
Science of
Computer

ELSEVIER Science of Computer Prosing 33 (1999) 1-27
Programming

Extracting and implementing list homomorphisms
in parallel program development’

Sergei Gorlatch*
University of Passau, D-94030 Passau, Germany

Communicated by R. Bird; received 12 November 1996; received in revised form 11 February 1997

Abstract

Homomorphisms are functions that match the divide-and-conquer pattern and are widely used
in parallel programming. Two problems are studied for homomorphisms on lists: (1) parallelism
ex~~ffc~~o~: finding a homomo~hic represen~tion of a given action; (2) pa~llelism ~ple~e~-

tution: deriving an efficient parallel program that computes the function. The proposed approach
to parallelism extraction starts by writing two sequential programs for the function, on traditional
cons lists and on dual snot lists; the parallel program is obtained by generalizing sequential
programs as terms. For almost-homomorphic functions, e.g., the maximum segment sum prob-
lem, our method provides a systematic embedding into a homomorphism. The implementation
problem is addressed by introducing the class of distributable homomo~hisms and deriving for
them a common parallel program schema. The derivation is based on equational reasoning in
the Bird-Meertens formalism, which guarantees the correctness of the parallel target program.
The approach is illustrated with the function SCWI (parallel prefix), for which the combination
of our two systematic methods yields the optimal hypercube algorithm, usually presented ad hoc
in the literature. @ 1999 Elsevier Science B.V. All rights reserved.

1. Introduction

The complex problem of developing correct and efficient programs for parallel ar-

chitectures can only be managed if put on a solid formal basis. The ultimate goal is to

liberate the programmer from the difficult task of dealing explicitly with the individual

behaviour of numerous parallel processes and their interaction. Program development

starts with a specification, which is “obviously” correct but possibly not efficiently

implementable in parallel; the development process results in a correct and efficient

parallel target program.

* E-mail: gorlatch@brabms.fmi.uni-passau.de.
’ The paper combines and expands results which were presented at the international conferences Euro-

Par’96 (Lyon) and PLILP’96 (Aachen).

Of 67-6423199/% - see front matter @ 1999 Eisevier Science B.V. All rights reserved.
PII: SOl67-6423(97)00014-Z

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82240368?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 S. GorlatchlScience of Computer Programming 33 (1999) I-27

As a derivational calculus we use the Bird-Meertens Formalism (BMF) [5], where

algorithms are specified using a set of higher-order functions over lists. The specifi-

cation is refined into an executable form by semantically sound transformations which

guarantee the correctness of the target program. The development process is structured

by identifying typically used patterns of parallelism that can be implemented with pre-

dictable performance. Our approach can be contrasted with methods which address

the correctness and performance issues a posteriori, relying on program verification,

testing, profiling, etc.

In this paper, we study functions called list homomorphisms, which represent a

particular pattern of parallelism.

Definition 1. A list function h is a homomorphism iff there exists a binary operator

0 such that, for all lists x and y:

h(x+y)=hx@hy

where ++ is list concatenation. Note that 0 is necessarily associative on the range

of h, because ft is associative.

The homomorphic property (1) says that the value of h on the concatenated list

depends in a particular way, using the combine operator 0, upon the values of h

on the pieces of the list. The computations of hx and hy are independent, so (1)

can be viewed as a special case of the divide-and-conquer paradigm. Examples of

homomorphisms include such practically relevant functions as scalt (prefix sums) [6],

Fast Fourier transform, etc.

The contributions of the paper are new systematic methods for (1) extraction of

homomorphic parallelism from specifications and (2) subsequent implementation of

the extracted parallelism as an efficient target program.

The paper is structured as follows:

- In Section 2, we introduce the Bird-Meertens notation, present the basic homomor-

phism theorem and formulate open questions.

- Section 3 deals with the extraction problem. In Section 3.1, we propose a method,

called “cons & snot”, which extracts the homomorphic parallelism of a given func-

tion by generalizing two terms that define the function on cons and snot lists.

Section 3.2 extends this method to so-called almost-homomorphic functions and il-

lustrates it for the popular maximum segment sum problem. Section 3.3 studies

nested almost-homomorphisms and their application for parsing input-driven lan-

guages.

- Section 4 deals with the implementation of parallelism. In Section 4.1, we consider

homomorphisms whose direct implementation has high communication costs and

introduce a subclass DH (distributable homomorphisms), for which these costs can

be reduced. In Section 4.2, we derive an iterative implementation schema for DH

and transform it into a generic hypercube program. Section 4.3 demonstrates how

this program is specialized for the scan function. In Section 4.4, a program for

S. GorlatchIScience of Computer Programming 33 (1999) l-27 3

a bounded number of processors is obtained by transformations that tackle data

(re)distributions. This program is further optimized in Section 4.5, which yields the

optimal practical implementation for scan.
- In Section 5, we compare our results with related work.

We conclude by discussing the findings of the paper and future work.

The power of the approach is illustrated by giving systematic solutions for some

problems studied previously elsewhere. Our running example is the stun function, used

in many parallel applications [6]. First, its homomorphic representation is extracted

by the cons & snot method; this representation is then systematically adjusted to the

DH-format and implemented on the hypercube, yielding optimal algorithms for both

unbounded and bounded number of processors. Unlike the usual ad hoc presentation

of algorithms for SCLZ~Z [25], our derivation is systematic and can be exploited for other

problems.

2. BMF and homomorphisms

In the Bird-Meertens formalism (BMF) [5,27], functions including homomorphisms

are defined on composite types like lists, trees, etc.; we restrict ourselves to non-empty

finite lists. Function application is denoted by juxtaposition, is tightest binding, and

associates to the left. The following notation is used:

[El the type of lists whose elements are of type cz;

0 backwards functional composition;

mapf map of a unary function f, map f [x1 ,..., x,] = [f-xl,.. ., fxn];

red(@) reduce with a binary associative operator, (0) : (a, a) + tl,

red(@) [XI,. ..,xn]=x~Ox2@ ... ox,;

zip (0) combines elements of two lists of equal length with operator 0,

z@(O) ([XI ,...,&I, ~YI,...,Ynl)=[(~IOY1),...,(~nOYn~1;

0 Backus’ FP construction: (fi,. . . , fn)x = (fix,. . . , fnx).
We use brackets () for construction rather than [] as in FP [2], because the latter are

traditionally reserved in BMF for lists.

The inherent parallelism of the BMF functionals allows parallel programs to be

represented as expressions of the formalism during the design process. We follow the

SAT (Stages and Transformations) approach [141: the program under development has

the form of a sequential composition of parallel stages, dually to the traditional parallel

composition of communicating sequential processes. The transition to the latter form,

which is directly implementable on a parallel machine, is postponed until the end of

the development process.

Theorem 2 (Bird [5]). Function h on lists is a homomorphism iff:

h=red(@)omapf

where, for an element a, fu = h[a], and 0 is associative.

(2)

4 S. GorlatchlScience of Computer Programming 33 (1999) 1-27

Theorem 2 is known as the first homomorphism theorem. Expression (2) provides a

standard parallelization pattern for all homomorphisms as a sequential composition of

two stages. Whereas the first stage in (2), map, is totally parallel, the reduction can

be computed in parallel on a tree-like structure, with combine operator 0 applied in

the nodes.

