Journal of Number Theory 130 (2010) 1234-1240

Contents lists available at ScienceDirect

Journal of Number Theory

www.elsevier.com/locate/jnt

NUMBER THEORY

Ping Xi^{a,*}, Yuan Yi^{a,b}

^a School of Science, Xi'an Jiaotong University, Xi'an 710049, PR China
 ^b Department of Mathematics, The University of Iowa, Iowa City, IA 52242-1419, USA

ARTICLE INFO

Article history: Received 22 October 2009 Available online 16 December 2009 Communicated by K. Soundararajan

MSC: primary 11L40 secondary 11L05, 11A07

Keywords: Character sums Kloosterman sums Inverse mod *q*

ABSTRACT

Let $q \ge 2$ be an integer, χ be any non-principal character mod q, and $H = H(q) \le q$. In this paper the authors prove some estimates for character sums of the form

$$\mathcal{W}(\chi, H; q) = \sum_{n \in \mathscr{F}(H)} \chi(n),$$

where

$$\mathscr{F}(H) = \big\{ n \in \mathbb{Z} \mid (n,q) = 1, \ 1 \leqslant n, \overline{n} \leqslant q, \ |n-\overline{n}| \leqslant H \big\},\$$

 \overline{n} is defined by $n\overline{n} \equiv 1 \pmod{q}$.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Let $q \ge 2$ be an integer, χ be a non-principal character mod q. It is quite an important problem in analytic number theory to obtain a sharp estimate for the character sum

$$\sum_{x=N+1}^{N+H} \chi(f(x)),$$

where $f(x) \in \mathbb{Z}[x]$, *N* and *H* are positive integers. The classical result, due to Pólya and Vinogradov [P,V], is the estimate

☆ Supported by NSF (No. 10601039) of PR China.

* Corresponding author.

E-mail addresses: xprime@163.com (P. Xi), yuanyi@mail.xjtu.edu.cn (Y. Yi).

$$\sum_{n=N+1}^{N+H} \chi(n) \ll q^{1/2}\log q,$$

where \ll is the Vinogradov's notation. About half a century later, Burgess' immortal work [B1,B2] showed that

$$\sum_{n=N+1}^{N+H} \chi(n) \ll H^{1-1/r} q^{(r+1)/4r^2 + o(1)}$$

holds with r = 1, 2, 3 for any q and with arbitrary positive integer r if q is cube-free. Under Generalized Riemann Hypothesis, Montgomery and Vaughan [MV] sharpened the Pólya–Vinogradov bound to

$$\sum_{n=N+1}^{N+H} \chi(n) \ll q^{1/2} \log \log q.$$

Burgess' estimate is such a milestone that nobody can unconditionally beat the barrier in general by any advanced technology. (Some partial improvements and progresses can be found in [GS1,GS2,G], et al.) However, estimates for the character sums over special numbers and sequences, such as factorials, Beatty sequences, binomial coefficients and other combinatorial numbers, have attracted many scholars' interests. A complete list of the results and open problems are referred to [S].

In this paper, we shall deal with another kind of special numbers. It is known that the distribution of \bar{n} is quite irregular, where \bar{n} is the inverse of $n \mod q$, i.e. $n\bar{n} \equiv 1 \pmod{q}$. How about the distribution of $|n - \bar{n}|$? In [Z], W. Zhang proved that

$$\sum_{\substack{n=1\\|n-\bar{n}| \le \delta q}}^{q} 1 = \delta(2-\delta)\varphi(q) + O\left(q^{1/2}\tau^2(q)\log^3 q\right),\tag{1}$$

where $\delta \in (0, 1]$ is a constant, $\varphi(q)$ is the Euler function and $\tau(q)$ is the divisor function, \sum^* denotes the summation over the integers that are coprime to q.

In fact, W. Zhang studied the number of the integers that are within a given distance to their inverses mod q. Now we consider the character sums over these integers. We shall present the problem of a more general case.

Let $q \ge 2$ be a fixed integer and $H = H(q) \le q$. We put

$$\mathscr{F}(H) = \{ n \in \mathbb{Z} \mid (n,q) = 1, \ 1 \leq n, \overline{n} \leq q, \ |n-\overline{n}| \leq H \}.$$

Each element in $\mathscr{F}(H)$ is called an *H*-flat number mod *q*. Note that in the definition of $\mathscr{F}(H)$, the size of *H* is O(q), not necessary being $H \simeq q$ as in (1).

In this paper, we shall study the character sums over such H-flat numbers mod q. That is we shall prove nontrivial upper bounds for

$$\mathcal{W}(\chi, H; q) = \sum_{n \in \mathscr{F}(H)} \chi(n).$$
⁽²⁾

It is obvious that $n \in \mathscr{F}(H)$ implies $q - n \in \mathscr{F}(H)$, thus $\chi(n) + \chi(q - n) = 0$ if $\chi(-1) = -1$, so $\mathcal{W}(\chi, H; q) = 0$. Hence we only deal with the case with $\chi(-1) = 1$ throughout this paper.

