2007; Fernandez and Lolis,

2002; Handel and Lau, 2004). All chemokines adopt a similar

fold consisting of an extended N terminus followed by a long

flexible loop (N loop), a three-stranded b sheet, and a C-termi-
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nal a helix (Fernandez and Lolis, 2002). The structural deter-

minants of chemokine G-protein-coupled receptor (GPCR)

recognition have recently been illuminated by studies of

CXCR4 in complex with a herpesvirus-encoded chemokine

and CX3CL1 in complex with a herpesvirus-encoded che-

mokine receptor (Burg et al., 2015; Qin et al., 2015). Receptor

activation is thought to occur in several steps whereby initial

binding of the chemokine N loop causes conformational

changes in the receptor, allowing the N-terminal residues of

the chemokine to insert between transmembrane helices of

the GPCR (Kufareva et al., 2015).

Pathogens undermine host chemokine signaling networks

using a number of different strategies. Large DNA viruses,

such as herpes- and poxviruses, encode versions of chemo-

kines, chemokine receptors, and unique soluble chemokine

binding proteins capable of sequestering host chemokines

with distinct specificity (Alcami, 2003; Alcami and Lira, 2010;

Epperson et al., 2012). The first secreted chemokine decoy

receptor was discovered in orthopoxviruses, and it is now es-

tablished that a wide array of chemokine binding proteins are

encoded by poxviruses (Patel et al., 1990; Smith et al., 1997).

Unique chemokine binding proteins had been identified in all

three subfamilies of herpesviruses, with perhaps the best char-

acterized being M3 encoded by mouse gammaherpesvirus 68

(MHV-68) (Heidarieh et al., 2015). Bloodsucking ticks and the

helminth parasite Schistosoma mansoni have also been shown

to produce chemokine binding proteins (Deruaz et al., 2008;

Smith et al., 2005).

We recently discovered a novel chemokine decoy receptor

encoded by rodent herpesvirus Peru (RHVP) (Lubman et al.,

2014). RHVP is a gammaherpesvirus (rhadinovirus)-related to

MHV-68 (Stevenson and Efstathiou, 2005) and Kaposi’s sar-

coma-associated herpesvirus (Lee et al., 2015) that establishes

acute and latent infection in laboratory mice with overt pathol-

ogy evident only in immunocompromised animals (Loh et al.,

2011). We demonstrated that R17 binds all human and murine

CC and C chemokines tested (mCCL2 and hCCL2; mCCL3 and

hCCL3; mCCL4, mCCL5, and hCCL5; mCCL8, mCCL11,

mCCL20, mCCL24, mCCL19, mCCL12, and mXCL1) but not

any of the CXC or CX3C chemokines (mCXCL8, mCXCL10,

mCXCL9, mCXCL2, mCXCL12, mCXCL1, and CX3C). Func-

tionally, recombinant R17 potently inhibits CCL3-driven chemo-

taxis of human peripheral blood mononuclear cells (PBMCs)

and CCL2-driven transmigration of human THP-1 monocytes
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Table 1. Crystallographic Data Collection and Refinement Statistics

R17_native R17_KI_derivative 1 R17_KI_derivative 2 R17 (KI_ merged) R17-CCL3 complex

Data Collection

Source APS_23ID ALS 4.2.2 ALS 4.2.2 ALS 4.2.2

Wavelength (Å) 1.0 1.77 1.77 1.0

Resolution (Å) 50–1.9 (1.93–1.90) 50–2.64 (2.69–2.64) 50–2.90 (2.94–2.90) 90–2.64 50–3.0 (3.06–3.00)

No. of observations 281,521 685,862 641,455 45,751 826,635

Unique reflections 45,516 17,071 13,291 16,547 26,825

Redundancy 3 (2.8) 13.8 (9.7) 13.8 (12.0) 2.8 (1.0) 4.7 (2.3)

I/sI 20.8 (1.83) 39.04 (3.05) 26.9 (2.4) 17.8 (2.7) 7.4 (1.0)

Rmerge
a 5.2 (65.4) 6.8 (83.1) 11.7 (100) 2.1 (100) 11.2 (100)

Completeness 93.8 (61.2) 99.8 (97.6) 100 (100) 970 (56.8) 100 (64.8)

Space group P212121 P212121 P212121 P212121 I222

Cell dimensions (Å) 69.5, 75.8, 106.9 69.5, 75.3, 106.1 69.5, 76.0, 107.6 98.4, 109.4, 210.9

Phasing Statistics

No. of iodides (SHELXD) 14

Figure of merit (centric) 0.22

Figure of merit (acentric) 0.27

Phasing resolution 46–3.10

Rcullis 0.79

Refinement Statistics

Resolution (Å) 50–1.9 50–3.0

(outer shell) (Å) (1.94–1.89) (3.08–3.0)

No. of reflections/no. in Rfree 39,897/2,024 24,120/1,817

Rcryst (%) 18.44 (22.3) 21.52 (32.9)

Rfree (%) 22.08 (34.2) 27.40 (45.5)

Rmsd bond lengths 0.005 0.003

Rmsd bond angles 0.992 0.462

Ramachandran favored (%) 95.6 94.2

Ramachandran outliers (%) 0.0 0.0

Average B factor 21.65 66.92

PDB ID 4ZKQ 4ZLT

Numbers in parentheses refer to the highest-resolution shell.
aRmerge = SjI � <I>j/S<I>, where I is the intensity of each individual reflection.
(Lubman et al., 2014). Our initial studies also revealed that in

addition to chemokines, R17 interacts with cell-surface GAGs

in a process dependent upon two BBXB motifs (where B repre-

sents a basic residue) (Lubman et al., 2014). Taken together,

our results suggest that R17 plays a role in RHVP immune

evasion through targeted sabotage of chemokine-mediated im-

mune surveillance.

