# Two algorithms for the Student-Project Allocation problem ${ }^{\star \pi}$ 

David J. Abraham ${ }^{\text {a, }, ~ \text {, Robert W. Irving }}{ }^{\text {b }}$, David F. Manlove ${ }^{\text {b, },{ }^{2}, 2}$<br>${ }^{\text {a }}$ Computer Science Department, Carnegie-Mellon University, 5000 Forbes Ave, Pittsburgh PA 15213-3890, USA<br>${ }^{\mathrm{b}}$ Department of Computing Science, University of Glasgow, Glasgow G12 8QQ, UK

Available online 27 April 2006


#### Abstract

We study the Student-Project Allocation problem (SPA), a generalisation of the classical Hospitals/Residents problem (HR). An instance of SPA involves a set of students, projects and lecturers. Each project is offered by a unique lecturer, and both projects and lecturers have capacity constraints. Students have preferences over projects, whilst lecturers have preferences over students. We present two optimal linear-time algorithms for allocating students to projects, subject to the preference and capacity constraints. In particular, each algorithm finds a stable matching of students to projects. Here, the concept of stability generalises the stability definition in the HR context. The stable matching produced by the first algorithm is simultaneously best-possible for all students, whilst the one produced by the second algorithm is simultaneously best-possible for all lecturers. We also prove some structural results concerning the set of stable matchings in a given instance of SPA. The SPA problem model that we consider is very general and has applications to a range of different contexts besides student-project allocation.


© 2006 Elsevier B.V. All rights reserved.
Keywords: Stable matching problem; Preference lists; Linear-time algorithm; Student-optimal; Lecturer-optimal

## 1. Introduction

In many university departments, students seek to undertake a project in a given field of speciality as part of the upper level of their degree programme. Typically a wide range of available projects is offered, and usually the total number of project places exceeds the number of students, to provide something of a choice. Also, typically each lecturer will offer a variety of projects, but does not necessarily expect that all will be taken up.

Each student has preferences over the available projects that he/she finds acceptable, whilst a lecturer will normally have preferences over the students that he/she is willing to supervise. There may also be upper bounds on the number of students that can be assigned to a particular project, and the number of students that a given lecturer is willing to

[^0]supervise. In this paper we consider the problem of allocating students to projects based on these preference lists and capacity constraints-the so-called Student-Project Allocation problem (SPA).

SPA is an example of a two-sided matching problem [1,24], a large and very general class of problems whose input includes a set of participants that can be partitioned into two disjoint sets $A$ and $B$ (in this case $A$ is the set of students and $B$ is the set of projects), and we seek to match members of $A$ to members of $B$, i.e. to find a subset of $A \times B$, subject to various criteria. These criteria usually involve capacity constraints, and/or preference lists, for example.

Both historical evidence (see e.g. [11, pp. 3-4], [19]) and game-theoretic analysis [22,24] indicate that participants involved in two-sided matching problems should not be allowed to construct an allocation by approaching one another directly and making ad hoc arrangements. Rather, the allocation process should be automated by means of a centralised matching scheme. Moreover, it has been convincingly argued [22] that, when preference lists exist on both sides, the key property that a matching constructed by such schemes should satisfy is that of stability. A formal definition of stability follows, but informally, a stable matching $M$ guarantees that no two participants who are not matched together in $M$ would rather be matched to one another than remain with their assignment in $M$. Such a pair of participants could come to a private arrangement that would undermine the integrity of the matching.

The National Resident Matching Program (NRMP) [18] in the US is perhaps the largest and best-known example of a centralised matching scheme. It has been in operation since 1952, and currently handles the allocation of some 30,000 graduating medical students, or residents, to their first hospital posts, based on the preferences of residents over available hospital posts, and the preferences of hospital consultants over residents. The NRMP employs at its heart an efficient algorithm that essentially solves a variant of the classical Hospitals/Residents problem (HR) [9,11]. The algorithm finds a stable matching of residents to hospitals that is resident-optimal, in that each resident obtains the best hospital that he/she could obtain in any stable matching.

There are many other examples of centralised matching schemes, both in educational and vocational contexts (e.g. allocating pupils to secondary schools in Singapore [25], school-leavers to universities in Spain [21] and trainee teachers to probationary posts in Scotland). Many university departments in particular seek to automate the allocation of students to projects $[2,4,26]$. However, as we discuss in greater detail later, an optimal linear-time algorithm for this setting cannot be obtained by simply reducing an instance of SPA to an instance of HR. Thus, a specialised algorithm is required for the SPA problem.

In this paper we present two linear-time algorithms for finding a stable matching, given an instance of SPA. The first algorithm is student-oriented, in that it finds the stable matching in which each student obtains the best project that he/she could obtain in any stable matching. The second algorithm is lecturer-oriented, in that it constructs the stable matching in which each lecturer has as good a set of students (in a precise sense, to be defined) as in any other stable matching. Our algorithms are applicable in any context that fits into the SPA model, for example where applicants seek posts at large organisations, each split into several departments.

As alluded to above, the centralised allocation of students to projects has been considered previously in the literature. Various models have been constructed that allow student preferences over projects, but do not permit lecturer preferences [2,20,26], so stability is not relevant in these contexts. However an automated system for allocating students to projects at the Department of Computer Science, University of York is described [4,14,27] which takes into account student preferences over projects and lecturer preferences over students. In this model, preference lists may include ties, each project has capacity 1 , and lecturer capacities are unbounded. Constraint programming techniques are utilised in order to find a stable matching with additional properties, such as balancing the supervision load among lecturers as evenly as possible. The underlying algorithms do not, in general, run in polynomial time.

The remainder of this paper is structured as follows. In Section 2, a formal definition of the SPA problem is given, followed by some consequences of this definition and a discussion of relationships between SPA and existing models in the literature. Then, in Section 3, the student-oriented algorithm for SPA is presented, together with correctness proofs and an analysis of its complexity. In Section 4 we present some properties of the set of stable matchings in a given SPA instance and consider the issue of load balancing students among lecturers. Then in Section 5, we give the lecturer-oriented algorithm, also establishing its correctness and time complexity. Finally, Section 6 contains a discussion of the SPA problem model considered in this paper, and also presents some open problems.

| Student preferences | Lecturer preferences |  |
| :--- | :--- | :--- |
| $s_{1}: p_{1} p_{7}$ | $l_{1}: s_{7} s_{4} s_{1} s_{3} s_{2} s_{5} s_{6}$ | $l_{1}$ offers $p_{1}, p_{2}, p_{3}$ |
| $s_{2}: p_{1} p_{2} p_{3} p_{4} p_{5} p_{6}$ | $l_{2}: s_{3} s_{2} s_{6} s_{7} s_{5}$ | $l_{2}$ offers $p_{4}, p_{5}, p_{6}$ |
| $s_{3}: p_{2} p_{1} p_{4}$ | $l_{3}: s_{1} s_{7}$ | $l_{3}$ offers $p_{7}, p_{8}$ |
| $s_{4}: p_{2}$ |  |  |
| $s_{5}: p_{1} p_{2} p_{3} p_{4}$ |  |  |
| $s_{6}: p_{2} p_{3} p_{4} p_{5} p_{6}$ | Project capacities: $c_{1}=2, c_{i}=1(2 \leqslant i \leqslant 8)$ |  |
| $s_{7}: p_{5} p_{3} p_{8}$ | Lecturer capacities: $d_{1}=3, d_{2}=2, d_{3}=2$ |  |

Fig. 1. An instance of the Student-Project Allocation problem.

## 2. The Student-Project Allocation problem model

### 2.1. Definition of the Student-Project Allocation problem

An instance of the Student-Project Allocation problem (SPA) may be defined as follows. Let $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$ be a set of students, let $P=\left\{p_{1}, p_{2}, \ldots, p_{m}\right\}$ be a set of projects, and let $L=\left\{l_{1}, l_{2}, \ldots, l_{q}\right\}$ be a set of lecturers. Each student $s_{i}$ supplies a preference list, ranking a subset of $P$ in strict order. If project $p_{j}$ appears on $s_{i}$ 's preference list, we say that $s_{i}$ finds $p_{j}$ acceptable. Denote by $A_{i}$ the set of projects that $s_{i}$ finds acceptable.

Each lecturer $l_{k}$ offers a non-empty set of projects $P_{k}$, where $P_{1}, P_{2}, \ldots, P_{q}$ partitions $P$. Let $B_{k}=\left\{s_{i} \in S: P_{k} \cap\right.$ $\left.A_{i} \neq \emptyset\right\}$ (i.e. $B_{k}$ is the set of students who find acceptable a project offered by $l_{k}$ ). Lecturer $l_{k}$ supplies a preference list, denoted by $\mathcal{L}_{k}$, ranking $B_{k}$ in strict order. For any $p_{j} \in P_{k}$, we denote by $\mathcal{L}_{k}^{j}$ the projected preference list of $l_{k}$ for $p_{j}$-this is obtained from $\mathcal{L}_{k}$ by deleting those students who do not find $p_{j}$ acceptable. In this way, the ranking of $\mathcal{L}_{k}^{j}$ is inherited from $\mathcal{L}_{k}$. Also, $l_{k}$ has a capacity constraint $d_{k}$, indicating the maximum number of students that he/she is willing to supervise. Similarly, each project $p_{j}$ carries a capacity constraint $c_{j}$, indicating the maximum number of students that could be assigned to $p_{j}$. We assume that $\max \left\{c_{j}: p_{j} \in P_{k}\right\} \leqslant d_{k} \leqslant \sum\left\{c_{j}: p_{j} \in P_{k}\right\}$.

An example SPA instance is shown in Fig. 1. Here the set of students is $S=\left\{s_{1}, s_{2}, \ldots, s_{7}\right\}$, the set of projects is $P=\left\{p_{1}, p_{2}, \ldots, p_{8}\right\}$ and the set of lecturers is $L=\left\{l_{1}, l_{2}, l_{3}\right\}$. As an example, the projected preference list of $l_{1}$ for $p_{1}$ comprises $s_{1}, s_{3}, s_{2}, s_{5}$, ranked in that order.

An assignment $M$ is a subset of $S \times P$ such that:

1. $\left(s_{i}, p_{j}\right) \in M$ implies that $p_{j} \in A_{i}$ (i.e. $s_{i}$ finds $p_{j}$ acceptable).
2. For each student $s_{i} \in S,\left|\left\{\left(s_{i}, p_{j}\right) \in M: p_{j} \in P\right\}\right| \leqslant 1$.

If $\left(s_{i}, p_{j}\right) \in M$, we say that $s_{i}$ is assigned to $p_{j}$, and $p_{j}$ is assigned $s_{i}$. Hence Condition 2 states that each student is assigned to at most one project in $M$. For notational convenience, if $s_{i}$ is assigned in $M$ to $p_{j}$, we may also say that $s_{i}$ is assigned to $l_{k}$, and $l_{k}$ is assigned $s_{i}$, where $p_{j} \in P_{k}$.

For any student $s_{i} \in S$, if $s_{i}$ is assigned in $M$ to some project $p_{j}$, we let $M\left(s_{i}\right)$ denote $p_{j}$; otherwise we say that $s_{i}$ is unassigned in $M$. For any project $p_{j} \in P$, we denote by $M\left(p_{j}\right)$ the set of students assigned to $p_{j}$ in $M$. Project $p_{j}$ is under-subscribed, full or over-subscribed according as $\left|M\left(p_{j}\right)\right|$ is less than, equal to, or greater than $c_{j}$, respectively. Similarly, for any lecturer $l_{k} \in L$, we denote by $M\left(l_{k}\right)$ the set of students assigned to $l_{k}$ in $M$. Lecturer $l_{k}$ is under-subscribed, full or over-subscribed according as $\left|M\left(l_{k}\right)\right|$ is less than, equal to, or greater than $d_{k}$ respectively.