Theorem 1. Let $q \ge 2$, χ be a non-principal character mod q. Then we have

$$\mathcal{W}(\chi, H; q) \ll q^{1/2} \tau^2(q) \log H.$$

The proof of Theorem 1 depends on the estimate for the general Kloosterman sums twisted by Dirichlet characters, and the upper bound in Theorem 1 is independent of H, to be precise, the result may be trivial if H is quite small. However if q is odd, and χ is the Jacobi symbol mod q (which reduces to Legendre symbol if q is a prime), we have corresponding calculation formulae for this Kloosterman sum, known as Salié sum, and we can obtain an upper bound depending on H, which can be stated as follows.

Theorem 2. Let $q \ge 3$ be an odd square-free integer, χ be the Jacobi symbol mod q. Then we have

$$\mathcal{W}(\chi, H; q) \ll H^{1-1/r} q^{(r+1)/4r^2} \tau(q) \log q,$$

where $r \ge 1$ is an arbitrary integer.

2. General Kloosterman sums and character sums

The classical Kloosterman sum is defined by

$$S(m,n;q) = \sum_{a \mod q}^{*} e\left(\frac{ma + n\bar{a}}{q}\right),$$

where $e(x) = e^{2\pi i x}$. The well-known upper bound essentially due to A. Weil [W] is

$$S(m, n; q) \ll q^{1/2}(m, n, q)^{1/2} \tau(q),$$

where (m, n, q) denotes the greatest common divisor of m, n, q.

In the proof of the following sections, we require a general Kloosterman sum twisted by a Dirichlet character such as

$$S_{\chi}(m,n;q) = \sum_{a \mod q}^{*} \chi(a) e\left(\frac{ma+n\bar{a}}{q}\right).$$

Taking $\chi = \chi^0$ as the principal character mod q, this reduces to S(m, n; q). We require an upper bound estimation for $S_{\chi}(m, n; q)$, the original proofs [W,E] carry over with minor modifications.

Lemma 1. Let *q* be a positive integer, then we have

$$S_{\chi}(m,n;q) \ll q^{1/2}(m,n,q)^{1/2}\tau(q).$$

Lemma 2. Let $q \ge 2$, χ be a Dirichlet character mod q. For any d with d|q, we define

$$T_{\chi}(m,n;d,q) = \sum_{a \bmod q}^{*} \chi(a) e\left(\frac{ma+n\bar{a}}{d}\right),$$

where $a\overline{a} \equiv 1 \pmod{q}$. Then for any d with $d\ell = q$, $(d, \ell) = 1$, we have

$$T_{\chi}(m,n;d,q) = \begin{cases} \varphi(\ell) S_{\chi_1}(m,n;d), & \text{if } \chi_2 = \chi_2^0, \\ 0, & \text{if } \chi_2 \neq \chi_2^0, \end{cases}$$

where $\chi_1 \mod d$, $\chi_2 \mod \ell$ with $\chi_1 \chi_2 = \chi$, and χ_2^0 is the principal character mod ℓ .

Proof. Let $a = a_1 \ell + a_2 d$, then

$$T_{\chi}(m,n;d,q) = \sum_{a_{1} \mod d} \sum_{a_{2} \mod \ell}^{*} \chi(a_{1}\ell + a_{2}d)e\left(\frac{ma_{1}\ell + na_{1}\ell}{d}\right)$$
$$= \sum_{a_{1} \mod d} \sum_{a_{2} \mod \ell}^{*} \chi_{1}(a_{1}\ell)\chi_{2}(a_{2}d)e\left(\frac{ma_{1}\ell + n\overline{a_{1}\ell}}{d}\right)$$
$$= \chi_{2}(d)\sum_{a_{1} \mod d}^{*} \chi_{1}(a_{1}\ell)e\left(\frac{ma_{1}\ell + n\overline{a_{1}\ell}}{d}\right)\sum_{a_{2} \mod \ell}^{*} \chi_{2}(a_{2}),$$

then the lemma follows from the orthogonality of Dirichlet characters. $\hfill\square$

If q is odd, and χ is the Jacobi symbol mod q, we have a calculation formula of the general Kloosterman sums, known as Salié sums (see [I, Lemma 4.9]).

Lemma 3. If (q, 2n) = 1, and χ is the Jacobi symbol mod q, then we have

$$S_{\chi}(m,n;q) = \varepsilon_q q^{1/2} \chi(n) \sum_{y^2 \equiv mn \pmod{q}} e\left(\frac{2y}{q}\right),$$

where ε_q is a constant with $|\varepsilon_q| = 1$.

