brought to you by provided by Elsevier - Publisher Connecto



Available online at www.sciencedirect.com



Journal of Algebra 301 (2006) 35-58

**JOURNAL OF** Algebra

www.elsevier.com/locate/jalgebra

# Counting words of minimum length in an automorphic orbit

Donghi Lee

Department of Mathematics, Pusan National University, San-30 Jangjeon-Dong, Geumjung-Gu, Pusan 609-735, South Korea

Received 22 August 2004

Available online 6 May 2006

Communicated by Alexander Lubotzky

#### Abstract

Let u be a cyclic word in a free group  $F_n$  of finite rank n that has the minimum length over all cyclic words in its automorphic orbit, and let N(u) be the cardinality of the set  $\{v: |v| = |u| \text{ and } v = \phi(u) \text{ for some } v = \phi(u) \text{$  $\phi \in \operatorname{Aut} F_n$ . In this paper, we prove that N(u) is bounded by a polynomial function with respect to |u| under the hypothesis that if two letters x, y with  $x \neq y^{\pm 1}$  occur in u, then the total number of occurrences of  $x^{\pm 1}$ in u is not equal to the total number of occurrences of  $y^{\pm 1}$  in u. A complete proof without the hypothesis would yield the polynomial time complexity of Whitehead's algorithm for  $F_n$ . © 2006 Elsevier Inc. All rights reserved.

# 1. Introduction

Let  $F_n$  be the free group of finite rank n on the set  $\{x_1, x_2, \ldots, x_n\}$ . We denote by  $\Sigma$  the set of letters of  $F_n$ , that is,  $\Sigma = \{x_1, x_2, \dots, x_n\}^{\pm 1}$ . As in [1,5], we define a cyclic word to be a cyclically ordered set of letters with no pair of inverses adjacent. The *length* |w| of a cyclic word w is the number of elements in the cyclically ordered set. For a cyclic word w in  $F_n$ , we denote the automorphic orbit { $\psi(w)$ :  $\psi \in \operatorname{Aut} F_n$ } by  $\operatorname{Orb}_{\operatorname{Aut} F_n}(w)$ .

The purpose of this paper is to provide a partial solution of the following problem raised by Myasnikov and Shpilrain [6]:

E-mail address: donghi@pusan.ac.kr.

<sup>0021-8693/\$ -</sup> see front matter © 2006 Elsevier Inc. All rights reserved. doi:10.1016/j.jalgebra.2006.04.012

**Problem.** Let *u* be a cyclic word in  $F_n$  which has the minimum length over all cyclic words in its automorphic orbit  $\operatorname{Orb}_{\operatorname{Aut} F_n}(u)$ , and let N(u) be the cardinality of the set  $\{v \in \operatorname{Orb}_{\operatorname{Aut} F_n}(u): |v| = |u|\}$ . Then is N(u) bounded by a polynomial function with respect to |u|?

This problem was settled in the affirmative for  $F_2$  by Myasnikov and Shpilrain [6], and Khan [3] improved their result by showing that N(u) has the sharp bound of 8|u| - 40 for  $F_2$ . The problem was motivated by the complexity of Whitehead's algorithm which decides whether, for given two elements in  $F_n$ , there is an automorphism of  $F_n$  that takes one element to the other. Indeed, a complete positive solution to the problem would yield that Whitehead's algorithm terminates in polynomial time with respect to the maximum length of the two words in question (see [6, Proposition 3.1]). Recently, Kapovich, Schupp and Shpilrain [2] proved that Whitehead's algorithm has strongly linear time generic-case complexity. In the present paper, we prove for  $F_n$  with  $n \ge 2$  that N(u) is bounded by a polynomial function with respect to |u| under the following

# Hypothesis 1.1.

- (i) A cyclic word u has the minimum length over all cyclic words in its automorphic orbit  $\operatorname{Orb}_{\operatorname{Aut} F_n}(u)$ .
- (ii) If two letters  $x_i$  (or  $x_i^{-1}$ ) and  $x_j$  (or  $x_j^{-1}$ ) with i < j occur in u, then the total number of  $x_i^{\pm 1}$  occurring in u is strictly less than the total number of  $x_j^{\pm 1}$  occurring in u.

Before we state our theorems, we would like to establish several notation and definitions. As in [1,5], for  $A, B \subseteq \Sigma$ , we write A + B for  $A \cup B$  if  $A \cap B = \emptyset$ , and A - B for  $A \cap B^c$  if  $B \subseteq A$ , where  $B^c$  is the complement of B in  $\Sigma$ . We define a *Whitehead automorphism*  $\sigma$  of  $F_n$  as an automorphism of one of the following two types (cf. [4,7]):

- (W1)  $\sigma$  permutes elements in  $\Sigma$ .
- (W2)  $\sigma$  is defined by a set  $A \subset \Sigma$  and a multiplier  $a \in \Sigma$  with both  $a, a^{-1} \notin A$  in such a way that if  $x \in \Sigma$  then (a)  $\sigma(x) = xa$  provided  $x \in A$  and  $x^{-1} \notin A$ ; (b)  $\sigma(x) = a^{-1}xa$  provided both  $x, x^{-1} \in A$ ; (c)  $\sigma(x) = x$  provided both  $x, x^{-1} \notin A$ .

If  $\sigma$  is of the second type, then we write  $\sigma = (A, a)$ . By  $(\bar{A}, a^{-1})$ , we mean the Whitehead automorphism  $(\Sigma - A - a^{\pm 1}, a^{-1})$ . It is then easy to see that  $(A, a)(w) = (\bar{A}, a^{-1})(w)$  for any cyclic word w in  $F_n$ .

For a Whitehead automorphism  $\sigma$  of the second type, we define the degree of  $\sigma$  as follows:

**Definition 1.2.** Let  $\sigma = (A, a)$  be a Whitehead automorphism of  $F_n$  of the second type. Put  $A' = \{i: \text{ either } x_i \in A \text{ or } x_i^{-1} \in A, \text{ but not both}\}$ . Then the *degree of*  $\sigma$  is defined to be max A'. If  $A' = \emptyset$ , then the *degree of*  $\sigma$  is defined to be zero.

Let w be a fixed cyclic word in  $F_n$  that satisfies Hypothesis 1.1(i). For two letters  $x, y \in \Sigma$ , we say that x depends on y with respect to w if, for every Whitehead automorphism (A, a) of  $F_n$  such that

$$a \notin \{x^{\pm 1}, y^{\pm 1}\}, \{y^{\pm 1}\} \cap A \neq \emptyset, \text{ and } \exists v \in \operatorname{Orb}_{\operatorname{Aut} F_n}(w): |(A, a)(v)| = |v| = |w|,$$

we have  $\{x^{\pm 1}\} \subseteq A$ . Then we have the following

Claim. If x depends on y with respect to w, then y depends on x with respect to w.

**Proof.** Suppose on the contrary that *y* does not depend on *x*. Then there exists a Whitehead automorphism (A, a) of  $F_n$  such that  $a \notin \{x^{\pm 1}, y^{\pm 1}\}, x^{\pm 1} \cap A \neq \emptyset, |(A, a)(v)| = |v| = |w|$  for some  $v \in \operatorname{Orb}_{\operatorname{Aut} F_n}(w)$ , but such that  $y^{\pm 1} \notin A$ . Then  $|(\bar{A}, a^{-1})(v)| = |v| = |w|$  and  $y^{\pm 1} \cap \bar{A} \neq \emptyset$ . Since *x* depends on *y*,  $x^{\pm 1} \subseteq \bar{A}$ . This gives  $x^{\pm 1} \cap A = \emptyset$ , which is a contradiction.  $\Box$ 

We then construct the *dependence graph*  $\Gamma_w$  of w as follows: Take the vertex set as  $\Sigma$ , and connect two distinct vertices  $x, y \in \Sigma$  by a non-oriented edge if either  $y = x^{-1}$  or y depends on x with respect to w. Let  $C_i$  be the connected component of  $\Gamma_w$  containing  $x_i$ . Here, we make the following remark.

# Remark.

- (i)  $\Gamma_w = \Gamma_v$  for any  $v \in \operatorname{Orb}_{\operatorname{Aut} F_n}(w)$  with |v| = |w|.
- (ii) If  $x_i$  depends on  $x_j$ , then  $C_i = C_j$ .
- (iii) If  $x_j^{\pm 1} \in C_i$  with  $i \neq j$ , then every Whitehead automorphism (A, a) such that either  $x_i \in A$ or  $x_i^{-1} \in A$  but not both and such that |(A, a)(v)| = |v| = |w| for some  $v \in \operatorname{Orb}_{\operatorname{Aut} F_n}(w)$ must have the multiplier *a* only in  $C_i$ , for otherwise  $x_j^{\pm 1} \subseteq A$  but then  $x_j^{\pm 1} \not\subseteq \overline{A}$ , which is a contradiction because  $x_i^{\pm 1} \cap \overline{A} \neq \emptyset$ .

Clearly there exists a unique factorization

 $w = v_1 v_2 \cdots v_k$  (without cancellation),

where each  $v_i$  is a non-empty (non-cyclic) word consisting of letters in  $C_{j_i}$  with  $C_{j_i} \neq C_{j_{i+1}}$ (*i* mod *k*). The subword  $v_i$  is called a  $C_{j_i}$ -syllable of *w*. By the  $C_i$ -syllable length of *w* denoted by  $|w|_{C_i}$ , we mean the total number of  $C_i$ -syllables of *w*.

For Theorem 1.4, we suppose further that a cyclic word u satisfies the following

#### Hypothesis 1.3.

- (i) The  $C_n$ -syllable length  $|u|_{C_n}$  of u is minimum over all cyclic words in the set  $\{v \in Orb_{Aut F_n}(u): |v| = |u|\}$ .
- (ii) If the index j  $(1 \le j \le n 1)$  is such that  $C_j \ne C_k$  for all k > j, then the  $C_j$ -syllable length  $|u|_{C_j}$  of u is minimum over all cyclic words in the set  $\{v \in \operatorname{Orb}_{\operatorname{Aut} F_n}(u): |v| = |u| \text{ and } |v|_{C_k} = |u|_{C_k} \text{ for all } k > j\}.$

For an easy example, consider the cyclic words  $u = x_1^2 x_2^3 x_3^4 x_4^5$  and  $v = x_1 x_2^3 x_1 x_3^4 x_4^5$  in  $F_4$ . Clearly v is an automorphic image of u with |v| = |u|, so  $\Gamma_u = \Gamma_v$ . The dependence graph  $\Gamma_u = \Gamma_v$  has four distinct connected components, each  $C_i$  of which contains only  $x_i^{\pm 1}$ . Then u satisfies Hypotheses 1.1 and 1.3, whereas v satisfies Hypotheses 1.1 and 1.3(i) but not Hypothesis 1.3(ii), because the  $C_1$ -syllable length of v can be decreased without changing |v| and  $|v|_{C_i}$  for all i > 1.

For another example, let  $u = x_1^2 x_2^3 x_3^2 x_4 x_3^{-1} x_4 x_3 x_4^3$  and  $v = x_1^2 x_3^2 x_2^3 x_4 x_3^{-1} x_4 x_3 x_4^3$  be cyclic words in  $F_4$ . Then v is an automorphic image of u with |v| = |u|, so  $\Gamma_u = \Gamma_v$ . In the dependence graph  $\Gamma_u = \Gamma_v$ , there are three distinct connected components  $C_1, C_2, C_3 = C_4$ . While u satisfies

Hypotheses 1.1 and 1.3, v does not satisfy Hypothesis 1.3(i), because the C<sub>4</sub>-syllable length of v can be decreased without changing |v|.

Now we are ready to state our theorems, whose proofs will appear in Sections 3-4.

**Theorem 1.4.** Let u be a cyclic word in  $F_n$  that satisfies Hypotheses 1.1 and 1.3. Let  $\sigma_i$ ,  $i = 1, ..., \ell$ , be Whitehead automorphisms of the second type such that  $|\sigma_i \cdots \sigma_1(u)| = |u|$  for all i. Then there exist Whitehead automorphisms  $\tau_1, \tau_2, ..., \tau_s$  of the second type such that

 $\sigma_{\ell}\cdots\sigma_{2}\sigma_{1}(u)=\tau_{s}\cdots\tau_{2}\tau_{1}(u),$ 

where  $\max_{1 \leq i \leq \ell} \deg \sigma_i \ge \deg \tau_s \ge \deg \tau_{s-1} \ge \cdots \ge \deg \tau_1$ , and  $|\tau_j \cdots \tau_1(u)| = |u|$  for all  $j = 1, \dots, s$ .

**Theorem 1.5.** Let u be a cyclic word in  $F_n$  that satisfies Hypothesis 1.1, and let N(u) be the cardinality of the set { $v \in \operatorname{Orb}_{\operatorname{Aut} F_n}(u)$ : |v| = |u|}. Then N(u) is bounded by a polynomial function of degree n(5n - 7)/2 with respect to |u|.

The main idea of the present paper is to prove that the action of an automorphism on an element which satisfies Hypotheses 1.1 and 1.3 can be factored into a composition of automorphisms of ascending degrees, which will be achieved through Lemmas 3.1, 3.2 and Theorem 1.4. The proof of Theorem 1.4 will proceed by double induction on  $\ell$  and r, where  $\ell$  is the length of the chain  $\sigma_{\ell} \cdots \sigma_2 \sigma_1$  and  $r = \max_{1 \le i \le \ell} \deg \sigma_i$ , with Lemma 3.1 (the case for  $\ell = 2$  and any r) and Lemma 3.2 (the case for r = 1 and any  $\ell$ ) as the base steps of the induction.

Let  $N_k(u)$  be the cardinality of the set  $\{\phi(u): \phi \text{ can be represented as a composition } \tau_s \cdots \tau_1$  $(s \in \mathbb{N})$  of Whitehead automorphisms  $\tau_i$  of  $F_n$  of degree k such that  $|\tau_i \cdots \tau_1(u)| = |u|$  for all  $i = 1, \ldots, s\}$ . Then bounding N(u) reduces to bounding each  $N_k(u)$ , as will be shown in the proof of Theorem 1.5 using the result of Theorem 1.4. Lemma 4.1 will be devoted to bounding  $N_0(u)$ , and Lemma 4.2 will show that  $N_k(u)$  for  $k \ge 1$  is at most  $N_0(V_u)$ , where  $V_u$  is a certain sequence of cyclic words constructed from u, thus bounding  $N_k(u)$  for  $k \ge 1$ . Furthermore in Theorem 1.5 we will specifically give a bound for the degree of a polynomial bounding N(u).

