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Abstract

Let u be a cyclic word in a free group Fn of finite rank n that has the minimum length over all cyclic
words in its automorphic orbit, and let N(u) be the cardinality of the set {v: |v| = |u| and v = φ(u) for some
φ ∈ AutFn}. In this paper, we prove that N(u) is bounded by a polynomial function with respect to |u| under
the hypothesis that if two letters x, y with x �= y±1 occur in u, then the total number of occurrences of x±1

in u is not equal to the total number of occurrences of y±1 in u. A complete proof without the hypothesis
would yield the polynomial time complexity of Whitehead’s algorithm for Fn.
© 2006 Elsevier Inc. All rights reserved.

1. Introduction

Let Fn be the free group of finite rank n on the set {x1, x2, . . . , xn}. We denote by Σ the set
of letters of Fn, that is, Σ = {x1, x2, . . . , xn}±1. As in [1,5], we define a cyclic word to be a
cyclically ordered set of letters with no pair of inverses adjacent. The length |w| of a cyclic word
w is the number of elements in the cyclically ordered set. For a cyclic word w in Fn, we denote
the automorphic orbit {ψ(w): ψ ∈ AutFn} by OrbAutFn(w).

The purpose of this paper is to provide a partial solution of the following problem raised by
Myasnikov and Shpilrain [6]:
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Problem. Let u be a cyclic word in Fn which has the minimum length over all cyclic words in
its automorphic orbit OrbAutFn(u), and let N(u) be the cardinality of the set {v ∈ OrbAutFn(u):
|v| = |u|}. Then is N(u) bounded by a polynomial function with respect to |u|?

This problem was settled in the affirmative for F2 by Myasnikov and Shpilrain [6], and Khan
[3] improved their result by showing that N(u) has the sharp bound of 8|u| − 40 for F2. The
problem was motivated by the complexity of Whitehead’s algorithm which decides whether, for
given two elements in Fn, there is an automorphism of Fn that takes one element to the other.
Indeed, a complete positive solution to the problem would yield that Whitehead’s algorithm
terminates in polynomial time with respect to the maximum length of the two words in question
(see [6, Proposition 3.1]). Recently, Kapovich, Schupp and Shpilrain [2] proved that Whitehead’s
algorithm has strongly linear time generic-case complexity. In the present paper, we prove for Fn

with n � 2 that N(u) is bounded by a polynomial function with respect to |u| under the following

Hypothesis 1.1.

(i) A cyclic word u has the minimum length over all cyclic words in its automorphic orbit
OrbAutFn(u).

(ii) If two letters xi (or x−1
i ) and xj (or x−1

j ) with i < j occur in u, then the total number of x±1
i

occurring in u is strictly less than the total number of x±1
j occurring in u.

Before we state our theorems, we would like to establish several notation and definitions. As
in [1,5], for A,B ⊆ Σ , we write A+B for A∪B if A∩B = ∅, and A−B for A∩Bc if B ⊆ A,
where Bc is the complement of B in Σ . We define a Whitehead automorphism σ of Fn as an
automorphism of one of the following two types (cf. [4,7]):

(W1) σ permutes elements in Σ .
(W2) σ is defined by a set A ⊂ Σ and a multiplier a ∈ Σ with both a, a−1 /∈ A in such a way

that if x ∈ Σ then (a) σ(x) = xa provided x ∈ A and x−1 /∈ A; (b) σ(x) = a−1xa provided
both x, x−1 ∈ A; (c) σ(x) = x provided both x, x−1 /∈ A.

If σ is of the second type, then we write σ = (A,a). By (Ā, a−1), we mean the Whitehead
automorphism (Σ − A − a±1, a−1). It is then easy to see that (A,a)(w) = (Ā, a−1)(w) for any
cyclic word w in Fn.

For a Whitehead automorphism σ of the second type, we define the degree of σ as follows:

Definition 1.2. Let σ = (A,a) be a Whitehead automorphism of Fn of the second type. Put
A′ = {i: either xi ∈ A or x−1

i ∈ A, but not both}. Then the degree of σ is defined to be maxA′.
If A′ = ∅, then the degree of σ is defined to be zero.