A matching $M$ is an assignment such that:
3. For each project $p_{j} \in P,\left|M\left(p_{j}\right)\right| \leqslant c_{j}$.
4. For each lecturer $l_{k} \in L,\left|M\left(l_{k}\right)\right| \leqslant d_{k}$.

Hence Condition 3 stipulates that $p_{j}$ is assigned at most $c_{j}$ students in $M$, whilst Condition 4 requires that $l_{k}$ is assigned at most $d_{k}$ students in $M$.

A (student, project) pair $\left(s_{i}, p_{j}\right) \in(S \times P) \backslash M$ blocks a matching $M$ if:

1. $p_{j} \in A_{i}$ (i.e. $s_{i}$ finds $p_{j}$ acceptable).
2. Either $s_{i}$ is unassigned in $M$, or $s_{i}$ prefers $p_{j}$ to $M\left(s_{i}\right)$.
3. Either
(a) $p_{j}$ is under-subscribed and $l_{k}$ is under-subscribed, or
(b) $p_{j}$ is under-subscribed, $l_{k}$ is full, and either $s_{i} \in M\left(l_{k}\right)$ or $l_{k}$ prefers $s_{i}$ to the worst student in $M\left(l_{k}\right)$, or
(c) $p_{j}$ is full and $l_{k}$ prefers $s_{i}$ to the worst student in $M\left(p_{j}\right)$,
where $l_{k}$ is the lecturer who offers $p_{j}$.
We call $\left(s_{i}, p_{j}\right)$ a blocking pair of $M$. A matching is stable if it admits no blocking pair.

### 2.2. Consequences of the SPA problem definition

Our blocking pair definition in this paper attempts to encapsulate the various practical scenarios in which $s_{i}$ and $l_{k}$ could both simultaneously improve relative to $M$ by permitting an assignment between $s_{i}$ and $p_{j}$. For this to occur, $s_{i}$ must find $p_{j}$ acceptable (Condition 1), and either be unassigned in $M$ or prefer $p_{j}$ to $M\left(s_{i}\right)$ (Condition 2). We now consider $l_{k}$ 's perspective. In Condition 3(a), $l_{k}$ will co-operate if there was already a free place for $s_{i}$. Similarly, in Condition 3(b), if $l_{k}$ is full and $s_{i}$ was already assigned in $M$ to a project offered by $l_{k}$, then $l_{k}$ agrees to the switch since the total number of students assigned to $l_{k}$ remains the same, and $p_{j}$ has room for $s_{i}$. Alternatively, if $l_{k}$ is full and $s_{i}$ was not already assigned in $M$ to a project offered by $l_{k}$, then $l_{k}$ cannot take on $s_{i}$ without first rejecting some student assigned to $l_{k}$. Lecturer $l_{k}$ would only agree to this switch if he/she prefers $s_{i}$ to the worst student assigned to $l_{k}$ in $M$, and project $p_{j}$ has room for $s_{i}$. Finally, we consider Condition 3(c). If $p_{j}$ is full, then $l_{k}$ cannot take on $s_{i}$ without first rejecting some student assigned to $p_{j}$. Lecturer $l_{k}$ would only agree to this switch if he/she prefers $s_{i}$ to the worst student assigned to $p_{j}$ in $M$. Notice that if $s_{i}$ was already assigned in $M$ to a project offered by $l_{k}$, then the number of students assigned to $l_{k}$ would decrease by 1 after the switch; we revisit this point in Section 6.1.

We remark that HR is a special case of SPA in which $m=q, c_{j}=d_{j}$ and $P_{j}=\left\{p_{j}\right\}(1 \leqslant j \leqslant m)$. Essentially the projects and lecturers are indistinguishable in this case. In the HR setting, lecturers/projects are referred to as hospitals, and students are referred to as residents. Linear-time algorithms are known for finding a stable matching, given an instance of HR. The resident-oriented algorithm [11, Section 1.6.3] finds the resident-optimal stable matching, in which each assigned resident is assigned to the best hospital that he/she could obtain in any stable matching, whilst each unassigned resident is unassigned in every stable matching. On the other hand, the hospital-oriented algorithm [11, Section 1.6.2] finds the hospital-optimal stable matching $M$. Such a matching $M$ satisfies the property that there is no stable matching $M^{\prime}$ and hospital $h$ for which $h$ prefers a resident in $M^{\prime}(h) \backslash M(h)$ to the worst resident in $M(h)$.

The set of stable matchings in a given instance of HR satisfy several interesting properties that together form the Rural Hospitals Theorem [11, Theorem 1.6.4].

Theorem 2.1 (Rural Hospitals). For a given instance of HR, the following holds.
(i) Each hospital is assigned the same number of residents in all stable matchings [10].
(ii) Exactly the same set of residents are unassigned in all stable matchings [10].
(iii) Any hospital that is under-subscribed in one stable matching is assigned precisely the same set of residents in all stable matchings [23].

In Section 4, we generalise parts of the Rural Hospitals Theorem to the SPA case, although as we demonstrate, not all of the above properties carry over to SPA.

It is worth drawing attention to a special case of HR (and hence of SPA). This is the classical Stable Marriage problem with Incomplete lists (SMI), where $c_{j}=1(1 \leqslant j \leqslant m)$ [9], [11, Section 1.4.2]. In this setting, residents are referred to as men and hospitals are referred to as women. There exists a reduction from HR to SMI using the method of 'cloning' hospitals. That is, replace each hospital $h_{j}$, of capacity $c_{j}$, with $c_{j}$ women, denoted by $h_{j}^{1}, h_{j}^{2}, \ldots, h_{j}^{c_{j}}$. The preference list of $h_{j}^{k}$ is identical to the preference list of $h_{j}$. Any occurrence of $h_{j}$ in a resident's preference list should be replaced by $h_{j}^{1}, h_{j}^{2}, \ldots, h_{j}^{c_{j}}$ in that order. Hence in theory, the Gale/Shapley algorithm for SMI [11, Section 1.4.2] could be used to solve an HR instance. However in practice direct algorithms are applied to HR instances [11, Section 1.6], because the cloning technique increases the number of hospitals (women) in a given HR instance by a potentially significant factor of $C / m$, where $C=\sum_{j=1}^{m} c_{j}$.

On the other hand there is no straightforward reduction involving cloning from an instance of SPA to an instance of HR, due to the projects and lecturers being distinct entities, each having capacity constraints. Even if such a reduction were possible, again it would typically increase the number of lecturers (hospitals) by a significant factor. This justifies the approach of this paper, in which we consider direct algorithms for SPA.

The two algorithms that we present are generalisations of the resident-oriented and hospital-oriented algorithms for HR. The running time of each algorithm is $O(\lambda)$, where $\lambda$ is the total length of the input preference lists, and hence is linear in the size of the problem instance. This time complexity is optimal, since the Stable Marriage problem (SM)-the special case of SMI in which $m=n$ and each man finds every woman acceptable-is a special case of SPA. A lower bound of $\Omega(\lambda)$ is known for SM [17], and hence this also applies to SPA.

### 2.3. Related models in the literature

We now consider similarities between the SPA problem model and existing models for two-sided matching problems that have been proposed in the literature.

Recently Fleiner [6,7] developed a matroid-theoretic characterisation of stable matchings in bipartite matching models. This is based on imposing two ordered partition matroids, $\mathcal{M}_{A}, \mathcal{M}_{B}$, one on each side of a bipartite graph $G$. A matching is an independent set that is common to both $\mathcal{M}_{A}$ and $\mathcal{M}_{B}$. Moreover a stable matching corresponds to an $\mathcal{M}_{A} \mathcal{M}_{B}$-kernel, and it is shown that such a structure is bound to exist [6,7]. Fleiner [8] noted that the SPA problem model may be included in this characterisation by imposing a student matroid as a partition matroid, and a lecturer matroid as the truncation of a direct sum of uniform matroids (thus ensuring that all project and lecturer capacities are satisfied). Here the vertices on one side of $G$ correspond to students, the vertices on the other side correspond to lecturers, and the edges correspond to acceptable (student, project) pairs (so that $G$ is in general a multigraph).

Also Eguchi et al. [5] formulated a model for two-sided matching problems in which preferences are based on $\mathrm{M}^{\natural}$-concave functions, which arise in discrete convex analysis. They gave an algorithm for finding a stable matching in such a context, however the algorithm does not, in general, run in polynomial time for an arbitrary $\mathrm{M}^{\natural}$-concave function. Their model includes the possibility of capacities and multiple partners; moreover since linear orders gives rise to $M^{\natural}$-concave functions, it follows that the model of Eguchi et al. [5] includes SPA as a special case.

Our approach in this paper is to give specialised linear-time algorithms for SPA. As the algorithms are described directly in terms of the SPA problem model, they should be more intuitive and easier to implement in practical applications. Also, some structural and optimality properties of the SPA problem model are derived (see Theorems 3.5, 4.1 and 5.5 ) which do not necessarily hold in the more general models mentioned.

## 3. Student-oriented algorithm for SPA

### 3.1. Overview of Algorithm SPA-student

We now present our first algorithm for SPA, starting with an overview of its operation. The student-oriented algorithm for an instance of SPA involves a sequence of apply operations (i.e. students apply to projects). An apply operation is similar to a proposal in the context of the Gale/Shapley algorithm for SM [9]. These operations lead to provisional assignments between students, projects and lecturers; such assignments can subsequently be broken during the algorithm's execution. Also, throughout the execution, entries are possibly deleted from the preference lists of students, and from the projected preference lists of lecturers. We use the abbreviation delete ( $s_{i}, p_{j}$ ) to denote the operation of deleting $p_{j}$ from the preference list of $s_{i}$, and deleting $s_{i}$ from $\mathcal{L}_{k}^{j}$, where $l_{k}$ is the lecturer who offers $p_{j}$.

Initially all students are free, and all projects and lecturers are totally unsubscribed. As long as there is some student $s_{i}$ who is free and who has a non-empty list, $s_{i}$ applies to the first project $p_{j}$ on his/her list. We let $l_{k}$ be the lecturer who offers $p_{j}$. Immediately, $s_{i}$ becomes provisionally assigned to $p_{j}$ (and to $l_{k}$ ).

If $p_{j}$ is over-subscribed, then $l_{k}$ rejects the worst student $s_{r}$ assigned to $p_{j}$. The pair $\left(s_{r}, p_{j}\right)$ will be deleted by the subsequent conditional that tests for $p_{j}$ being full. Similarly, if $l_{k}$ is over-subscribed, then $l_{k}$ rejects his/her worst assigned student $s_{r}$. The pair $\left(s_{r}, p_{t}\right)$ will be deleted by either of the two subsequent conditionals, where $p_{t}$ was the project most recently assigned $s_{r}$.