#### 2. Preliminaries

We begin this section by setting some notation. Let w be a fixed cyclic word in  $F_n$ . As in [1], for  $x, y \in \Sigma$ , x.y denotes the total number of occurrences of the subwords  $xy^{-1}$  and  $yx^{-1}$  in w. For  $A, B \subseteq \Sigma$ , A.B means the sum of a.b for all  $a \in A, b \in B$ . Then obviously  $a.\Sigma$  is equal to the total number of  $a^{\pm 1}$  occurring in w. For two automorphisms  $\phi$  and  $\psi$  of  $F_n$ , by writing  $\phi \equiv \psi$  we mean the equality of  $\phi$  and  $\psi$  over all cyclic words in  $F_n$ , that is,  $\phi(v) = \psi(v)$  for every cyclic word v in  $F_n$ .

We now establish two technical lemmas which will play a fundamental role in the proofs in Sections 3 and 4.

**Lemma 2.1.** Let u be a cyclic word in  $F_n$  that satisfies Hypothesis 1.1(i), and let  $\sigma = (A, a^{-1})$ and  $\tau = (B, b)$  be Whitehead automorphisms of  $F_n$  such that  $|\sigma(u)| = |\tau(u)| = |u|$ . Put A = C + E and B = D + E, where  $E = A \cap B$ . Then

- (i) if  $a^{-1} = b$ , then  $|(E, a^{-1})(u)| = |u|$ ;
- (ii) if  $a^{-1} \neq b$ ,  $a^{\pm 1} \notin B$  and  $b \notin A$ , then  $|(C, a^{-1})(u)| = |(D, b)(u)| = |u|$ .

**Proof.** It follows from [1, p. 255] that

$$\begin{cases} |\sigma(u)| - |u| = (A + a^{-1}).(A + a^{-1})' - a.\Sigma; \\ |\tau(u)| - |u| = (B + b).(B + b)' - b.\Sigma, \end{cases}$$

where  $(A + a^{-1})' = \Sigma - (A + a^{-1})$  and  $(B + b)' = \Sigma - (B + b)$ . Since  $|\sigma(u)| = |\tau(u)| = |u|$ , we have  $(A + a^{-1}) \cdot (A + a^{-1})' - a \cdot \Sigma = (B + b) \cdot (B + b)' - b \cdot \Sigma = 0$ , so that

$$(A + a^{-1}) \cdot (A + a^{-1})' + (B + b) \cdot (B + b)' - a \cdot \Sigma - b \cdot \Sigma = 0.$$

Following the notation in [1, p. 257], we write  $A_1 = A + a^{-1}$ ,  $A_2 = (A + a^{-1})'$ ,  $B_1 = B + b$ ,  $B_2 = (B + b)'$  and  $P_{ii} = A_i \cap B_i$ . Then as in [1, p. 257], we have

$$\begin{cases} P_{11}.P'_{11} + P_{22}.P'_{22} - a.\Sigma - b.\Sigma = 0; \\ P_{12}.P'_{12} + P_{21}.P'_{21} - a.\Sigma - b.\Sigma = 0, \end{cases}$$
(2.1)

where  $P'_{ii} = \Sigma - P_{ij}$ .

For (i), assume that  $a^{-1} = b$ . Then we have  $a^{-1} \in P_{11}$  and  $a \in P_{22}$ . It follows from the first equality of (2.1) that

$$P_{11}.P_{11}' + P_{22}.P_{22}' - a.\Sigma - a.\Sigma = (P_{11}.P_{11}' - a.\Sigma) + (P_{22}.P_{22}' - a.\Sigma)$$
  
=  $|(P_{11} - a^{-1}, a^{-1})(u)| - |u| + |(P_{22} - a, a)(u)| - |u| = 0.$ 

Since both  $|(P_{11} - a^{-1}, a^{-1})(u)| - |u| \ge 0$  and  $|(P_{22} - a, a)(u)| - |u| \ge 0$  by Hypothesis 1.1(i), we must have  $|(P_{11} - a^{-1}, a^{-1})(u)| = |u|$ , that is,  $|(E, a^{-1})(u)| = |u|$ , as required. For (ii), assume that  $a^{-1} \neq b$ ,  $a^{\pm 1} \notin B$  and  $b \notin A$ . Then we have  $a^{-1} \in P_{12}$ ,  $a \notin P_{12}$ ,  $b \in P_{21}$ 

and  $b^{-1} \notin P_{21}$ . Hence the second equality of (2.1) gives us that

$$P_{12}.P_{12}' + P_{21}.P_{21}' - a.\Sigma - b.\Sigma = (P_{12}.P_{12}' - a.\Sigma) + (P_{21}.P_{21}' - b.\Sigma)$$
  
=  $|(P_{12} - a^{-1}, a^{-1})(u)| - |u| + |(P_{21} - b, b)(u)| - |u| = 0.$ 

As above, it follows from Hypothesis 1.1(i) that  $|(P_{12} - a^{-1}, a^{-1})(u)| = |u|$  and  $|(P_{21} - b, b)(u)| = |u|$ . Since  $P_{12} - a^{-1} = C$  and  $P_{21} - b = D$ , we have  $|(C, a^{-1})(u)| = |u|$ . |(D, b)(u)| = |u|, as desired.  $\Box$ 

**Lemma 2.2.** Let u be a cyclic word in  $F_n$  that satisfies Hypothesis 1.1, and let  $\sigma = (A, a)$  be a Whitehead automorphism of  $F_n$  such that  $|\sigma(u)| = |u|$ . Then  $a.\Sigma > b.\Sigma$  for every  $b \in A$  with  $b^{-1} \notin A$ .

**Proof.** In view of the assumption  $|\sigma(u)| = |u|$  and [1, p. 255], we have  $0 = |\sigma(u)| - |u| =$  $(A+a).(A+a)' - a.\Sigma$ , where  $(A+a)' = \Sigma - (A+a)$ , so that  $(A+a).(A+a)' = a.\Sigma$ . Now let  $b \in A$  with  $b^{-1} \notin A$ . Then for the Whitehead automorphism  $\tau = (A + a - b, b)$ , we have  $0 \leq |\tau(u)| - |u| = (A+a) \cdot (A+a)' - b \cdot \Sigma$ . Hence  $(A+a) \cdot (A+a)' \geq b \cdot \Sigma$ ; thus  $a \cdot \Sigma \geq b \cdot \Sigma$ . Here, the equality  $a.\Sigma = b.\Sigma$  cannot occur by Hypothesis 1.1(ii); therefore  $a.\Sigma > b.\Sigma$ .  $\Box$ 

**Remark.** By Lemma 2.2, if *u* is a cyclic word in  $F_n$  that satisfies Hypothesis 1.1 and  $\sigma = (A, a)$  is a Whitehead automorphism of  $F_n$  such that  $|\sigma(u)| = |u|$ , then deg  $\sigma$  is at most n - 1.

# 3. Proof of Theorem 1.4

The aim of this section is to prove Theorem 1.4. The proof of Theorem 1.4 will proceed by double induction on  $\ell$  and r, where  $\ell$  is the length of the chain  $\sigma_{\ell} \cdots \sigma_{2} \sigma_{1}$  and  $r = \max_{1 \le i \le \ell} \deg \sigma_{i}$ . Lemma 3.1 deals with the case for  $\ell = 2$  and any r as one of the base steps of the induction. As the other base step, Lemma 3.2 deals with the case for r = 1 and any  $\ell$ .

**Lemma 3.1.** Let u be a cyclic word in  $F_n$  that satisfies Hypothesis 1.1, and let  $\sigma_1 = (A, a)$  and  $\sigma_2 = (B, b)$  be Whitehead automorphisms of  $F_n$  such that  $|\sigma_2\sigma_1(u)| = |\sigma_1(u)| = |u|$ . Suppose that  $\deg \sigma_1 > \deg \sigma_2$ . Then there exist Whitehead automorphisms  $\tau_1, \ldots, \tau_s$  of  $F_n$  of the second type such that

$$\sigma_2\sigma_1\equiv\tau_s\cdots\tau_2\tau_1,$$

where deg  $\sigma_1$  = deg  $\tau_s \ge \cdots \ge$  deg  $\tau_1$  and  $|\tau_i \cdots \tau_1(u)| = |u|$  for all  $i = 1, \dots, s$ .

**Proof.** It suffices to prove that there exist Whitehead automorphisms  $\gamma_1, \ldots, \gamma_t$  of  $F_n$  such that

$$\sigma_2\sigma_1\equiv\gamma_t\cdots\gamma_2\gamma_1,$$

where the index t is at most 3,  $|\gamma_i \cdots \gamma_1(u)| = |u|$  for all  $i = 1, \dots, t$ , and either deg  $\sigma_1 = \deg \gamma_t > \deg \gamma_j$  for all  $j = 1, \dots, t - 1$  or otherwise deg  $\sigma_1 = \deg \gamma_i$  for all  $i = 1, \dots, t$ . Put  $u' = \sigma_1(u)$ ; then  $|\sigma_1^{-1}(u')| = |\sigma_2(u')| = |u|$ , that is,

$$\left| \left( A, a^{-1} \right) (u') \right| = \left| (B, b) (u') \right| = |u|.$$
(3.1)

Also put  $c = x_{\deg \sigma_1}$ . Upon replacing (A, a), (B, b) by  $(\bar{A}, a^{-1})$ ,  $(\bar{B}, b^{-1})$ , respectively, if necessary, where  $\bar{A} = \Sigma - A - a^{\pm 1}$  and  $\bar{B} = \Sigma - B - b^{\pm 1}$ , we may assume that  $c \in A$  and  $c^{\pm 1} \notin B$  (clearly  $c^{-1} \notin A$ ). By Lemma 2.2, we have  $a.\Sigma > c.\Sigma$ ; hence either  $a^{\pm 1} \notin B$  or  $a^{\pm 1} \in B$ , for otherwise deg  $\sigma_2 > \deg \sigma_1$ , contrary to the hypothesis deg  $\sigma_1 > \deg \sigma_2$ .

We first treat four cases for  $a^{\pm 1} \notin B$  and then four cases for  $a^{\pm 1} \in B$  according to whether *b* or  $b^{-1}$  belongs to *A*. For convenience, we write A = C + E and B = D + E, where  $E = A \cap B$ .

**Case 1.**  $a^{\pm 1} \notin B$  and  $b^{\pm 1} \notin A$ .

We consider two cases corresponding to whether or not *E* is the empty set.

Case 1.1.  $E = \emptyset$ .

**Case 1.1.1.** a = b.

It follows from [5, relation R2] that  $\sigma_2 \sigma_1 \equiv (A + B, a)$ .

# **Case 1.1.2.** $a \neq b$ .

By [5, relation R3], we have  $\sigma_2 \sigma_1 \equiv (A, a)(B, b)$ .

Case 1.2.  $E \neq \emptyset$ .

**Case 1.2.1.** a = b.

In view of (3.1) and Lemma 2.1(ii), we have  $|(C, a^{-1})(u')| = |u|$ . Since  $(C, a^{-1})(u') = (E, a)(u)$ , we have |(E, a)(u)| = |u|; hence

$$\sigma_2 \sigma_1 \equiv (B, a) [(C, a)(E, a)] \equiv [(B, a)(C, a)](E, a)$$
$$\equiv (C + B, a)(E, a) \quad \text{by Case 1.1.1},$$

where  $\deg \sigma_1 = \deg(C + B, a) > \deg(E, a)$ .

**Case 1.2.2.**  $a^{-1} = b$ .

Lemma 2.1(i) together with (3.1) gives us that  $|(E, a^{-1})(u')| = |u|$ , so that |(C, a)(u)| = |u|; thus

$$\sigma_2 \sigma_1 \equiv (B, a^{-1}) [(E, a)(C, a)] \equiv [(B, a^{-1})(E, a)](C, a) \equiv (D, a^{-1})(C, a)$$
  
$$\equiv (C, a) (D, a^{-1}) \text{ by Case 1.1.2,}$$

where deg  $\sigma_1 = \text{deg}(C, a) > \text{deg}(D, a^{-1})$ .

**Case 1.2.3.**  $a^{\pm 1} \neq b$ .

As in Case 1.2.1, we have |(E, a)(u)| = |u|; hence

$$\sigma_2 \sigma_1 \equiv (B, b) [(C, a)(E, a)] \equiv [(B, b)(C, a)](E, a)$$
$$\equiv [(C, a)(B, b)](E, a) \quad \text{by Case 1.1.2,}$$

where  $\deg \sigma_1 = \deg(C, a) > \deg(B, b)$ ,  $\deg(E, a)$ .

**Case 2.**  $a^{\pm 1} \notin B$ ,  $b \notin A$  and  $b^{-1} \in A$ .

We consider this case dividing into two cases according to whether or not E is the empty set.

Case 2.1.  $E = \emptyset$ .

It follows from [5, relation R4] that  $\sigma_2 \sigma_1 \equiv (A+B, a)(B, b)$ , where deg  $\sigma_1 = \text{deg}(A+B, a) > \text{deg}(B, b)$ .

# **Case 2.2.** $E \neq \emptyset$ .

As in Case 1.2.1, we have |(E, a)(u)| = |u|; then

$$\sigma_2 \sigma_1 \equiv (B, b) [(C, a)(E, a)] \equiv [(B, b)(C, a)](E, a)$$
$$\equiv [(C + B, a)(B, b)](E, a) \quad \text{by Case 2.1,}$$

where deg  $\sigma_1 = \deg(C + B, a) > \deg(B, b)$ , deg(E, a).

**Case 3.**  $a^{\pm 1} \notin B$ ,  $b \in A$  and  $b^{-1} \notin A$ .

Since  $\sigma_2 \sigma_1 \equiv (B, b)(\bar{A}, a^{-1})$ , we can apply Case 2.2 to get

$$\sigma_2 \sigma_1 \equiv (B, b) \left( \bar{A}, a^{-1} \right) \equiv \left( (\bar{A} \setminus B) + B, a^{-1} \right) (B, b) \left( \bar{A} \cap B, a^{-1} \right).$$

Here, since  $(\bar{A} \setminus B) + B = \Sigma - C - a^{\pm 1}$  and  $\bar{A} \cap B = D$ , we have

$$\sigma_2 \sigma_1 \equiv \left( \Sigma - C - a^{\pm 1}, a^{-1} \right) (B, b) \left( D, a^{-1} \right) \equiv (C, a) (B, b) \left( D, a^{-1} \right)$$

where deg  $\sigma_1 = \deg(C, a) > \deg(B, b)$ , deg $(D, a^{-1})$ .