Our running example is the scan-function, also called parallel prefix. Function scan
yields, for associative @ and a list, the list of “prefix sums”. For instance, on a list of

four elements,

scan(@)[a,b,c,d]=[a,(aOb), (aOb@c), (aObOcO41

Function scan is a @-homomorphism, i.e. its combine operator is 0:

24 @ u = 24 St map ((last u)O)v (3)

We use the so-called operator sectioning, in which one argument of 0 is fixed,

so that the resulting unary function can be mapped; function last yields the last ele-

ment of a list. Every homomorphic function is completely determined by its combine

operator and its actions on singleton lists, so we write hom(f, 0) for the unique

@-homomorphism h, such that h[a] = fa, for arbitrary a.
The paper addresses the following two problems:

(i) Parallelism extraction: For a given function, find the corresponding combine

operator @ that satisfies property (1). For functions like length this construc-

tion is simple, but already for the scan function it requires a formal proof [23]

or some eureka steps [151. For non-homomorphic functions, the problem is how

to transform them into homomorphisms [8].

(ii) Parallelism implementation: For a given homomorphism, develop its efficient par-

allel implementation systematically. The reduction stage in (2) is a potential source

of inefficiency: its direct tree-like implementation may impose high communica-

tion costs which cannot be compensated for by just increasing the number of

processors [28].

3. Extracting homomorphisms

This section deals with the question of whether a given function is a homomorphism

and if so, how its combine operator can be constructed. The proposed method is based

on two inherently sequential representations of the function.

3.1. The “cons & snot” method

Whereas homomorphisms use list concatenation, traditional (sequential) functional

programming is based on the constructor cons, which attaches an element at the front

of the list. We denote cons by .: and introduce also its dual, snot, denoted :‘, which

attaches an element at the list’s end.

S. GorlatchIScience of Computer Programming 33 (1999) 1-27 5

Definition 3. List function h is called leftwards (lw) iff there exists a binary operator

@, such that h(a .: y) = a @ hy for all elements a and lists y. Dually, function h is

rightwards (rw) iff, for some @, h(x:. b)=hx @ b.

Since operators ~3 and C$ need not be associative, many functions are either leftwards

or rightwards or both. The importance of a function being both left- and rightwards is

shown by the following theorem.

Theorem 4. Function h is a homomorphism iff it is leftwards and rightwards.

The theorem’s necessary condition, known also as the second homomorphism

theorem, is easy to see. The sufficient condition is sometimes referred to as the third

homomorphism theorem: it was conjectured by Bird, proved by Meertens and pre-

sented systematically by Gibbons [12, 111. Gibbons says in [l l] about this theorem

with respect to the problem of extracting a suitable combine operator:

“The existence of a suitable operator is guaranteed, but the theorem does not

address the question of the existence - let alone the construction - of a direct

and efficient way of computing it”.

Solving this problem will be our first goal. Let us introduce a new definition.

Definition 5. Function h is called left-homomorphic (lh) iff there exists binary oper-

ator @, such that h(a . : y) = h[a] CB hy. The dual definition of right-homomorphic (rh)

function is obvious.

Note that $ in Definition 5 need not be associative. Every lh (rh) function is also

lw (yw), but, e.g., the following function g is Iw but not lh:

da1 = lal
g(a .: y) = if a < gy then Ia + gy] else la - gyl

Let us study the relation of Zh and rh functions to homomorphisms.

Theorem 6. If function h is a homomorphism with combine operator 0, i.e., h = horn
(f, a), then h is both lh and rh with the same combine operator. If function h is lh or
rh, and the corresponding combine operator is associative, then h is a homomorphism
with this combine operator.

Proof. The first part of the theorem is proved by a simple specialization of the ho-

momorphism definition, We prove the second part for the case h = Zh(f, @), showing

that h(x ft y) = hx @ hy, by induction on the length of list x, for arbitrary y.

Induction base, x = [a], is obvious.

Induction hypothesis: For a list x of length at most k and an arbitrary list y, the

following holds: h(x ft y) = hx CB hy.

6 S. Gorlatch / Science of Computer Programming 33 (1999) l-27

Induction step. List x of length 6 k+ 1 can be represented as follows: x = a . : xs, where

a is an element and xs is of length d k. By calculation:

h(x ft v) {x=a.:xs}
= h((a . : xs) St y) {list constructors’ property}

= h(a . : (xs +t y)) {h is leftwards-homomorphic}

= h[a] CB h(xs +t y) {induction hypothesis}

= h[a] @ (hxs @ hy) {associativity of CD}

= (h[a] CB hxs) CE hy {h is leftwards-homomorphic}

= h([a]+txs)@hy {[a]+txs=x}
= hx$hy

The theorem is proved. In [131, the requirement of associativity is loosened to so-called

left- and right-associativity.

Theorem 6 suggests a simple way to find a homomorphic representation of a given

function: construct a cons definition of the function in the lh format (or, dually, find

an rh representation on snot lists), such that the combine operator is associative.

Sometimes this direct method succeeds, as the following example demonstrates. Let us

consider function length, which yields the length of a given list. Function length on

a singleton list is: length [a] = 1, so f = one, where one x = 1. The cons-definition is

obvious: length (a : x) = fa + lengthx, thus length is lh with + as combine operator.

From associativity of +, by Theorem 6 it follows that length = hom(one, +).
The following example (courtesy of Gibbons) demonstrates that the test for (at

least weakened) associativity in this simple direct method is indeed necessary. The

identity function on lists, id, can be defined as both lh and rh with combine operator

0: u 0 u = [head u] +t init v +t tail u -K [last v], (here functions init and tail yield the

list without the first and without the last element respectively, function head yields

the first element). However, function id is clearly not a homomorphism with this non-

associative operator.

Let us try the direct method on the scan function. The cons definition is

scan(@)(a.:y)=a.:(map (a@)(scan(@)y)) (4)

Representation (4) does not match the lh format because a is used where only scan

(0) [a] is allowed. Since scan (0) [a] = [a], there are different ways to express a via

scan (0) [a], e.g., a = head(scan (0) [a]) or a = last (scan (0) [a]). Since there are two

occurrences of a, we obtain four possible terms for 0; however, none of these terms

defines an associative operator! Let us try to use the right-homomorphic property in

the snot definition:

scan(@)(x:.b)=(scan(O)x):.(last(scan(O)x)Ob) (5)

Alas, we run into a similar problem: both obvious substitutions for b, namely head
(scan (0) [b]) and last (scan (0) [b]), lead to a non-associative operator, and thus we

are still unable to express the scan-function as a homomorphism.

S. GorlatchIScience of Computer Programming 33 (1999) 1-27 7

Note that the direct method is actually an intuitive search for an associative combine

operator, using one of the extreme partitions of the list. This search can be difficult, as

our unsuccessful attempts with ,scan demonstrate. Our idea now is to use both cons

and snot representations together in a more systematic way. The approach is based

on the notion of term generalization.

A substitution is an assignment of variables to terms, which we will write as

a={x, ++t1,..., x,-t,}. For term t and substitution o={x~~t~,...,x~~t~}, let

t.a denote the result of simultaneously substituting in t each variable Xi, 1 <i <n, by

term ti.

Definition ‘7. A term tG is called a generalizer of terms tl and t2 in the equational

theory E if there are substitutions ~1 and 02, such that tG.a[E tl and tG.02 E t2, where

g is the semantic equality of E.

We use BMF as our equational theory, with semantic equality = and syntactic

equality E. Note that there is always a trivial (most general) generalizer for two terms,

a variable; it is obvious that people prefer the most special generalizer, provided there

is one. In this respect, generalization is the dual to unification where a most general

common special case is wanted. For this reason, generalization is sometimes also called

“anti-unification” [161.