Let w be a fixed cyclic word in Fn that satisfies Hypothesis 1.1(i). For two letters x, y ∈ Σ ,
we say that x depends on y with respect to w if, for every Whitehead automorphism (A,a) of
Fn such that

a /∈ {
x±1, y±1}, {

y±1} ∩ A �= ∅, and ∃v ∈ OrbAutFn(w):
∣∣(A,a)(v)

∣∣ = |v| = |w|,

we have {x±1} ⊆ A. Then we have the following
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Claim. If x depends on y with respect to w, then y depends on x with respect to w.

Proof. Suppose on the contrary that y does not depend on x. Then there exists a Whitehead
automorphism (A,a) of Fn such that a /∈ {x±1, y±1}, x±1 ∩ A �= ∅, |(A,a)(v)| = |v| = |w| for
some v ∈ OrbAutFn(w), but such that y±1 � A. Then |(Ā, a−1)(v)| = |v| = |w| and y±1 ∩ Ā �= ∅.
Since x depends on y, x±1 ⊆ Ā. This gives x±1 ∩ A = ∅, which is a contradiction. �

We then construct the dependence graph Γw of w as follows: Take the vertex set as Σ , and
connect two distinct vertices x, y ∈ Σ by a non-oriented edge if either y = x−1 or y depends on
x with respect to w. Let Ci be the connected component of Γw containing xi . Here, we make the
following remark.

Remark.

(i) Γw = Γv for any v ∈ OrbAutFn(w) with |v| = |w|.
(ii) If xi depends on xj , then Ci = Cj .

(iii) If x±1
j ∈ Ci with i �= j , then every Whitehead automorphism (A,a) such that either xi ∈ A

or x−1
i ∈ A but not both and such that |(A,a)(v)| = |v| = |w| for some v ∈ OrbAutFn(w)

must have the multiplier a only in Ci , for otherwise x±1
j ⊆ A but then x±1

j � Ā, which is a

contradiction because x±1
i ∩ Ā �= ∅.

Clearly there exists a unique factorization

w = v1v2 · · ·vk (without cancellation),

where each vi is a non-empty (non-cyclic) word consisting of letters in Cji
with Cji

�= Cji+1

(i mod k). The subword vi is called a Cji
-syllable of w. By the Ci -syllable length of w denoted

by |w|Ci
, we mean the total number of Ci -syllables of w.

For Theorem 1.4, we suppose further that a cyclic word u satisfies the following

Hypothesis 1.3.

(i) The Cn-syllable length |u|Cn of u is minimum over all cyclic words in the set {v ∈
OrbAutFn(u): |v| = |u|}.

(ii) If the index j (1 � j � n − 1) is such that Cj �= Ck for all k > j , then the Cj -
syllable length |u|Cj

of u is minimum over all cyclic words in the set {v ∈ OrbAutFn(u):
|v| = |u| and |v|Ck

= |u|Ck
for all k > j}.

For an easy example, consider the cyclic words u = x2
1x3

2x4
3x5

4 and v = x1x
3
2x1x

4
3x5

4 in F4.
Clearly v is an automorphic image of u with |v| = |u|, so Γu = Γv . The dependence graph Γu =
Γv has four distinct connected components, each Ci of which contains only x±1

i . Then u satisfies
Hypotheses 1.1 and 1.3, whereas v satisfies Hypotheses 1.1 and 1.3(i) but not Hypothesis 1.3(ii),
because the C1-syllable length of v can be decreased without changing |v| and |v|Ci

for all i > 1.
For another example, let u = x2

1x3
2x2

3x4x
−1
3 x4x3x

3
4 and v = x2

1x2
3x3

2x4x
−1
3 x4x3x

3
4 be cyclic

words in F4. Then v is an automorphic image of u with |v| = |u|, so Γu = Γv . In the dependence
graph Γu = Γv , there are three distinct connected components C1, C2, C3 = C4. While u satisfies
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Hypotheses 1.1 and 1.3, v does not satisfy Hypothesis 1.3(i), because the C4-syllable length of
v can be decreased without changing |v|.

Now we are ready to state our theorems, whose proofs will appear in Sections 3–4.

Theorem 1.4. Let u be a cyclic word in Fn that satisfies Hypotheses 1.1 and 1.3. Let σi , i =
1, . . . , �, be Whitehead automorphisms of the second type such that |σi · · ·σ1(u)| = |u| for all i.
Then there exist Whitehead automorphisms τ1, τ2, . . . , τs of the second type such that

σ� · · ·σ2σ1(u) = τs · · · τ2τ1(u),

where max1�i�� degσi � deg τs � deg τs−1 � · · · � deg τ1, and |τj · · · τ1(u)| = |u| for all j =
1, . . . , s.