**Case 4.**  $a^{\pm 1} \notin B$  and  $b^{\pm 1} \in A$ .

By Case 1.2.3 applied to  $\sigma_2 \sigma_1 \equiv (B, b)(\bar{A}, a^{-1})$ , we have

$$\sigma_2 \sigma_1 \equiv (B, b) \left( \bar{A}, a^{-1} \right) \equiv \left( \bar{A} \setminus B, a^{-1} \right) (B, b) \left( \bar{A} \cap B, a^{-1} \right).$$

From the observation that  $\bar{A} \setminus B = \Sigma - (C + B) - a^{\pm 1}$  and  $\bar{A} \cap B = D$ , it follows that

$$\sigma_2 \sigma_1 \equiv \left( \Sigma - (C+B) - a^{\pm 1}, a^{-1} \right) (B, b) \left( D, a^{-1} \right) \equiv (C+B, a) (B, b) \left( D, a^{-1} \right)$$

where deg  $\sigma_1 = \text{deg}(C + B, a) > \text{deg}(B, b)$ , deg $(D, a^{-1})$ .

**Case 5.**  $a^{\pm 1} \in B$  and  $b^{\pm 1} \notin A$ .

Since  $\sigma_2 \sigma_1 \equiv (\bar{B}, b^{-1})(A, a)$ , we have  $|(A, a^{-1})(u')| = |(\bar{B}, b^{-1})(u')| = |u|$ . This implies by Lemma 2.1(ii) that  $|(\bar{B} \setminus A, b^{-1})(u')| = |u|$ , so that

$$\sigma_2 \sigma_1 \equiv \left(\bar{B}, b^{-1}\right)(A, a) \equiv \left[\left(A \cap \bar{B}, b^{-1}\right)\left(\bar{B} \setminus A, b^{-1}\right)\right](A, a).$$

Here, by Case 1.1.2, we have  $(\bar{B} \setminus A, b^{-1})(A, a) \equiv (A, a)(\bar{B} \setminus A, b^{-1})$ ; thus

$$\sigma_2 \sigma_1 \equiv \left(A \cap \overline{B}, b^{-1}\right)(A, a) \left(\overline{B} \setminus A, b^{-1}\right).$$

Since  $A \cap \overline{B} = C$  and  $\overline{B} \setminus A = \Sigma - (C + B) - b^{\pm 1}$ , we finally have

$$\sigma_2 \sigma_1 \equiv \left(C, b^{-1}\right)(A, a)(C+B, b),$$

where deg  $\sigma_1 = \text{deg}(C, b^{-1}) = \text{deg}(A, a) = \text{deg}(C + B, b)$ .

**Case 6.**  $a^{\pm 1} \in B$ ,  $b \notin A$  and  $b^{-1} \in A$ .

**Case 6.1.**  $c = b^{-1}$ .

By Case 3 applied to  $\sigma_2 \sigma_1 \equiv (\bar{B}, b^{-1})(A, a)$ , we get

$$\sigma_2 \sigma_1 \equiv \left(\bar{B}, b^{-1}\right)(A, a) \equiv \left(A \setminus \bar{B}, a\right) \left(\bar{B}, b^{-1}\right) \left(\bar{B} \setminus A, a^{-1}\right).$$

Here, we see that  $A \setminus \overline{B} = E + b^{-1}$  and  $\overline{B} \setminus A = \Sigma - (C + B + b)$ , so that

$$\sigma_2 \sigma_1 \equiv (E + b^{-1}, a)(B, b)(C + B + b - a^{\pm 1}, a),$$

where  $\deg \sigma_1 = \deg(E + b^{-1}, a) > \deg(B, b), \deg(C + B + b - a^{\pm 1}, a).$ 

**Case 6.2.**  $c \neq b^{-1}$ .

In this case,  $c.\Sigma > b.\Sigma$ , since deg  $\sigma_1$  is determined by c. Apply Lemma 2.1(ii) to the equalities  $|(\bar{A}, a^{-1})^{-1}(u')| = |(\bar{B}, b^{-1})(u')| = |u|$ , that is,  $|(\bar{A}, a)(u')| = |(\bar{B}, b^{-1})(u')| = |u|$ , to obtain  $|(\bar{B} \setminus \bar{A}, b^{-1})(u')| = |u|$ . But since  $c \in \bar{B} \setminus \bar{A}$  and  $c^{-1} \notin \bar{B} \setminus \bar{A}$ , we have  $b.\Sigma > c.\Sigma$  by Lemma 2.2, which contradicts  $c.\Sigma > b.\Sigma$ . Hence this case cannot occur.

**Case 7.**  $a^{\pm 1} \in B$ ,  $b \in A$  and  $b^{-1} \notin A$ .

# **Case 7.1.** c = b.

Applying Case 2.2 to  $\sigma_2 \sigma_1 \equiv (\bar{B}, b^{-1})(A, a)$ , we get

$$\sigma_2 \sigma_1 \equiv \left(\bar{B}, b^{-1}\right)(A, a) \equiv \left((A \setminus \bar{B}) + \bar{B}, a\right) \left(\bar{B}, b^{-1}\right)(A \cap \bar{B}, a).$$

From the observation that  $(A \setminus \overline{B}) + \overline{B} = \Sigma - (D + b^{-1})$  and  $A \cap \overline{B} = C - b$ , it follows that

$$\sigma_2 \sigma_1 \equiv \left( D + b^{-1} - a^{\pm 1}, a^{-1} \right) (B, b) (C - b, a),$$

where  $\deg \sigma_1 = \deg(D + b^{-1} - a^{\pm 1}, a^{-1}) > \deg(B, b), \deg(C - b, a).$ 

Case 7.2.  $c \neq b$ .

As in Case 6.2,  $c.\Sigma > b.\Sigma$ . By Lemma 2.1(ii) applied to the equalities  $|(A, a^{-1})(u')| = |(\bar{B}, b^{-1})(u')| = |u|$ , we get  $|(\bar{B} \setminus A, b^{-1})(u')| = |u|$ . But since  $c^{-1} \in \bar{B} \setminus A$  and  $c \notin \bar{B} \setminus A$ , we must have  $b.\Sigma > c.\Sigma$  by Lemma 2.2, contrary to the fact  $c.\Sigma > b.\Sigma$ . Hence this case cannot happen.

**Case 8.**  $a^{\pm 1} \in B$  and  $b^{\pm 1} \in A$ .

Apply Lemma 2.1(ii) to the equalities  $|(\bar{A}, a^{-1})^{-1}(u')| = |(\bar{B}, b^{-1})(u')| = |u|$ , that is,  $|(\bar{A}, a)(u')| = |(\bar{B}, b^{-1})(u')| = |u|$ , to obtain  $|(\bar{B} \setminus \bar{A}, b^{-1})(u')| = |u|$ ; then

$$\sigma_2 \sigma_1 \equiv \left(\bar{B}, b^{-1}\right) \left(\bar{A}, a^{-1}\right) \equiv \left[\left(\bar{A} \cap \bar{B}, b^{-1}\right) \left(\bar{B} \setminus \bar{A}, b^{-1}\right)\right] \left(\bar{A}, a^{-1}\right).$$

Since  $(\bar{B} \setminus \bar{A}, b^{-1})(\bar{A}, a^{-1}) = (\bar{A}, a^{-1})(\bar{B} \setminus \bar{A}, b^{-1})$  by Case 1.1.2, we have

$$\sigma_2 \sigma_1 \equiv \left(\bar{A} \cap \bar{B}, b^{-1}\right) \left(\bar{A}, a^{-1}\right) \left(\bar{B} \setminus \bar{A}, b^{-1}\right).$$

It follows from  $\bar{A} \cap \bar{B} = \Sigma - (C + B)$  and  $\bar{B} \setminus \bar{A} = C - b^{\pm 1}$  that

$$\sigma_2 \sigma_1 \equiv (C + B - b^{\pm 1}, b) (A, a) (C - b^{\pm 1}, b^{-1}),$$

where  $\deg \sigma_1 = \deg(C + B - b^{\pm 1}, b) = \deg(A, a) = \deg(C - b^{\pm 1}, b^{-1}).$ 

The proof of the lemma is now completed.  $\hfill\square$ 

**Remark.** The proof of Lemma 3.1 can be applied without further change if we replace consideration of a single cyclic word u, the length |u| of u, and the total number of occurrences of  $x_i^{\pm 1}$  in u with consideration of a finite sequence  $(u_1, \ldots, u_m)$  of cyclic words, the sum  $\sum_{i=1}^m |u_i|$  of the lengths of  $u_1, \ldots, u_m$ , and the total number of occurrences of  $x_i^{\pm 1}$  in  $(u_1, \ldots, u_m)$ , respectively.

**Lemma 3.2.** Let u be a cyclic word in  $F_n$  that satisfies Hypotheses 1.1 and 1.3. Let  $\sigma_i$ , i = 1, ...,  $\ell$ , be Whitehead automorphisms of the second type such that  $|\sigma_i \cdots \sigma_1(u)| = |u|$  for all i. Suppose that  $\max_{1 \le i \le \ell} \deg \sigma_i = 1$ . Then there exist Whitehead automorphisms  $\tau_1, \tau_2, \ldots, \tau_s$  of the second type such that

$$\sigma_{\ell}\cdots\sigma_{2}\sigma_{1}(u)=\tau_{s}\cdots\tau_{2}\tau_{1}(u),$$

where  $1 \ge \deg \tau_s \ge \deg \tau_{s-1} \ge \cdots \ge \deg \tau_1$ , and  $|\tau_j \cdots \tau_1(u)| = |u|$  for all  $j = 1, \ldots, s$ .

**Proof.** We proceed by induction on  $\ell$ . The case for  $\ell = 2$  is already proved in Lemma 3.1. Now let  $\sigma_i$ ,  $i = 1, ..., \ell + 1$ , be Whitehead automorphisms of  $F_n$  such that  $|\sigma_i \cdots \sigma_1(u)| = |u|$  for all i and such that  $\max_{1 \le i \le \ell+1} \deg \sigma_i = 1$ . Then by the induction hypothesis, there exist Whitehead automorphisms  $\tau_1, \tau_2, ..., \tau_s$  of  $F_n$  such that

$$\sigma_{\ell+1}\sigma_{\ell}\cdots\sigma_{2}\sigma_{1}(u) = \sigma_{\ell+1}\tau_{s}\cdots\tau_{2}\tau_{1}(u), \qquad (3.2)$$

where  $1 \ge \deg \tau_s \ge \deg \tau_{s-1} \ge \cdots \ge \deg \tau_1$ , and  $|\tau_j \cdots \tau_1(u)| = |u|$  for all  $j = 1, \dots, s$ .

Put  $\tau_j = (A_j, a_j)$  for j = 1, ..., s, and put  $\sigma_{\ell+1} = (B, b)$ . If deg  $\sigma_{\ell+1} = 1$  or deg  $\tau_j = 0$  for all *j*, then there is nothing to prove. So let deg  $\sigma_{\ell+1} = 0$ , and let t  $(1 \le t \le s)$  be such that deg  $\tau_s = \deg \tau_{s-1} = \cdots = \deg \tau_t = 1$  and deg  $\tau_{t-1} = \cdots = \deg \tau_2 = \deg \tau_1 = 0$ . Upon replacing  $\tau_i$  and  $\sigma_{\ell+1}$  by  $(\bar{A}_i, a_i^{-1})$  and  $(\bar{B}, b^{-1})$ , respectively, if necessary, we may assume that  $x_1 \in A_i$ for all  $t \le i \le s$  and that  $x_1^{\pm 1} \notin B$ . We may also assume without loss of generality that (B, b)cannot be decomposed into  $(B_2, b)(B_1, b)$ , where  $B = B_1 + B_2$ , deg $(B_1, b) = \deg(B_2, b) = 0$ and  $|(B_1, b)\tau_s \cdots \tau_1(u)| = |u|$ .

**Claim 1.** We may further assume that  $\tau_s = (A_s, a_s)$  cannot be decomposed into  $(A_{s2}, a_s)(A_{s1}, a_s)$ , where  $A_s = A_{s1} + A_{s2}$ , deg $(A_{s1}, a_s) = 0$ , deg $(A_{s2}, a_s) = 1$ ,  $|(A_{s1}, a_s)\tau_{s-1}\cdots\tau_1(u)| = |u|$ , and  $a_i^{\pm 1} \notin A_{s1}$  for all i with  $t \leq i < s$ .

**Proof.** Suppose that  $\tau_s$  can be decomposed in the same way as in the statement of the claim. Then continuously applying Case 1 or Case 4 of Lemma 3.1 to  $(A_{s1}, a_s)\tau_{s-1}\cdots\tau_t$  at most  $1 + 2 + 2^2 + \cdots + 2^{s-t-1}$  times (here, note that if s = t, we do not need to apply Lemma 3.1), we get

$$(A_{s1}, a_j)\tau_{s-1}\cdots\tau_t = \tau'_{s-1}\cdots\tau'_t\varepsilon_p\cdots\varepsilon_1,$$

where  $\tau'_{s-1}, \ldots, \tau'_t$  are Whitehead automorphisms of degree 1 and  $\varepsilon_p, \ldots, \varepsilon_1$  are Whitehead automorphisms of degree 0, so that

$$(B,b)\tau_s\cdots\tau_t\cdots\tau_1(u) = (B,b)(A_{s2},a_s)\tau'_{s-1}\cdots\tau'_t\varepsilon_p\cdots\varepsilon_1\tau_{t-1}\cdots\tau_1(u),$$
(3.3)

where the length of u is constant throughout both chains. We then replace the chain on the right-hand side of (3.2) with that of (3.3).  $\Box$ 

We consider three cases corresponding to whether or not  $b = x_1^{\pm 1}$ .