To gain insight into the mechanism by which R17 sequesters

chemokines, we determined crystal structures alone and bound

to CCL3. R17 adopts a two-lobed structure that engages the

N-loop region of CCL3 important for recognition by its cognate

receptor—a ‘‘hotspot’’ commonly targeted by other pathogen-

derived chemokine decoy receptors. A unique element of the

R17-CCL3 interaction, however, is the engagement of the 40s-

loop BBXB motif that serves an important role in both receptor

and GAG binding for a number of pro-inflammatory CC chemo-

kines. Gain-of-function mutational analysis was used to estab-

lish that R17 selectively engages this GAG binding determinant

of chemokines to form kinetically long-lived complexes. The
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structure of R17 also revealed an unexpected similarity to the

M3 chemokine decoy receptor encoded by MHV-68, although

the chemokine binding locations are completely distinct (Alex-

ander et al., 2002).

RESULTS

Structure Determination of RHVP R17
To enable structural studies, recombinant R17 protein was pu-

rified from 293F cells cultured with kifunensine, an inhibitor of

class I a-mannosidase (Elbein et al., 1991). Before crystalliza-

tion, R17 was treated with Endoglycosidase H (EndoH) to

trim carbohydrate (see Experimental Procedures). The struc-

ture of unligated R17 was determined by iodide single-wave-

length anomalous dispersion (SAD) with sites located by

SHELXD (Sheldrick, 2008), phases estimated using MLPHARE

(Dodson et al., 1997), and density modification using PARROT

(Cowtan, 2010) (Table 1). The initial model of R17 was built us-

ing ARP/wARP (Murshudov et al., 1997), and the final model
reserved



Figure 1. Crystal Structure of RHVP R17

Alone and in Complex with Murine CCL3

(A) Ribbon diagram of apo R17. The N-terminal

domain (NTD), bridging sheet (BS), and C-terminal

domain (CTD) are colored based on secondary

structure: b strands are depicted in green, a heli-

ces in cyan, and connecting loops in brown.

b strands of the NTD are labeled 1–10, BS is

labeled B1–B4, and b strands of the CTD are

labeled A–G. During purification, R17 was treated

with EndoH to remove complex carbohydrates. Of

the three predicted N-linked glycosylation sites,

electron density was visible for the N-glycans

linked to Asn103 and Asn205. N-Acetylglucos-

amine (NAG) followed by a mannose ring was built

only for Asn205 and is shown in stick representa-

tion. Disulfide bonds are shown as sticks and

colored yellow.

(B) Crystal structure of the R17GAG2 in complex

with murine CCL3(D26A) at 3.0 Å resolution. R17 is

colored as in (A) while the chemokine is colored

magenta and labeled according to accepted che-

mokine convention. Two NAGs linked to Asn103

and Asn205 are shown in ball-and-stick repre-

sentation.

(C) Displayed in white cartoon are superimposed

free and ligated R17 structures. Conformational

changes in the loops around the chemokine bind-

ing cleft are colored green (free R17) and magenta

(chemokine bound R17). TwoGAGbinding sites on

R17 are located on the opposite surface from

chemokine binding and are circled with blue

dashed lines.

(D) Electrostatic complementarity between R17

and CCL3. The molecular surface is colored as

calculated by APBS (<�1 kT in red, 0 kT in white,

and >+1 kT in blue).

See also Figure S1.
was produced after numerous rounds of manual building using

Coot (Emsley and Cowtan, 2004) and refinement in Phenix

(Adams et al., 2011). The model spans residues 14–400 of

the mature protein, with GlcNAc linkages to Asn103 and

Asn205 along with 355 water molecules (Table 1 and

Figure 1A).

R17 adopts a two-lobed structure with an N-terminal domain

(NTD) positioned perpendicular to a C-terminal domain (CTD)

linked together by a bridging sheet (BS). The terminal domains

consist of b-sandwich folds decorated by loops and helical

segments, while the BS is composed of four strands packed

with the NTD (residues 190–216 and 233–266) and two strands

inserted into the CTD (residues 218–232) (Figure 1A). The NTD

spans residues 14–187 and is composed of a seven- and

three-stranded sheet (Figure 1A). Three disulfide bonds occur

in the NTD; one pins the end of helix h1 to the end of strand

s10, one bridges the turn at the start of s4, and another links

the end of s4 to the start of s9. The CTD spans residues

285–400 and adopts an approximately I-type immunoglobulin

fold composed of nine b strands and a disulfide linking the

C0 strand with the beginning of the D strand. A long flexible

linker connects the BS and CTD, specifically residues 265–

288, of which residues 267–270 are refined with high B factors.

One disulfide is found within the BS B1-B2 loop while another
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joins the end of the flexible BS linker to the A00 strand inserted

into the CTD.

Structural Relatives of R17
We looked for proteins of related structure to R17 using the Dali

server (Holm and Sander, 1995), and remarkably found that the

two closest relatives are both from gammaherpesviruses: M3

encoded by MHV-68 (Z score = 14.1) and GP350 encoded by

Epstein-Barr virus (EBV) (Z score = 8.2). The structures of

R17 and M3 aligned with a root-mean-square deviation

(rmsd) of 4.2 Å over 262 residues including five disulfide bonds,

despite displaying only 8% sequence identity (Figures 2A and

2B). While similarities with both terminal domains are readily

apparent, the NTDs of R17 and M3 align best (rmsd = 3.3 Å

for aligned 150 residues with 11% sequence identity). The

R17 BS architecture between the NTD and CTD is absent in

M3, which instead has a series of large helical loops that deco-

rate the CTD.