Let us first study the equality- and substitution-relations between the terms we deal

with. Assume that function h is a O-homomorphism, and tH denotes the goal of ex-

traction - a “homomorphic” term over u and u that defines 0. This term is shown

underlined in the left part of the diagram below. We move now from tH along the dotted

arrows (for substitutions) and equalities = and =. The right part of the diagram, in par-

ticular the bold arrows, should be temporarily ignored. The following two terms, built

from tH by substitutions: tL=tH.{UHh[a], u~hy} and t~Et~.{uHhx, vwh[b]},
are obviously in the lh and rh format respectively. Terms tL and tR are semantically

equal variants to all cons and snot representations, respectively, of function h. Let tc

and ts denote some particular cons and snot representations.

tH.al = tL = tc - - (tc+-+tgOhy)
4

: Cl

!

k- (tH * U@U) -I Generalize 1

i I

tH .a2 = tR = ts - - (ts-hx@t;)

8 S. GorlatchlScience of Computer Programming 33 (1999) I-27

Let us now exploit generalization to solve the extraction problem, i.e. for arriving

at tH from tc and ts. For an operator 0, we keep its defining term tH and expression

u 0 v together. Such a pair is viewed as a term by introducing a fresh binary symbol

H with the weakest binding. Terms of the form (tH H u @ v) are called rule terms.

0I.X Starting terms tc and ts define operator @ in two special cases: (tc k tB @ hy)

and (ts tt hx @ t;), where base terms tB, t; define h on singletons.

For example, the rule terms for SCU~Z are obtained directly from (4) and (5):

a.: (map(aO)(scun(O)y)) cf [a] 0 scan(O)y

(scan(O)x):~(lust(scun(O)x)Ob)Hscun(O)xO[b]

The following fact relates rule terms with the homomorphism extraction.

(6)

(7)

Theorem 8. Zf two rule terms: tc H tB 0 hy and ts t-) hx 0 t;, both for function h,

have a generulizer, tH H u @ v, which defines an associative operator 0, then h is a
homomorphism with 0 as combine operator,

The use of rule terms ensures that the variables are substituted by the same terms

in the generalization process.

If a generalization algorithm for BMF is available, then Theorem 8 provides us

with the following method of homomorphism extraction. The method can be traced by

moving along the bold arrows in the diagram above.

The cons & snot method:
(i) The user is required to define function h on cons and snot lists which gives a

cons term tc, a snot term ts and base terms tB, t;.

(ii) The generalization algorithm, applied to the corresponding rule terms, tc - tB@hy

and ts H hx 0 t;, yields a rule term tH ++ u 0 v.

(iii) If the resulting term tH defines an associative operator then this is the desired

combine operator.

Applied to scan, the method generalizes rule terms (6) and (7), yielding

u @ v H u ft map (lust (u)O) v

The resulting operator @ is associative, so by Theorem 8 function scan is the

homomorphism: scan (0) = horn ([. 1, O), with 0 from (3).

The cons & snot method provides a systematic solution to the homomorphism ex-

traction problem. Its applicability depends on the power of the available generalization

algorithm. We have developed a provably correct, terminating generalization algorithm

for BMF. The algorithm was successfully tested on several examples; the details go

far beyond the scope of this paper [31].

3.2. Almost-homomorphisms

In this subsection, we deal with the situation that a function is not a homomorphism.

Many practical non-homomorphic functions are so-called almost-homomorphisms

S. GorlatchlScience of Computer Programming 33 (1999) 1-27 9

(name coined by M. Cole): they are convertible to a composition of a homomorphism

and some adjusting function.

Actually, every function h can be tupled together with the identity function, resulting

in the function g = (h, id). Obviously, g is a homomorphism: g (x tty) = gx 0 gy,
where (u,x) @ (0, y) = (h (x tty),x tty). The original function is computed from g

by projection, h = 7~1 o g, where rti yields the first component of a tuple. This seems

to provide an amazingly simple way of computing every function in parallel as a

homomorphism, followed by a simple projection. A closer look at operator 0 reveals

the snag: it does not make use of the computed values, u and V, and computes function

h from scratch!

Fortunately, there are also examples where a conversion to a “true” tuple homomor-

phism exists. Cole reports several case studies [8]; the main difficulty is to guess which

auxiliary functions must be included in a tuple and then to find the combine operator.

Usually, this requires a lot of ingenuity from the developer, hence a more systematic

approach is desired. Cole says:

“It is of interest to ask how easily the resulting algorithms might have been

derived in a more strictly formal setting”.

We will demonstrate that the cons & snot method allows us to systematically

construct almost-homomorphisms, known from the literature.

We consider the maximum segment sum (mss) problem - a programming pearl [4],
studied by many authors [5,8,27,29]. Given a list of integers, function mss finds the

contiguous list segment whose members have the largest sum among all such segments

and returns this sum. For example, in the notation of [8]:

mss [2, -4,2, - 1,6, -3]= 7

where the result is contributed by the segment [2, -1,6].

Let us first express function mss over cons lists. For some element a and list y,

it may well be the case that mss(a .: y) = a t (mss y), where t returns the larger of

its two arguments. But we must not overlook the possibility that the true segment

of interest includes both a and some initial segment of y; so we have to introduce

auxiliary function mis which yields the sum of the maximum initial segment. The next

step of the method, snot definition, requires the introduction of auxiliary function mcs,
yielding the sum of the maximum concluding segment. The obtained definitions of mss
are as follows:

mss(a .: y)=a t mssy ?(a+ misy)

mss(x:.b)=mssxt (mcsx+b)t b

To get a closed definition, we consider mss together with both auxiliary functions:

(mss,mis,mcs). For this triple function, the cons 8z snot method requires both cons

and snot definitions. Trying to find them, we see that the concluding segment of a .: y
may be the whole list, so we need its sum, which no (combination) of the functions

10 S. GorlatchIScience of Computer Programming 33 (1999) 1-27

from the triple can yield. Therefore, we have to introduce one more auxiliary function,

ts (for total sum).
Our triple becomes a quadruple (mss, mis, mcs, ts), which has the following closed

cons and snot definitions:

mss(a.: y)= a T (a+ misy) r mssy

mis(a.: y)=a l(a+ misy)

mcs (a ,: y) = mcs y 1 (a + tsy)

ts(a.: y)=a+ tsy

mss(x:.b)=mssx T (mcs x+b) t b

mis(x:.b)=misx t (tsx+ b)

mcs(x:.b)=b t (mcsx+ts[b])

ts(x:.b)=tsx+b

Generalizing each function of the quadruple separately, we arrive at the following

combine operator:

(mssx, misx, mcsx, tsx) 0 (mss y, mis y, mcs y, Is y)

= (mssx t (mcsx + mis y) 1 mss y, misx T (tsx + mis y),

mcsyt (mcsx+tsy),(tsx+tsy))

Since 0 is associative, our tuple is the homomorphism: (mss,mis,mcs, ts) =
horn (f, @), where f yields the result of the tuple on singleton lists:

fa = (mss, mis, mcs, ts) [a] = (a, a, a, a)

The target function mss is therefore computable as follows:

mss=zl o red(O)0 mapf (8)

Let us estimate the parallel time complexity of the derived homomorphic algorithm.

Since both function f and operator 0 require a constant number of communicated

elements and executed operators, the total time on n processors is O(logn). The num-

ber of processors can be reduced to n/ logn by simulating lower levels of the tree

sequentially, based on Brent’s theorem [25]. Therefore, the direct tree-like algorithm

is both time and cost optimal.

The cons & snot method is therefore applicable to almost-homomorphisms if ex-

tended by “tupling” all auxiliary functions which arise in the process of building closed

cons and snot definitions. For the mss problem, the result of systematically applying

the method coincides with the result obtained by Cole in [8] and by Smith in [29], but

unlike them we have not used our intuition about parallelism in the derivation process.