Regardless of whether any rejections occurred as a result of the two situations described in the previous paragraph, we have two further (possibly non-disjoint) cases in which deletions may occur. If $p_{j}$ is full, we let $s_{r}$ be the worst

```
SPA-student(I) {
    assign each student to be free;
    assign each project and lecturer to be totally unsubscribed;
    while (some student si}\mathrm{ is free and si has a non-empty list) {
        p
        l}k= lecturer who offers p; 
        /* si applies to }\mp@subsup{p}{j}{*/
        provisionally assign si}\mathrm{ to }\mp@subsup{p}{j}{};\quad/*\mathrm{ and to }\mp@subsup{l}{k}{*}
        if ( }\mp@subsup{p}{j}{}\mathrm{ is over-subscribed) {
            sr}=\mathrm{ worst student assigned to }\mp@subsup{p}{j}{};\quad/*\mathrm{ according to }\mp@subsup{\mathcal{L}}{k}{j}*
            break provisional assignment between sr and p}\mp@subsup{p}{j}{}\mathrm{ ;
        }
        else if (l}\mp@subsup{l}{k}{}\mathrm{ is over-subscribed) {
            sr}=\mathrm{ worst student assigned to l}\mp@subsup{l}{k}{}
            pt = project assigned sr
            break provisional assignment between sr and p}\mp@subsup{p}{t}{}\mathrm{ ;
        }
        if ( }\mp@subsup{p}{j}{}\mathrm{ is full) {
            sr}=\mathrm{ worst student assigned to }\mp@subsup{p}{j}{};\quad/*\mathrm{ according to }\mp@subsup{\mathcal{L}}{k}{j}*
            for (each successor st of sr on }\mp@subsup{\mathcal{L}}{k}{j}\mathrm{ )
                delete ( }\mp@subsup{s}{t}{},\mp@subsup{p}{j}{})\mathrm{ ;
        }
        if (l}\mp@subsup{l}{k}{}\mathrm{ is full) {
            sr}=\mathrm{ worst student assigned to l}\mp@subsup{l}{k}{}
            for (each successor st of sr on }\mp@subsup{\mathcal{L}}{k}{}\mathrm{ )
                for (each project pu
                    delete ( }\mp@subsup{s}{t}{},\mp@subsup{p}{u}{})\mathrm{ ;
        }
    }
    return {(si, p
}
```

Fig. 2. Pseudocode of Algorithm SPA-student.
student assigned to $p_{j}$ (according to $\mathcal{L}_{k}^{j}$ ) and delete $\left(s_{t}, p_{j}\right)$ for each successor $s_{t}$ of $s_{r}$ on $\mathcal{L}_{k}^{j}$. Similarly if $l_{k}$ is full, we let $s_{r}$ be the worst student assigned to $l_{k}$, and delete $\left(s_{t}, p_{u}\right)$ for each successor $s_{t}$ of $s_{r}$ on $\mathcal{L}_{k}$, and for each project $p_{u}$ offered by $l_{k}$ that $s_{t}$ finds acceptable.

The algorithm is described in pseudocode form in Fig. 2 as Algorithm SPA-student. We will prove that, once the main loop terminates, the assigned pairs constitute the stable matching that is simultaneously best-possible for all students.

### 3.2. Correctness of Algorithm SPA-student

The correctness of the algorithm, together with the optimality property of the constructed matching, may be established by the following sequence of lemmas.

## Lemma 3.1. Algorithm SPA-student terminates with a matching.

Proof. Each loop iteration involves a free student $s_{i}$ applying to the first project $p_{j}$ on his/her preference list. No student can apply to the same project twice, since, for example, once $s_{i}$ is freed from $p_{j}$, the pair $\left(s_{i}, p_{j}\right)$ is deleted. The total number of iterations is therefore bounded by the overall length of the student preference lists. Finally, it is clear that, once the main loop terminates, the assigned pairs constitute a matching.

Lemma 3.2. No pair deleted during an execution of Algorithm SPA-student can block the constructed matching.
Proof. Let $E$ be an arbitrary execution of the algorithm in which some pair $\left(s_{i}, p_{j}\right)$ is deleted. Suppose for a contradiction that $\left(s_{i}, p_{j}\right)$ blocks $M$, the matching generated by $E$. Now $\left(s_{i}, p_{j}\right)$ is deleted in $E$ because either (i) $p_{j}$
becomes full, or (ii) $l_{k}$ becomes full, where $l_{k}$ is the lecturer offering $p_{j}$. We will show that in Case (i), ( $s_{i}, p_{j}$ ) fails (a), (b) and (c) of Condition 3 of a blocking pair. Case (ii) is easier: $\left(s_{i}, p_{j}\right)$ cannot block $M$, since once full, a lecturer never becomes under-subscribed, and is only ever assigned more preferable students. We now deal with Case (i), and further consider the three sub-cases of Condition 3 of a blocking pair.
(a) $p_{j}$ is under-subscribed and $l_{k}$ is under-subscribed.

Condition (a) requires that $p_{j}$ subsequently becomes under-subscribed-something that can only happen if $l_{k}$ becomes over-subscribed and one of his/her assignments involving $p_{j}$ is broken. However, it is not possible for $l_{k}$ to subsequently become under-subscribed, contradicting the first clause of Condition (a).
(b) $p_{j}$ is under-subscribed, $l_{k}$ is full, and either $s_{i} \in M\left(l_{k}\right)$ or $l_{k}$ prefers $s_{i}$ to the worst student $s^{\prime}$ in $M\left(l_{k}\right)$.

Condition (b) requires that $p_{j}$ becomes under-subscribed at some point after the deletion of ( $s_{i}, p_{j}$ ). Let ( $s, p_{j}$ ) be the pair whose deletion by the over-subscribed $l_{k}$ results in $p_{j}$ becoming under-subscribed. Now $l_{k}$ prefers $s$ to $s_{i}$, and by Condition (b), $l_{k}$ either prefers $s_{i}$ to $s^{\prime}$, or $s_{i}=s^{\prime}$. It follows then that $l_{k}$ prefers $s$ to $s^{\prime}$, and so, immediately after $\left(s, p_{j}\right)$ is deleted, the algorithm will ensure that $\left(s^{\prime}, M\left(s^{\prime}\right)\right)$ is also deleted. This is a contradiction, since $M$ is a matching of undeleted pairs.
(c) $p_{j}$ is full and $l_{k}$ prefers $s_{i}$ to the worst student $s^{\prime}$ in $M\left(p_{j}\right)$.

Condition (c) gives us that $l_{k}$ prefers $s_{i}$ to $s^{\prime}$, and since $\left(s_{i}, p_{j}\right)$ is deleted, $\left(s^{\prime}, p_{j}\right)$ must also be deleted. This is a contradiction, since $M$ is a matching of undeleted pairs.

## Lemma 3.3. Algorithm SPA-student generates a stable matching.

Proof. By Lemma 3.1, let $M$ be the matching generated by an arbitrary execution $E$ of the algorithm, and let ( $s_{i}, p_{j}$ ) be any pair blocking $M$. We will show that ( $s_{i}, p_{j}$ ) must be deleted in $E$, thereby contradicting Lemma 3.2. For, suppose not. Then $s_{i}$ must be assigned to some project $M\left(s_{i}\right) \neq p_{j}$, for otherwise $s_{i}$ is free with a non-empty preference list (containing $p_{j}$ ), thereby contradicting the fact that the algorithm terminates. Now when $s_{i}$ applies to $M\left(s_{i}\right), M\left(s_{i}\right)$ is the first project on his/her list. Hence, $\left(s_{i}, p_{j}\right)$ must be deleted, since for $\left(s_{i}, p_{j}\right)$ to block $M, s_{i}$ must prefer $p_{j}$ to $M\left(s_{i}\right)$.

For a given instance of SPA, we define a stable pair to be a (student, project) pair that belongs to some stable matching. The next lemma shows that Algorithm SPA-student never deletes a stable pair.

Lemma 3.4. No stable pair is deleted during an execution of Algorithm SPA-student.
Proof. Suppose for a contradiction that $\left(s_{i}, p_{j}\right)$ is the first stable pair deleted during an arbitrary execution $E$ of the algorithm. Let $M$ be the matching immediately after the deletion in $E$, and let $M^{\prime}$ be any stable matching containing $\left(s_{i}, p_{j}\right)$. Now $\left(s_{i}, p_{j}\right)$ is deleted in $E$ because either (i) $p_{j}$ becomes full, or (ii) $l_{k}$ becomes full, where $l_{k}$ is the lecturer offering $p_{j}$. We consider each case in turn.
(i) Suppose that $\left(s_{i}, p_{j}\right)$ is deleted because $p_{j}$ becomes full during $E$. Immediately after the deletion, $p_{j}$ is full, and $l_{k}$ prefers all students in $M\left(p_{j}\right)$ to $s_{i}$. Now, $s_{i} \in M^{\prime}\left(p_{j}\right) \backslash M\left(p_{j}\right)$, and since $p_{j}$ is full in $M$, there must be some $s \in M\left(p_{j}\right) \backslash M^{\prime}\left(p_{j}\right)$. We will show that ( $s, p_{j}$ ) forms a blocking pair, contradicting the stability of $M^{\prime}$. Firstly, since $\left(s_{i}, p_{j}\right)$ is the first stable pair deleted in $E, s$ prefers $p_{j}$ to any of his/her stable partners (except possibly for $p_{j}$ itself). Additionally, since $\left(s_{i}, p_{j}\right) \in M^{\prime}$ and $l_{k}$ prefers $s$ to $s_{i}$, it follows that $l_{k}$ prefers $s$ to both the worst student in $M^{\prime}\left(p_{j}\right)$ and $M^{\prime}\left(l_{k}\right)$. Clearly then, for any combination of $l_{k}$ and $p_{j}$ being full or undersubscribed, $\left(s, p_{j}\right)$ satisfies all the conditions to block $M^{\prime}$.
(ii) Suppose that $\left(s_{i}, p_{j}\right)$ is deleted because $l_{k}$ becomes full during $E$. Immediately after the deletion, $l_{k}$ is full, and $l_{k}$ prefers all students in $M\left(l_{k}\right)$ to $s_{i}$. We consider two cases: $\left|M^{\prime}\left(p_{j}\right)\right|>\left|M\left(p_{j}\right)\right|$ and $\left|M^{\prime}\left(p_{j}\right)\right| \leqslant\left|M\left(p_{j}\right)\right|$.
Suppose firstly that $\left|M^{\prime}\left(p_{j}\right)\right|>\left|M\left(p_{j}\right)\right|$. Since $l_{k}$ is full in $M$, there must be some project $p \in P_{k} \backslash\left\{p_{j}\right\}$ such that $\left|M^{\prime}(p)\right|<|M(p)|$. We remark that $p$ is therefore under-subscribed in $M^{\prime}$. Now let $s$ be any student in $M(p) \backslash M^{\prime}(p)$. Since $\left(s_{i}, p_{j}\right)$ is the first stable pair deleted, $s$ prefers $p$ to any of his/her stable partners (except possibly for $p$ itself). Also, $l_{k}$ prefers $s$ to $s_{i}$, and hence to the worst student in $M^{\prime}\left(l_{k}\right)$. So, in either case that $l_{k}$ is full or under-subscribed, $(s, p)$ blocks $M^{\prime}$.

Now suppose that $\left|M^{\prime}\left(p_{j}\right)\right| \leqslant\left|M\left(p_{j}\right)\right|$. Then since $\left(s_{i}, p_{j}\right) \notin M$, there is some $s \neq s_{i} \in M\left(p_{j}\right) \backslash M^{\prime}\left(p_{j}\right)$. Now $p_{j}$ is under-subscribed in $M$, for otherwise ( $s_{i}, p_{j}$ ) is deleted because $p_{j}$ becomes full, contradicting the assumption that deletion occurs because $l_{k}$ becomes full. Therefore, $p_{j}$ is under-subscribed in $M^{\prime}$. As above, $s$ prefers $p_{j}$ to any of his/her stable partners (except possibly for $p_{j}$ itself), since ( $s_{i}, p_{j}$ ) is the first stable pair deleted. Also, $l_{k}$ prefers $s$ to $s_{i}$, and hence to the worst student in $M^{\prime}\left(l_{k}\right)$. So, in either case that $l_{k}$ is full or under-subscribed, $\left(s, p_{j}\right)$ blocks $M^{\prime}$.

The following theorem collects together Lemmas 3.1-3.4.
Theorem 3.5. For a given instance of SPA, any execution of Algorithm SPA-student constructs the stable matching in which each assigned student is assigned to the best project that he/she could obtain in any stable matching, whilst each unassigned student is unassigned in any stable matching.