The core of the R17 CTD domain also displays structural sim-

ilarity to the second immunoglobulin (Ig) domain of the viral sur-

face glycoprotein GP350 encoded by EBV (rmsd of 2.8 Å for 109

aligned residues, with 9% sequence identity). EBV infects B cells

through binding of GP350 to complement receptor 2 (CR2)

(Nemerow et al., 1987) using residues from the N-terminal Ig
, 57–69, January 5, 2016 ª2016 Elsevier Ltd All rights reserved 59



Figure 2. Structural Comparison of R17

with M3

(A) Comparison of CCL3 (magenta) bound R17 with

CCL2 (yellow) bound M3 where shared core

secondary structure elements are depicted in

green for R17 and dark blue for M3. Divergent

structural elements are depicted in light gray in

both R17 and M3.

(B) Structure-based sequence alignment of R17

with M3. Secondary structure elements of R17 are

on top while secondary structure elements of M3

are on the bottom. Both are colored as in Figure 1A.

Structurally similar residues are colored gray, while

identical residues are in black. Yellow circles

denote M3 chemokine binding interface residues,

while down-pointing magenta triangles denote R17

chemokine binding interface residues. Residues

buried in the M3 dimer are boxed. BBXB motifs on

R17 are boxed in cyan.

See also Figure S2.
domain and the linker connecting the first Ig to the second (Sza-

konyi et al., 2006). We tested the ability of biotinylated R17 to

bind CR2-positive B cells in wild-type versus CR2 knockout

mice (Molina et al., 1996; Wu et al., 2000). No differences in

cell staining were noted (data not shown).

Mutational Analysis Based on M3 Chemokine Binding
Determinants
We attempted to define the chemokine binding site on R17

based on the structural similarity to M3 (Figure S1A) (Alexander

et al., 2002). As opposed to monomeric R17, M3 is an anti-par-

allel homodimer with deep chemokine binding clefts formed

between the NTD and CTD of the opposing monomers. We

reasoned that the loop connecting strands 2b to 3 of R17 is

structurally equivalent to the chemokine binding loop s2b-3

from the NTD of M3. By the same token, the large loop con-

necting strands B3 to B4 in the BS of R17 could mimic the

chemokine binding region in the CTD of M3 (Figure S1A, dotted

circles). To experimentally address our hypothesis, we con-
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structed two R17 variants: R1765AAAA68

has residues 65LEKE68 of the s2b-3 loop

mutated to Ala and R17D248�254 has res-

idues 248 through 254 of the B3-B4 loop

deleted. To our surprise, neither of the

R17 variants had altered binding to two

chemokines we tested, CCL2 and CCL3

(Lubman et al., 2014) (Figure S1B), indi-

cating that ligand engagement is most

likely localized elsewhere on the protein.

Crystal Structure of the R17-CCL3
Complex
To address where chemokines bind

R17 we initiated co-crystallization ex-

periments with CCL3, a chemokine we

previously had shown binds the decoy

receptor with an exceptionally long ki-

netic half-life leading to the potent inhibi-
tion of PBMC transmigration (Lubman et al., 2014). Diffraction

quality crystals were obtained using a CCL3 mutant (D26A) re-

ported to reduce aggregation (Czaplewski et al., 1999) and an

R17GAG2 variant that could no longer interact with cell surfaces

due to the mutation of residues 333KGRRK337 to 333DGEED337.

The structure of the complex was solved by molecular re-

placement with a final atomic model refined to 3.0 Å resolution

(Table 1 and Figure 1B). Each asymmetric unit contained two

R17GAG2-CCL3 complexes, with two GlcNAc linkages to

Asn103 and Asn205 of R17 in chain A and a single GlcNAc

linkage to Asn205 built for chain B. Using multi-angle static light

scattering we determined that R17 binds CCL3 with 1:1 sto-

ichiometry, suggesting that additional lattice interactions

observed in the crystal structure are not functionally relevant

(Figure S2).

The primary structural element used by R17 to create a che-

mokine binding platform is the flexible linker that connects the

BS of R17 with the CTD and forms a hydrophobic cavity

between the two b sandwiches. While this region is not well



Figure 3. Experimental Assessment of Crys-

tallographic Observations

(A) Structure of the R17-CCL3 complex where

chemokine is in electrostatic surface repre-

sentation. Inset shows a part of the linker region

connecting BS and CTD domains. Residues
266DSGSE270 were mutated 266NAGAQ270.

(B) SPR analysis of mCCL2 and mCCL3 binding to

the R17 266NAGAQ270 mutant immobilized to a

CM5 chip. Shown are response curves for a typical

chemokine titration. The experimental curves were

globally fit using a 1:1 mass transport model to

determine the kinetic KD and half-life (t1/2) pre-

sented above each sensorgram. Values for KD are

means of three independent experiments where

KD = kd/ka and t1/2 = 0.693/kd. wt, wild-type; mut,

mutant.
ordered in the crystal structure of the unligated R17, it be-

comes partially ordered upon ligand binding (Figure 1C). There

are 31 residues from CCL3 and 46 residues from R17 at the

R17-CCL3 interface, leading to 2,700 Å2 of buried solvent-

accessible surface area (1,385 Å2 buried for CCL3 and

1,298 Å2 buried for R17). The shape complementarity at the

R17-CCL3 interface is calculated to be Sc = 0.70 (Lawrence

and Colman, 1993). In addition to the linker that connects the

two domains, CCL3 is ‘‘clamped’’ through multiple interactions

with both the BS and CTD. A primary structural element of the

BS used to bind chemokines is the B1-B2 loop. A notable hy-

drophobic pocket is formed by R17 residues Val195, Leu198,

Leu239, and Leu264, which serves to sequester CCL3 Phe13,

a critical residue for GPCR binding (Laurence et al., 2000).