S. GorlatchlScience of Computer Programming 33 (1999) l-27 11

3.3. Nested almost-homomorphisms

In this subsection, we apply our methodology to an example from [S] with so-called

nested parallelism. The idea is that if the combine operator of a homomorphism is

costly then the operator itself should be parallelized.

We consider the problem of determining, for a given string, whether the brackets

of several types, e.g., (), [I, { 1, are correctly matched. There exists a straightforward

linear-time sequential algorithm which maintains a stack during scanning the input.

Opening brackets are pushed, and closing brackets are matched with the stack top.

Failure is indicated by a mismatch, by an empty stack when a match is required, or

by a non-empty stack at the end of the scan.

The idea of parallelization is to exclude all matching brackets and then to test

the remaining list for emptiness. Let us apply the cons 8z snot method to function

exmatch, which yields the unmatched brackets in a list which, for simplicity, consists

exclusively of brackets. Using predicate match for comparing two brackets, the cons-

and snot-representations are as follows:

exmatch (a .: y) = if match (a, head (exmatch y))

then exmatch (tail (exmatch y)) else (a .: (exmatch y))

exmatch (x : . b) = if match (last (exmatchx), b)

then exmatch (init (exmatchx)) else ((exmatchx) :. b)

where x is non-empty. Generalization yields the following combine operator:

u 0’ v = if match (last u, head v) then exmatch (init u -+-I tail v)
else (u ttv)

Since u and v are in the range of exmatch, we can simplify

exmatch (init u +I tail v)
= {Definition of 0’)

exmatch (init u) 0’ exmatch (tail v)
= {u and v are results of idempotent exmatch}

init u 0’ tail v

Thus exmatch = horn (f, O), with fa = [a] and the combined operator:

u 0 v= if match (last u, head v) then (init u @ tail v) else (u +tv) (9)

To allow comparison with the derivation by Cole, we note that our operator 0,

applied to a pair (u, v), does the same as the composition combine o dropmatches does

in [8] to (reverse u, v). Function dropmatches is, not surprisingly, recursive as is our

@ in (9):

dropmatches (u, v) = if match (head u, head v)

then dropmatches (tail u, tail v) else (u, v)

12 S. GorlatchlScience of Computer Programming 33 (1999) I-27

Function dropmatches requires both computation and communication time which is

linear in the length of the leftover strings. In the best case, for strings with short,

shallow-nested segments, the homomorphism exmatch provides logarithmic time com-

plexity. In the worst case of one deeply nested segment, however, we cannot do better

than the sequential algorithm.

This is the point where the nested parallelism is helpful: let us try to express drop-

matches again as a homomorphism. First we massage it from a function on pairs of

lists to a function on lists of pairs. The new function dropmatches (following [8], we

do not change its name) accepts a list of pairs, where the first element is from u and

the second is from v. If u and v are of different lengths, a special symbol is used to

supplement the shorter list. Function dropmatches yields a list of pairs, with leading

matching pairs removed. We apply the cons & snot method to dropmatches. If it

happens in dropmatches((a, b) .: x) that a and b are not matched then the result is just

the input list, i.e. we need to know not only the value of dropmatches x but also x

itself. The auxiliary function is original which is the identity on lists of pairs. Now,

the tuple (dropmatches, original) has a closed definition, whose generalization yields

(dropmatches, original) = horn (g, O),

where

g [(a, b)] = (if match (a, b) then [] else [(a, b)], [(a, b)])
(u,u’) @ (v, v’) = (u +I- (if u = [] then v else v’), U’ H v’)

The parallel implementation of dropmatches is then expressed by

dropmatches = ~1 o red (0) o map g

Since the computation of dropmatches takes place in every application of 0 in the

homomorphism exmatch, we get a tree, whose nodes are trees again. By embedding

into a homomorphism, we achieved logarithmic computation time for dropmatches.

Thus, our nested homomorphic algorithm for bracket matching has parallel complexity

O(log* n) on shared memory. The communication time on distributed memory is still

linear because of +. A possible improvement for the bracket matching problem is

presented in [8]; a general case is addressed in the next section.

4. Implementating homomorphisms

Now, after we have extracted the combine operator of an (almost-) homomorphism,

let us address the subsequent problem: how the constructed homomorphism can be

implemented efficiently on a parallel machine.

4.1. Concatenating and distributable homomorphisms

Definition 9. A list homomorphism is called a “concatenating homomorphism” if its

combine operator has +t as the top function: 0 = (tt) o (f, g).

S. GorlatchlScience of Computer Programming 33 (1999) l-27 13

The reduction stage of a concatenating homomorphism starts from the singleton

lists after the map stage of (2) and arrives at a “long” result list at the root of the

tree. The communication of lists of growing length induces linear execution time on

machines with distributed memory, independently of the number of processors [28].

In the previous section, we faced this problem for function dropmatches. From (3)

it follows that scan is a concatenating homomorphism. However, there exist paral-

lel logarithmic-time algorithms for scan with good performance on parallel machines

[25]: they both consume and produce lists which are distributed between processors.

Our goal is to derive such algorithms systematically.

From now on, we restrict ourselves to power-lists [21] of length 2k, k = 0, 1,. , with

balanced concatenation: x ++y is defined iff lengthx = length y = 2k.

Definition 10. For a pair of binary operators $ and 8, the Distributable Homomor-

phism (DH) on powerlists, denoted @ 1 ~9, is defmed as follows:

(@I @) [al = [al
(@I@) (x+ty)=zip(fB)(u,u) +tZip(@)(U,U)

where Zengthx=Zengthy=2k, u=(@I@)x, u=(@I@)y.

(10)

In the homomorphism notation, ~31 @ =hom([.],(+) o (zip(@),zip(@))), where

function [.] yields, for an element a, the singleton list [a].
Fig. 1 compares how a general homomorphism (on the left) and a distributable

homomorphism (on the right) are computed on a concatenation of two powerlists.

The first question is: how representative is the class of DH, i.e. which functions can

be expressed in the form 6~ J @ by a suitable choice of the customizing operators $

and @?

As a simple example, let us consider the function called “distributed reduction”,

informally defined as redd (0) x = [red (0) x, . . . , red (0)x]. It is easy to express redd

Fig. 1. General

t t
-St

vs. zip @) b, VI -H-

vs. distributable homomorphism: an illustration.

14 S. GorlatchlScience of Computer Programming 33 (1999) 1-27

in the DH-format (10):

redd(O)(x+l-y)=zip(O)(redd(O)x,redd(O)y)

+t zip(o) (redd (0)x, redi (0) y)

Therefore, redd belongs to the class DH:

redd(@)= o lo (11)

Function redd is widely used in parallel programming and is implemented as the

AllReduce primitive in the MPI standard [30]. We will see further examples of DH

in the sequel; let us first concentrate on their parallel implementation.

4.2. Towards an ejticient parallel implementation

Our goal is to find a provably correct and efficient parallel implementation for all DH

functions. In this subsection, we first develop an architecture-independent implementa-

tion schema and then map it onto the hypercube topology. For the sake of efficiency,

we aim at an iterative, rather than recursive implementation.

Let us introduce some functions on powerlists which we will use later.

Our first two functions do simple rearrangements:

att : nat 3 CI --b (nat, a) glue : a --+ (nat, fx) 4 (nat, 4 a)
attix=(i,x) glue a (i, b) = (i, a, b)

The next function, permute, interchanges pair-wise elements which have a given

distance, k = 2’, between their positions in the powerlist x whose length is greater

than k. The function attaches to each element a flag which is equal to 0 if the element

has moved to the left and 1. otherwise:

permute : nat -+ [a] -+ [(nat, a)]

permute k(x +ty) = permute kx *permute k y, if k < length x

map(attO)y +tmap(att 1)x, if k=Zengthx

Fig. 2 illustrates how function permute and function step, introduced later, work on a

4-element list.