Proof. By Lemma 3.3, let $M$ be the stable matching generated by an arbitrary execution $E$ of the algorithm. In $M$, each student is assigned to the first project on his/her reduced preference list, if any. Also, by Lemma 3.4, no stable pair is deleted during $E$. It follows then that in $M$, each assigned student is assigned to the best project that he/she could obtain in any stable matching, whilst any unassigned student is unassigned in any stable matching.

Given the optimality property established by Theorem 3.5, we define the stable matching returned by Algorithm SPA-student to be the student-optimal stable matching. For example, in the SPA instance given by Fig. 1, the studentoptimal stable matching is $\left\{\left(s_{1}, p_{1}\right),\left(s_{2}, p_{5}\right),\left(s_{3}, p_{4}\right),\left(s_{4}, p_{2}\right),\left(s_{7}, p_{3}\right)\right\}$.

In the next subsection, we show how to implement Algorithm SPA-student so that it runs in linear time.

### 3.3. Analysis of Algorithm SPA-student

The algorithm's time complexity depends on how efficiently we can execute 'apply' operations and deletions, each of which occur at most once for any (student, project) pair. It turns out that both operations can be implemented to run in constant time, giving an overall time complexity of $\Theta(\lambda)$, where $\lambda$ is the total length of all the preference lists. We briefly outline the non-trivial aspects of such an implementation.

For each student $s_{i}$, build an array, $\operatorname{rank}_{s_{i}}$, where $\operatorname{rank}_{s_{i}}\left(p_{j}\right)$ is the index of project $p_{j}$ in $s_{i}$ 's preference list. Represent $s_{i}$ 's preference list by embedding doubly linked lists in an array, preference $s_{s_{i}}$. For each project $p_{j} \in A_{i}$, preference $_{s_{i}}\left(\operatorname{rank}_{s_{i}}\left(p_{j}\right)\right)$ stores the list node containing $p_{j}$. This node contains two next pointers (and two previous pointers)-one to the next project in $s_{i}$ 's list (after deletions, this project may not be located at the next array position), and another pointer to the next project $p^{\prime}$ in $s_{i}^{\prime}$ 's list, where $p^{\prime}$ and $p_{j}$ are both offered by the same lecturer. Construct this list by traversing through $s_{i}$ 's preference list, using a temporary array to record the last project in the list offered by each lecturer. Use virtual initialisation (described in [3, p. 149]) for these arrays, since the overall $\Theta(n q)$ initialisation cost may be super-linear in $\lambda$. Clearly, using these data structures, we can find and delete a project from a given student in constant time, as well as efficiently delete all projects offered by a given lecturer.

Represent each lecturer $l_{k}$ 's preference list $\mathcal{L}_{k}$ by an array preference $_{l_{k}}$, with an additional pointer, last $l_{k}$. Initially, last $_{l_{k}}$ stores the index of the last position in preference $_{l_{k}}$. However, once $l_{k}$ is full, make last $_{l_{k}}$ equivalent to $l_{k}$ 's worst assigned student through the following method. Perform a backward linear traversal through preference $e_{k}$, starting at last $_{l_{k}}$, and continuing until $l_{k}$ 's worst assigned student is encountered (each student stores a pointer to their assigned project, or a special null value if unassigned). All but the last student on this traversal must be deleted, and so the cost of the traversal may be attributed to the cost of the deletions in the student preference lists.

For each project $p_{j}$ offered by $l_{k}$, construct a preference array corresponding to $\mathcal{L}_{k}^{j}$. These project preference arrays are used in much the same way as the lecturer preference array, with one exception. When a lecturer $l_{k}$ becomes oversubscribed, the algorithm frees $l_{k}$ 's worst assigned student $s_{i}$ and breaks the assignment of $s_{i}$ to some project $p_{j}$. If $p_{j}$ was full, then it is now under-subscribed, and last $p_{j}$ is no longer equivalent to $p_{j}$ 's worst assigned student. Rather than update last $_{p_{j}}$ immediately, which could be expensive, wait until $p_{j}$ is full again. The update then involves the same backward linear traversal described above for $l_{k}$, although we must be careful not to delete pairs already deleted in one of $l_{k}$ 's traversals. Since we only visit a student at most twice during these backward traversals, once for the lecturer and once for the project, the asymptotic running time remains linear.

The implementation issues discussed above lead to the following conclusion.

Theorem 3.6. Algorithm SPA-student may be implemented to run in $\Theta(\lambda)$ time and $\mathrm{O}(m n)$ space, where $\lambda$ is the total length of the preference lists, and $n, m$ are the numbers of students and projects respectively, in a given SPA instance.

## 4. Properties of stable matchings in an instance of SPA

In this section we consider properties of the set of stable matchings in a given instance of SPA. We begin by proving a result similar to Theorem 2.1, the Rural Hospitals Theorem for HR, in the context of a given SPA instance.

Theorem 4.1. For a given SPA instance, the following holds.
(i) Each lecturer has the same number of students in all stable matchings.
(ii) Exactly the same students are unassigned in all stable matchings.
(iii) A project offered by an under-subscribed lecturer has the same number of students in all stable matchings.

Proof. Let $M$ be the student-optimal stable matching, and let $M^{\prime}$ be any other stable matching.
(i) Suppose $\left|M^{\prime}\left(l_{k}\right)\right|<\left|M\left(l_{k}\right)\right|$ for some lecturer $l_{k}$. There must be some project $p_{j} \in P_{k}$ such that $\left|M^{\prime}\left(p_{j}\right)\right|<$ $\left|M\left(p_{j}\right)\right|$. So, $l_{k}$ and $p_{j}$ are both under-subscribed in $M^{\prime}$. Also, there exists $s_{i} \in M\left(p_{j}\right) \backslash M^{\prime}\left(p_{j}\right)$ who is unassigned in $M^{\prime}$ or prefers $p_{j}$ to $M^{\prime}\left(s_{i}\right)$, since $M$ is student-optimal. Hence, $\left(s_{i}, p_{j}\right)$ blocks $M^{\prime}$, and, therefore, $\left|M^{\prime}\left(l_{k}\right)\right| \geqslant$ $\left|M\left(l_{k}\right)\right|$ for all $l_{k}$. It follows that $\left|M^{\prime}\right| \geqslant|M|$. However, $\left|M^{\prime}\right| \leqslant|M|$, since $M$ is student-optimal and therefore matches the maximum number of students of any stable matching. Hence $\left|M^{\prime}\right|=|M|$, and for all $l_{k},\left|M^{\prime}\left(l_{k}\right)\right|=$ $\left|M\left(l_{k}\right)\right|$.
(ii) Let $U$ and $U^{\prime}$ be the sets of students unassigned in $M$ and $M^{\prime}$ respectively. By Theorem $3.5, U \subseteq U^{\prime}$, since no student unassigned in $M$ can be assigned in $M^{\prime}$. But $|U|=\left|U^{\prime}\right|$, by (i), and so it follows that $U=U^{\prime}$.
(iii) Let $l_{k}$ be any lecturer who is under-subscribed in $M^{\prime}$. Suppose there is some project $p_{j} \in P_{k}$ such that $\left|M^{\prime}\left(p_{j}\right)\right|<$ $\left|M\left(p_{j}\right)\right|$. Then $p_{j}$ is under-subscribed in $M^{\prime}$, and there exists $s_{i} \in M\left(p_{j}\right) \backslash M^{\prime}\left(p_{j}\right)$ who is unassigned in $M^{\prime}$ or prefers $p_{j}$ to $M^{\prime}\left(s_{i}\right)$. Hence, $\left(s_{i}, p_{j}\right)$ blocks $M^{\prime}$, and, therefore, $\left|M^{\prime}\left(p_{j}\right)\right| \geqslant\left|M\left(p_{j}\right)\right|$. Now, by (i) above, $\left|M^{\prime}\left(l_{k}\right)\right|=\left|M\left(l_{k}\right)\right|$, and so $\left|M^{\prime}\left(p_{j}\right)\right|=\left|M\left(p_{j}\right)\right|$ for all $p_{j} \in P_{k}$.

It turns out that two key properties of the Rural Hospitals Theorem for HR have no analogue for SPA. Firstly, we give an instance of SPA illustrating that a lecturer who is under-subscribed in one stable matching need not be assigned the same set of students in all stable matchings. Note that the Rural Hospitals Theorem for HR states that any hospital that is under-subscribed in one stable matching is assigned the same set of residents in all stable matchings. However consider the SPA instance $I_{1}$ shown in Fig. 3. Instance $I_{1}$ admits the stable matchings $M=\left\{\left(s_{1}, p_{3}\right),\left(s_{2}, p_{1}\right)\right\}$ and $M^{\prime}=\left\{\left(s_{1}, p_{1}\right),\left(s_{2}, p_{3}\right)\right\}$. Lecturer $l_{1}$ is under-subscribed in $M$ (and hence in $M^{\prime}$ by Part (i) of Theorem 4.1). However $M\left(l_{1}\right)=\left\{s_{2}\right\}$ whilst $M^{\prime}\left(l_{1}\right)=\left\{s_{1}\right\}$.

Secondly, we give an instance of SPA illustrating that a project offered by a lecturer who is full in one stable matching need not be assigned the same number of students in all stable matchings. Note that the Rural Hospitals Theorem for HR states that each hospital is assigned the same number of residents in all stable matchings. However consider the SPA instance $I_{2}$ shown in Fig. 4. Instance $I_{2}$ admits the stable matchings $M=\left\{\left(s_{1}, p_{1}\right),\left(s_{2}, p_{1}\right),\left(s_{3}, p_{3}\right),\left(s_{4}, p_{3}\right)\right\}$ and $M^{\prime}=\left\{\left(s_{1}, p_{3}\right),\left(s_{2}, p_{4}\right),\left(s_{3}, p_{1}\right),\left(s_{4}, p_{2}\right)\right\}$. Lecturer $l_{1}$ is full in $M$ (and hence in $M^{\prime}$ by Part (i) of Theorem 4.1). However $M\left(p_{1}\right)=\left\{s_{1}, s_{2}\right\}$ whilst $M^{\prime}\left(p_{1}\right)=\left\{s_{3}\right\}$.

| Student preferences | Lecturer preferences |  |
| :--- | :--- | :--- |
| $s_{1}: p_{3} p_{1} p_{2} p_{4}$ | $l_{1}: s_{1} s_{2}$ | $l_{1}$ offers $p_{1}, p_{2}$ |
| $s_{2}: p_{1} p_{3} p_{2} p_{4}$ | $l_{2}: s_{2} s_{1}$ | $l_{2}$ offers $p_{3}, p_{4}$ |
|  |  |  |
| Project capacities: $c_{i}=1(1 \leqslant i \leqslant 4)$ |  |  |
| Lecturer capacities: $d_{i}=2(1 \leqslant i \leqslant 2)$ |  |  |

Fig. 3. Instance $I_{1}$ of the Student-Project Allocation problem.

| Student preferences | Lecturer preferences |  |
| :--- | :--- | :--- |
| $s_{1}: p_{1} p_{3} p_{2} p_{4}$ | $l_{1}: s_{3} s_{4} s_{1} s_{2}$ | $l_{1}$ offers $p_{1}, p_{2}$ |
| $s_{2}: p_{1} p_{4} p_{3} p_{2}$ | $l_{2}: s_{1} s_{2} s_{3} s_{4}$ | $l_{2}$ offers $p_{3}, p_{4}$ |
| $s_{3}: p_{3} p_{1} p_{2} p_{4}$ |  |  |
| $s_{4}: p_{3} p_{2} p_{1} p_{4}$ |  |  |
|  |  |  |
| Project capacities: $c_{1}=2, c_{2}=1, c_{3}=2, c_{4}=1$ |  |  |
| Lecturer capacities: $d_{1}=2, d_{2}=2$ |  |  |

Fig. 4. Instance $I_{2}$ of the Student-Project Allocation problem.
Finally we consider the issue of load balancing project supervision among lecturers. Theorem 4.1(i) might seem to imply that this issue is not relevant in our model. However load balancing can be achieved if each $l_{k} \in L$ is constrained (for example by the Head of Department) to set $d_{k}=\left\lceil\frac{n}{q}\right\rceil$ (recall our assumption from Section 2 that $\left.\sum\left\{c_{j}: p_{j} \in P_{k}\right\} \geqslant d_{k}\right)$. Once Algorithm SPA-student has been run, the matched students would be removed, any unmatched student would be invited to submit a longer preference list chosen from the remaining under-subscribed projects, and the capacities of the under-subscribed projects and lecturers would be suitably adjusted. Then a "second round" of the algorithm could be used to assign the remaining students, ensuring that the students are distributed equitably among the lecturers.