The hydrogen bonds observed between the main chain

carbonyl oxygens of Glu199 and Thr200 in R17 with Ser35 of

CCL3 serve as yet another anchor to the BS of R17. Another
Structure 24, 57–69, January 5, 201
pocket buries Arg45 and Asn46 of the

CCL3 40s-loop BBXB motif, formed

mainly by R17 residues Tyr272, Tyr275,

Trp313, Phe378, and Tyr395. Within this

acidic pocket a prominent salt bridge is

formed between Glu393 of R17 and

Arg45 of CCL3. Arg45 is the first B (basic

residue) of the BBXB GAG binding motif

on CCL3, and was shown to be critical

for the ability of CCL3 to bind heparin

sulfate and the CCR5 receptor (Kim

et al., 2001; Koopmann et al., 1999;

Teng et al., 2008).

Comparison of apo with chemokine

bound R17 points to several conforma-

tional variations associated with ligand

binding (Figure 1C). Significant confor-

mational differences are observed in the

linker region connecting the BS and

CTD that makes numerous chemokine

contacts. Large conformational differ-

ences are also observed in the B1-B2

loop, B3-B4 loop, and CC0 loop of the
CTD, each of which flank the engaged chemokine (Figure 1C).

The fact that R17 uses structurally labile elements to engage

chemokines suggests that structural plasticity may be associ-

ated with its broad ligand binding specificity.

Mutational Analysis of the R17 Chemokine
Recognition Site
To experimentally assess our crystallographic observations, we

mutagenized the linker region of R17 and selectively removed

the negative charge from 266DSGSE270 to 266NAGAQ270. The

resulting R17 variant could no longer bind to CCL2 (concentra-

tion range tested up to 150 nM) and bound to CCL3 with more

than 100-fold (t1/2 = 11 s) faster kinetic off-rate compared with

wild-type R17-CCL3 interactions (Figure 3). Thus, the delete-

rious effects of the linker mutations are more pronounced for

R17-CCL2 interactions. This mutational analysis of R17 estab-

lishes that our structurally defined recognition site for CCL3 is
6 ª2016 Elsevier Ltd All rights reserved 61



Figure 4. Analysis of Chemokine Binding

Kinetics

(A) Structure of the R17-CCL3 complex where R17

is in electrostatic surface representation. The inset

shows how Arg45 and Gln46 of CCL3 are buried

into a surface pocket of mixed acidic and hydro-

phobic character. A prominent salt bridge is

observed between Arg45 of CCL3 and R17

Glu393, while the side chain of Asn46 makes a

hydrogen bond with the hydroxyl of R17 Tyr323.

(B) Structure-based sequence alignment of

CC chemokines known to interact with R17 ordered

of according to the kinetic stability (as measured by

t1/2) of the complex they form. Conserved cysteines

are colored red; residues of the BBXB motif in the

40s-loop are boxed; residues of CCL2 mutated to

structurally equivalent residues in CCL3 are colored

cyan. Down-pointing magenta triangles denote

CCL3 side chains beyond Ca that make direct

contact (<4 Å) with R17 and are conserved in both

R17-CCL3 complexes in the asymmetric unit of the

crystal. Additional residues that lose any solvent-

accessible surface area in either complex are

marked with open black triangles. Note that the re-

combinant CCL3 protein used for co-crystallization

has D26A mutation.

(C) SPR curves showing the effect of chemokine

mutations on binding to R17GAG2 coupled CM5

chip: wild-type mCCL2 (left), mCCL2L46R (right),

mCCL2 K47N (bottom left), and mCCL2L46R K47N

mutant (bottom right). The experimental curves

were globally fit using a 1:1 mass transport model

to determine the kinetic KD and half-life (t1/2) pre-

sented above each sensorgram. Values for KD are

means of three independent experiments where

KD = kd/ka and t1/2 = 0.693/kd.
shared by CCL2 and, likely, the additional CC and C chemo-

kines it binds.

R17 Binds Chemokines and Cell-Surface GAGs at Two
Distinct Sites
We previously reported that R17 contains two BBXB motifs

located at distal ends of its linear sequence that allow it to

interact with cell surfaces (Lubman et al., 2014). We hypothe-

sized that cell-surface binding will permit R17 to sequester che-

mokines locally, perhaps at the site of infection. Charge reversal

of either one of these motifs abrogated the ability of R17 to bind

to the surface of Chinese hamster ovary (CHO) cells but did not

compromise its ability to interact with chemokines (Lubman

et al., 2014). The crystal structure of R17 supports our initial ob-

servations and provides insight as to howGAG binding by R17 is

accomplished. Despite being far apart in the linear sequence, the
62 Structure 24, 57–69, January 5, 2016 ª2016 Elsevier Ltd All rights reserved
two BBXB motifs found on R17 are in

physical proximity to one another, coming

together to create a large positively

charged surface patch at the junction of

the NTD and CTD (Figure 1C). These

GAG binding determinants are located

more than 40 Å away from the chemokine

binding site on the opposite face of R17

(Figure 1D). Interestingly, no basic clus-
ters are located on the surface of M3 (Figure 2B). Mechanisti-

cally, these findings are in agreement that R17, but not M3,

can bind cell surfaces while simultaneously interacting with che-

mokines (Lubman et al., 2014).