Function triples combines a list with a permutation of itself:

triples : nat --+ [CC] -4 [(nat, M, cl)]
triples k x = zip glue (x, permute k x)

Function apply performs one of two binary operations (B or 8) on the elements of a

list of triples, depending on the value of the flag:

apply : (((a, a) --+ a), ((a, a) -+ a)) + (nat, tl, a> + a
appZy (@, 63) (i, a, b) = if (i = 0) then (a $ b) else (b C!G a)

S. Gorlatch IScience of Computer Programming 33 (1999) l-27 15

xl xl x3 x3
stf?plx= 0 @ 8 @

x2 x2 x4 x4

xl x2 xl x2
step2x = 8 8 gj @

x3 x4 x3 x4

Fig. 2. Functions permute and step: an illustration

Now we introduce function step, whose behaviour is illustrated in Fig. 2:

step : nut -+ (((a, ~2) + a), ((a, cI) --+ a)) -+ [a] -+ [a]

step k (a, 8) = map (apply (~6 ~3)) 0 (triples k)

The next function, iter, performs k consecutive applications of function step:

iter : nut --f (((cc, cx) + IX), ((a, a) -3 01)) -+ [a] + [cc]

iter k(&, @) = (step 2(k-1) (@,@))o(iter(k- l)(@,@)) ifk>O

id ifk=O

Function iter has an obvious iterative implementation, in contrast to the cascading

recursion in the DH defintion (10). The following theorem establishes the equivalence

of these two forms.

Theorem 11. For an arbitrary list x of length 2k, the following holds:

(@f@)x=iterk($,@)x (12)

Proof. By induction on k. 0

The theorem provides a common computation schema for all DH functions. The

next step is to map this architecture-independent solution onto a particular processor

topology. As an example, let us consider the hypercube.

Our lists of length n = 2k are stored in a k-dimensional hypercube with n nodes.

The standard encoding is used: the position i, 0 d i <n, of a list is stored in the node i,

whose index is the k-bit binary representation of i. The access function on hypercubes,

hyp : [a] + nat -+ a, yields, for list x and index i, the element of x stored in the node

i of the hypercube. Each processor of the hypercube can communicate directly with

its k neighbours, whose indices differ in one bit position; this position determines

the dimension in which the communication takes place. In each dimension, n/2 pairs

of processors can communicate simultaneously, without dilation or congestion. For

processor i, its partner in the dimension d = 1,2 , . . . , k is denoted pf = xor(i, 2d-’),
where xor is “bit-wise exclusive OR”.

16 S. GorlatchIScience of Computer Programming 33 (1999) I-27

Function swap expresses a pattern of hypercube behaviour:

swap : nat -+ (((a, a) + LY), ((a, a) + ol)) -+ [a] --f [a]

bwWap4@, @)x)i = (hypx i) cl3 (hypxpf)
UVPXPC) @ VVPX 4

where lengthx=2k, l<d<k, 0<i<2k.

if i<pf

otherwise

From the definition it follows that swap d consists of pair-wise, two-directional

communications between all neighbours in dimension d of the hypercube, followed by

a computation in each processor. The following theorem establishes the correspondence

between one step of (12) and one application of swap.

Theorem 12. For a list x of length 2k and 1 <d d k, the following holds:

(13)

Denoting: Oi=, (swap d($, @)) = swap k(@, @) 0 . .o swap l($, @>, we obtain from
Theorems 11 and 12 the following:

Corollary 13 (DH on hypercube). For a list x of length 2k:

(14)

Therefore, every DH on a list of length 2k can be computed on the 2k-node hypercube

by a sequence of swaps, with the dimensions counted from 1 to k.

4.3. Scan as DH: Adjustment and implementation

In this subsection, we apply the generic DH implementation (14) to the scan-
function. Let us Iirst check whether scan is DH. Its combine operator, 0, extracted

by our cons&snoc method, reads as follows:

scan (0) (x+ty) = Sl 0 SZ = SI +t map ((last Sl)O) Sz

where Si = scan (0)x, S2 = scan (0)~ (15)

Evidently, the right-hand side of (15) does not match format (lo), so scan is not

DH. Fortunately, the idea of introducing auxiliary functions and tupling them can be

used again. This time, our goal is to find a closed definition in the component-wise

format. We illustrate how the method works for the scan function, the generalization

for arbitrary tuples is obvious.

The left argument of +t in (15) can be expressed component-wise immediately:

Si = zip TTI (Sl, S2). To express the right argument of -H component-wise, we replicate

S. GorlatchlScience of Computer Programming 33 (1999) I-27 17

element lust (S1) = last (scan (0)x) = red (0)x, which yields redd (0)x. Using redd
as an auxiliary function, we obtain

SI OS2=Zip71l(~l,S2)*ZiP(O)(Rl,S2) (16)

RI @R2 =zip(O)(Rl,R2)ft~iP(O)(Rl,R2) (17)

where RI = redd (0)x, A2 = redd (O)y, and (17) follows directly from (11).

We have thus obtained a closed, component-wise definition for tuple function (scan

(o), redd (o)), so no other auxiliary functions are needed. The expression of cult

adjusted to the DH format follows from (16) and (17)

scun(O)=(mup7t~)o(~J‘~)o(muppuir),

where

(18)

puiru = (a,~)

(SIrrl)$(S2,r2)=(SI,rl Or2)

Cn,rl)@(s2,r2)=(rI OarI 032)

(19)

Substituting the implementation schema (14) in (1 S), we obtain a hypercube program

for scan on a list of length 2k:

scan (0) = (map 7cl) 0 &,(swap d(% 8))
>

0 (muppuir) (20)

where pair, @, @ are defined by (19).

This is the well-known “folklore” implementation [25]. In Fig. 3, it is illustrated for

the two-dimensional hypercube which is computing scan (+) [1,2,3,4].

At this phase of program development, where all three stages in (20) are parallel, we

can generate the SPMD target program with explicit message passing, which computes

scan (0) on hypercube:

Q--Qp3 , I im 1 2 ___
1 T-

PO Pl

map pair swap 1

6 10

ro --- lo zx 1 3

lo --- Ti

swap 2

0 6 _-- 10 Q

Fig. 3. Computing scan on a hypercube.

18 S. GorlatchIScience of Computer Programming 33 (1999) I-27

map pair -+ [(s, r> := x;

_ For d := 1 To k Do

partner := xor (my-id, 2**(d-1))

If (my-id < partner)

Then SEND (s,r) TO partner;

RECV (t,u) FROM partner;

(s,r) := (s, rOu1;

Else RECV (t,u> FROM partner;

SEND (s,r) TO partner;

(s,r) := (rat, r@u);

End-If;

_ End-For;

map m --+ [y :=s;

The clear stage structure of (20), preserved in the imperative target program, helps

to analyze the program performance. There are three stages: pairing, repeating swaps

and projecting. For a list of length n = 2k, we use n processors. Both the pairing and

the projection stage require constant time. The central stage is the sequential loop with

k swaps. In each swap, pairs of elements are communicated, and computations are per-

formed on pairs as well, so every swap requires constant time. Hence, the parallel time

is O(k) = O(log n) and our implementation is time optimal. The cost (time-processor

product [25]) is O(n log n), whereas the cost of the sequential computation is O(n), so

the implementation is not cost optimal. To improve it, we must use fewer processors,

with each processor holding a segment rather than one element of the input list.