## 5. Lecturer-oriented algorithm for SPA

### 5.1. Overview of Algorithm SPA-lecturer

We now present the lecturer-oriented counterpart of Algorithm SPA-student. The lecturer-oriented algorithm for an instance of SPA begins with the empty assignment, in which all students are free, and every project and lecturer is totally unsubscribed. The algorithm then enters a loop, each iteration of which involves an under-subscribed lecturer $l_{k}$ offering a project $p_{j} \in P_{k}$ to a student $s_{i}$. Student $s_{i}$ must be the first student on $l_{k}$ 's list who is currently free or prefers an under-subscribed project in $P_{k}$ to his/her current provisional assignment. Additionally, $p_{j}$ must be the first such under-subscribed project from $P_{k}$ on $s_{i}$ 's preference list. This offer is always accepted, and after breaking any existing assignment involving $s_{i}, s_{i}$ is provisionally assigned to $p_{j}$ and $l_{k}$. Following this assignment, any pair ( $s_{i}, p$ ), where $s_{i}$ prefers $p_{j}$ to $p$ is deleted, which means that $p$ is removed from $s_{i}$ 's preference list, and $s_{i}$ is removed from the projected preference list of $l_{r}$ for $p$, where $l_{r}$ is the lecturer who offers $p$. The algorithm continues in this loop until no such $l_{k}, p_{j}$ and $s_{i}$ can be found.

```
SPA-lecturer ( \(I\) ) \{
    assign each student, project and lecturer to be free;
    while (some lecturer \(l_{k}\) is under-subscribed and
        there is some (student, project) pair \(\left(s_{i}, p_{j}\right)\) where
        \(s_{i}\) is not provisionally assigned to \(p_{j}\) and
        \(p_{j} \in P_{k}\) is under-subscribed and \(s_{i} \in \mathcal{L}_{k}^{j}\) )
    \(\{\)
        \(s_{i}=\) first such student on \(l_{k}\) 's list;
        \(p_{j}=\) first such project on \(s_{i}\) 's list;
        if ( \(s_{i}\) is provisionally assigned to some project \(p\) )
            break the provisional assignment between \(s_{i}\) and \(p\);
        \(/ * l_{k}\) offers \(p_{j}\) to \(s_{i} * /\)
        provisionally assign \(s_{i}\) to \(p_{j} ; / *\) and to \(l_{k}^{* /}\)
        for each successor \(p\) of \(p_{j}\) on \(s_{i}\) 's list
            delete \(\left(s_{i}, p\right)\);
    \}
    return \(\left\{\left(s_{i}, p_{j}\right) \in S \times P: s_{i}\right.\) is provisionally assigned to \(\left.p_{j}\right\} ;\)
\}
```

Fig. 5. Pseudocode of Algorithm SPA-lecturer.

The algorithm is described in pseudocode form in Fig. 5 as Algorithm SPA-lecturer. We will prove that, once the main loop terminates, the assigned pairs constitute the stable matching that is simultaneously best-possible for all lecturers.

### 5.2. Correctness of Algorithm SPA-lecturer

The correctness of the algorithm, together with the optimality property of the constructed matching, may be established by the following sequence of lemmas.

## Lemma 5.1. Algorithm SPA-lecturer terminates with a matching.

Proof. Each loop iteration involves a provisional assignment: either the first assignment for a student, or an assignment that the student prefers to his/her previous assignment. Therefore, the number of iterations is bounded by the total length of the student preference lists, which is linear in the size of the input. Finally, it is clear that, once the main loop terminates, the assigned pairs constitute a matching.

Lemma 5.2. No pair deleted during an execution of Algorithm SPA-lecturer can block the constructed matching.
Proof. Let $E$ be an arbitrary execution of the algorithm in which some pair $\left(s_{i}, p_{j}\right)$ is deleted. Suppose for a contradiction that $\left(s_{i}, p_{j}\right)$ blocks $M$, the matching generated by $E$. Now $\left(s_{i}, p_{j}\right)$ is deleted because $s_{i}$ is provisionally assigned to some project $p$, where $s_{i}$ prefers $p$ to $p_{j}$. On subsequent iterations, $s_{i}$ can only improve his/her assignment, and so, by transitivity, $s_{i}$ prefers his/her final assignment to $p_{j}$. Therefore, ( $s_{i}, p_{j}$ ) cannot form a blocking pair.

## Lemma 5.3. A matching generated by Algorithm SPA-lecturer is stable.

Proof. By Lemma 5.1, let $M$ be the matching generated by an arbitrary execution $E$ of the algorithm. Suppose for a contradiction that $M$ is blocked by the pair $\left(s_{i}, p_{j}\right)$, where $l_{k}$ is the lecturer offering $p_{j}$. By Lemma 5.2, ( $\left.s_{i}, p_{j}\right)$ is not deleted, and so, upon termination of $E, s_{i} \in \mathcal{L}_{k}^{j}$. Also, we have that ( $s_{i}, p_{j}$ ) must satisfy (a), (b) or (c) of Condition 3 for a blocking pair. We show a contradiction in each case.
(a) $p_{j}$ is under-subscribed and $l_{k}$ is under-subscribed.

Student $s_{i}$, project $p_{j}$ and lecturer $l_{k}$ satisfy the loop condition, contradicting the termination property established in Lemma 5.1.
(b) $p_{j}$ is under-subscribed, $l_{k}$ is full, and either $s_{i} \in M\left(l_{k}\right)$ or $l_{k}$ prefers $s_{i}$ to the worst student $s^{\prime}$ in $M\left(l_{k}\right)$.

Let $T$ be the point in the execution immediately after $s^{\prime}$ obtains his/her final assignment $p^{\prime} \in P_{k}$, and all subsequent deletions involving $s^{\prime}$ have occurred. Let $M^{\prime}$ be the matching at time $T$, and let $B=\left\{s^{\prime}\right\} \cup\{s \in$ $B_{k}: l_{k}$ prefers $s$ to $\left.s^{\prime}\right\}$. Define also the following set:

$$
F=\left\{p \in P_{k}: \begin{array}{l}
\text { there exists a student } s_{l} \in B \text { such that } p \in A_{l}, \\
\left(s_{l}, p\right) \notin M^{\prime} \text { and }\left(s_{l}, p\right) \text { is not deleted before time } T
\end{array}\right\} .
$$

The following properties of $F$ must hold.

1. Any assignment in $M$ involving $l_{k}$ that was made after time $T$ must involve a project from $F$, since $s^{\prime}$ is the worst student in $M\left(l_{k}\right)$.
2. Every $p \in F$ is full at time $T$, otherwise $l_{k}$ would not have offered $p^{\prime}$ to $s^{\prime}$.
3. $p_{j} \in F$, since $s_{i} \in B$ by Condition (b), and $\left(s_{i}, p_{j}\right)$ is not deleted by Lemma 5.2 , which implies that $\left(s_{i}, p_{j}\right) \notin$ $M^{\prime}$, since $\left(s_{i}, p_{j}\right) \notin M$.
Now since $p_{j} \in F$, the number of students assigned to $l_{k}$ in $M^{\prime}$ is given by

$$
\begin{equation*}
\left|M^{\prime}\left(l_{k}\right)\right|=\sum_{p_{f} \in F \backslash\left\{p_{j}\right\}}\left|M^{\prime}\left(p_{f}\right)\right|+\left|M^{\prime}\left(p_{j}\right)\right|+\sum_{p_{g} \in P_{k} \backslash F}\left|M^{\prime}\left(p_{g}\right)\right| \leqslant d_{k} . \tag{1}
\end{equation*}
$$

Similarly, the number of students assigned to $l_{k}$ in $M$ is given by

$$
\left|M\left(l_{k}\right)\right|=\sum_{p_{f} \in F \backslash\left\{p_{j}\right\}}\left|M\left(p_{f}\right)\right|+\left|M\left(p_{j}\right)\right|+\sum_{p_{g} \in P_{k} \backslash F}\left|M\left(p_{g}\right)\right| .
$$

Now, since all assignments in $M$ involving $l_{k}$ that were made after time $T$ only involve projects from $F$ (Property 1) and all projects in $F$ are full in $M^{\prime}$ (Property 2), we have that

$$
\left|M\left(l_{k}\right)\right| \leqslant \sum_{p_{f} \in F \backslash\left\{p_{j}\right\}}\left|M^{\prime}\left(p_{f}\right)\right|+\left|M\left(p_{j}\right)\right|+\sum_{p_{g} \in P_{k} \backslash F}\left|M^{\prime}\left(p_{g}\right)\right| .
$$

Finally, we are given that $p_{j}$ is under-subscribed at the termination of $E$ (Condition (b)). Therefore

$$
\left|M\left(l_{k}\right)\right|<\sum_{p_{f} \in F \backslash\left\{p_{j}\right\}}\left|M^{\prime}\left(p_{f}\right)\right|+\left|M^{\prime}\left(p_{j}\right)\right|+\sum_{p_{g} \in P_{k} \backslash F}\left|M^{\prime}\left(p_{g}\right)\right|=\left|M^{\prime}\left(l_{k}\right)\right| \leqslant d_{k}
$$

by Eq. (1). So, $l_{k}$ is under-subscribed at the termination of $E$, contradicting Condition (b).
(c) $p_{j}$ is full and $l_{k}$ prefers $s_{i}$ to the worst student $s^{\prime}$ assigned to $p_{j}$.

We have that $l_{k}$ prefers $s_{i}$ to $s^{\prime}$, and so at the time $l_{k}$ offered $p_{j}$ to $s^{\prime},\left(s_{i}, p_{j}\right)$ must have been deleted (otherwise $l_{k}$ would have offered $p_{j}$ to $s_{i}$ ). This is a contradiction, since by Lemma 5.2, $\left(s_{i}, p_{j}\right)$ blocks $M$ only if it is not deleted.

Lemma 5.4. No stable pair is deleted during an execution of Algorithm SPA-lecturer.
Proof. Suppose, for a contradiction, that $\left(s_{i}, p_{j}\right)$ is the first stable pair deleted during an arbitrary execution $E$ of the algorithm. Let $M$ be a stable matching containing $\left(s_{i}, p_{j}\right)$. The deletion of $\left(s_{i}, p_{j}\right)$ during $E$ occurs because $s_{i}$ is provisionally assigned to a project $p^{\prime}$, where $s_{i}$ prefers $p^{\prime}$ to $p_{j}$. Let $l^{\prime}$ be the lecturer offering $p^{\prime}$, and let $c^{\prime}$ and $d^{\prime}$ be the capacities of $p^{\prime}$ and $l^{\prime}$ respectively.

The number of stable pairs $\left(s^{\prime}, p^{\prime}\right)$ for which $l^{\prime}$ prefers $s^{\prime}$ to $s_{i}$ must be less than $c^{\prime}$, for otherwise, one of these pairs must be deleted before $s_{i}$ is assigned to $p^{\prime}$ during $E$, contradicting the assumption that ( $s_{i}, p_{j}$ ) is the first stable pair deleted in $E$. Therefore in $M$, since $\left(s_{i}, p^{\prime}\right) \notin M$, either (i) $p^{\prime}$ is under-subscribed, or (ii) $p^{\prime}$ is full and assigned a student inferior to $s_{i}$.