Kinetically Stable R17 Interactions Are Imparted by
Chemokine 40s-Loop Residues
Kinetic analysis of R17 binding to different chemokines identified

two types of R17-chemokine interactions. Kinetically stable

complexes were formed with CCL3, CCL4, CCL5, CCL24,

and XCL1 (t1/2 > 1000 s), while significantly faster off rates

were observed for the binding of CCL2, CCL8, CCL9, and

CCL20 (Lubman et al., 2014). To address the structural basis

for these distinct kinetic off rates, we undertook a compar-

ative analysis of R17 binding chemokines in the context of our

R17-CCL3 structure (Figure 4A). The alignment of characterized



Figure 5. R17 Inhibits CCL2 Interaction with

Cell-Surface GAGs

(A) FACS analysis monitoring the effect of wild-type

R17, R17GAG1, and R17GAG2 on the interaction of

CCL2 with cell-surface GAGs as measured by

changes in mean florescence intensity. 50 nM bio-

tinylated CCL2 was added to CHOK1 cells in the

presence or absence of 100 nM R17GAG1 (orange

line), 100 nM R17GAG2 (red line) or 100 nM wild-type

R17 (blue line). Cell-surface bound CCL2 was

detected with streptavidin PE using FACSCalibur

(BD Biosciences) and data were analyzed with

FlowJo. Representative histogram plot shows inhi-

bition of CCL2-GAG interactions by R17GAG1 and

R17GAG2.

(B) R17 competes with soluble heparin sulfate for

chemokine binding. R17GAG1 and R17GAG2 were immobilized to a CM5 chip andmCCL2was injected at a concentration of 100 nM, alone or in combination with the

indicated increasing concentrations of heparin sulfate (0, 50 nM, 500 nM, 1 mM, 5 mM, and 10 mM). Error bars represent the SE of three independent experiments.
chemokines suggested to us that kinetic stability of the R17-

CCL3 complex might be regulated by basic residues in the che-

mokine 40s loop. If true, replacement of structurally equivalent

residues in CCL2 with residues found in CCL3’s 40s loop could

extend the kinetic half-life of the R17-CCL2 complex. To test

our hypothesis, we created a CCL2L46RK47N variant (Figure 4B)

and evaluated its binding to an R17-coated CM5 chip (Figure 4C,

bottom right). The surface plasmon resonance (SPR) binding

profile of the CCL2L46RK47N double mutant resembled that of

CCL3, characterized by an apparently slow kinetic on-rate and

a half-life exceeding 15 min (Lubman et al., 2014). To further

dissect the contribution of individual 40s-loop residues to com-

plex stability, we created two additional CCL2 variants:

CCL2L46R and CCL2K47N. We found that the CCL2L46R variant

has a 2-fold longer half-life compared with the wild-type CCL2-

R17 interaction (Figure 4C, top right), while the CCL2K47N mutant

forms a less stable complex with a t1/2 of only 5.5 s (Figure 4C,

bottom left). Thus, the single-site mutations only partially explain

the binding profile of the CCL2L46RK47N variant, which could be

stabilized by energetic coupling at the 40s-loop binding interface

(Lubman and Waksman, 2002).

R17 Can Inhibit Chemokine-GAG Interactions
We next sought to address the question of whether CCL2,

whose GAG binding site is localized outside of the BBXB motif

in the 40s loop, loses its ability to interact with GAGs when

bound to R17. The addition of wild-type R17 results in a dra-

matic increase in CCL2 staining of CHO cells due to the decoy

receptor’s ability to bind cell-surface GAGs and chemokines

simultaneously (Figure 5A) (Lubman et al., 2014). We therefore

mutated the two GAG binding sites on R17 and examined

whether our R17GAG1 and R17GAG2 variants (Lubman et al.,

2014) were capable of disrupting the binding of biotinylated

CCL2 to CHO cells (Figure 5). The addition of either GAG bind-

ing null R17 variant resulted in significantly decreased CCL2

staining. To further examine this issue, we designed an SPR-

based competition experiment whereby a fixed concentration

of CCL2 was complexed with varying amounts of heparin sul-

fate and flown over immobilized R17GAG1 or R17GAG2. We found

that addition of heparin sulfate to 100 nM of CCL2 blocked

R17GAG1 and R17GAG2 interactions in a concentration-depen-

dent manner, with 50% of binding disrupted using 50-fold
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excess of heparin sulfate. Together these experiments indicate

that R17 is capable of disrupting direct chemokine-GAG inter-

actions for chemokines such as CCL2 that employ determi-

nants outside the 40s loop.

DISCUSSION

Parallel Evolution of the R17 and M3 Chemokine Decoy
Receptors
With less than 8% sequence identity, the crystal structure of the

unligated R17 revealed unexpected structural similarity to MHV-

68 encoded M3 (Figure 2A). We thus proceeded to use the crys-

tal structures of M3 bound to CCL2 and XL1 (Alexander et al.,

2002; Alexander-Brett and Fremont, 2007) to assess the chemo-

kine binding site of R17. Two R17 variants were designed and

tested based on structurally equivalent chemokine binding re-

gions in M3, neither of which exhibited perturbed binding to

CCL2 or CCL3 (Figure S1B). We therefore determined the crystal

structure of R17 bound to CCL3, which revealed that the spatial

location of chemokine binding on R17 is completely distinct from

that of M3. In contrast to M3, where two chemokine binding

clefts are formed at the distal ends of an anti-parallel homodimer,

R17 engages chemokines as a monomer primarily using a BS

that is completely absent from M3 and, likely, the related M1

and M4 proteins encoded by MHV-68 as well (Alexander et al.,

2002; Clambey et al., 2000; Evans et al., 2006; O’Flaherty

et al., 2014). Interestingly, the R17 chemokine binding cleft is

located in a structurally analogous position as the M3 dimer

interface (Figure 2). Thus, despite a shared structural scaffold,

the capacity of these two herpesvirus proteins to disrupt che-

mokine function appears to have arisen independently. Never-

theless, the chemistry of each chemokine binding niche is

similar, with primarily hydrophobic residues packing against

the chemokine N loop and acidic residues poised to engage

basic chemokine regions.