**Case 1.**  $b \neq x_1^{\pm 1}$ .

For all *i* with  $t \leq i \leq s$ , either  $b^{\pm 1} \in A_i$  or  $b^{\pm 1} \notin A_i$ , since deg  $\tau_i = 1$ . If  $a_s^{\pm 1} \in B$ , then the required result follows immediately from Case 5 or Case 8 of Lemma 3.1 applied to  $(B, b)\tau_s$ . So let  $a_s^{\pm 1} \notin B$ . If  $b^{\pm 1} \notin A_s$  and  $A_s \cap B = \emptyset$ , then by Case 1.1.2 of Lemma 3.1 we have  $(B,b)\tau_s \equiv \tau_s(B,b)$ . Also if  $b^{\pm 1} \in A_s$  and  $B \subset A_s$ , then Case 4 of Lemma 3.1 yields that  $(B, b)\tau_s \equiv \tau_s(B, b)$ . Hence, in either case, we have

$$(B,b)\tau_s\cdots\tau_t\cdots\tau_1(u)=\tau_s(B,b)\tau_{s-1}\cdots\tau_t\cdots\tau_1(u);$$

then the desired result follows by induction on s - t. Now suppose that either both  $b^{\pm 1} \notin A_s$  and  $A_s \cap B \neq \emptyset$  or both  $b^{\pm 1} \in A_s$  and  $B \nsubseteq A_s$ . We argue two cases separately.

**Case 1.1.**  $a_s^{\pm 1} \notin B$ ,  $b^{\pm 1} \notin A_s$  and  $A_s \cap B \neq \emptyset$ .

By Case 1.2.3 of Lemma 3.1, we have  $(B, b)\tau_s \equiv (A_s \setminus B, a_s)(B, b)(A_s \cap B, a_s)$ ; thus

$$(B,b)\tau_s\cdots\tau_t\cdots\tau_1(u)=(A_s\setminus B,a_s)(B,b)(A_s\cap B,a_s)\tau_{s-1}\cdots\tau_t\cdots\tau_1(u).$$

By Claim 1, there is *j* with  $t \leq j < s$  such that  $a_j^{\pm 1} \in A_s \cap B$ . Let *r* be the largest such index. First suppose that there exists a chain  $\eta_m \cdots \eta_1$  of Whitehead automorphisms  $\eta_i = (G_i, g_i)$  of degree 1 with  $g_i^{\pm 1} \notin B$ ,  $G_i \subset A_s$  and  $G_i \cap B = \emptyset$  such that  $|\eta_i \cdots \eta_1 \tau_s \cdots \tau_1(u)| = |u|$  for all  $i = \emptyset$ 1,..., *m* and such that  $|(H, a_r^{-1})\eta_m \cdots \eta_1 \tau_s \cdots \tau_1(u)| = |u|$  for some Whitehead automorphism  $(H, a_r^{-1})$  of degree 1 with  $H \subset A_s$ . Then

$$(B,b)\tau_s\cdots\tau_1(u) = (B,b)\eta_1^{-1}\cdots\eta_m^{-1}\eta_m\cdots\eta_1\tau_s\cdots\tau_1(u)$$
  
=  $\eta_1^{-1}\cdots\eta_m^{-1}(B,b)\eta_m\cdots\eta_1\tau_s\cdots\tau_1(u)$  by Case 1.1.2 of Lemma 3.1.

Put  $v = \eta_m \cdots \eta_1 \tau_s \cdots \tau_1(u)$ . By Lemma 2.1(ii) applied to  $|(\bar{B}, b^{-1})(v)| = |(H, a_r^{-1})(v)| =$ |u|, we have  $|(\bar{B} \setminus H, b^{-1})(v)| = |u|$ . It follows from  $\bar{B} \setminus H = \Sigma - (B \cup H) - b^{\pm 1}$  that  $|(B \cup H, b)(v)| = |u|$ , so that

$$(B,b)\tau_s\cdots\tau_1(u)=\eta_1^{-1}\cdots\eta_m^{-1}(H\setminus B,b^{-1})(B\cup H,b)\eta_m\cdots\eta_1\tau_s\cdots\tau_1(u),$$

where deg  $\eta_i^{-1}$  = deg $(H \setminus B, b^{-1})$  = deg $(B \cup H, b)$  = deg $\eta_i$  = 1, as required.

Next suppose that there does not exist such a chain  $\eta_m \cdots \eta_1$  as above. Considering all the assumptions and the situations above, we can observe that this can possibly happen only in the case where all of  $a_s$  and  $a_s^{-1}$  that are lost in passing from  $\tau_{s-1} \cdots \tau_1(u)$  to  $\tau_s \cdots \tau_1(u)$  were newly introduced in passing from  $\tau_{q-1} \cdots \tau_1(u)$  to  $\tau_q \cdots \tau_1(u)$  for some r < q < s, and where for such  $\tau_q = (A_q, a_s^{-1})$  (here note that  $a_q = a_s^{-1}$ ),

$$(B,b)\tau_s\cdots\tau_t\cdots\tau_1(u)$$
  
=  $(B,b)(A_s \setminus B, a_s)\tau_{s-1}\cdots\tau_{q+1}(A_q \setminus (A_s \cap B), a_s^{-1})\tau_{q-1}\cdots\tau_t\cdots\tau_1(u),$ 

where the length of u is constant throughout the chain on the right-hand side. It then follows from Case 1.1.2 of Lemma 3.1 applied to  $(B, b)(A_s \setminus B, a_s)$  that

$$(B,b)\tau_s\cdots\tau_t\cdots\tau_1(u)$$
  
=  $(A_s \setminus B, a_s)(B,b)\tau_{s-1}\cdots\tau_{q+1}(A_q \setminus (A_s \cap B), a_s^{-1})\tau_{q-1}\cdots\tau_t\cdots\tau_1(u).$ 

Then induction on s - t yields the desired result, which completes the proof of Case 1.1.

**Case 1.2.**  $a_s^{\pm 1} \notin B$ ,  $b^{\pm 1} \in A_s$  and  $B \nsubseteq A_s$ .

In this case, replace  $\tau_i$  by  $(\bar{A}_i, a_i^{-1})$  for all  $t \leq i \leq s$  and then follow the arguments of Case 1.1.

# **Case 2.** $b = x_1$ .

We divide this case into two cases according to whether  $a_s^{\pm 1} \in B$  or not.

**Case 2.1.**  $a_s^{\pm 1} \in B$ .

In this case, we have by Case 7.1 of Lemma 3.1 applied to  $(B, x_1)\tau_s$  that

$$(B, x_1)\tau_s \cdots \tau_1(u) = \left(B \setminus A_s + x_1^{-1} - a_s^{\pm 1}, a_s^{-1}\right)(B, x_1)(A_s \setminus B - x_1, a_s)\tau_{s-1} \cdots \tau_1(u).$$
(3.4)

Here if  $A_s \setminus B - x_1 = \emptyset$ , then

$$(B, x_1)\tau_s\cdots\tau_t\cdots\tau_1(u) = \left(B\setminus A_s + x_1^{-1} - a_s^{\pm 1}, a_s^{-1}\right)(B, x_1)\tau_{s-1}\cdots\tau_t\cdots\tau_1(u)$$

hence the desired result follows by induction on s - t.

So let  $A_s \setminus B - x_1 \neq \emptyset$ . By Claim 1, there is j with  $t \leq j < s$  such that  $a_j^{\pm 1} \in A_s \setminus B - x_1$ . Let r be the largest such index. The following Claims 2–4 show that we may assume that  $a_r, a_s$  and  $x_1$  belong to distinct connected components of the dependence graph  $\Gamma_u$  of u.

**Claim 2.**  $a_r$  and  $x_1$  belong to distinct connected components of  $\Gamma_u$ .

**Proof.** Suppose on the contrary that  $a_r$  and  $x_1$  belong to the same connected component  $C_1$ . Put  $\mathcal{W} = \{\alpha : \alpha \text{ is a Whitehead automorphism of degree 0 such that <math>|\alpha(v)| = |v| = |u| \text{ for some } v \in Orb_{Aut F_n}(u)\}$ . Then by (3.4),  $(A_s \setminus B - x_1, a_s) \in \mathcal{W}$  and  $(B, x_1) \in \mathcal{W}$ . Since  $x_1^{\pm 1} \notin A_s \setminus B - x_1$  and  $a_r^{\pm 1} \in A_s \setminus B - x_1$ , we see from the construction of  $\Gamma_u$  that  $a_s$  also belongs to  $C_1$  and that every path from  $a_r$  or  $a_r^{-1}$  to  $x_1$  or  $x_1^{-1}$  passes through  $a_s$  or  $a_s^{-1}$ . Also since  $a_r^{\pm 1} \notin B$  and  $a_s^{\pm 1} \in B$ , every path from  $a_s$  or  $a_s^{-1}$  to  $x_1$  or  $x_1^{-1}$  passes through  $x_1$  or  $x_1^{-1}$ , which contradicts the above fact that every path from  $a_r$  or  $a_r^{-1}$  to  $x_1$  or  $x_1^{-1}$  passes through  $a_s$  or  $a_s^{-1}$ .  $\Box$ 

**Claim 3.** We may assume that  $a_s$  and  $x_1$  belong to distinct connected components of  $\Gamma_u$ .

**Proof.** Suppose that  $a_s$  and  $x_1$  belong to the same connected component  $C_1$ . First consider the case where there exists a chain  $\zeta_k \cdots \zeta_1$  of Whitehead automorphisms  $\zeta_i = (E_i, e_i)$  of degree 1 with  $e_i^{\pm 1} \in B$  and  $E_i \subset (B + x_1)$  such that  $|\zeta_i \cdots \zeta_1 \tau_s \cdots \tau_1(u)| = |u|$  for all  $i = 1, \ldots, k$  and such

that  $|(H, a_r^{-1})\zeta_k \cdots \zeta_1 \tau_s \cdots \tau_1(u)| = |u|$  for some Whitehead automorphism  $(H, a_r^{-1})$  of degree 1 with  $H \subset A_s$ . Then

$$(B, x_1)\tau_s \cdots \tau_1(u) = (B, x_1)\zeta_1^{-1} \cdots \zeta_k^{-1}\zeta_k \cdots \zeta_1\tau_s \cdots \tau_1(u)$$
  
=  $\rho_k \cdots \rho_1(B, x_1)\zeta_k \cdots \zeta_1\tau_s \cdots \tau_1(u)$  by Case 7.1 of Lemma 3.1,

where  $\rho_i = (B \setminus E_{k+1-i} + x_1^{-1} - e_{k+1-i}^{\pm 1}, e_{k+1-i}^{-1})$  for i = 1, ..., k. Put  $v = \zeta_k \cdots \zeta_1 \tau_s \cdots \tau_1(u)$ . Then  $|(B, x_1)(v)| = |(H, a_r^{-1})(v)| = |u|$ , that is,  $|(B, x_1)(v)| = |(\bar{H}, a_r)(v)| = |u|$ . By Lemma 2.1(ii) applied to these equalities, we have  $|(\bar{H} \setminus B, a_r)(v)| = |u|$ , so that

$$\left| \left( H + (\bar{H} \setminus B), a_r \right) \left( H, a_r^{-1} \right) \zeta_k \cdots \zeta_1 \tau_s \cdots \tau_1(u) \right| = |u|.$$

It then follows from  $H + (\overline{H} \setminus B) = \Sigma - (B \setminus H) - a_r^{\pm 1}$  that

$$\left|\left(B\setminus H,a_r^{-1}\right)\left(H,a_r^{-1}\right)\zeta_k\cdots\zeta_1\tau_s\cdots\tau_1(u)\right|=|u|.$$

This implies that  $(B \setminus H, a_r^{-1}) \in W$ , where W is defined in the proof of Claim 2. Since  $a_s^{\pm 1} \in B \setminus H$  and  $x_1^{\pm 1} \notin B \setminus H$ ,  $a_r$  must also belong to  $C_1$  by the construction of  $\Gamma_u$ , which contradicts Claim 2.

Next consider the case where there does not exist such a chain  $\zeta_k \cdots \zeta_1$  as above. Considering all the assumptions and the situations above, we can observe that this can possibly happen only in the case where all of  $a_s$  and  $a_s^{-1}$  that are lost in passing from  $\tau_{s-1} \cdots \tau_1(u)$  to  $\tau_s \cdots \tau_1(u)$  were newly introduced in passing from  $\tau_{q-1} \cdots \tau_1(u)$  to  $\tau_q \cdots \tau_1(u)$  for some r < q < s, and where for such  $\tau_q = (A_q, a_s^{-1})$  (here note that  $a_q = a_s^{-1}$ ),

$$(B, x_1)\tau_s \cdots \tau_t \cdots \tau_1(u) = (B, x_1)(A_s \cap B, a_s)\tau_{s-1} \cdots \tau_{q+1} (A_q \setminus (A_s \setminus B), a_s^{-1})\tau_{q-1} \cdots \tau_t \cdots \tau_1(u),$$

where the length of u is constant throughout the chain on the right-hand side. It then follows from Case 7.1 of Lemma 3.1 applied to  $(B, x_1)(A_s \cap B, a_s)$  that

$$(B, x_1)\tau_s \cdots \tau_t \cdots \tau_1(u) = (B \setminus A_s + x_1^{-1} - a_s^{\pm 1}, a_s^{-1})(B, x_1)\tau_{s-1} \cdots \tau_{q+1}(A_q \setminus (A_s \setminus B), a_s^{-1})\tau_{q-1} \cdots \tau_t \cdots \tau_1(u).$$

So in this case, apply induction on s - t to get the desired result of the lemma, which completes the proof of Claim 3.  $\Box$ 

# **Claim 4.** $a_r$ and $a_s$ belong to distinct connected components of $\Gamma_u$ .

**Proof.** Suppose on the contrary that  $a_r$  and  $a_s$  belong to the same connected component. Note that  $a_r^{\pm 1} \notin B$ ,  $a_s^{\pm 1} \in B$  and that  $(B, x_1) \in W$ , where W is defined in the proof of Claim 2. It then follows from the construction of  $\Gamma_u$  that  $a_s$  and  $x_1$  must belong to the same connected component, which contradicts Claim 3.  $\Box$ 

So let  $C_1$ ,  $C_{r'}$  and  $C_{s'}$  be the distinct connected components of  $\Gamma_u$  containing  $x_1$ ,  $a_r$ , and  $a_s$  in that order. Here notice that  $C_1$  consists of only  $x_1^{\pm 1}$ , since there exists a Whitehead automorphism

 $(A_s, a_s)$  of degree 1 such that  $a_s \notin C_1$  and such that  $|(A_s, a_s)(v)| = |v| = |u|$  for some  $v \in Orb_{Aut F_n}(u)$  (see Remark (iii) in the introduction).