We will prove that $\left(s_{i}, p^{\prime}\right)$ blocks $M$. Firstly, we have that $s_{i}$ prefers $p^{\prime}$ to $p_{j}$, and so $\left(s_{i}, p^{\prime}\right)$ satisfies Conditions 1 and 2 of a blocking pair. It remains to show that ( $s_{i}, p^{\prime}$ ) satisfies Condition 3(a), (b) or (c) of a blocking pair. If (ii) above holds, then ( $s_{i}, p^{\prime}$ ) satisfies Condition 3(c). Otherwise, (i) holds, and $p^{\prime}$ is under-subscribed in $M$.

If $l^{\prime}$ is under-subscribed in $M$, then ( $s_{i}, p^{\prime}$ ) satisfies Condition 3(a). Otherwise $l^{\prime}$ is full in $M$, and the only way $\left(s_{i}, p^{\prime}\right)$ cannot satisfy Condition $3(\mathrm{~b})$ is if $l^{\prime}$ is assigned $d^{\prime}$ students in $M$, each of whom he/she prefers to $s_{i}$. We will show a contradiction for this case.

Since $M$ is a stable matching, each of these $d^{\prime}$ assignments forms a stable pair. Now, for $l^{\prime}$ to offer $p^{\prime}$ to $s_{i}$ in $E$, only $0 \leqslant z<d^{\prime}$ of these stable pairs are assigned (since $l^{\prime}$ must be under-subscribed to make an offer). However, none of the $d^{\prime}$ stable pairs is deleted before the offer to $s_{i}$ in $E$, for otherwise $\left(s_{i}, p_{j}\right)$ is not the first stable pair deleted. So, it must be the case that for the $d^{\prime}-z$ unassigned stable pairs in $E$, each of the projects in these pairs is full (otherwise, the next offer from $l^{\prime}$ in $E$ would involve one of the unassigned stable pairs, not $s_{i}$ and $p^{\prime}$ ). But then $l^{\prime}$ is full when the offer of $p^{\prime}$ is made to $s_{i}$ in $E$, giving the required contradiction.

In the Hospitals/Residents problem, the hospital-oriented algorithm generates a stable matching $M$ that is unequivocally optimal for the hospitals-as mentioned in Section $2.2, M$ satisfies the property that there is no stable matching $M^{\prime}$ and hospital $h$ for which $h$ prefers a resident in $M^{\prime}(h) \backslash M(h)$ to the worst resident in $M(h)$. On the other hand, $M$ is the worst possible stable matching for the residents-no stable matching assigns any resident to a worse hospital.

In our context, the stable matching produced by Algorithm SPA-lecturer is again unequivocally student-pessimal. However, the optimality situation is a little different. It can again be viewed as lecturer-optimal in a precise, if somewhat less emphatic sense.

In the example instance of Fig. 6, the matching $M=\left\{\left(s_{1}, p_{1}\right),\left(s_{2}, p_{3}\right),\left(s_{3}, p_{2}\right),\left(s_{4}, p_{4}\right)\right\}$ is produced by an execution of Algorithm SPA-lecturer. However the matching $M^{\prime}=\left\{\left(s_{1}, p_{3}\right),\left(s_{2}, p_{1}\right),\left(s_{3}, p_{4}\right),\left(s_{4}, p_{2}\right)\right\}$ is also stable. In

| Student preferences | Lecturer preferences |  |  |  |
| :--- | :--- | :--- | :---: | :---: |
| $s_{1}: p_{3} p_{1}$ | $l_{1}: s_{1} s_{2} s_{3} s_{4}$ | $l_{1}$ offers $p_{1}, p_{2}$ |  |  |
| $s_{2}: p_{1} p_{3}$ | $l_{2}: s_{2} s_{1} s_{4} s_{3}$ | $l_{2}$ offers $p_{3}, p_{4}$ |  |  |
| $s_{3}: p_{4} p_{2}$ | Project capacities: $c_{i}=1(1 \leqslant i \leqslant 4)$ |  |  |  |
| $s_{4}: p_{2} p_{4}$ | Lecturer capacities: $d_{i}=2(1 \leqslant i \leqslant 2)$ |  |  |  |

Fig. 6. A SPA instance to illustrate that lecturer optimality differs from that in HR.
$M^{\prime}$, each lecturer is assigned a student whom he/she prefers to one of the students whom he/she is assigned in $M$. Hence it is not the case that, in $M$, either lecturer is assigned the best two students that he/she can be assigned in any stable matching.

The somewhat weaker form of optimality that applies in this context can be described as follows. Let $M$ and $M^{\prime}$ be two stable matchings for a given instance of SPA. By Theorem 4.1, we know that $|M|=\left|M^{\prime}\right|$ and $\left|M\left(l_{k}\right)\right|=\left|M^{\prime}\left(l_{k}\right)\right|$. For a given lecturer $l_{k}$ who is assigned different sets of students in $M$ and $M^{\prime}$, let

$$
M\left(l_{k}\right) \backslash M^{\prime}\left(l_{k}\right)=\left\{s_{1}, \ldots, s_{r}\right\}
$$

and

$$
M^{\prime}\left(l_{k}\right) \backslash M\left(l_{k}\right)=\left\{s_{1}^{\prime}, \ldots, s_{r}^{\prime}\right\},
$$

where, in each case, the students are enumerated in the order in which they appear in $\mathcal{L}_{k}$. If $l_{k}$ prefers $s_{i}$ to $s_{i}^{\prime}$ for all $i$ ( $1 \leqslant i \leqslant r$ ) we say that $l_{k}$ prefers $M$ to $M^{\prime}$. Alternatively, and equivalently, $l_{k}$ prefers $M$ to $M^{\prime}$ if there is a one-to-one mapping $f$ from $M^{\prime}\left(l_{k}\right) \backslash M\left(l_{k}\right)$ to $M\left(l_{k}\right) \backslash M^{\prime}\left(l_{k}\right)$ with the property that $l_{k}$ prefers $f(s)$ to $s$ for all $s$.

The following theorem summarises the key properties of the stable matching resulting from any execution of Algorithm SPA-lecturer.

Theorem 5.5. For a given instance of SPA, any execution of Algorithm SPA-lecturer constructs the stable matching $M$ satisfying the following properties.
(i) Each student is unassigned or is assigned to the worst project he/she has in any stable matching.
(ii) Each project $p_{j}$ is assigned the first $x_{j}$ students not deleted from the projected preference list for $p_{j}$ (where $x_{j}$ is an integer independent of execution).
(iii) Each lecturer prefers $M$ to any stable matching in which he/she has a different set of assigned students.

## Proof.

(i) Let $s_{i}$ be any student assigned in $M$. Algorithm SPA-lecturer deletes all successors of $M\left(s_{i}\right)$ from $s_{i}$ 's preference list. Now, by Lemma 5.4, no stable pair is deleted, and so $s_{i}$ can have no worse partner than $M\left(s_{i}\right)$ in any stable matching. Hence, each student is either unassigned in $M$, and therefore in any stable matching (Theorem 4.1), or assigned to the worst project that he/she has in any stable matching.
(ii) Suppose there is some (student, project) pair $\left(s_{i}, p_{j}\right) \notin M$, such that $s_{i}$ is not deleted from $\mathcal{L}_{k}^{j}$, where $l_{k}$ is the lecturer offering $p_{j}$, and $l_{k}$ prefers $s_{i}$ to the worst student $s^{\prime}$ in $M\left(p_{j}\right)$. Since ( $\left.s_{i}, p_{j}\right)$ is not deleted in $E$, $s_{i}$ is either unassigned in $M$, or prefers $p_{j}$ to $M\left(s_{i}\right)$. So, $\left(s_{i}, p_{j}\right)$ is a blocking pair, contradicting the stability of $M$.
(iii) Let $M^{\prime}$ be any other stable matching, and let $l_{k}$ be an arbitrary lecturer who is assigned different sets of students in $M$ and $M^{\prime}$. We construct a one-to-one mapping $f$ from $M^{\prime}\left(l_{k}\right) \backslash M\left(l_{k}\right)$ to $M\left(l_{k}\right) \backslash M^{\prime}\left(l_{k}\right)$ with the required property.

Define a student $s \in M^{\prime}\left(l_{k}\right) \backslash M\left(l_{k}\right)$ to be a dominated student in $\mathcal{L}_{k}$ if $l_{k}$ prefers every student in $M\left(l_{k}\right)$ to $s$. For each such student $s$ we have a free choice for $f(s)$. So we can complete the one-to-one mapping arbitrarily by dealing with these students once $f$ has been defined for the other students in $M^{\prime}\left(l_{k}\right) \backslash M\left(l_{k}\right)$.

So let $s_{i_{1}}$ be a student in $M^{\prime}\left(l_{k}\right) \backslash M\left(l_{k}\right)$ who is preferred by $l_{k}$ to at least one of the students in $M\left(l_{k}\right)$, and suppose that $\left(s_{i_{1}}, p_{j_{1}}\right) \in M^{\prime}$, where $l_{k}$ offers $p_{j_{1}}$. By part (i) above, $s_{i_{1}}$ prefers $p_{j_{1}}$ to the project to which he/she is assigned in $M$. So to avoid $\left(s_{i_{1}}, p_{j_{1}}\right)$ being a blocking pair for $M$, either

- $p_{j_{1}}$ is fully subscribed in $M$ with students whom $l_{k}$ prefers to $s_{i_{1}}$; let $s_{i_{2}}$ be such a student who is in $M\left(p_{j_{1}}\right) \backslash$ $M^{\prime}\left(p_{j_{1}}\right)$; or
- $p_{j_{1}}$ is under-subscribed in $M$ but $l_{k}$ is fully subscribed in $M$ with students preferable to $s_{i_{1}}$.

However, we may reject the second possibility in view of our assumption that $s_{i_{1}}$ is not dominated in $\mathcal{L}_{k}$, so we can consider the student $s_{i_{2}}$.
If $s_{i_{2}} \notin M^{\prime}\left(l_{k}\right)$ we let $f\left(s_{i_{1}}\right)=s_{i_{2}}$. Otherwise, by (i) above, there is a project $p_{j_{2}}$ offered by $l_{k}$ such that $\left(s_{i_{2}}, p_{j_{2}}\right) \in$ $M^{\prime} \backslash M$, where $s_{i_{2}}$ prefers $p_{j_{2}}$ to $p_{j_{1}}$. To avoid ( $s_{i_{2}}, p_{j_{2}}$ ) being a blocking pair for $M, p_{j_{2}}$ must be fully subscribed in $M$ with students whom $l_{k}$ prefers to $s_{i_{2}}$; let $s_{i_{3}}$ be such a student who is in $M\left(p_{j_{2}}\right) \backslash M^{\prime}\left(p_{j_{2}}\right)$. (Note that, since $l_{k}$ prefers $s_{i_{2}}$ to $s_{i_{1}}$, and therefore cannot prefer all the students in $M\left(l_{k}\right)$ to $s_{i_{2}}$, we may again ignore the other possibility.)
If $s_{i_{3}} \notin M^{\prime}\left(l_{k}\right)$ we let $f\left(s_{i_{1}}\right)=s_{i_{3}}$. Otherwise we continue in this way to generate a sequence $s_{i_{4}}, \ldots, s_{i_{t}}$ of students, each member of which is preferred by $l_{k}$ to its predecessor. Since the number of students is finite, this sequence must terminate with a student $s_{i_{t}} \in M\left(l_{k}\right) \backslash M^{\prime}\left(l_{k}\right)$ such that $l_{k}$ prefers $s_{i_{t}}$ to $s_{i_{1}}$, and we set $f\left(s_{i_{1}}\right)=s_{i_{t}}$.
The sequence $s_{i_{1}}, \ldots, s_{i_{t}}$ is such that

- $s_{i_{1}} \in M^{\prime}\left(l_{k}\right) \backslash M\left(l_{k}\right)$
- $s_{i_{r}} \in M^{\prime}\left(l_{k}\right) \cap M\left(l_{k}\right)$ for $1<r<t$
- $s_{i_{t}} \in M\left(l_{k}\right) \backslash M^{\prime}\left(l_{k}\right)$
- $l_{k}$ prefers $s_{i_{r}}$ to $s_{i_{r-1}}$ for $1<r \leqslant t$.