Unifying Feature of Chemokine Recognition
Pathogens often employ a general strategy of molecular mimicry

to subvert host defense. To understand how unrelated proteins

encoded by distinct pathogens disrupt chemokine signaling,

we compared the recently solved crystal structures of vMIP-II/

CXCR4 and CX3CL1/US28 (Burg et al., 2015; Qin et al., 2015)
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Figure 7. ConservedRecognition of Chemo-

kine Invariant Disulfide

The invariant disulfide bond (Cys12-Cys50/51/52) and

flanking Cys11 of different chemokines are de-

picted in ball-and-stick representation with carbon

colored cyan, nitrogen blue, oxygen red, and sulfur

yellow. Decoy and signaling receptor residues that

engage the chemokine invariant disulfide are de-

picted with carbon green for R17 (PDB: 4ZLT), light

blue for M3 (PDB: 2NZ1), orange for vCCI (PDB:

2FFK), magenta for Evasin-1 (PDB: 3FPT), purple

for CXCR4 (PDB: 4RWS), and pink for US28 (PDB:

4XT3). Conserved hydrogen bonds made with

chemokine main chain atoms flanking the invariant

disulfide are represented by dotted yellow lines.
with CC chemokines bound to poxvirus vCCI (Zhang et al.,

2006), tick Evasin-1 (Dias et al., 2009), herpesvirus M3 (Alex-

ander et al., 2002; Alexander-Brett and Fremont, 2007), and

R17 (Figure 6). This comparative analysis of chemokine signaling

and secreted decoy receptors revealed one universal aspect of

recognition: the targeting of the invariant disulfide found in all

four chemokine classes. Indeed, a similar chemical strategy is

used by each chemokine binding protein to engage the disulfide

bridge and flankingmain chain. CXCR4, US28, M3, and Evasin-1

all use a Pro residue to contact the disulfide while R17 and vCCI

employ Ile. The backbone conformation surrounding the

invariant disulfide is also highly conserved in these structures,

where the main chain carbonyl of Cys11 serves as hydrogen

bond acceptor and the amide of Cys50, Cys51, or Cys52 serves

as a hydrogen bond donor. In addition, all of the receptors

employ an extended b strand to make these contacts, with all

but R17 oriented in an anti-parallel configuration. Thus, it ap-

pears that many pathogen-encoded chemokine decoys mimic

precisely the same structural and chemical environment as

GPCRs to engage chemokines. Since the invariant disulfide is

present in all four chemokine classes, this unifying aspect of che-

mokine recognition could potentially be exploited for the design

of small-molecule inhibitors.

Promiscuous versus Chaste Chemokine Engagement
The chemokine signaling network employs approximately 50

chemokines and 20 GPCRs, with chemokines activating a select

few receptors in a class-specific fashion. In contrast, many of the

characterized pathogen-encoded decoy receptors bind a broad

spectrum of different chemokines frommultiple chemokine fam-

ilies. For example, M3 is able to bind chemokines from all four

classes (van Berkel et al., 2000), R17 interacts with the CC and
Figure 6. Comparison of the Chemokine Binding by Four Pathogen-Derived and Two Host Receptors

Structures of R17 (PDB: 4ZLT), M3 (PDB: 2NZ1), vCCI (PDB: 2FFK), Evasin-1 (PDB: 3FPT), CXCR4 (PDB: 4RWS), and US28 (PDB: 4XT3) in complex with differen

chemokines were superimposed with all chemokines displayed in the same orientation. Displayed at far left are chemokine bound complexes where pathogen

derived decoys and GPCRs are shown in worm diagramwhile chemokines are shown in surface representation. Depicted in the middle are worm diagrams of the

complexes highlighting the chemokine fold and receptor contact regions. Diagrams on the right are shown to highlight chemokine surface regions engaged by

individual receptor determinants. Chemokine residues making direct contact (<4.0 Å) are labeled in magenta. Additional interfacial residues that lose solvent

accessible surface area in the complex are colored pink.
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C family of chemokines, and vCCI broadly

recognizes CC and some CXC chemo-

kines (Graham et al., 1997). The excep-
tions include the tick Evasins (Deruaz et al., 2008; Frauenschuh

et al., 2007) and HCMV-encoded pU21.5 (Wang et al., 2004

that exhibit chemokine-selective binding profiles. Structura

comparison of four pathogen-encoded chemokine decoys re-

veals that while they all extensively engage the chemokine N

loop, only Evasin-1 engages the N term of CCL3 (Figure 7)

Consistent with this observation, the N termini of chemokines

are thought to be responsible for specific receptor activation

(Clark-Lewis et al., 1995). Indeed, truncations or mutations in

the N termini of chemokines generally lead to a loss in agonis

activity, although receptor binding affinity can be maintained

(Pease et al., 1998). Thus, it appears that R17 along with M3

and vCCI achieve promiscuity by making extensive interactions

with the invariant disulfide and N-loop regions of chemokines

while the N-term region important for chemokine recepto

specificity is ignored. On the other hand, Evasin-1 exclusively in-

teracts with CCL3 and CCL4 perhaps by virtue of extensive

N-term engagement (Dias et al., 2009), a trait shared by GPCR

chemokine receptors (Burg et al., 2015; Qin et al., 2015).