Put 
$$u_1 = \tau_{t-1} \cdots \tau_1(u)$$
.

**Claim 5.** We may assume that  $\tau_i \tau_j \equiv \tau_j \tau_i$  for all  $1 \leq i \neq j \leq t - 1$ .

**Proof.** Put  $\mathcal{M} = \{v: v = \phi(u) \text{ and } |v|_{C_i} = |u|_{C_i} \text{ for all } i = 1, ..., n, \text{ where } \phi \text{ is a chain of } Whitehead automorphisms of degree 0 throughout which the length of <math>u$  is constant}. Taking an appropriate  $v \in \mathcal{M}$ , we have Whitehead automorphisms  $\delta_j = (D_j, d_j)$  of  $F_n$  of degree 0 such that

$$u_1 = \delta_h \cdots \delta_1(v), \tag{3.5}$$

where  $|\delta_j \cdots \delta_1(v)| = |v|$  and  $|\delta_j \cdots \delta_1(v)|_{C_{k_j}} > |v|_{C_{k_j}}$  for the connected component  $C_{k_j}$  containing  $d_j$  and for each j = 1, ..., h. Then for any  $\delta_i = (D_i, d_i)$  and  $\delta_j = (D_j, d_j)$  with  $d_j \neq d_i^{\pm 1}$ , if we replace  $\delta_i$  and  $\delta_j$  with  $(\bar{D}_i, d_i^{-1})$  and  $(\bar{D}_j, d_j^{-1})$ , respectively, if necessary so that  $d_i^{\pm 1} \notin D_j$  and  $d_j^{\pm 1} \notin D_i$ , then  $D_i \cap D_j = \emptyset$ . Hence by Case 1.1.2 of Lemma 3.1 that  $\delta_j \delta_i \equiv \delta_i \delta_j$ ; thus (3.5) can be re-written as

$$u_1 = \delta_{pt_p}^{q_{pt_p}} \cdots \delta_{p1}^{q_{p1}} \cdots \delta_{1t_1}^{q_{1t_1}} \cdots \delta_{11}^{q_{11}}(v),$$
(3.6)

where  $d_{ki} = d_{ki'}$  and  $D_{ki} \neq D_{ki'}$  provided  $i \neq i'$ ;  $d_{k'i} \neq d_{ki}^{\pm 1}$  and  $(\delta_{k't_{k'}}^{q_{k't_{k'}}} \cdots \delta_{k'1}^{q_{k'1}})(\delta_{kt_k}^{q_{kt_k}} \cdots \delta_{k_1}^{q_{k_1}}) \equiv (\delta_{kt_k}^{q_{kt_k}} \cdots \delta_{k_1}^{q_{k_1}})(\delta_{k't_{k'}}^{q_{k't_{k'}}} \cdots \delta_{k'1}^{q_{k'1}})$  provided  $k \neq k'$ . Here we may assume by Case 1.2.1 of Lemma 3.1 that  $D_{ki} \subset D_{ki'}$  if i < i'. Then  $\delta_{ki'}\delta_{ki} \equiv \delta_{ki}\delta_{ki'}$  by Case 1.2.1 of Lemma 3.1; hence  $\delta_{k'i'}\delta_{ki} \equiv \delta_{ki}\delta_{ki'}$  for any  $\delta_{ki}$  and  $\delta_{k'i'}$  in chain (3.6). Thus replace  $\tau_{t-1} \cdots \tau_1(u)$  with the right-hand side of (3.6) to get our desired result.  $\Box$ 

By Claim 5, we may write

$$u_1 = \tau_{t-1} \cdots \tau_p \tau_{p-1} \cdots \tau_1(u),$$

where  $\tau_i$  has multiplier in  $C_{r'}$  provided  $p \leq i \leq t - 1$ ;  $\tau_i$  has multiplier not in  $C_{r'}$  provided  $1 \leq i \leq p - 1$ . Put

$$u_2 = \tau_{p-1} \cdots \tau_1(u).$$

Note that the number of  $C_{r'}$ -syllables of *u* remains unchanged throughout this chain.

**Claim 6.** There exist Whitehead automorphisms  $\varepsilon_i = (E_i, a_i)$ ,  $t \leq i \leq s$ , such that  $|\varepsilon_i \cdots \varepsilon_t(u_2)| = |u|$  for all  $i = t, \dots, s$ , where  $E_i = \emptyset$  provided  $a_i \in C_{r'}$ ;  $E_i$  is one of the three forms  $A_i$ ,  $A_i + C_{r'}$  and  $A_i - C_{r'}$ , whichever is smallest possible with priority given to lower i, provided  $a_i \notin C_{r'}$ .

**Proof.** Suppose the contrary. It can possibly happen only when the number of  $C_{r'}$ -syllables of  $u_2$  is decreased by  $\tau_j \cdots \tau_t \tau_{t-1} \cdots \tau_p$  (for some  $j \ge t$ ) followed by a chain of Whitehead automorphisms of degree 0 with multiplier in  $C_{r'}$ , where the length of  $u_2$  is constant throughout the

chain. Choosing the smallest such index j, put  $\{j_1, \ldots, j_k\} = \{i: t \le i \le j \text{ and } \tau_i \text{ has multiplier}$ in  $C_{r'}\}$ . Then we can observe that there is a chain  $\zeta_m \cdots \zeta_1$  of Whitehead automorphisms of degree 0 with multiplier in  $C_{r'}$  such that  $|\zeta_m \cdots \zeta_1 \tau_{j_k} \cdots \tau_{j_1} \tau_{t-1} \cdots \tau_p(u_2)| = |u_2|$  and the number of  $C_{r'}$ -syllables of  $\zeta_m \cdots \zeta_1 \tau_{j_k} \cdots \tau_{j_1} \tau_{t-1} \cdots \tau_p(u_2)$  is less than that of  $u_2$ . This is a contradiction, because through the chain  $\zeta_m \cdots \zeta_1 \tau_{j_k} \cdots \tau_{j_1} \tau_{t-1} \cdots \tau_p$  only  $C_1$ -syllables and  $C_{r'}$ -syllables can mix and increasing the number of  $C_1$ -syllables cannot reduce the number of  $C_{r'}$ -syllables.  $\Box$ 

For the chain  $\varepsilon_s \cdots \varepsilon_t$ , we consider two cases separately.

**Case 2.1.1.**  $|(B, x_1)\varepsilon_s \cdots \varepsilon_t(u_2)| = |u|$ .

For the Whitehead automorphisms  $\delta_i = (D_i, d_i)$   $(p \leq i < t)$ , where  $D_i = A_i \setminus B$  and  $d_i = a_i$ provided  $x_1^{\pm 1} \notin A_i$ ;  $D_i = \overline{A_i} \setminus B$  and  $d_i = a_i^{-1}$  provided  $x_1^{\pm 1} \in A_i$ , and for the Whitehead automorphisms  $\omega_j = (F_j, a_{t+s-j}^{-1})$  and  $v_j = (H_j, a_j)$   $(t \leq j \leq s)$ , where  $F_j = \emptyset$  provided  $a_{t+s-j} \in C_{r'} + B$ ;  $F_j = E_{t+s-j} \setminus B$  provided  $a_{t+s-j} \notin C_{r'} + B$ ;  $H_j = \emptyset$  provided  $a_j \in B$ ;  $H_j = A_j \setminus B$  provided  $a_j \notin B$ , we have

$$(B, x_1)\tau_s \cdots \tau_1(u) = \nu_s \cdots \nu_t \delta_{t-1} \cdots \delta_p \omega_s \cdots \omega_t (B, x_1)\varepsilon_s \cdots \varepsilon_t \tau_{p-1} \cdots \tau_1(u), \qquad (3.7)$$

where the length of *u* is constant throughout the chain on the right-hand side. By Case 1, it suffices to consider only the chain  $(B, x_1)\varepsilon_s \cdots \varepsilon_t \tau_{p-1} \cdots \tau_1(u)$ . Since for every *j* either deg  $\varepsilon_j = 1$  or  $\varepsilon_j = 1$  and since  $\varepsilon_r = 1$ , the desired result follows by induction on s - t from (3.7).

**Case 2.1.2.**  $|(B, x_1)\varepsilon_s \cdots \varepsilon_t(u_2)| > |u|$ .

We see that this case can possibly happen only when the cyclic word  $\varepsilon_s \cdots \varepsilon_t(u_2)$  contains a subword of the form  $(x_1w_1w_2w_3)^{\theta}$ , where  $\theta = \pm 1$ ,  $w_1$  ( $w_1$  may be the empty word),  $w_2$  and  $w_3$  are words in B,  $C_{r'}$  and  $C_{s'}$ , respectively, and not all of the letters in  $w_3$  were newly introduced in passing from  $u_2$  to  $\varepsilon_s \cdots \varepsilon_t(u_2)$ .

By Claim 5, we may write

$$u_1 = \tau_{t-1} \cdots \tau_q \tau_{q-1} \cdots \tau_1(u),$$

where  $\tau_i$  has multiplier in  $C_{s'}$  provided  $q \leq i \leq t - 1$ ;  $\tau_i$  has multiplier not in  $C_{s'}$  provided  $1 \leq i \leq q - 1$ . Put

$$u_3 = \tau_{q-1} \cdots \tau_1(u).$$

Notice that the number of  $C_{s'}$ -syllables of *u* remains unchanged throughout this chain.

**Claim 7.** There exist Whitehead automorphisms  $\lambda_i = (J_i, a_i)$ ,  $t \leq i \leq s$ , such that  $|\lambda_i \cdots \lambda_t(u_3)| = |u|$  for all  $i = t, \ldots, s$ , where  $J_i = \emptyset$  provided  $a_i \in C_{s'}$ ;  $J_i$  is one of the three forms  $A_i$ ,  $A_i + C_{s'}$  and  $A_i - C_{s'}$ , whichever is largest possible with priority given to lower i, provided  $a_i \notin C_{s'}$ .

**Proof.** Suppose the contrary. In view of all the assumptions and the situations above, this can possibly happen only when the number of  $C_{s'}$ -syllables of  $u_3$  is decreased by  $\tau_j \cdots \tau_t \tau_{t-1} \cdots \tau_q$ 

(for some  $j \ge t$ ) followed by a chain of Whitehead automorphisms of degree 0 with multiplier in  $C_{s'}$ , where the length of  $u_3$  is constant throughout the chain. Choosing the smallest such index j, put  $\{j_1, \ldots, j_k\} = \{i: t \le i \le j \text{ and } \tau_i \text{ has multiplier in } C_{s'}\}$ . Then we can observe that there exists a chain  $\delta_m \cdots \delta_1$  of Whitehead automorphisms of degree 0 with multiplier in  $C_{s'}$  such that  $|\delta_m \cdots \delta_1 \tau_{j_k} \cdots \tau_{j_1} \tau_{t-1} \cdots \tau_q(u_3)| = |u|$ , and such that the number of  $C_{s'}$ -syllables of  $\delta_m \cdots \delta_1 \tau_{j_k} \cdots \tau_{j_1} \tau_{t-1} \cdots \tau_q(u_3)$  is less than that of  $u_3$ . Reasoning as in Claim 6, we get a contradiction, which completes the proof of Claim 7.  $\Box$ 

We then see that  $|(B, x_1)\lambda_s \cdots \lambda_t(u_3)| = |u|$ . Furthermore, for the Whitehead automorphisms  $\delta_i = (D_i, d_i) \ (q \leq i < t)$ , where  $D_i = A_i \cap B$  and  $d_i = a_i$  provided  $x_1^{\pm 1} \notin A_i$ ;  $D_i = \overline{A_i} \cap B$  and  $d_i = a_i^{-1}$  provided  $x_1^{\pm 1} \in A_i$ , and for the Whitehead automorphisms  $\omega_j = (K_j, a_{t+s-j})$  and  $\nu_j = (H_j, a_j^{-1}) \ (t \leq j \leq s)$ , where  $K_j = \emptyset$  provided  $a_{t+s-j} \notin B - C_{s'}$ ;  $K_j = B \setminus J_{t+s-j} + x_1^{-1} - a_{t+s-j}^{\pm 1}$  provided  $a_{t+s-j} \in B - C_{s'}$ ;  $H_j = \emptyset$  provided  $a_j \notin B$ ;  $H_j = B \setminus A_j + x_1^{-1} - a_j^{\pm 1}$  provided  $a_j \in B$ ,

$$(B, x_1)\tau_s \cdots \tau_1(u) = \nu_s \cdots \nu_t \delta_{t-1} \cdots \delta_q \omega_s \cdots \omega_t(B, x_1)\lambda_s \cdots \lambda_t \tau_{q-1} \cdots \tau_1(u), \qquad (3.8)$$

where the length of *u* is constant throughout the chain on the right-hand side. By Case 1, it suffices to consider only the chain  $(B, x_1)\lambda_s \cdots \lambda_t \tau_{q-1} \cdots \tau_1(u)$ . Since for every *j* either deg  $\lambda_i = 1$  or  $\lambda_i = 1$  and since  $\lambda_s = 1$ , the desired result follows by induction on s - t from (3.8). This completes the proof of Case 2.1.2.

# Case 2.2. $a_s^{\pm 1} \notin B$ .

In this case, replace  $(B, x_1)$  and  $\tau_i$  by  $(\overline{B}, x_1^{-1})$  and  $(\overline{A}_i, a_i^{-1})$  for all  $t \leq i \leq s$ , respectively, and then follow the arguments of Case 2.1.

**Case 3.**  $b = x_1^{-1}$ .

Replace  $(B, x_1^{-1})$  by  $(\overline{B}, x_1)$  and then repeat the arguments of Case 2.  $\Box$ 

**Remark.** The proof of Lemma 3.2 can be applied without further change if we replace consideration of a single cyclic word u, the length |u| of u, the total number of occurrences of  $x_j^{\pm 1}$  in u, and the  $C_j$ -syllable length  $|u|_{C_j}$  with consideration of a finite sequence  $(u_1, \ldots, u_m)$  of cyclic words, the sum  $\sum_{i=1}^m |u_i|$  of the lengths of  $u_1, \ldots, u_m$ , the total number of occurrences of  $x_j^{\pm 1}$ in  $(u_1, \ldots, u_m)$ , and the sum  $\sum_{i=1}^m |u_i|_{C_j}$  of the  $C_j$ -syllable lengths of  $u_1, \ldots, u_m$ , respectively.