Additionally, we need to ensure that, if the same project occurs in the sequences originating with more than one of the students in $M^{\prime}\left(l_{k}\right) \backslash M\left(l_{k}\right)$, we can choose a unique student matched to that project in $M^{\prime} \backslash M$ on each occasion. For, suppose $p_{x}$ is such a project that arises $r$ times from pairs $\left(s_{u_{1}}, p_{x}\right), \ldots,\left(s_{u_{r}}, p_{x}\right) \in M^{\prime} \backslash M$. So, arguing as before, $p_{x}$ must be fully subscribed in $M$ with students whom $l_{k}$ prefers to all of $s_{u_{1}}, \ldots, s_{u_{r}}$. Clearly there must be at least $r$ such students from which to choose, and a different one can be chosen in each sequence.
Finally, as indicated earlier, we complete the one-to-one mapping $f$ in an arbitrary way for the dominated students. Hence $f$ is, as claimed, a one-to-one mapping from $M^{\prime}\left(l_{k}\right) \backslash M\left(l_{k}\right)$ to $M\left(l_{k}\right) \backslash M^{\prime}\left(l_{k}\right)$ with the property that $l_{k}$ prefers $f(s)$ to $s$ for all $s$. Hence $l_{k}$ prefers $M$ to $M^{\prime}$. The argument may be repeated for each relevant lecturer, and the result follows.

In the next subsection, we show how to implement Algorithm SPA-lecturer so that it runs in linear time.

### 5.3. Analysis of Algorithm SPA-lecturer

Even with the specialised data structures described in Section 3.3, it is not immediately clear whether Algorithm SPA-lecturer can be implemented to run in linear time. Consider for example the execution trace in Fig. 7.


Fig. 7. A SPA instance $I$, together with an execution trace of Algorithm SPA-lecturer as applied to $I$.

The sequence of offers made by $l_{1}$, i.e. $\left\langle\left(s_{2}, p_{1}\right),\left(s_{1}, p_{2}\right),\left(s_{4}, p_{3}\right),\left(s_{1}, p_{1}\right),\left(s_{3}, p_{2}\right)\right\rangle$, highlights two major differences between Algorithm SPA-lecturer and the hospital-oriented algorithm for HR. Firstly, a lecturer can make more than one offer to the same student ( $l_{1}$ offers both $p_{2}$ and $p_{1}$ to $s_{1}$ ), and secondly, a lecturer may not make offers in order of preference ( $l_{1}$ offers $p_{3}$ to $s_{4}$ before $s_{3}$ is made an offer).

Of course, the reason for these differences is that a project and lecturer can become under-subscribed after being full. For example, in step (ii) of the execution, $p_{1}$ is full, and so $s_{1}$ is assigned to his/her second preference, $p_{2}$. This makes $p_{2}$ full, which means that $l_{1}$ is not immediately able to make an offer to $s_{3}$. However, in step (iv), $s_{2}$ accepts a more preferable project, thereby freeing $p_{1}$ for $s_{1}$, which in turn frees $p_{2}$ for $s_{3}$. Also $l_{1}$ was full just after step (iii), but under-subscribed just after step (iv).

The main problem then is how to efficiently find the next student to whom a given lecturer $l_{k}$ can make an offer (since $P_{k}$ may contain several projects that have become under-subscribed). It turns out that we can overcome this problem by restricting the non-deterministic choice of $l_{k}$ in the main loop of Algorithm SPA-lecturer. Consider the implementation given in Fig. 8.

For each lecturer $l_{k}$, we maintain a pointer next $t_{k}$, which initially refers to the first student in $\mathcal{L}_{k}$. Also, for each project $p_{j} \in P_{k}$, we maintain a pointer $\operatorname{eext}_{p_{j}}$, which initially refers to the first student in $\mathcal{L}_{k}^{j}$. In the implementation, $l_{k}$ repeatedly makes an offer to next $_{k}$, which moves left to right through $\mathcal{L}_{k}$, advancing one student at a time. If

```
SPA-lecturer(I) {
    assign each student, project and lecturer to be free;
    assign p to be undefined;
    let S be a stack consisting of all lecturers;
    while (S = \emptyset) {
        /* we seek a provisional assignment of student si to project p}\mp@subsup{p}{j}{}\mathrm{ and lecturer l}\mp@subsup{l}{k}{*/
        if (p is defined) { /* p has just become under-subscribed */
            pj=p;
            l}\mp@subsup{l}{k}{= lecturer offering }\mp@subsup{p}{j}{\prime}
            si= next p
            assign p}\mathrm{ to be undefined;
        } else {
            l}\mp@subsup{l}{k}{}=S.pop()
            if (lk is full or next l}\mp@subsup{l}{k}{}\mathrm{ is undefined)
                    continue; /* to the next loop iteration */
            si= nextl}\mp@subsup{|}{k}{
            advance nextl}\mp@subsup{l}{k}{}\mathrm{ by one student;
            S.push(l l );
            if (si}\mathrm{ 's list contains no under-subscribed project in P
                continue; /* to the next loop iteration */
            p}=\mathrm{ first such project on si's list;
        }
        advance next }\mp@subsup{p}{j}{}\mathrm{ by one student;
        if (sit is provisionally assigned to some project }\mp@subsup{p}{}{\prime}\mathrm{ and lecturer l}\mp@subsup{l}{}{\prime})
            if ( }\mp@subsup{p}{}{\prime}\mathrm{ 'is full and next }\mp@subsup{p}{}{\prime}\mathrm{ ' is defined and
            (next }\mp@subsup{l}{}{\prime}\mathrm{ is undefined or l' prefers next }\mp@subsup{p}{\mp@subsup{p}{}{\prime}}{}\mathrm{ to next }\mp@subsup{|}{\mp@subsup{l}{}{\prime}}{\prime})\mathrm{ )
                p= p
            break provisional assignment between }\mp@subsup{s}{i}{},\mp@subsup{p}{}{\prime}\mathrm{ and }\mp@subsup{l}{}{\prime}\mathrm{ ;
        }
        provisionally assign si to }\mp@subsup{p}{j}{}\mathrm{ and }\mp@subsup{l}{k}{}\mathrm{ ;
        for (each successor }\mp@subsup{p}{}{\prime}\mathrm{ of }\mp@subsup{p}{j}{}\mathrm{ on }\mp@subsup{s}{i}{}\mathrm{ 's list) {
            if (si== next }\mp@subsup{p}{}{\prime}
                advance next }\mp@subsup{p}{}{\prime}\mathrm{ by one student;
            delete ( }si,\mp@subsup{p}{}{\prime})\mathrm{ ;
        }
    }
    return {(si, p
}
```

Fig. 8. Implementation of Algorithm SPA-lecturer.
next $l_{k}$ is already provisionally assigned to some project $p^{\prime}$ and lecturer $l^{\prime}$, project $p^{\prime}$ may become under-subscribed having previously been full (since next $l_{k}$ leaves $p^{\prime}$ ). At this point, the next offer made by $l^{\prime}$ can only involve one of two students-next $l^{\prime}$, or next $p^{\prime}$, where next $_{p^{\prime}}$ is maintained as the first student not assigned to $p^{\prime}$ on the projected preference list of $l^{\prime}$ for $p^{\prime}$. If next $_{p^{\prime}}$ is defined, and either next $_{l^{\prime}}$ is undefined or $l^{\prime}$ prefers next $p_{p^{\prime}}$ to next $l^{\prime}$, we require that $l^{\prime}$ makes an offer to next $_{p^{\prime}}$ in the next loop iteration. Alternatively, if $l^{\prime}$ prefers next $l^{\prime}$, to next $p^{\prime}$, student next $p_{p^{\prime}}$ is in the scope of the variable next $l^{\prime}$, and so $l^{\prime}$ can revert to making offers to next $_{l^{\prime}}$ as usual. By making this decision when there are only two possibilities ( next $_{p^{\prime}}$ and next $_{l^{\prime}}$ ), we avoid the problem of choosing among several students when $l^{\prime}$ next makes an offer.

We briefly outline the other data structures used in the linear-time implementation. For each student $s_{i}$, we construct an array preference $s_{i}$, the $k$ th element of which is the $k$ th-ranked post in $s_{i}$ 's preference list. Additionally, as in Algorithm SPA-student, we use next and previous pointers to link together the projects in this list that are offered by a given lecturer. When a lecturer $l_{k}$ makes an offer to $s_{i}$, we can follow these pointers to find the first under-subscribed project from $P_{k}$ in $s_{i}$ 's list. Such a traversal happens at most once for each lecturer, and so no project in $s_{i}$ 's preference list is visited more than a constant number of times. We also remark that all successors of a given project can be deleted from $s_{i}$ 's preference list simply by traversing the underlying array.

For each lecturer $l_{k}$, we build an array, $\operatorname{rank}_{l_{k}}$, where $\operatorname{rank}_{l_{k}}\left(s_{i}\right)$ is the index of student $s_{i}$ in $\mathcal{L}_{k}$. We represent $\mathcal{L}_{k}$ by an array, preference $_{l_{k}}$, where preference $_{l_{k}}\left(\operatorname{rank}_{l_{k}}\left(s_{i}\right)\right)$ stores student $s_{i}$. Each lecturer $l_{k}$ also stores a count of the number of students whom they are provisionally assigned, and a pointer next $l_{k}$ into preference $_{l_{k}}$, as described earlier.

For each project $p_{j}$ offered by $l_{k}$, we build an array $\operatorname{rank}_{p_{j}}$, where $\operatorname{rank}_{p_{j}}\left(s_{i}\right)$ is the index of student $s_{i}$ in $\mathcal{L}_{k}^{j}$. We represent $\mathcal{L}_{k}^{j}$ by embedding a doubly-linked list in an array preference $p_{j}$. For each student $s_{i} \in \mathcal{L}_{k}^{j}$, preference $_{p_{j}}\left(\operatorname{rank}_{p_{j}}\left(s_{i}\right)\right)$ stores the list node containing $s_{i}$. This node has a pointer to the next student in $\mathcal{L}_{k}^{j}$, and one to the previous student in $\mathcal{L}_{k}^{j}$. Each project also stores a count of the number of students whom it is provisionally assigned, and a pointer next $_{p_{j}}$ into preference $_{p_{j}}$, as described earlier.

Using these data structures, we can find and delete a student from a project's preference list in constant time. For each preference list, we can also compare the ranks of any two students, and efficiently traverse through the sequence of students, missing out any students that have been deleted.

The above discussion therefore leads to the following result.
Theorem 5.6. Algorithm SPA-lecturer may be implemented to run in $\Theta(\lambda)$ time and $\mathrm{O}(m n)$ space, where $\lambda$ is the total length of the preference lists, and $n, m$ are the numbers of students and projects respectively, in a given SPA instance.

## 6. Concluding remarks

### 6.1. Discussion of the SPA problem model

The definition of a blocking pair $\left(s_{i}, p_{j}\right)$ considered in this paper includes the possibility that $s_{i}$ was already assigned in $M$ to a project offered by $l_{k}$, where $l_{k}$ is the lecturer offering $p_{j}$, and seeks to become assigned to a preferred project $p_{j}$ offered by the same lecturer. Such a switch obviously cannot alter the total number of students assigned to $l_{k}$.