Theorem 1.5. Let u be a cyclic word in Fn that satisfies Hypothesis 1.1, and let N(u) be the car-
dinality of the set {v ∈ OrbAutFn(u): |v| = |u|}. Then N(u) is bounded by a polynomial function
of degree n(5n − 7)/2 with respect to |u|.

The main idea of the present paper is to prove that the action of an automorphism on an
element which satisfies Hypotheses 1.1 and 1.3 can be factored into a composition of automor-
phisms of ascending degrees, which will be achieved through Lemmas 3.1, 3.2 and Theorem 1.4.
The proof of Theorem 1.4 will proceed by double induction on � and r , where � is the length of
the chain σ� · · ·σ2σ1 and r = max1�i�� degσi , with Lemma 3.1 (the case for � = 2 and any r)
and Lemma 3.2 (the case for r = 1 and any �) as the base steps of the induction.

Let Nk(u) be the cardinality of the set {φ(u): φ can be represented as a composition τs · · · τ1
(s ∈ N) of Whitehead automorphisms τi of Fn of degree k such that |τi · · · τ1(u)| = |u| for all
i = 1, . . . , s}. Then bounding N(u) reduces to bounding each Nk(u), as will be shown in the
proof of Theorem 1.5 using the result of Theorem 1.4. Lemma 4.1 will be devoted to bounding
N0(u), and Lemma 4.2 will show that Nk(u) for k � 1 is at most N0(Vu), where Vu is a certain
sequence of cyclic words constructed from u, thus bounding Nk(u) for k � 1. Furthermore in
Theorem 1.5 we will specifically give a bound for the degree of a polynomial bounding N(u).

2. Preliminaries

We begin this section by setting some notation. Let w be a fixed cyclic word in Fn. As in [1],
for x, y ∈ Σ , x.y denotes the total number of occurrences of the subwords xy−1 and yx−1 in w.
For A,B ⊆ Σ , A.B means the sum of a.b for all a ∈ A, b ∈ B . Then obviously a.Σ is equal
to the total number of a±1 occurring in w. For two automorphisms φ and ψ of Fn, by writing
φ ≡ ψ we mean the equality of φ and ψ over all cyclic words in Fn, that is, φ(v) = ψ(v) for
every cyclic word v in Fn.

We now establish two technical lemmas which will play a fundamental role in the proofs in
Sections 3 and 4.

Lemma 2.1. Let u be a cyclic word in Fn that satisfies Hypothesis 1.1(i), and let σ = (A,a−1)

and τ = (B,b) be Whitehead automorphisms of Fn such that |σ(u)| = |τ(u)| = |u|. Put A =
C + E and B = D + E, where E = A ∩ B . Then

(i) if a−1 = b, then |(E,a−1)(u)| = |u|;
(ii) if a−1 �= b, a±1 /∈ B and b /∈ A, then |(C,a−1)(u)| = |(D,b)(u)| = |u|.
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Proof. It follows from [1, p. 255] that

{ |σ(u)| − |u| = (A + a−1).(A + a−1)′ − a.Σ;
|τ(u)| − |u| = (B + b).(B + b)′ − b.Σ,

where (A + a−1)′ = Σ − (A + a−1) and (B + b)′ = Σ − (B + b). Since |σ(u)| = |τ(u)| = |u|,
we have (A + a−1).(A + a−1)′ − a.Σ = (B + b).(B + b)′ − b.Σ = 0, so that

(
A + a−1).(A + a−1)′ + (B + b).(B + b)′ − a.Σ − b.Σ = 0.

Following the notation in [1, p. 257], we write A1 = A + a−1, A2 = (A + a−1)′, B1 = B + b,
B2 = (B + b)′ and Pij = Ai ∩ Bj . Then as in [1, p. 257], we have

{
P11.P

′
11 + P22.P

′
22 − a.Σ − b.Σ = 0;

P12.P
′
12 + P21.P

′
21 − a.Σ − b.Σ = 0,

(2.1)

where P ′
ij = Σ − Pij .

For (i), assume that a−1 = b. Then we have a−1 ∈ P11 and a ∈ P22. It follows from the first
equality of (2.1) that

P11.P
′
11 + P22.P

′
22 − a.Σ − a.Σ = (

P11.P
′
11 − a.Σ

) + (
P22.P

′
22 − a.Σ

)
= ∣∣(P11 − a−1, a−1)(u)

∣∣ − |u| + ∣∣(P22 − a, a)(u)
∣∣ − |u| = 0.