We are now in a position to prove Theorem 1.4.

**Proof of Theorem 1.4.** The proof proceeds by double induction on  $\ell$  and r, where  $\ell$  is the length of the chain  $\sigma_{\ell} \cdots \sigma_2 \sigma_1$  and  $r = \max_{1 \le i \le \ell} \deg \sigma_i$ . The base steps were already proved in Lemma 3.1 (the case for  $\ell = 2$  and any r) and Lemma 3.2 (the case for r = 1 and any  $\ell$ ).

Let  $\sigma_i$ ,  $i = 1, ..., \ell + 1$  ( $\ell + 1 \ge 3$ ), be Whitehead automorphisms of  $F_n$  such that  $|\sigma_i \cdots \sigma_1(u)| = |u|$  for all  $i = 1, ..., \ell + 1$  and such that  $\max_{1 \le i \le \ell+1} \deg \sigma_i = r + 1 \ge 2$ . By

the induction hypothesis on  $\ell$ , there exist Whitehead automorphisms  $\tau_1, \tau_2, \ldots, \tau_s$  of  $F_n$  such that

$$\sigma_{\ell+1}\sigma_{\ell}\cdots\sigma_{2}\sigma_{1}(u)=\sigma_{\ell+1}\tau_{s}\cdots\tau_{2}\tau_{1}(u),$$

where  $r + 1 \ge \deg \tau_s \ge \deg \tau_{s-1} \ge \cdots \ge \deg \tau_1$ , and  $|\tau_j \cdots \tau_1(u)| = |u|$  for all  $j = 1, \dots, s$ .

If either deg  $\sigma_{\ell+1} = r + 1$  or both deg  $\tau_s \leq r$  and deg  $\sigma_{\ell+1} \geq r$ , then there is nothing to prove. Also if deg  $\tau_s \leq r$  and deg  $\sigma_{\ell+1} < r$ , then we are done by the induction hypothesis on r. So let t  $(1 \leq t \leq s)$  be such that deg  $\tau_i = r + 1$  provided  $t \leq i \leq s$  and deg  $\tau_i \leq r$  provided  $1 \leq i < t$ , and let deg  $\sigma_{\ell+1} \leq r$ .

Put  $\tau_j = (A_j, a_j)$  for j = 1, ..., s and  $\sigma_{\ell+1} = (B, b)$ . Upon replacing  $\tau_i$  and  $\sigma_{\ell+1}$  by  $(\bar{A}_i, a_i^{-1})$  and  $(\bar{B}, b^{-1})$ , respectively, if necessary, we may assume that  $x_{r+1} \in A_i$  for all  $t \leq i \leq s$  and that  $x_{r+1}^{\pm 1} \notin B$ . We may also assume without loss of generality that (B, b) cannot be decomposed to  $(B_2, b)(B_1, b)$ , where  $B = B_1 + B_2$  and  $|(B_1, b)\tau_s \cdots \tau_1(u)| = |u|$ . We may further assume as in Claim 1 of Lemma 3.2 that  $\tau_s = (A_s, a_s)$  cannot be decomposed to  $(A_{s2}, a_s)(A_{s1}, a_s)$ , where  $A_s = A_{s1} + A_{s2}$ , deg $(A_{s1}, a_s) \leq r$ , deg $(A_{s2}, a_s) = r + 1$ ,  $|(A_{s1}, a_s)\tau_{s-1}\cdots\tau_1(u)| = |u|$ , and  $a_i^{\pm 1} \notin A_{s1}$  for all i with  $t \leq i < s$ .

There are three cases to consider.

**Case 1.**  $b = x_1$ .

If  $a_i^{\pm 1} \notin B$  for all  $t \leq i \leq s$ , then continuous application of Cases 1–4 of Lemma 3.1 to  $(B, x_1)\tau_s \cdots \tau_t$  at most  $1 + 2 + 2^2 + \cdots + 2^{s-t}$  times together with the induction hypothesis on r yields the desired result. The following claim shows that it is indeed true that  $a_i^{\pm 1} \notin B$  for all  $t \leq i \leq s$ .

**Claim.**  $a_i^{\pm 1} \notin B$  for all  $t \leq i \leq s$ .

**Proof.** Suppose on the contrary that  $a_i^{\pm 1} \in B$  for some  $t \leq i \leq s$ . First let  $a_s^{\pm 1} \in B$ . If either  $x_1 \in A_s$  or  $x_1^{-1} \in A_s$  but not both, then we have a contradiction by Cases 6.2 and 7.2 of Lemma 3.1, since deg  $\tau_s = r + 1 \ge 2$ . If  $x_1^{\pm 1} \in A_s$ , then by Case 8 of Lemma 3.1,

$$(B, x_1)(A_s, a_s) \equiv (A_s \cup B - x_1^{\pm 1}, x_1)(A_s, a_s)(A_s \setminus B - x_1^{\pm 1}, x_1^{-1}),$$

but the existence of  $(A_s \setminus B - x_1^{\pm 1}, x_1^{-1})$  in this chain contradicts Lemma 2.2, because  $x_{r+1} \in A_s \setminus B - x_1^{\pm 1}$  and  $x_{r+1}^{-1} \notin A_s \setminus B - x_1^{\pm 1}$ . If  $x_1^{\pm 1} \notin A_s$ , then by Case 5 of Lemma 3.1,

$$(B, x_1)(A_s, a_s) \equiv (A_s \setminus B, x_1^{-1})(A_s, a_s)(A_s \cup B, x_1),$$

but the existence of  $(A_s \cup B, x_1)$  in this chain also contradicts Lemma 2.2, since  $x_{r+1} \in A_s \cup B$ and  $x_{r+1}^{-1} \notin A_s \cup B$ .

Next let  $a_s^{\pm 1} \notin B$ . Suppose that  $a_i^{\pm 1} \in B$  for some  $t \leq i < s$ . Let k be the largest such index. Put  $v = \tau_{k-1} \cdots \tau_1(u)$ . If  $x_1 \in A_k$  and  $x_1^{-1} \notin A_k$ , then we can observe based on all the assumptions and the situations above that there exists a Whitehead automorphism  $(F, x_1)$  of degree r + 1 with  $(B \cup A_k - x_1) \subseteq F$  such that  $|(F, x_1)\tau_k(v)| = |u|$ . But this yields a contradiction to Lemma 2.2, since  $x_{r+1} \in F$  and  $x_{r+1}^{-1} \notin F$ . For a similar reason, the case where  $x_1 \notin A_k$  and  $x_1^{-1} \in A_k$  cannot happen, either. So  $A_k$  must contain either both of  $x_1^{\pm 1}$  or none of  $x_1^{\pm 1}$ .

If there exists a chain  $\zeta_p \cdots \zeta_1$  of Whitehead automorphisms of degree less than or equal to r + 1 such that  $|(B, x_1)\tau_k\zeta_p \cdots \zeta_1(v)| = |\tau_k\zeta_p \cdots \zeta_1(v)| = |\zeta_p \cdots \zeta_1(v)| = |u|$ , then as in the case where  $a_s^{\pm 1} \in B$  we reach a contradiction. Otherwise, choose chains  $\zeta_p \cdots \zeta_1$  and  $\omega_q \cdots \omega_1$ of Whitehead automorphisms of degree less than or equal to r + 1 with q smallest possible such that  $|\omega_j \cdots \omega_1 \tau_k \zeta_p \cdots \zeta_1(v)| = |\tau_k \zeta_p \cdots \zeta_1(v)| = |\zeta_p \cdots \zeta_1(v)| = |u|$  for all  $j = 1, \ldots, q$ , and such that  $|(B, x_1)\omega_q \cdots \omega_1 \tau_k \zeta_p \cdots \zeta_1(v)| = |u|$ . Clearly  $q \leq s - k$ .

Put  $\omega_j = (G_j, g_j)$  for j = 1, ..., q. If  $x_1^{\pm 1} \notin A_k$ , then we see from the choice of k and the chain  $\omega_q \cdots \omega_1$  that  $g_1^{\pm 1} \notin A_k$ . We also see that for the Whitehead automorphisms  $\gamma_j = (H_j, g_j)$ , j = 1, ..., q, where  $H_j = G_j \setminus A_k$  provided  $a_k^{\pm 1} \notin G_j$ ;  $H_j = G_j \cup A_k$  provided  $a_k^{\pm 1} \in G_j$ ,  $|(B, x_1)\gamma_q \cdots \gamma_1 \tau_k \zeta_p \cdots \zeta_1(v)| = |\gamma_j \cdots \gamma_1 \tau_k \zeta_p \cdots \zeta_1(v)| = |u|$  for all j = 1, ..., q. Then by Case 1.1.2 or Case 5 of Lemma 3.1, we have  $\gamma_1 \tau_k \equiv \tau_k \gamma_1$ , which means the chain  $\gamma_q \cdots \gamma_2$  of shorter length has the same property as  $\omega_q \cdots \omega_1$  does, contrary to the choice of the chain  $\omega_q \cdots \omega_1$ . If  $x_1^{\pm 1} \in A_k$ , replace  $\tau_k$  by  $(\bar{A}_k, a_k^{-1})$ . Then we get a contradiction in the same way, which completes the proof of the claim.  $\Box$ 

**Case 2.** 
$$b = x_1^{-1}$$
.

Repeat similar arguments to those in Case 1.

# **Case 3.** $b \neq x_1^{\pm 1}$ .

Let p ( $1 \le p \le t$ ) be such that deg  $\tau_i = 0$  provided  $1 \le i < p$ ; deg  $\tau_i \ge 1$  provided  $p \le i \le s$ . As in Claim 5 of Lemma 3.2, we may assume that  $\tau_i \tau_j \equiv \tau_j \tau_i$  for all  $1 \le i \ne j < p$ . So there exists q with  $1 \le q \le p$  such that  $\tau_i$  has multiplier in  $C_1$  provided  $1 \le i < q$ ;  $\tau_i$  has multiplier not in  $C_1$  provided  $q \le i < p$ .

Put  $w = \tau_{q-1} \cdots \tau_1(u)$ . Notice that  $C_i$ -syllables remain unchanged throughout the chain  $\tau_{q-1} \cdots \tau_1$  for all  $i \ge 2$ . Write

$$w = y_1 u_1 y_2 u_2 \cdots y_m u_m$$
 without cancellation, (3.9)

where for each i = 1, ..., m,  $y_i = x_1$  or  $y_i = x_1^{-1}$ , and  $u_i$  is a (non-cyclic) subword in  $\{x_2, ..., x_n\}^{\pm 1}$ . Let  $F_{n+3}$  be the free group on the set

$$\{x_1,\ldots,x_n,x_{n+1},x_{2n+1},x_{3n+1}\}.$$

From (3.9) we construct a sequence  $V_w = (v_1, v_2, ..., v_m)$  of cyclic words  $v_1, v_2, ..., v_m$  in  $F_{n+3}$  with  $\sum_{j=1}^{m} |v_j| = 2|u|$ , where *m* is the total number of occurrences of  $x_1^{\pm 1}$  in *u*, as follows: for each j = 1, ..., m,

if 
$$y_j = x_1$$
 and  $y_{j+1} = x_1$ , then  $v_j = x_1 u_j x_{3n+1} u_j^{-1}$ ;  
if  $y_j = x_1^{-1}$  and  $y_{j+1} = x_1$ , then  $v_j = x_{n+1} u_j x_{3n+1} u_j^{-1}$ ;  
if  $y_j = x_1$  and  $y_{j+1} = x_1^{-1}$ , then  $v_j = x_1 u_j x_{2n+1} u_j^{-1}$ ;  
if  $y_j = x_1^{-1}$  and  $y_{j+1} = x_1^{-1}$ , then  $v_j = x_{n+1} u_j x_{2n+1} u_j^{-1}$ ,

where  $y_{m+1} = y_1$ .

Put  $I = \{x_1, x_{n+1}, x_{2n+1}, x_{3n+1}\}^{\pm 1}$ . From now on, when we say that (S, s) is a Whitehead automorphism of  $F_{n+3}$ , the following restrictions are imposed on S and s:

- (1)  $s \in \{x_2, \ldots, x_n\}^{\pm 1}$ .
- (2) S satisfies one of (i)  $I \subseteq S$ ; (ii)  $I \cap S = \{x_1, x_{2n+1}\}^{\pm 1}$ ; (iii)  $I \cap S = \{x_{n+1}, x_{3n+1}\}^{\pm 1}$ ; (iv)  $I \cap S = \emptyset$ .

Then we can prove the following claim.

**Claim 1.** For each Whitehead automorphism  $\tau = (A, a)$  of  $F_n$  such that  $a \neq x_1^{\pm 1}$  and  $|\tau(w)| = |w|$ , there exists a Whitehead automorphism  $\alpha$  of  $F_{n+3}$  such that  $\sum_{j=1}^{m} |\alpha(v_j)| = \sum_{j=1}^{m} |v_j|$  and  $\alpha(V_w) = V_{\tau(w)}$ .

**Proof.** Given a Whitehead automorphism  $\tau = (A, a)$ , we define a Whitehead automorphism  $\alpha$  of  $F_{n+3}$  as follows: If  $x_1^{\pm 1} \in A$ , then  $\alpha = (A + x_{n+1}^{\pm 1} + x_{2n+1}^{\pm 1} + x_{3n+1}^{\pm 1}, a)$ ; if only  $x_1 \in A$ , then  $\alpha = (A + x_1^{-1} + x_{2n+1}^{\pm 1}, a)$ ; if only  $x_1^{-1} \in A$ , then  $\alpha = (A - x_1^{-1} + x_{n+1}^{\pm 1} + x_{3n+1}^{\pm 1}, a)$ ; if  $x_1^{\pm 1} \notin A$ , then  $\alpha = (A, a)$ .