Roles of GAG Binding Determinants
R17 broadly binds CC and C chemokines with nanomolar affin-

ities, but SPR studies indicate that only a subset (CCL3, CCL4

CCL5, CCL24, and XCL1) form kinetically stable complexes

with apparent half-lives exceeding 1 hr (Lubman et al., 2014)

While these chemokines serve to recruit a wide array of immune

cells during viral infection, what they share in common is a GAG

binding BBXB motif in their 40s loop. To examine the role o

these residues in R17 binding we created a CCL2 variant with

the same BBXB motif as found in the 40s loop of CCL3

(KRNR). Strikingly, the mutant CCL2 was endowed with an

extremely long half-life when bound to R17. Thus, R17 appears
t

-

-



to target chemokine 40s-loop BBXB motifs to drive extremely

stable complex formation.

Studies of MHV-68-encoded M3 indicate that it potently dis-

rupts chemokine-GAG interactions, and thereby decoy receptor

complexes are likely trafficked away from infected cells (Alex-

ander-Brett and Fremont, 2007). A unique functional element

of R17 is the capacity to engage cell-surface GAGs using two

of its own BBXB motifs positioned distal from the chemokine

binding site. There are no similar basic patches on the surface

of M3, and no functional evidence of M3 cell-surface interactions

has been reported. R17 is most likely positioned in the local

extracellular matrix during infection where it can sequester in-

flammatory chemokines, rendering them inactive. We anticipate

that fluid-phase chemokines would readily bind R17, while GAG

associated chemokines, such as CCL2, would likely need to

dissociate before R17 engagement. This unique functional attri-

bute of R17 provides a distinct immune evasion strategy that

may find therapeutic application in caseswhere localized disrup-

tion of chemokine signaling networks is preferred over systemic

disruption, such as allograft rejection (Proudfoot et al., 2015).

Conclusions
A recurrent theme among pathogens is the repurposing of struc-

tural scaffoldings to facilitate the evasion of host immune de-

fense. For example, viruses use the major histocompatibility

complex (MHC) fold to engage natural killer (NK) cell receptors

to protect infected cells from NK cell-mediated cytotoxicity

(Krmpotic et al., 2005). Still other viruses employ the MHC fold

to, for example, prevent NKG2D ligand-surface expression or

competitively block tumor necrosis factor ligand-receptor inter-

actions (Lodoen et al., 2004; Wang et al., 2012; Zhi et al., 2010).

Thus, it is not particularly surprising that RHVP employs a protein

of similar structure as MHV-68 M3 to block chemokine signaling

networks. What is surprising, however, is that R17 has in parallel

developed the capacity to sequester chemokines using determi-

nants completely distinct from those employed by M3.

EXPERIMENTAL PROCEDURES

Mammalian Production of RHVP R17 and R17GAG2

The cloning, expression, and purification of wild-type R17 and its variants has

been described in Lubman et al. (2014). For crystallization, we employed an

alternative version of the published protocol developed to minimize the

amount of N-linked carbohydrate (Chang et al., 2007). This involved expres-

sion of both R17 and R17GAG2mutant inmedium containing 1mMof the glyco-

sylation processing inhibitor kifunensine. The culture medium was collected

10 days after transfection and was purified using Ni-agarose beads (Qiagen).

The eluted protein was buffer exchanged into 50 mM HEPES (pH 7.5) and

600 mM NaCl, and incubated at room temperature overnight with EndoHf

(3000 U of EndoH for 1 mg of protein) (New England Biolabs). The digested ma-

terial was passed over an amylose column to remove the EndoHf/maltose-

binding protein fusion, followed by size-exclusion chromatography (SEC) on

a HiLoaD 26/60 Superdex 200pg column (GE Healthcare). For purification of

the wild-type R17, the NaCl concentration was maintained at 600 mM

throughout purification and crystallization. For the R17GAG2 variant, the NaCl

concentration was maintained at 150 mM for subsequent co-purification

with CCL3 (see below).

Escherichia coli Production of Murine CCL3(D26A)

The gene encoding the mature form of murine CCL3 with optimization for

E. coli codon usage was cloned into a pET28A vector (Novogen, EMD Biosci-

ences) using NheI and BamHI restriction sites. The D26A mutant was gener-
66 Structure 24, 57–69, January 5, 2016 ª2016 Elsevier Ltd All rights
ated by site-directed mutagenesis (Agilent Biotechnologies). The CCL3(D26A)

mutant was expressed in E. coli BL21(DE3) cells, and protein production was

induced using 1mM isopropyl b-D-1-thiogalactopyranoside. CCL3(D26A) par-

titioned into the inclusion body fraction and was refolded using the arginine

oxidative refolding method (Nelson et al., 2014). In brief, a 400-ml volume of

arginine refolding buffer (400 mM L-arginine, 100 mM Tris [pH 8.5], 5 mM

reduced glutathione, 0.5 mM oxidized glutathione, and 0.2 mM PMSF) was

prepared. Into this buffer, four injections of 500 ml of solubilized inclusion

body were made over the course of 2 hr (0, 30 min, 60 min, and 120 min).

The refolding buffer was then allowed to stir slowly overnight at 4�C. The
following day the protein was filtered, concentrated using a YM-10 (10-kDa

cutoff) filter membrane (Millipore) to a volume of 2 ml, and purified with SEC

using a High Load 16/60 Superdex S75 prep grade column (GE Healthcare).