If $p_{j}$ is under-subscribed in $M$, then $p_{j}$ has room for $s_{i}$, and $l_{k}$ is implicitly indifferent about the switch, so would not prevent it from taking place. However if $p_{j}$ is full in $M$, then the only way that the switch could occur is if $l_{k}$ rejects a student from $p_{j}$. Moreover, $l_{k}$ would agree to such a switch only if $l_{k}$ prefers $s_{i}$ to the worst student $s^{\prime}$ assigned to $p_{j}$ in $M$. But this implies that, following the rejection of $s^{\prime}$, the number of students assigned to $l_{k}$ would decrease by 1 if $s^{\prime}$ is unable to move to a worse project offered by $l_{k}$.

The following small SPA instance illustrates this phenomenon. We have two students, $s_{1}, s_{2}$, two projects, $p_{1}, p_{2}$, and one lecturer, $l_{1}$. Each of $p_{1}$ and $p_{2}$ has capacity 1 , whilst $l_{1}$ has capacity 2 . Student $s_{1}$ prefers $p_{1}$ to $p_{2}$, whilst $s_{2}$ finds only $p_{1}$ acceptable. Lecturer $l_{1}$ prefers $s_{1}$ to $s_{2}$. Clearly then, the matching $M_{1}=\left\{\left(s_{1}, p_{2}\right),\left(s_{2}, p_{1}\right)\right\}$ admits the blocking pair $\left(s_{1}, p_{1}\right)$, whilst $M_{2}=\left\{\left(s_{1}, p_{1}\right)\right\}$ is the only stable matching.

In going from $M_{1}$ to $M_{2}$, we satisfy the blocking pair $\left(s_{1}, p_{1}\right)$; however in doing so, $l_{1}$ loses a student, so in practice he/she may not agree to the switch. Hence one could alter Condition 3(c) of the blocking pair definition to prevent a change such as this from taking place. However we make two counter-arguments.

Firstly, by allowing a matching such as $M_{1}$ to be stable, we introduce an element of strategy into the problem. That is, it could be in a student's interest to submit a shorter preference list in order to obtain a more preferable project, rather than to submit his/her true preferences. For example, in the above instance, $s_{1}$ could list only $p_{1}$. In doing so, $s_{1}$ would be assigned to $p_{1}$ under either definition of Condition 3(c). On the other hand, by not listing every project that he/she finds acceptable, a student assumes a greater risk of being unassigned in the final matching.

Secondly, allowing both $M_{1}$ and $M_{2}$ to be stable would imply that this instance admits stable matchings of different sizes. Hence, to match as many students as possible, we would seek a maximum cardinality stable matching. However we conjecture that this problem is NP-hard. Evidence for this is given by the apparent lack of structure in this case: if both $M_{1}$ and $M_{2}$ are stable, there is no student-optimal stable matching. This is in contrast with the structure that follows from the definition of Condition 3(c) as adopted in this paper. In this context we have been able to prove several desirable properties of SPA, including an analogue of the Rural Hospitals Theorem (Theorem 4.1), and the existence of student-optimal and lecturer-optimal stable matchings (Theorems 3.5 and 5.5 respectively). With stable matching problems in general, it is often the case [11] that the existence of structural properties and efficient algorithms are closely related to one another.

### 6.2. Open problems

In this paper we introduced SPA, and studied this problem from an algorithmic and structural point of view. A number of interesting open problems remain, including the following:

- Clearly many different formulations of the SPA model are possible. If only students supply preference lists, then a matching that optimises the students' satisfaction may be constructed using network flow techniques (see [1] for further details). Additionally, as in this paper, lecturers may supply preference lists, but over the projects that they offer rather than over students. We have considered this model from an algorithmic viewpoint-see [16] for further details. Finally, lecturers may have preferences over (student, project) pairs. In this setting, Fleiner [8] noted that the matroid-theoretic characterisation as described in Section 2.3 is applicable if a certain stability definition is imposed. However with this definition of stability there are strategic issues similar to those outlined in the previous subsection. It remains open as to whether a stability definition for this case can be formulated that leads to efficient algorithms, whilst avoiding such issues of strategy.
- If we allow ties in the preference lists of students and lecturers, different stability definitions are possible. These can be obtained by extending three stability definitions that have been applied to the Hospitals/Residents problem with Ties [12,13]. Under the weakest of these stability criteria, so-called weak stability, every instance of SPA with ties admits a stable matching (this follows by breaking the ties arbitrarily and applying Algorithm SPA-student to the resulting instance of SPA, for example). However such matchings could be of different sizes for a given SPA instance with ties, and the problem of finding a maximum weakly stable matching is NP-hard (this follows by restriction, since the same problem has been shown to be NP-hard in the case of SMI with ties [15]). Under the two stronger stability criteria, namely strong stability and super-stability, an instance of SPA with ties need not admit a matching satisfying either criterion. However it remains open to construct algorithms for finding such a matching in each case, or reporting that none exists, for a given instance of SPA with ties.
- A further natural extension arises when each project $p_{j}$ carries a lower bound $x_{j} \geqslant 0$. That is, $p_{j}$ cannot run unless at least $x_{j}$ students are assigned to it. Clearly a stable matching need not exist that satisfies all the projects' lower bounds. If lower bounds were present for hospitals in the case of HR, the problem of deciding whether a stable matching exists that satisfies them would be trivial, in view of the Rural Hospitals Theorem (i.e. find one stable matching, and if it does not satisfy the lower bounds, then no other stable matching does). However in view of the discussion following Theorem 4.1, the same is not true in the case of SPA. It is open as to whether there exists a polynomial-time algorithm for finding a stable matching if one exists, given an instance of SPA with lower bounds for the projects.


## Acknowledgements

We would like to thank Tamás Fleiner for helpful discussions concerning the SPA problem model, and also the anonymous referees for their detailed comments, which have helped to improve the presentation of this paper.

## References

[1] D.J. Abraham, Algorithmics of two-sided matching problems, Master's thesis, University of Glasgow, Department of Computing Science, 2003.
[2] A.A. Anwar, A.S. Bahaj, Student project allocation using integer programming, IEEE Transactions on Education 46 (3) (2003) 359-367.
[3] G. Brassard, P. Bratley, Fundamentals of Algorithmics, Prentice-Hall, 1996.
[4] J. Dye, A constraint logic programming approach to the stable marriage problem and its application to student-project allocation, BSc Honours project report, University of York, Department of Computer Science, 2001.
[5] A. Eguchi, S. Fujishige, A. Tamura, A generalized Gale-Shapley algorithm for a discrete-concave stable marriage model, in: Proceedings of ISAAC 2003: The 14th Annual International Symposium on Algorithms and Computation, in: Lecture Notes in Computer Science, vol. 2906, Springer-Verlag, 2003, pp. 495-504.
[6] T. Fleiner, A matroid generalization of the stable matching polytope, in: Proceedings of IPCO '01: The 8th Conference on Integer Programming and Combinatorial Optimization, in: Lecture Notes in Computer Science, vol. 2081, Springer-Verlag, 2001, pp. 105-114.
[7] T. Fleiner, A fixed-point approach to stable matchings and some applications, Mathematics of Operations Research 28 (1) (2003) 103-126.
[8] T. Fleiner, Personal communication, 2004.
[9] D. Gale, L.S. Shapley, College admissions and the stability of marriage, American Mathematical Monthly 69 (1962) 9-15.
[10] D. Gale, M. Sotomayor, Some remarks on the stable matching problem, Discrete Applied Mathematics 11 (1985) 223-232.
[11] D. Gusfield, R.W. Irving, The Stable Marriage Problem: Structure and Algorithms, MIT Press, 1989.
[12] R.W. Irving, D.F. Manlove, S. Scott, The hospitals/residents problem with ties, in: Proceedings of SWAT 2000: The 7th Scandinavian Workshop on Algorithm Theory, in: Lecture Notes in Computer Science, vol. 1851, Springer-Verlag, 2000, pp. 259-271.
[13] R.W. Irving, D.F. Manlove, S. Scott, Strong stability in the hospitals/residents problem, in: Proceedings of STACS 2003: The 20th Annual Symposium on Theoretical Aspects of Computer Science, in: Lecture Notes in Computer Science, vol. 2607, Springer-Verlag, 2003, pp. 439450.
[14] D. Kazakov, Co-ordination of student-project allocation, Manuscript, University of York, Department of Computer Science, 2002.
[15] D.F. Manlove, R.W. Irving, K. Iwama, S. Miyazaki, Y. Morita, Hard variants of stable marriage, Theoretical Computer Science 276 (1-2) (2002) 261-279.
[16] D.F. Manlove, G. O'Malley, Student project allocation with preferences over projects, in: Proceedings of ACID 2005: The 1st Algorithms and Complexity in Durham workshop, in: Texts in Algorithmics, vol. 4, KCL Publications, 2005, pp. 69-80.
[17] C. Ng, D.S. Hirschberg, Lower bounds for the stable marriage problem and its variants, SIAM Journal on Computing 19 (1990) 71-77.
[18] National Resident Matching Program, About the NRMP, Web document available at http://www.nrmp.org/about_nrmp/how.html.
[19] National Resident Matching Program, Why the Match? Web document available at http://www.nrmp.org/whythematch.pdf.
[20] L.G. Proll, A simple method of assigning projects to students, Operational Research Quarterly 23 (2) (1972) 195-201.
[21] A. Romero-Medina, Implementation of stable solutions in a restricted matching market, Review of Economic Design 3 (2) (1998) 137-147.
[22] A.E. Roth, The evolution of the labor market for medical interns and residents: a case study in game theory, Journal of Political Economy 92 (6) (1984) 991-1016.
[23] A.E. Roth, On the allocation of residents to rural hospitals: a general property of two-sided matching markets, Econometrica 54 (1986) 425-427.
[24] A.E. Roth, M.A.O. Sotomayor, Two-Sided Matching: A Study in Game-Theoretic Modeling and Analysis, Econometric Society Monographs, vol. 18, Cambridge University Press, 1990.
[25] C.-P. Teo, J. Sethuraman, W.-P. Tan, Gale-Shapley stable marriage problem revisited: strategic issues and applications, in: Proceedings of IPCO '99: The 7th Conference on Integer Programming and Combinatorial Optimization, in: Lecture Notes in Computer Science, vol. 1610, Springer-Verlag, 1999, pp. 429-438.
[26] C.Y. Teo, D.J. Ho, A systematic approach to the implementation of final year project in an electrical engineering undergraduate course, IEEE Transactions on Education 41 (1) (1998) 25-30.
[27] M. Thorn, A constraint programming approach to the student-project allocation problem, BSc Honours project report, University of York, Department of Computer Science, 2003.


[^0]:    4. A preliminary version of this paper was presented at ISAAC 2003 [D.J. Abraham, R.W. Irving, D.F. Manlove, The student-project allocation problem, in: Proceedings of ISAAC 2003: the 14th Annual International Symposium on Algorithms and Computation, Lecture Notes in Computer Science, vol. 2906, Springer-Verlag, 2003, pp. 474-484].

    * Corresponding author.

    E-mail addresses: dabraham@cs.cmu.edu (D.J. Abraham), rwi@dcs.gla.ac.uk (R.W. Irving), davidm@dcs.gla.ac.uk (D.F. Manlove).
    1 Work done whilst at Department of Computing Science, University of Glasgow.
    ${ }^{2}$ Supported by Engineering and Physical Sciences Research Council grant GR/R84597/01, Nuffield Foundation award NUF-NAL-02, and Royal Society of Edinburgh/Scottish Executive Personal Research Fellowship.