Then each newly introduced letter  $x_r^{\pm 1}$  in passing from w to  $\tau(w)$  that remains in  $\tau(w)$  produces two newly introduced letters  $x_r^{\pm 1}$  in passing from  $V_w$  to  $\alpha(V_w)$  that remain in  $\alpha(V_w)$ , and vice versa. Also each letter  $x_r^{\pm 1}$  in w that is lost in passing from w to  $\tau(w)$  produces two letters  $x_r^{\pm 1}$  in  $V_w$  that are lost in passing from  $V_w$  to  $\alpha(V_w)$ , and vice versa. This yields that  $\sum_{j=1}^{m} |\alpha(v_j)| = \sum_{j=1}^{m} |v_j|$ .

Moreover it is clear that  $\alpha(V_w) = V_{\tau(w)}$ .  $\Box$ 

The following claim is a converse of Claim 1.

**Claim 2.** For each Whitehead automorphism  $\alpha = (S, s)$  of  $F_{n+3}$  such that  $\sum_{j=1}^{m} |\alpha(v_j)| = \sum_{j=1}^{m} |v_j|$ , there exists a Whitehead automorphism  $\tau = (A, a)$  of  $F_n$  such that  $a \neq x_1^{\pm 1}$ ,  $|\tau(w)| = |w|$  and such that  $\alpha(V_w) = V_{\tau(w)}$ .

**Proof.** Given a Whitehead automorphism  $\alpha = (S, s)$  of  $F_{n+3}$ , put  $T = S \setminus I$ . And define a Whitehead automorphism  $\tau$  of  $F_n$  as follows:  $\tau = (T + x_1^{\pm 1}, s)$  provided  $I \subseteq S$ ;  $\tau = (T + x_1, s)$  provided  $I \cap S = \{x_1, x_{2n+1}\}^{\pm 1}$ ;  $\tau = (T + x_1^{-1}, s)$  provided  $I \cap S = \{x_{n+1}, x_{3n+1}\}^{\pm 1}$ ;  $\tau = (T, s)$  provided  $I \cap S = \emptyset$ . Then reasoning in the same way as in Claim 1, we get a desired result.  $\Box$ 

For each  $\tau_i = (A_i, a_i), q \le i \le s$ , define a Whitehead automorphism  $\alpha_i$  of  $F_{n+3}$  as in Claim 1. Also as in Claim 1, define a Whitehead automorphism  $\beta$  of  $F_{n+3}$  from  $\sigma_{\ell+1} = (B, b)$ . Then we have  $\sum_{j=1}^{m} |\beta \alpha_s \cdots \alpha_q (v_j)| = \sum_{j=1}^{m} |\alpha_i \cdots \alpha_q (v_j)| = \sum_{j=1}^{m} |v_j|$  for all  $i = q, \ldots, s$ . Moreover, by the construction of  $\alpha_i$  and  $\beta$ , the Whitehead automorphisms  $\alpha_i$  and  $\beta$  of  $F_{n+3}$  are of degree at most r + 1, and each of defining sets of  $\alpha_i$  and  $\beta$  contains either both of  $x_1^{\pm 1}$  or none of  $x_1^{\pm 1}$ . This yields the same situation as for a chain of Whitehead automorphisms of  $F_{n+3}$  of maximum degree r.

Here we notice from Claims 1 and 2 that if  $\Gamma_u$  consists of g connected components, then either  $\Gamma_{V_w}$  consists of g + 1 connected components such that  $C_i$  equals  $C_i$  of  $\Gamma_u$  for all  $C_i$ 's of  $\Gamma_{V_w}$  with  $C_i \neq C_1$  and  $C_i \neq C_{n+1}$ ,  $C_1$  equals  $C_1$  of  $\Gamma_u$  plus  $x_{2n+1}^{\pm 1}$ , and such that  $C_{n+1} = \{x_{n+1}, x_{3n+1}\}^{\pm 1}$ ;

or  $\Gamma_{V_w}$  consists of g connected components such that  $C_i$  equals  $C_i$  of  $\Gamma_u$  for all  $C_i$ 's of  $\Gamma_{V_w}$  with  $C_i \neq C_1$  and such that  $C_1$  equals  $C_1$  of  $\Gamma_u$  plus  $\{x_{n+1}, x_{2n+1}, x_{3n+1}\}^{\pm 1}$ .

The sequence  $V_w = (v_1, \ldots, v_m)$  satisfies neither Hypothesis 1.1 nor Hypothesis 1.3. However, this fact does not affect the proof of the base steps of the induction (that is, Lemmas 3.1 and 3.2) for the following four reasons: first each of the Whitehead automorphisms  $\alpha_i$  and  $\beta$  has multiplier only in  $\{x_2, \ldots, x_n\}^{\pm 1}$ ; second only the proof of Case 2.1 of Lemma 3.2 is concerned with the  $C_i$ -syllable length, but in the proof of Case 2.1  $a_r$  or  $a_s$  cannot belong to the connected component  $C_1$  of  $\Gamma_{V_w}$  (in fact, if  $a_r$  or  $a_s$  belonged to  $C_1$ , such a situation as Case 2.1 could not occur); third Claim 5 holds for  $V_w$  by replacing  $\mathcal{M}$  with the set  $\{\phi(V_w): \phi \text{ is}$ a chain of Whitehead automorphisms of degree 0 throughout which the length of  $V_w$  is constant,  $|\phi(V_w)|_{C_i} = |V_w|_{C_i}$  for all  $C_i$  with  $C_i \neq C_1$ , and  $|\phi(V_w)|_{C_1} \leq |\psi(V_w)|_{C_1}$  for every  $\psi$  which has the same property as  $\phi$ }; finally the same arguments as used in Claims 6 and 7 in Case 2.1 of Lemma 3.2 are valid for  $V_w$ , since Hypothesis 1.3 holds for  $V_w$  if we only consider  $C_i$ 's of  $\Gamma_{v_w}$ such that  $x_1 \notin C_i$  and  $x_{n+1} \notin C_1$ .

This observation allows us to apply the induction hypothesis on r to  $\beta \alpha_s \cdots \alpha_q (V_w)$ . Hence, there exist Whitehead automorphisms  $\gamma_1, \gamma_2, \ldots, \gamma_h$  of  $F_{n+3}$  such that

$$\beta \alpha_s \cdots \alpha_q (V_w) = \gamma_h \cdots \gamma_2 \gamma_1 (V_w), \qquad (3.10)$$

where  $r + 1 \ge \deg \gamma_h \ge \deg \gamma_{h-1} \ge \cdots \ge \deg \gamma_1$  (here note that there is no  $\gamma_i$  of degree 1), and  $\sum_{i=1}^{m} |\gamma_i \cdots \gamma_1(v_j)| = \sum_{i=1}^{m} |v_j|$  for all i = 1, ..., h.

As in Claim 2, from each  $\gamma_i$  we define a Whitehead automorphism  $\zeta_i$  of  $F_n$ . Let k be such that deg  $\zeta_j \leq 1$  for  $1 \leq j < k$  and deg  $\zeta_j \geq 2$  for  $k \leq j \leq h$ . Since  $\beta \alpha_s \cdots \alpha_q (V_w) = V_{\sigma_{\ell+1}\tau_s \cdots \tau_q (w)}$  and  $\gamma_h \cdots \gamma_2 \gamma_1 (V_w) = V_{\zeta_h \cdots \zeta_2 \zeta_1 (w)}$ , we have by (3.10) that

$$\sigma_{\ell+1}\tau_s\cdots\tau_q(w)=\zeta_h\cdots\zeta_2\zeta_1(w),$$

where  $r + 1 \ge \deg \zeta_h \ge \deg \zeta_{h-1} \ge \cdots \ge \deg \zeta_k \ge 2$ , and  $|\zeta_i \cdots \zeta_1(w)| = |w|$  for  $i = 1, \dots, h$ . Applying the base step for r = 1 (that is, Lemma 3.2) to  $\zeta_{k-1} \cdots \zeta_1 \tau_{q-1} \cdots \tau_1(u)$  completes the proof of Case 3.  $\Box$ 

#### 4. Proof of Theorem 1.5

The aim of this section is to prove Theorem 1.5. For a cyclic word w in  $F_n$ , let  $N_k(w)$  denote the cardinality of the set  $\Omega_k(w) = \{\phi(w): \phi \text{ can be represented as a composition } \tau_s \cdots \tau_1 (s \in \mathbb{N})$ of Whitehead automorphisms  $\tau_i$  of  $F_n$  of degree k such that  $|\tau_i \cdots \tau_1(w)| = |w|$  for all  $i = 1, \ldots, s\}$ . Then bounding N(u) reduces to bounding each  $N_k(u)$ , which is shown in the proof of Theorem 1.5 using the result of Theorem 1.4. In Lemma 4.1 we bound  $N_0(u)$ . In Lemma 4.2 we show that  $N_k(u)$  for  $k \ge 1$  is at most  $N_0(V_u)$ , where  $V_u$  is a certain sequence of cyclic words constructed from u, thus bounding  $N_k(u)$  for  $k \ge 1$ .

**Lemma 4.1.** Let u be a cyclic word in  $F_n$ . Then  $N_0(u)$  is bounded by a polynomial function of degree n - 2 with respect to |u|.

**Proof.** Let  $m_i$  be the number of occurrences of  $x_i^{\pm 1}$  in u for i = 1, ..., n. Clearly

$$N_0(u) \leqslant N_0\big(x_1^{m_1}x_2^{m_2}\cdots x_n^{m_n}\big).$$

So it suffices to show that  $N_0(x_1^{m_1}x_2^{m_2}\cdots x_n^{m_n})$  is bounded by a polynomial function of degree n-2 with respect to |u|. For a cyclic word v in  $F_n$ , define  $|v|_s$  as

$$|v|_s = \sum_{i=1}^n |v|_{C_i}.$$

Noting that  $|x_1^{m_1}x_2^{m_2}\cdots x_n^{m_n}|_s = n$ , put  $\mathcal{M} = \{v: |v|_s = n \text{ and } v = \Omega_0(x_1^{m_1}x_2^{m_2}\cdots x_n^{m_n})\}$ , and  $\mathcal{L} = \{v: |v|_s > n \text{ and } v = \Omega_0(x_1^{m_1}x_2^{m_2}\cdots x_n^{m_n})\}$ . Obviously the cardinality of  $\mathcal{M}$  is (n-1)!.

For the cardinality of  $\mathcal{L}$ , let  $v \in \mathcal{L}$ . Taking an appropriate  $u' \in \mathcal{M}$  (note that u' can be chosen as follows: Write  $v = x_{k_1}w_1x_{k_2}w_2\cdots x_{k_n}w_n$  (without cancellation), where  $w_i$  is a (non-cyclic) word in  $\{x_{k_1}, \ldots, x_{k_i}\}$ ; then  $u' = x_{k_1}^{m_{k_1}}x_{k_2}^{m_{k_2}}\cdots x_{k_n}^{m_{k_n}}$ ), we have Whitehead automorphisms  $\tau_j = (A_j, a_j)$  of  $F_n$  of degree 0 such that

$$v = \tau_s \cdots \tau_1(u'), \tag{4.1}$$

where  $|\tau_j \cdots \tau_1(u')| = |u'|$  and  $|\tau_j \cdots \tau_1(u')|_s \ge |\tau_{j-1} \cdots \tau_1(u')|_s$  for all  $j = 1, \dots, s$ . Then for any  $\tau_i = (A_i, a_i)$  and  $\tau_j = (A_j, a_j)$  with  $a_j \ne a_i^{\pm 1}$ , if we replace  $\tau_i$  and  $\tau_j$  by  $(\bar{A}_i, a_i^{-1})$  and  $(\bar{A}_j, a_j^{-1})$ , respectively, if necessary so that  $a_i^{\pm 1} \notin A_j$  and  $a_j^{\pm 1} \notin A_i$ , then  $A_i \cap A_j = \emptyset$ . Hence by Case 1.1.2 of Lemma 3.1 that  $\tau_j \tau_i \equiv \tau_i \tau_j$ ; thus (4.1) can be re-written as

$$v = \tau_{pt_p}^{q_{pt_p}} \cdots \tau_{p1}^{q_{p1}} \cdots \tau_{1t_1}^{q_{1t_1}} \cdots \tau_{11}^{q_{11}} (u'), \tag{4.2}$$

where  $a_{ki} = a_{ki'}$  and  $A_{ki} \neq A_{ki'}$  provided  $i \neq i'$ ;  $a_{k'i} \neq a_{ki}^{\pm 1}$  and  $(\tau_{k't_{k'}}^{q_{k't_{k'}}} \cdots \tau_{k'1}^{q_{k'1}})(\tau_{kt_k}^{q_{kt_k}} \cdots \tau_{k'1}^{q_{k_1}}) \equiv (\tau_{kt_k}^{q_{kt_k}} \cdots \tau_{k_1}^{q_{k_1}})(\tau_{k't_{k'}}^{q_{k't_{k'}}} \cdots \tau_{k'1}^{q_{k'1}})$  provided  $k \neq k'$ . Here we may assume by Case 1.2.1 of Lemma 3.1 that  $A_{ki} \subset A_{ki'}$  if i < i'. Then  $\tau_{ki'}\tau_{ki} \equiv \tau_{ki}\tau_{ki'}$  by Case 1.2.1 of Lemma 3.1; hence  $\tau_{k'i'}\tau_{ki} \equiv \tau_{ki}\tau_{ki'}$  for any  $\tau_{ki}$  and  $\tau_{k'i'}$  in chain (4.2).

**Claim.** The length of the chain of Whitehead automorphisms on the right-hand side of (4.2) is at most n - 2 without counting multiplicity, that is,  $\sum_{i=1}^{p} t_i \leq n - 2$ .

**Proof.** The proof proceeds by induction on the number of subwords of u' of the form  $x_i^{m_i}$  which are fixed throughout chain (4.2). For the base step, suppose that u' has two such subwords  $x_{r_1}^{m_{r_1}}$  and  $x_{r_2}^{m_{r_2}}$  (note that u' must have at least two such subwords). The cyclic word u' can be written as  $u' = x_{r_1}^{m_{r_1}}w$  (without cancellation), where w is a non-cyclic word that contains  $x_i^{m_i}$  for all  $i \neq r_1$ . Upon replacing  $\tau_{ij}$  by  $(\bar{A}_{ij}, a_{ij}^{-1})$  if necessary, we may assume that  $x_{r_1}^{\pm 1} \notin A_{ij}$  for all  $\tau_{ij}$  in chain (4.2). Then the length of w is constant throughout the chain and only the subword  $x_{r_2}^{m_{r_2}}$  of w is fixed in passing from w to  $\tau_{pt_p}^{q_{pt_p}} \cdots \tau_{p1}^{q_{pt_1}} \cdots \tau_{11}^{q_{11}}(w)$ . It follows that the length of this chain is precisely (n-1)-1=n-2 without counting multiplicity. So the base step is done.