Crystallization and Structure Determination of R17

R17 was prepared for crystallization by SEC purification in buffer containing

25 mM HEPES (pH 7.5), 600 mM NaCl, and 0.01% Na azide. R17 was then

concentrated to 22 mg/ml and used to set up crystallization trials by

hanging-drop vapor diffusion. Crystals of R17 were obtained in 18%–25%

polyethylene glycol (PEG) 550MME and 100 mM Tris-HCl (pH 8.5) in space

group P212121 (a = 69.561 Å, b = 75.835 Å, c = 106.985 Å) with one molecule

in the asymmetric unit. Crystals were soaked for up to 5 min into a solution

similar to the precipitant solution, but supplemented with 25–250 mM of KI.

Diffraction data for several iodide derivatives were collected at the Advanced

Light Source (ALS) beamline 4.2.2 (Lawrence Berkeley Laboratories) at a

wavelength of 1.77 Å (iodide edge) at 100 K with a CCD detector. 360� of

data were collected for all datasets to maximize the multiplicity of the data

(Cianci et al., 2008; Yogavel et al., 2007, 2009), which lowered the error in

the measurement of Bijvoet pairs and thereby increased the accuracy of the

anomalous signal (Schneider and Sheldrick, 2002). Individual iodide derivative

datasets were processed, indexed, and scaled using HKL3000 (Minor et al.,

2006). Anomalous signal from individual datasets was not sufficient for suc-

cessful structure determination. However, merging of two iodide derivative da-

tasets with the ratio of anomalous signal defined at 0.2 allowed SHELDX to find

14 iodide sites, and subsequent SAD phase calculation led to interpretable

experimental electron density maps. ARP/wARP was used to trace over

85% of the model into experimental density and an initial 2.7-Å model was

refined to Rwork = 37.16% and Rfree = 46.01%. The 2.7-Å model was used as

a search model for molecular replacement of the 1.9-Å native dataset

collected at Advanced Photon Source (APS) beamline 23-ID-D. After several

rounds of manual model building using Coot, Phenix (Adams et al., 2011)

was used to refine the R17 structure to a final Rwork of 18.4% and Rfree of

22.08%. The final R17 model contains mature residues 14–400, two Asn-

GlcNAc linkages, and 355 water molecules.

Crystallization and Structure Determination of the R17GAG2/CCL3

Complex

The mouse CCL3 variant (D26A) was produced in E. coli and harbors the mu-

tation D26A. The purification of the R17GAG2 variant is described in the previ-

ous section. The two proteins were mixed in a 1:5 molar ratio of R17 to CCL3.

The 1:1 complex was purified using SEC on the HiLoaD 26/60 Superdex 200pg

column (GE Healthcare). Crystals of the R17GAG2/CCL3 complex at 60 mg/ml

were grown using 22% PEG 3350 and 0.4 M Mg nitrate. Crystals of the com-

plex belong to the I222 space group, with two molecules of R17GAG2 and two

molecules of CCL3(D26A) in the asymmetric unit. Native data were collected at

the ALS beamline 4.2.2 (Lawrence Berkeley Laboratories) at a wavelength of

1 Å at 100 K with a CCD detector. The structure of R17 alone and human

CCL3 (PDB: 2X69) was used to solve the structure of the complex bymolecular

replacement using Phaser within Phenix (Adams et al., 2011). The final model

has an R value of 21.52% and Rfree of 27.40%. The refined atomic model of

R17GAG2/CCL3(D26A) comprises residues 18–400 chain A/chain B of R17

and residues 7–68 chain D/chain E of CCL3 along with two N-linked glycosyl-

ation sites for each R17 chain. Due to poor electron density, residues 249–254

of chain A and 247–254 of chain B were not included in the final model. All of

the structural analyses described were done on AD complex.

Flow Cytometry

To evaluate the effect of R17 and its variants on the ability of CCL2 to inter-

act with cell surfaces, chemokines and a negative control protein (MR1)
reserved



were non-specifically biotinylated using an EZ-biotin kit (Pierce) with a 2:1

biotin to protein molar ratio, followed by removal of unbound biotin (Thermo

Scientific Zebra Desalting Columns). CHOK1 and CHO745 cells were main-

tained in F-12 media supplemented with 10% fetal calf serum and 1003 peni-

cillin/streptomycin. On the day of the experiment, cells were washed once with

PBS, detached using 0.2% EDTA, and resuspended in staining buffer contain-

ing PBS, 1% BSA, and 2 mM EDTA. Biotinylated CCL2 was added to cells at a

final concentration of 50 nM in the presence or absence of R17GAG1 or

R17GAG2, incubated for 1 hr on ice, washed three times, and detected with

streptavidin PE (Life Technologies) using a FACSCalibur (BD Biosciences).

SPR Binding Analysis

SPR was used to directly measure the affinity and kinetics of chemokine bind-

ing by R17 and its variants, and is described in Lubman et al. (2014). In brief,

R17 was immobilized to on a CM5 chip (GE Healthcare) using standard amine

coupling chemistry (BIAcore Amine coupling kit) to a level of 200–500 response

units for kinetic binding analysis using a BIAcore T-100 biosensor (GE Health-

care). A control flow cell was prepared by coupling a non-chemokine binding

protein R7 or neutravidin to the chip at similar level.

Recombinant Chemokines

Mutagenesis of mouse CCL2 residues Leu46 to Arg and Lys47 to Asn was per-

formed using a Multi-Site Quick Change Mutagenesis Kit (Agilent Technolo-

gies) on the background of the wild-type mouse CCL2 and verified by DNA

sequencing. Murine CCL2, CCL2L46R, CCL2K47N, and CCL2L46R K47N were ex-

pressed in E. coli, refolded from inclusion bodies, and purified as previously

described (Nelson et al., 2014).
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