4.4. Bounded number of processors

Let us now consider a more practical situation in which the number of processors,

p, is arbitrary but fixed, i.e. p<n, where p divides n. We introduce the type [alp of

lists of length p and use the notation map,, zipP, etc., for functions defined on such

lists.

Processors work on partitioned lists. Partitioning over p sublists, called blocks, is

done by the distribution function, dist (P) : [a] + [[cl]lp. The following obvious equality

relates distribution with its inverse, flattening:

red(++-) o dist(J’) = id (21)

Homomorphisms have the following important property.

Theorem 14 (Promotion [5]). For a @-homomorphism h,

hored(+t)=red(O)omaph (22)

S. GorlatchlScience of Computer Programming 33 (1999) 1-27 19

We apply the promotion theorem to (@ I@) which, according to definition (lo), has

combine operator 0 = (tt) o (zip(@), zip(@)), defined on powerlists of equal length.

The transformation proceeds as follows:

@I@
= {equality (21),two times}

(red(*) 0 di&)) 0 $18 0 (red(+t-) 0 distCP))

E {associativity of 0, promotion law (22))

red(++) 0 (di&) 0 red((+t) 0 (zip(CB),zip(@))) 0 mup,(CB J: B)) 0 d&)

We separate the first, distributing and the last, flattening stage of the result expression.

The remaining, middle part, both accepts and yields distributed data of type [[alIp. For

an arbitrary function h : [c(] + [a], we call such an expression the p-distributed version

of h and use notation (z), for it, such that

h = red(+) o (h), o dist (P)

Many practical parallel algorithms are actually of type (h),: it is usually assumed

that input and output data distribution is provided by the operating system, or that the

distributed data are produced and consumed by other parts of a larger application.

The p-distributed version of DH is thus

(~63)~ = d&(P) ored 0 (zip(@),zi~(@)))omap,(@ 18) (23)

Program (23) suffers twice from linear communication costs: it concatenates lists by

applying operaor ((+t) o (zip(@),zip(@))) and then redistributes the result again. Our
goal is to cut these costs down. We begin by introducing an analog of the promotion
property for function zip.

Theorem 15 (Promotion of zip). For partitioned powerlists, x and y, of equal length

and equal block size,

zip(@)(red(+t)x,red(+t)y)=red(+t)(zip(zip(@))(x, y)) (24)

This theorem will be directly used in proving the following major fact.

Theorem 16 (Distributed DH). For an argument of type [[cr]lp,

(25)

Proof. Applying (21)-(23) and noting that, for XE [a],, the following holds:

di&‘)n = mup,[.] x, we obtain

@ii), = distCP) ored((+t)o (zip(@),ziP(@)))

ored(+t)omapp[.lom~Pp(@J‘@) (26)

20 S. GorlatchlScience of Computer Programming 33 (1999) I-27

For an argument of type [[[cl]]~]~, which is the output of stage mup,[.l in (26) we

prove, by induction on p = 2k, that

red(* 0 (zip(@),zip(@))) 0 red(W)

= red(ft)ored((+t)o (zip(z@(CT3)),zip(z@(@)))) (27)

Induction base: p= 1. The argument x of (27) is then of type [[[u]]I]I, so x= [[zll,
where z E [a]. Since reduction on a singleton list yields the element of the list, both

LHS and RHS of (27) are equal to z.
Induction hypothesis: (27) holds for ~=2~.
Induction step: An argument powerlist of length p = 2k+1 can be represented as xfty,

where x, y E [[[all I 1~.
By calculation:

(red((+t)o (zip(~),zip(~)))ored(ft))(x+ty)

= {red(@ a homomorphism with combine operator 0)

red((+t) 0 (zip(@),zip(@)))(red(+t)x * red(ft)y)

= {homomorphic property of reduction again}

zip(@)((red((+t) 0 (zip(~),zip(~)))ored(ft))x,

(red((+t)o (zip(~),zip(~)))ored(~))y)ft

zip(@)((red((++)o (zip(@),zip(@)))ored(*))x,

(red((+t)o (zip(@),zip(@)))ored(+t-))y)

= {induction hypothesis for x and y}

zip(@)(red(+k)(red((+k) 0 (zip(zip(@)),zip(zip(@))))x),

red(+t)(red((Sf)o (zip(zip(@)),z@(zip((@))))~)) +t

zip(@)(red(+t)(red((sf) 0 (z@(z@(@)),zip(zip(@))))x)~

red(+k)(red((+t) 0 (zip(zip(~)),zip(zip(~))))~))

= {promotion (24) for zip(@) and zip(@)}

red(+t)(zip(zip(@))(red((Sf)o (zip(zip(@)),zip(zip(@))))x,

red((ft) 0 (zip(zip(@)),zip(zip(@))))~))*

red(+t)(z@(zip(@))(red((-H)o (zip(ziP(@)),zip(z@(@))))X,

red((*)o (zip(zip(@)),zip(zip(@))))~))

= {property of red(+)}

(red(+t) 0 ((+t) 0 (zip(z@(@)),z@(zip(@)))))(red((*) 0

(zip(z@(@)),z@(zip(@)))) x,red((+t)o (zip(zip(@)),zip(zip(@))))y)

= {definition of reduction}

(red(i+)ored((ft)o (zip(ziP(@)),ziP(z@(@)))))(xftY)

S. GorlatchlScience of Computer Programming 33 (1999) I-27 21

Applying (27) (just proved), together with (21), to (26) and noting that expres-

sion (red((-H)o (zip(zip(@)),zip(z@(@)))) o mup,[.]) represents the homomorphism

(zip @) 1 (zip Q), we obtain the desired property (25).

Theorem 16 is proved. 0

To map the architecture-independent solution (25) onto the hypercube of p proces-

sors, we use (14) with k = log p, which yields

Program (28) provides a generic, provably correct implementation of a DH function

on the p-processor hypercube. It consists of two stages: a sequential computation of

the function in all p processors on their blocks simultaneously, and then a sequence

of swaps on the hypercube. Let T,(n) denote the sequential time complexity of the

function on a list of length n. Then the first stage of (28), for an input list of length

n and p processors, requires time T,(n/p). The swap-stage requires log p steps, with

blocks of size nfp to be sent and received and sequential component-wise computations

on them at each step; its time complexity is thus O((n/p). log p). For functions whose

sequential time complexity is O(n logn), e.g., Fast Fourier transform, the first stage

dominates, so program (28) is both time and cost optimal.

Therefore, cutting down the linear communication costs for class DH pays off for

many practical functions: the generic program (28) provides the optimal solution for

them. However, for functions of linear time complexity, like SCUIZ, the second stage in

(28) still dominates the total time, and thus the generic program is not optimal. We

address this difficulty in the next subsection.

4.5. Localization schema and scan

For some concatenating homomorphisms, the DH format (10) is still too general.

For instance, the combine operator of scan, defined by (15), does not make use of

list v on the left of + and uses only one, the last, element of u on the right of con-

catenation! This enables so-called localization of the reduction stage: communication

and computations are performed on a local portion, possibly on one element, of each

block, rather than on the whole blocks.

Definition 17. A localization schema of a homomorphism with combine operator @ =

(+t) o (f, g) is the representation of the reduction stage:

red(0) = red(+) 0 zip join o (compute o mapselect, id), (29)

with parameters select : [a] 4 CL, compute : [a] --) [a], join : (a, [a]) + [a]

Intuitively, schema (29) picks one element of each block by select and computes

a new value for each block by function compute, using selected elements of all blocks.

22 S. GorlatchlScience of Computer Programming 33 (1999) 1-27

This value is then used, together with the initial block preserved by id, in the concluding

computation by function join.