We also require Burgess' classical result on character sums, see [B1, Theorem 2].

Lemma 4. If $q \ge 2$ is square-free, then for any non-principal character $\chi \mod q$, we have

$$\sum_{n=N+1}^{N+A} \chi(n) \ll A^{1-1/r} q^{(r+1)/4r^2} \log q,$$

where $r \ge 1$ is an arbitrary integer.

3. Proof of Theorem 1

It obvious that $\mathcal{W}(\chi, H; q)$ has the same essential bound with

$$\mathcal{W}^*(\chi, H; q) = \sum_{t \leqslant H} \sum_{\substack{n \leqslant q \\ n - \bar{n} \equiv t \pmod{q}}}^* \chi(n).$$

We denote $||x|| = \min_{n \in \mathbb{Z}} |x - n|$. Apply the identity

$$\sum_{n=1}^{q} e\left(\frac{an}{q}\right) = \begin{cases} q, & q \mid a, \\ 0, & q \nmid a, \end{cases}$$

together with Lemma 1 we can obtain that

$$\mathcal{W}^{*}(\chi, H; q) = \frac{1}{q} \sum_{m \leqslant q} \sum_{t \leqslant H} e\left(-\frac{mt}{q}\right) \sum_{n \leqslant q}^{*} \chi(n) e\left(m\frac{n-\bar{n}}{q}\right)$$

$$\ll \frac{1}{q} \sum_{m \leqslant q-1} \min\left(H, \left\|\frac{m}{q}\right\|^{-1}\right) \left|S_{\chi}(m, -m; q)\right|$$

$$\ll q^{-1/2} \tau(q) \sum_{m \leqslant q-1} (m, q)^{1/2} \min\left(H, \left\|\frac{m}{q}\right\|^{-1}\right)$$

$$\ll q^{-1/2} \tau(q) \sum_{m \leqslant q-1} (m, q)^{1/2} \min\left(H, \frac{q}{m}\right)$$

$$\ll Hq^{-1/2} \tau(q) \sum_{m \leqslant q/H} (m, q)^{1/2} + q^{1/2} \tau(q) \sum_{q/H < m \leqslant q-1} \frac{(m, q)^{1/2}}{m}$$

By the following calculations,

$$\sum_{m \leqslant q/H} (m,q)^{1/2} \ll \sum_{d|q} d^{1/2} \sum_{\substack{m \leqslant q/H \\ d|m}} 1 \ll H^{-1}q\tau(q),$$

.

and

$$\sum_{q/H < m \leqslant q-1} \frac{(m,q)^{1/2}}{m} \ll \sum_{d|q} d^{1/2} \sum_{\substack{q/H < m \leqslant q-1 \\ d|m}} \frac{1}{m}$$
$$\ll \sum_{d|q} d^{-1/2} \sum_{\substack{q/Hd < m \leqslant q/d \\ m}} \frac{1}{m}$$
$$\ll \tau(q) \log H,$$

we have

$$\mathcal{W}^*(\chi, H; q) \ll q^{1/2} \tau^2(q) \log H$$

and $\mathcal{W}(\chi, H; q)$ has the same bound. This completes the proof of Theorem 1.

4. Proof of Theorem 2

In this section, we shall deal with a special case of (2), that is q being an odd square-free integer, and $\chi = (\frac{1}{q})$ being the Jacobi symbol mod q.

1238

Following the similar arguments in Section 3, we have

$$\mathcal{W}^*(\chi, H; q) = \frac{1}{q} \sum_{m \leqslant q} \sum_{t \leqslant H} e\left(-\frac{mt}{q}\right) S_{\chi}(m, -m; q)$$

$$= \frac{1}{q} \sum_{d|q} \sum_{\substack{m=1\\(m,q)=d}}^{q} \sum_{t \leqslant H} e\left(-\frac{mt}{q}\right) S_{\chi}(m, -m; q)$$

$$= \frac{1}{q} \sum_{d|q} \sum_{\substack{m=1\\(m,q/d)=1}}^{q/d} \sum_{t \leqslant H} e\left(-\frac{mdt}{q}\right) S_{\chi}(md, -md; q)$$

$$= \frac{1}{q} \sum_{d|q} \sum_{m \leqslant d} \sum_{t \leqslant H} e\left(-\frac{mt}{d}\right) \sum_{a \mod q}^* \chi(a) e\left(\frac{ma - m\bar{a}}{d}\right)$$

$$= \frac{1}{q} \sum_{d|q} \sum_{m \leqslant d} \sum_{t \leqslant H} e\left(-\frac{mt}{d}\right) T_{\chi}(m, -m; d, q).$$