Since both |(P11 − a−1, a−1)(u)| − |u| � 0 and |(P22 − a, a)(u)| − |u| � 0 by Hypothesis 1.1(i),
we must have |(P11 − a−1, a−1)(u)| = |u|, that is, |(E,a−1)(u)| = |u|, as required.

For (ii), assume that a−1 �= b, a±1 /∈ B and b /∈ A. Then we have a−1 ∈ P12, a /∈ P12, b ∈ P21
and b−1 /∈ P21. Hence the second equality of (2.1) gives us that

P12.P
′
12 + P21.P

′
21 − a.Σ − b.Σ = (

P12.P
′
12 − a.Σ

) + (
P21.P

′
21 − b.Σ

)
= ∣∣(P12 − a−1, a−1)(u)

∣∣ − |u| + ∣∣(P21 − b, b)(u)
∣∣ − |u| = 0.

As above, it follows from Hypothesis 1.1(i) that |(P12 − a−1, a−1)(u)| = |u| and
|(P21 − b, b)(u)| = |u|. Since P12 − a−1 = C and P21 − b = D, we have |(C,a−1)(u)| =
|(D,b)(u)| = |u|, as desired. �
Lemma 2.2. Let u be a cyclic word in Fn that satisfies Hypothesis 1.1, and let σ = (A,a) be a
Whitehead automorphism of Fn such that |σ(u)| = |u|. Then a.Σ > b.Σ for every b ∈ A with
b−1 /∈ A.

Proof. In view of the assumption |σ(u)| = |u| and [1, p. 255], we have 0 = |σ(u)| − |u| =
(A + a).(A + a)′ − a.Σ , where (A + a)′ = Σ − (A + a), so that (A + a).(A + a)′ = a.Σ . Now
let b ∈ A with b−1 /∈ A. Then for the Whitehead automorphism τ = (A + a − b, b), we have
0 � |τ(u)| − |u| = (A + a).(A + a)′ − b.Σ . Hence (A + a).(A + a)′ � b.Σ ; thus a.Σ � b.Σ .
Here, the equality a.Σ = b.Σ cannot occur by Hypothesis 1.1(ii); therefore a.Σ > b.Σ . �
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Remark. By Lemma 2.2, if u is a cyclic word in Fn that satisfies Hypothesis 1.1 and σ = (A,a)

is a Whitehead automorphism of Fn such that |σ(u)| = |u|, then degσ is at most n − 1.

3. Proof of Theorem 1.4

The aim of this section is to prove Theorem 1.4. The proof of Theorem 1.4 will pro-
ceed by double induction on � and r , where � is the length of the chain σ� · · ·σ2σ1 and r =
max1�i�� degσi . Lemma 3.1 deals with the case for � = 2 and any r as one of the base steps of
the induction. As the other base step, Lemma 3.2 deals with the case for r = 1 and any �.

Lemma 3.1. Let u be a cyclic word in Fn that satisfies Hypothesis 1.1, and let σ1 = (A,a) and
σ2 = (B,b) be Whitehead automorphisms of Fn such that |σ2σ1(u)| = |σ1(u)| = |u|. Suppose
that degσ1 > degσ2. Then there exist Whitehead automorphisms τ1, . . . , τs of Fn of the second
type such that

σ2σ1 ≡ τs · · · τ2τ1,

where degσ1 = deg τs � · · · � deg τ1 and |τi · · · τ1(u)| = |u| for all i = 1, . . . , s.

Proof. It suffices to prove that there exist Whitehead automorphisms γ1, . . . , γt of Fn such that

σ2σ1 ≡ γt · · ·γ2γ1,

where the index t is at most 3, |γi · · ·γ1(u)| = |u| for all i = 1, . . . , t , and either degσ1 = degγt >

degγj for all j = 1, . . . , t − 1 or otherwise degσ1 = degγi for all i = 1, . . . , t . Put u′ = σ1(u);
then |σ−1

1 (u′)| = |σ2(u
′)| = |u|, that is,

∣∣(A,a−1)(u′)
∣∣ = ∣∣(B,b)(u′)

∣∣ = |u|. (3.1)

Also put c = xdegσ1 . Upon replacing (A,a), (B,b) by (Ā, a−1), (B̄, b−1), respectively, if neces-
sary, where Ā = Σ − A − a±1 and B̄ = Σ − B − b±1, we may assume that c ∈ A and c±1 /∈ B

(clearly c−1 /∈ A). By Lemma 2.2, we have a.Σ > c.Σ ; hence either a±1 /∈ B or a±1 ∈ B , for
otherwise degσ2 > degσ1, contrary to the hypothesis degσ1 > degσ2.