If we can find a suitable localization schema for a homomorphism h with combine

operator 0, then its p-distributed version can be derived as follows:

Gp = dis@) o h o red (+t)

= {promotion (22))

distCP)ored(@)omapph

= {localization (29))

distCP) o red(+t) o zipP join o (compute, o map* select, id) o mapp h

= {for an argument of type [a],, distCP)ored(ft) =id}

zipP join o (computep o mapp select, id) o mapP h

Thus, the generic program after localization reads as follows:

Gp = z@~ join o (compute, o mapP select, id) o mapP h (30)

Let us construct a localization schema for scan. The natural candidate for the param-

eter function select is last. The customizing operator join is of the form @J, such that

aau =map(a@)u. The compute function for scan is function prescan, which yields

the result of scan, “shifted to the right”:

prescan (0) [XI, x2,. ..,x,]=[o~,x~,x, 0x2 ,...) Xl @X2@.‘.@&_,]

where 0, is the neutral element of 0. Despite its close similarity to scan, function pre-

scan is not a homomorphism: e.g., prescan (+) [xl, x2, x3, x4] which is [0, xi, x1+x2, XI +

x2 +x3] cannot be expressed via prescan (+) [XI, x2] = [0, XI] and prescan (+) [x3, x4] =
[0,x3], because x2 is “lost”. Fortunately, prescan can be adjusted to the DH-format

using exactly the same tupling method as for scan in Section 4.3. The only difference

is in the pairing function, which for prescan is of the form: prepair a = (00, a).
Substituting the parameters select = last, compute =prescan, join = @I in (30) and

using the prescan analog of (20), we obtain the following target program for scan (0)

on p processors:

(sca7@))Px=zipP(@)(y,z)? (31)

where z = mapp (scan (0)) x

(

1% P
y = mapP 7~1 0 dQ, (swap, d (@A @)) 0 mapP (prepair 0 last>

>
z

with @,@ from (19).

Functions map, and zipP in (3 1) imply that all p processors execute the same pro-

gram. In case of swap,, the individual processor’s program depends on the processor’s

coordinate in the hypercube. Therefore, BMF-program (3 1) represents the SPMD-style

S. GorlatchlScience of Computer Programming 33 (1999) 1-27 23

parallel target program that computes function scan on list X, where x is partitioned

block-wise between p processors.

The program is a sequence of the following three stages:

- Compute z: Each processor independently computes the scan function on its block

of X; this yields block z.

- Compute y: Each processor creates a pair consisting of O. and the last element of

its block z. Then each processor performs logp steps, communicating at step i with

its neighbour in dimension i of the hypercube and performing computations @ and

@ defined by (19). The first element of the result pair is assigned to variable y.

- Compute the result: Each processor computes y @z; here, no communication is

necessary.

This is exactly the implementation of scan used in practice on a hypercube with an

arbitrary fixed number of processors [25]. The time complexity of both first and third

stages is O(n/p) since both scan and 03 are linear. The second stage consists of logp

steps, with communications and computations on pairs of elements, which yields time

O(logp). Therefore, the total time complexity of program (31) is O(n/p + logp), the

best one can expect on p processors. This is a clear improvement over the generic

implementation (28) of DH.

Another application of a localization schema is the so-called parallel suf/ix which

yields the list of prefix sums in a list inspected from right to left.

5. Related work

Our work is inspired by the current research on systematic methods of deriving

correct and efficient programs for parallel machines by transformation.

Our approach to the homomorphism extraction can be compared with work by Grant-

Duff and Harrison [151 since we consider the same examples. On simple examples like

length, we actually do the same. For scan, rather involved calculations and intuition

are required in [151 to obtain the combine operator; our cons & snot method arrives

at the result in a systematic way. For almost-homomorphisms, the method of [15] is

not suitable at all. In an earlier work by Barnard et al. [3] and previously cited papers

by Gibbons [12,11], the existence of leftwards and rightwards algorithms is used as

evidence that a homomorphic algorithm exists; unlike our approach, the authors do not

provide a method to derive it.

Our solutions for the maximum segment sum problem are similar to those presented

by Smith [29] and Cole [8]. Our contribution is the systematic cons&snoc method

which firstly provides a uniform way of introducing the necessary auxiliary functions

and secondly exploits a rigorous generalization procedure for deriving the resultant

combine operator on tuples. A similar observation applies to the case of nested almost-

homomorphisms when compared to [8]. It has been recently brought to our attention

that the idea of tupling resembles the technique called “strengthening the invariant”

used in imperative program derivation [171.

24 S. GorlatchIScience of Computer Programming 33 (1999) 1-27

Parallelization of the scan function has a rich history, starting from the seminal work

by Ladner and Fisher [20], who, reworking earlier results by other authors, show that

parallel prefix can be computed in logarithmic time on a linear number of processors.

Blelloch [6] stresses the wide applicability of scans and proposes their use as parallel

language primitives. Meanwhile, parallel algorithms for computing scans are a part

of folklore [25], and are usually presented in an ad hoc manner. On inspection of

these algorithms, one is convinced that they really compute the scan-function, but the

reasons for the eureka decisions and their applicability to functions other than scan
remain unclear.

There are systematic approaches to scan parallelization, which we compare to our

work. Mou [22] specifies the scan-algorithm within a general algebraic model of divide-

and-conquer and presents [7] an optimization, which is similar to our maximally parallel

version. However, the tuple structure arises as a result of a non-formal argument and

the optimization is not formally proved. An algorithm for an unlimited number of pro-

cessors has been formally verified by O’Donnell [23] (interestingly enough, the author

cites, as one of the reasons for addressing this problem, the fact that some published

parallel Scan algorithms were erroneous), and later formally derived by Gibbons [lo].

A similar two stage tree algorithm has been mapped to the mesh topology by Gibbons

and Ziani [9]. Kornerup [181 formally arrives at the algorithm by Ladner and Fisher in

the recursive powerlist notation; the algorithm requires a linear number of processors

and Gray encoding of the hypercube nodes.

Our approach differs from previous results in that our target implementation: (1) is a

result of a systematic, provably correct adjustment and specialization process applicable

to a broader class of algorithms, (2) is obtained in an iterative form, where all stages

of computations and communication can be seen explicitly, and (3) is realizable on

both linear and bounded number of processors with predictable performance. The scan
algorithm for a bounded number of processor has, to the best of our knowledge, neither

been formally derived nor explained methodologically elsewhere before.

Our implementation restriction to powerlists originates from work by Misra [21]. Un-

like him, we get rid of the explicit recursion in the target program by introducing iter-

ative constructs. The target program in the form of a sequential composition of parallel

stages has the following advantages: it is easier to understand, is directly transformable

into an SPMD program and allows for a simple performance prediction. Our proofs

are not more complex, since we use the semantically sound transformations of BMF,

where recursion is hidden in the higher-order functions. However, our approach is more

restrictive, since we do not consider the list interleaving constructor w, used by Misra.

The ideas of transformations with distributed data are initially due to [27,28], we

extend and specialize them by introducing new rules. The construction of function

irer is a special case of the Compound List Operators of Kumar and Skillicom [191,

which we use here for a different purpose from the original. An approach similar to

ours, of deriving an architecture-independent iterative solution and then mapping it

onto particular topologies, has been taken by Achatz and Schulte [l]. We consider a

more special class DH, which allows us to make use of more powerful transformation

S. GorlatchIScience of Computer Programming 33 (1999) I-27 25

rules. Moreover, we aim at MIMD architectures with an arbitrary bounded number of

processors, unlike the SIMD model with one element per processor used in [l].