Now for the inductive step, suppose that u' has k subwords of the form  $x_i^{m_i}$  which are fixed throughout chain (4.2), say  $x_{r_1}^{m_{r_1}}, \ldots, x_{r_k}^{m_{r_k}}$ . Write the cyclic word u' as  $u' = x_{r_1}^{m_{r_1}} w$  (without cancellation), where w is a non-cyclic word that contains  $x_i^{m_i}$  for all  $i \neq r_1$ . As above, upon replacing  $\tau_{ij}$  by  $(\bar{A}_{ij}, a_{ij}^{-1})$  if necessary, we may assume that  $x_{r_1}^{\pm 1} \notin A_{ij}$  for all  $\tau_{ij}$  in chain

(4.2). We then have that only the subwords  $x_{r_2}^{m_{r_2}}, \ldots, x_{r_k}^{m_{r_k}}$  of w are fixed in passing from w to  $\tau_{pt_p}^{q_{pt_p}} \cdots \tau_{pt_1}^{q_{1t_1}} \cdots \tau_{1t_1}^{q_{1t_1}} (w)$ , where the length of w is constant throughout the chain. Let (w) be the cyclic word associated with w. If none of  $\tau_{ij}$  in chain (4.2) is of the form either  $(\Sigma - x_{r_1}^{\pm 1} - x_g^{\pm 1}, x_g)$  or  $(\Sigma - x_{r_1}^{\pm 1} - x_g^{\pm 1}, x_g^{-1})$ , then chain (4.2) can be applied to (w) with  $\tau_{ij} \neq 1$  on (w) for every  $\tau_{ij}$  in the chain. Then by the induction hypothesis applied to (w), the length of the chain is at most (n-1)-2 = n-3 without counting multiplicity, as desired. If one of  $\tau_{ij}$  in chain (4.2) is of the form either  $(\Sigma - x_{r_1}^{\pm 1} - x_g^{\pm 1}, x_g)$  or  $(\Sigma - x_{r_1}^{\pm 1} - x_g^{\pm 1}, x_g^{-1})$ , then we see that there can be only one of  $\tau_{ij}$  of such a form, so that chain (4.2) can be applied to (w)with only one  $\tau_{ij} = 1$  on (w). This together with the induction hypothesis applied to (w) yields that the length of chain (4.2) is at most (n-1)-2+1=n-2 without counting multiplicity, as required. 

Obviously each multiplicity  $q_{ij}$  is less than the number of  $a_{ij}^{\pm 1}$  occurring in u, so less than |u|. This together with the claim yields that the total number of chains of Whitehead automorphisms with the same properties as in (4.2) is less than  $\binom{r}{n-2}|u|^{n-2}$ , where r is the number of Whitehead automorphisms of  $F_n$  of degree 0. Thus the cardinality of  $\mathcal{L}$  is less than  $(n-1)!\binom{r}{n-2}|u|^{n-2}$ , and therefore

$$N_0(x_1^{m_1}x_2^{m_2}\cdots x_n^{m_n}) = \#\mathcal{M} + \#\mathcal{L} \leq (n-1)! + (n-1)!\binom{r}{n-2}|u|^{n-2}$$

which completes the proof the lemma.  $\Box$ 

Remark. The proof of Lemma 4.1 can be applied without further change if we replace consideration of a single cyclic word u, the length |u| of u, and the total number of occurrences of  $x_i^{\pm 1}$  in u with consideration of a finite sequence  $(u_1, \ldots, u_m)$  of cyclic words, the sum  $\sum_{i=1}^m |u_i|$  of the lengths of  $u_1, \ldots, u_m$ , and the total number of occurrences of  $x_i^{\pm 1}$  in  $(u_1, \ldots, u_m)$ , respectively.

**Lemma 4.2.** Let u be a cyclic word in  $F_n$  that satisfies Hypothesis 1.1. Then for each k = 1,  $\dots, n-1, N_k(u)$  is bounded by a polynomial function of degree n + 3k - 2 with respect to |u|(note that k is at most n - 1 by the remark after Lemma 2.2).

**Proof.** Let  $m_i$  be the number of occurrences of  $x_i^{\pm 1}$  in u for i = 1, ..., n, and let  $\ell_k = \sum_{j=1}^k m_j$ for k = 1, ..., n - 1. Write

$$u = y_1 u_1 y_2 u_2 \cdots y_{\ell_k} u_{\ell_k} \quad \text{without cancellation,}$$
(4.3)

where for each  $i = 1, ..., \ell_k$ ,  $y_i = x_j$  or  $y_i = x_i^{-1}$  for some  $1 \le j \le k$ , and  $u_i$  is a (non-cyclic) subword in  $\{x_{k+1}, \ldots, x_n\}^{\pm 1}$ . Let  $F_{n+3k}$  be the free group on the set

$$\{x_1, \ldots, x_n, x_{n+1}, \ldots, x_{n+k}, x_{2n+1}, \ldots, x_{2n+k}, x_{3n+1}, \ldots, x_{3n+k}\}.$$

From (4.3) we construct a sequence  $V_u = (v_1, \ldots, v_{\ell_k})$  of cyclic words  $v_1, \ldots, v_{\ell_k}$  in  $F_{n+3k}$  with  $\sum_{i=1}^{\ell_k} |v_i| = 2|u|$  as follows: for each  $i = 1, \dots, \ell_k$ ,

if 
$$y_i = x_j$$
 and  $y_{i+1} = x_{j'}$ , then  $v_i = x_j u_i x_{3n+j'} u_i^{-1}$ ;  
if  $y_i = x_j^{-1}$  and  $y_{i+1} = x_{j'}$ , then  $v_i = x_{n+j} u_i x_{3n+j'} u_i^{-1}$ ;  
if  $y_i = x_j$  and  $y_{i+1} = x_{j'}^{-1}$ , then  $v_i = x_j u_i x_{2n+j'} u_i^{-1}$ ;  
if  $y_i = x_j^{-1}$  and  $y_{i+1} = x_{j'}^{-1}$ , then  $v_i = x_{n+j} u_i x_{2n+j'} u_i^{-1}$ ,

where  $y_{\ell_k+1} = y_1$ .

**Claim.** For each Whitehead automorphism  $\sigma$  of  $F_n$  of degree k such that  $|\sigma(u)| = |u|$ , there exists a Whitehead automorphism  $\tau$  of  $F_{n+3k}$  of degree 0 such that  $\sum_{i=1}^{\ell_k} |\tau(v_i)| = \sum_{i=1}^{\ell_k} |v_i|$  and  $\tau(V_u) = V_{\sigma(u)}$ .

**Proof.** Let  $\sigma = (S, a)$  be a Whitehead automorphism of  $F_n$  of degree k such that  $|\sigma(u)| = |u|$ . Upon replacing  $\sigma$  by  $(\bar{S}, a^{-1})$ , we may assume that  $\sigma = (S, x_r)$ . Note by Lemma 2.2 that the index r is bigger than k, since deg  $\sigma = k$ . Put S = T + P + Q, where  $T = S \cap \{x_{k+1}, \ldots, x_n\}^{\pm 1}$ ,  $P = S \cap \{x_1, \ldots, x_k\}$  and  $Q = S \cap \{x_1, \ldots, x_k\}^{-1}$  (here note that  $T = T^{-1}$ , since deg  $\sigma = k$ ).

Then we consider the Whitehead automorphism  $\tau = (T + P_1 + Q_1, x_r)$  of  $F_{n+3k}$  of degree 0, where  $P_1 = \{x_i^{\pm 1}, x_{2n+i}^{\pm 1} \mid x_i \in P\}$  and  $Q_1 = \{x_{n+i}^{\pm 1}, x_{3n+i}^{\pm 1} \mid x_i^{-1} \in Q\}$ . If the sequence  $V_u = (v_1, \ldots, v_{\ell_k})$  of cyclic words  $v_1, \ldots, v_{\ell_k}$  in  $F_{n+3k}$  is constructed as above, then each newly introduced letter  $x_r^{\pm 1}$  in passing from u to  $\sigma(u)$  that remains in  $\sigma(u)$  produces two newly introduced letters  $x_r^{\pm 1}$  in passing from u to  $\sigma(u)$  that remain in  $\tau(V_u)$ , and vice versa. Also each letter  $x_r^{\pm 1}$  in u that is lost in passing from u to  $\sigma(u)$  produces two letters  $x_r^{\pm 1}$  in  $V_u$  that are lost in passing from  $v_u$  to  $\tau(V_u)$ , and vice versa. This yields that  $\sum_{i=1}^{\ell_k} |\tau(v_i)| = \sum_{i=1}^{\ell_k} |v_i|$ . Moreover it is clear that  $\tau(V_u) = V_{\sigma(u)}$ .  $\Box$ 

It is easy to see that if  $u' \in \Omega_k(u)$  with  $u' \neq u$ , then  $V_{u'} \neq V_u$ . This together with the claim gives us that  $N_k(u) \leq N_0((v_1, v_2, \dots, v_{\ell_k}))$ . By the remark after Lemma 4.1,  $N_0((v_1, v_2, \dots, v_{\ell_k}))$  is bounded by a polynomial function of degree n + 3k - 2 with respect to 2|u|, which completes the proof of the lemma.  $\Box$ 

Finally we give a proof of Theorem 1.5.

**Proof of Theorem 1.5.** Without loss of generality we may assume that *u* was chosen from the set  $\{v \in \operatorname{Orb}_{\operatorname{Aut} F_n}(u): |v| = |u|\}$  so that *u* satisfies Hypothesis 1.3. Let  $v \in \operatorname{Orb}_{\operatorname{Aut} F_n}(u)$  be such that |v| = |u|. By Whitehead's theorem, there exist Whitehead automorphisms  $\pi$  of the first type and  $\sigma_1, \ldots, \sigma_\ell$  of the second type such that  $v = \pi \sigma_\ell \cdots \sigma_1(u)$ , where  $|\sigma_i \cdots \sigma_1(u)| = |u|$  for all  $i = 1, \ldots, \ell$ . Then by Theorem 1.4, there exist Whitehead automorphisms  $\tau_1, \ldots, \tau_s$  such that  $v = \pi \tau_s \cdots \tau_1(u)$ , where  $n - 1 \ge \operatorname{deg} \tau_s \ge \operatorname{deg} \tau_{s-1} \ge \cdots \ge \operatorname{deg} \tau_1$ , and  $|\tau_j \cdots \tau_1(u)| = |u|$  for all  $j = 1, \ldots, s$  (here, note by the Remark after Lemma 2.2 that  $\operatorname{deg} \tau_s \le n - 1$ ). This implies that

$$N(u) \leqslant C N_0(u) N_1(u) \cdots N_{n-1}(u),$$

where *C* is the number of Whitehead automorphisms of the first type of  $F_n$  (which depends only on *n*). For each k = 0, 1, ..., n - 1,  $N_k(u)$  is bounded by a polynomial function of degree n + 3k - 2 with respect to |u| by Lemmas 4.1 and 4.2. Therefore, N(u) is bounded by a polynomial function of degree n(5n - 7)/2 with respect to |u|, as required.  $\Box$ 

# 5. Limitations

We close this paper with a brief explanation why the presented technique is incapable of covering the entire problem domain (e.g. for  $u = x_1^2 x_2^2 x_3^3 x_4^4$  the presented arguments cannot be applied). This amounts to explaining why condition (ii) of Hypothesis 1.1 cannot be dropped. As a matter of fact, in the presented arguments, condition (ii) of Hypothesis 1.1 played a most essential role, without which all of our arguments except Lemmas 2.1 and 4.1 would have broke down. Owing to Lemma 2.2 where we first used Hypothesis 1.1(ii), we were able to assume throughout the paper that

$$j > i$$
 when considering Whitehead automorphisms  $(A, x_i^{\pm 1})$  of degree *i*. (5.1)

This allowed us to exclude the worst case such as  $a \in B$ ,  $a^{-1} \notin B$ ,  $b \in A$  and  $b^{-1} \notin A$  in Lemma 3.1, for which case there does not exist a composition of Whitehead automorphisms of ascending degrees that equals (B, b)(A, a). Also we proceeded with the proofs of Lemma 3.2 and Theorem 1.4 based on (5.1). For instance, Claim 1 in the proof of Lemma 3.2 yielded the existence r such that  $a_r^{\pm 1} \in A_s \cap B$  in Case 1.1, where we did not have to worry about the case where  $a_r \in A_s \cap B$  but  $a_r^{-1} \notin A_s \cap B$ . Furthermore, the equality in the claim in the proof of Lemma 4.2 would not have hold without (5.1).

### Acknowledgments

The author express her deep appreciation to Professors S.V. Ivanov, I. Kapovich, A.G. Myasnikov, V. Shpilrain for their comments and interests in this paper. The author is also thankful to the referee for many valuable suggestions which led to an improvement of this paper. The author was partially supported by Research Institute for Basic Sciences, Pusan National University (2005).

# References

- P.J. Higgins, R.C. Lyndon, Equivalence of elements under automorphisms of a free group, J. London Math. Soc. 8 (1974) 254–258.
- [2] I. Kapovich, P.E. Schupp, V. Shpilrain, Generic properties of Whitehead's algorithm and isomorphism rigidity of random one-relator groups, Pacific J. Math. 223 (2006) 113–140.
- [3] B. Khan, The structure of automorphic conjugacy in the free group of rank two, in: Computational and Experimental Group Theory, in: Contemp. Math., vol. 349, Amer. Math. Soc., Providence, RI, 2004, pp. 115–196.
- [4] R.C. Lyndon, P.E. Schupp, Combinatorial Group Theory, Springer-Verlag, New York, 1977.
- [5] J. McCool, A presentation for the automorphism group of a free group of finite rank, J. London Math. Soc. 8 (1974) 259–266.
- [6] A.G. Myasnikov, V. Shpilrain, Automorphic orbits in free groups, J. Algebra 269 (2003) 18-27.
- [7] J.H.C. Whitehead, Equivalent sets of elements in a free group, Ann. of Math. 37 (1936) 782-800.