We write $q = d\ell$, where $(d, \ell) = 1$ since q is square-free. We also write $\chi_1 \mod d$, $\chi_2 \mod \ell$ with $\chi_1 \chi_2 = \chi$. Note that χ is a real primitive character mod q, so from Lemma 2 we know that, χ_1 and χ_2 must be real primitive characters mod d and ℓ respectively, thus $T_{\chi}(m, -m; d, q) = 0$ if $\ell > 1$. Applying Lemmas 2 and 3, we can deduce that

$$\mathcal{W}^*(\chi, H; q) = \frac{1}{q} \sum_{m \leqslant q}^* \sum_{t \leqslant H} e\left(-\frac{mt}{q}\right) S_{\chi}(m, -m; q)$$
$$= \frac{\varepsilon_q}{q^{1/2}} \sum_{t \leqslant H} \sum_{m \leqslant q} \chi(m) e\left(-\frac{mt}{q}\right) \sum_{y^2 \equiv -m^2 \pmod{q}} e\left(\frac{2y}{q}\right)$$
$$= \frac{\varepsilon_q}{q^{1/2}} \sum_{t \leqslant H} \sum_{m \leqslant q} \chi(m) e\left(-\frac{mt}{q}\right) \sum_{\delta^2 \equiv -1 \pmod{q}} e\left(\frac{2\delta m}{q}\right).$$

Thus

$$\mathcal{W}^*(\chi, H; q) = \frac{\varepsilon_q}{q^{1/2}} \tau(\chi) \sum_{\delta^2 \equiv -1 \pmod{q}} \sum_{t \leq H} \chi(2\delta - t),$$

where $\tau(\chi) = \sum_{n \mod q} \chi(n)e(\frac{n}{q})$ is the Gauss sum. Applying Lemma 4 and $|\tau(\chi)| = q^{1/2}$, we obtain that

$$\mathcal{W}^*(\chi, H; q) \ll H^{1-1/r} q^{(r+1)/4r^2} \tau(q) \log q$$

for any integer $r \ge 1$. And $\mathcal{W}(\chi, H; q)$ has the same bound. This completes the proof of Theorem 2.

5. Final remarks

Each positive integer can be represented as the product of two coprime parts, one is square-free and the other is square-full. In fact, the method in Section 4 can lead to a nontrivial estimate for the modulo q, whose square-full part is quite small in comparison with q. The estimate depends mainly on a corresponding result to Lemma 2 for such q.

Theorem 3. Let $q \ge 3$ be an odd integer, χ be the Jacobi symbol mod q. Then we have

$$\mathcal{W}(\chi, H; q) \ll \left(Hq_2^{-1}\right)^{1-1/r} \varphi^2(q_2) q_1^{(r+1)/4r^2} 2^{\omega(q)} \log q_1,$$

where q_1 is the square-free part of q, q_2 is square-full, $\omega(q)$ denotes the number of distinct prime factors of q, and $r \ge 1$ is an arbitrary integer.

We should point out again that Theorem 3 is nontrivial when the square-full part of q is quite small in comparison with q.

Acknowledgment

The authors would like to express their sincere thanks to the referee for his/her helpful comments and suggestions.

References

- [B1] D.A. Burgess, On character sums and L-series. II, Proc. London Math. Soc. 13 (1963) 524–536.
- [B2] D.A. Burgess, The character sum estimate with r = 3, J. London Math. Soc. 33 (1986) 219–226.
- [E] T. Estermann, On Kloosterman's sum, Mathematika 8 (1961) 83-86.
- [G] L.I. Goldmakher, Character sums to smooth moduli are small, Canad. J. Math., in press.
- [GS1] A. Granville, K. Soundararajan, Large character sums, J. Amer. Math. Soc. 14 (2001) 365-397.
- [GS2] A. Granville, K. Soundararajan, Large character sums: Pretentious characters and the Pólya–Vinogradov theorem, J. Amer. Math. Soc. 20 (2007) 357–384.
- [I] H. Iwaniec, Topics in Classical Automorphic Forms, Grad. Stud. Math., vol. 17, Amer. Math. Soc., 1997.
- [MV] H.L. Montgomery, R.C. Vaughan, Exponential sums with multiplicative coefficients, Invent. Math. 43 (1977) 69-82.
- [P] G. Pólya, Über die Verteilung der quadratische Reste und Nichtreste, Göttingen Nachr. (1918) 21-29.
- [S] I.E. Shparlinski, Open problems on exponential and character sums, http://web.science.mq.edu.au/~igor/CharSumProjects. pdf.
- [V] I.M. Vinogradov, On the distribution of residues and non-residues of powers, J. Phys. Math. Soc. Perm. 1 (1918) 94-96.
- [W] A. Weil, Sur les courbes algébriques et les variétés qui s'en déduisent', Actualités Math. Sci., vol. 1041, deuxieme partie, § IV, Paris, 1945.
- [Z] W. Zhang, On the distribution of inverses modulo *n*, J. Number Theory 61 (1996) 301–310.