Reid-Miller [26] has implemented an algorithm, similar to ours (3 1), for the slightly

more complex case of data stored as linked lists. This algorithm has reportedly out-

performed all other known algorithms for scan when p < n.
Our implementation schema for DH functions on the hypercube resembles the com-

mon structure of ascending algorithms studied in the seminal paper by Preparata and

Vuillemin [24]. We view this analogy as a promising sign for research towards building

a taxonomy of functions with respect to their efficient parallel implementation.

6. Conclusion and future work

In this paper, we propose an approach to exploiting homomorphic parallelism in

functions on lists, which consists of two steps: first, parallelism extraction by finding

a homomorphic representation of the given function, second, parallelism implementation

by adjusting the function to the DH format and using the generic parallel implemen-

tation schema.

We claim that our approach is more systematic than previous methods:

- At the parallelism extraction step, the user provides two sequential definitions of

a given function in a closed form. The requirement of closedness, as we demonstrate

by several examples, “guides” the introduction of the necessary auxiliary functions.

The rest of the job is done by the generalization procedure.

- At the parallelism implementation step, the function must be cast in the DH format,

which again serves as a guide for the user. It then remains to customize the generic

implementation schema.

- Our approach is applicable to a class of problems: one does not need to start the

derivation from scratch for every new specification.

Methodologically, an important feature of the parallelism extraction is that it is based

on sequential thinking. Considerations involving data and control dependencies, which

are usual in parallelization techniques, are avoided.

The contribution to the implementation methodology is in the definition of the DH

class of functions on lists and the formal derivation of a common efficient parallel

implementation schema for all functions of the class. The derivation is based on the

semantically sound transformation rules of the BMF, which guarantee its correctness.

The performance of the target implementation is easily predictable and conforms with

the best known estimates.

Both extraction and implementation methods enrich our SAT program develop-

ment approach [14]. The advantages of the SAT approach, demonstrated in the paper,

include: (1) an easy to understand single-threaded program structure which is preserved

from the specification phase through to the target program, (2) suitability for program

transformations and performance prediction, (3) direct generation of an SPMD program

without additional synchronization.

26 S. GorlatchlScience of Computer Programming 33 (1999) 1-27

Our current work includes designing a standard generalization procedure for the

cons& snot method. We have developed an algorithm based on rewriting, which is

provably correct and terminating [3 11. Although the algorithm is not complete, it works

successfully for all homomorphisms known to us, including those presented in this

paper. A remaining open question is a systematic way of deriving localization schemata

for representative classes of functions. We also work towards extensions of the DH

class which still allow for efficient and practically relevant parallel implementations.

Acknowledgements

Special thanks to Murray Cole and Chris Lengauer for proof-reading the complete

paper and greatly improving both the contents and the form. I am grateful to Alfons

Geser, Jeremy Gibbons and Lambert Meertens for remarks on different parts of the

manuscript and to Christoph Wedler for many technical discussions.

The anonymous referees helped a lot to make the manuscript a better paper.

References

[l] K. Achatz, W. Schulte, Architecture independent massive parallelization of divide-and-conquer

algorithms, in: B. Moeller (Ed.), Mathematics of Program Construction. Lecture Notes in Computer

Science, Vol. 947, Springer, Berlin, 1995, pp. 97-127.

[2] J.W. Backus, Can programming be liberated from the von Neumann style? Commun. ACM 21 (1978)

613-641.

[3] D. Barnard, J. Schmeiser, D. Skillicom, Deriving associative operators for language recognition, Bull.

EATCS 43 (1991) 131-139.

[4] J. Bentley, Programming pearls, Commun. ACM 27 (1984) 865-871.

[5] R.S. Bird, Lectures on constructive functional programming, in: M. Broy (Ed.), Constructive Methods in

Computing Science, NATO AS0 Series F: Computer and Systems Sciences, Vol. 55, Springer, Berlin,

1988, pp. 151-216.

[6] G. Blelloch, Scans as primitive parallel operations, IEEE Trans. Comput. 38(11) (1989) 1526-1538.

[7] B. Carpentieri, G. Mou, Compile-time transformations and optimizations of divide-and-conquer

algorithms, ACM SIGPLAN Notices 20(10) (1991) 19-28.

[S] M. Cole, Parallel programming with list homomorphisms, Parallel Processing Lett. 5 (2) (1994)

191-204.

[9] A. Gibbons, R. Ziani, The balanced binary tree technique on mesh-connected computers, Inform. Process.

Lett. 37 (1991) 101-109.

[lo] J. Gibbons, Upwards and downwards accumulations on trees. in: R. Bird, C. Morgan, J. Woodcock

(Eds.), Mathematics of Program Construction, Lecture Notes in Computer Science, Vol. 669, Springer,

Berlin, 1992, pp. 122-138.

[l l] J. Gibbons, The third homomorphism theorem, Technical Report, U. Auckland, 1994.
[12] J. Gibbons, The third homomorphism theorem, J. Fun. Programming 6(4) (1996) 657-665.

[13] S. Gorlatch, Constructing list homomorphisms, Technical Report MIP-9512, Universitat Passau, 1995.

[141 S. Gorlatch, Stages and transformations in parallel programming, in: M. Kara et al. (Eds.), Abstract

Machine Models for Parallel and Distributed Computing, 10s Press, 1996, pp. 147-162.

[15] 2. Grant-Duff, P. Harrison, Parallelism via homomorphisms, Parallel Processing Lett. 6 (2) (1996)

279-295.

[16] B. Heinz, Lemma discovery by anti-unification of regular sorts, Technical Report 94-21, TU Berlin,

May 1994.
[17] A. Kaldewaij, Programming: The Derivation of Algorithms, Prentice-Hall, Englewood Cliffs, NJ, 1990.

S. Gorlatch IScience of Computer Programming 33 (1999) 1-27 21

[18] J. Komerup, Mapping a functional notation for parallel programs onto hypercubes, Inform. Processing

Lett. 53 (1995) 153-158.

[19] K. Kumar, D. Skillicom, Data parallel geometric operations on lists, Parallel Comput. 21 (3) (1995)

441-459.

[20] R. Ladner, M. Fischer, Parallel prefix computation, J. ACM 27 (1980) 831-838.

[21] J. Misra, Powerlist: a structure for parallel recursion, ACM TOPLAS 16(6) (1994) 1737-1767.

[22] Z.G. Mou, Divacon: A parallel language for scientific computing based on divide and conquer, in: Proc.

3rd Symp. on the Frontiers of Massively Parallel Computation, October 1990, pp. 451-461.

[23] J. O’Donnell, A correctness proof of parallel scan, Parallel Processing Lett. 4(3) (1994) 329-338.

[24] F. Preparata, J. Vuillemin, The cube-connected cycles: a versatile network for parallel computation,

Comm. ACM 24(5) (1981) 300-309.

[25] M.J. Quinn, Parallel Computing, McGraw-Hill, New York, 1994.

[26] M. Reid-Miller, List ranking and list scan on the Cray C-90, in Proc. SPAA’94, 1994, pp. 104-l 13.

[27] D. Skillicom, Foundations of Parallel Programming, Cambridge Univ. Press, Cambridge, 1994.

[28] D. Skillicom, W. Cai, A cost calculus for parallel functional programming, 5. Parallel Distributed

Comput. 28 (1995) 65-83.

[29] D.R. Smith, Applications of a strategy for designing divide-and-conquer algorithms, Science of Computer

Programming 8 (3) (1987) 213-229.

[30] D. Walker, The design of a standard message passing interface for distributed memory concurrent

computers, Parallel Comput. 20 (1994) 657-673.

[31] A. Geser, S. Gorlatch, Parallelizing functional programs by generalization, in: Algebraic and Logic

Programming, ALP’97, Lecture Notes in Computer Science, Springer, Berlin, to appear.