We first treat four cases for a±1 /∈ B and then four cases for a±1 ∈ B according to whether b

or b−1 belongs to A. For convenience, we write A = C + E and B = D + E, where E = A ∩ B .

Case 1. a±1 /∈ B and b±1 /∈ A.

We consider two cases corresponding to whether or not E is the empty set.

Case 1.1. E = ∅.

Case 1.1.1. a = b.

It follows from [5, relation R2] that σ2σ1 ≡ (A + B,a).

Case 1.1.2. a �= b.

By [5, relation R3], we have σ2σ1 ≡ (A,a)(B,b).
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Case 1.2. E �= ∅.

Case 1.2.1. a = b.

In view of (3.1) and Lemma 2.1(ii), we have |(C,a−1)(u′)| = |u|. Since (C,a−1)(u′) =
(E,a)(u), we have |(E,a)(u)| = |u|; hence

σ2σ1 ≡ (B,a)
[
(C,a)(E,a)

] ≡ [
(B,a)(C,a)

]
(E,a)

≡ (C + B,a)(E,a) by Case 1.1.1,

where degσ1 = deg(C + B,a) > deg(E,a).

Case 1.2.2. a−1 = b.

Lemma 2.1(i) together with (3.1) gives us that |(E,a−1)(u′)| = |u|, so that |(C,a)(u)| = |u|;
thus

σ2σ1 ≡ (
B,a−1)[(E,a)(C,a)

] ≡ [(
B,a−1)(E,a)

]
(C,a) ≡ (

D,a−1)(C,a)

≡ (C,a)
(
D,a−1) by Case 1.1.2,

where degσ1 = deg(C,a) > deg(D,a−1).

Case 1.2.3. a±1 �= b.

As in Case 1.2.1, we have |(E,a)(u)| = |u|; hence

σ2σ1 ≡ (B,b)
[
(C,a)(E,a)

] ≡ [
(B,b)(C,a)

]
(E,a)

≡ [
(C,a)(B,b)

]
(E,a) by Case 1.1.2,

where degσ1 = deg(C,a) > deg(B,b), deg(E,a).

Case 2. a±1 /∈ B , b /∈ A and b−1 ∈ A.

We consider this case dividing into two cases according to whether or not E is the empty set.

Case 2.1. E = ∅.

It follows from [5, relation R4] that σ2σ1 ≡ (A+B,a)(B,b), where degσ1 = deg(A+B,a) >

deg(B,b).

Case 2.2. E �= ∅.

As in Case 1.2.1, we have |(E,a)(u)| = |u|; then

σ2σ1 ≡ (B,b)
[
(C,a)(E,a)

] ≡ [
(B,b)(C,a)

]
(E,a)

≡ [
(C + B,a)(B,b)

]
(E,a) by Case 2.1,

where degσ1 = deg(C + B,a) > deg(B,b), deg(E,a).
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Case 3. a±1 /∈ B , b ∈ A and b−1 /∈ A.

Since σ2σ1 ≡ (B,b)(Ā, a−1), we can apply Case 2.2 to get

σ2σ1 ≡ (B,b)
(
Ā, a−1) ≡ (

(Ā \ B) + B,a−1)(B,b)
(
Ā ∩ B,a−1).

Here, since (Ā \ B) + B = Σ − C − a±1 and Ā ∩ B = D, we have

σ2σ1 ≡ (
Σ − C − a±1, a−1)(B,b)

(
D,a−1) ≡ (C,a)(B,b)

(
D,a−1),

where degσ1 = deg(C,a) > deg(B,b), deg(D,a−1).

Case 4. a±1 /∈ B and b±1 ∈ A.

By Case 1.2.3 applied to σ2σ1 ≡ (B,b)(Ā, a−1), we have

σ2σ1 ≡ (B,b)
(
Ā, a−1) ≡ (

Ā \ B,a−1)(B,b)
(
Ā ∩ B,a−1).

From the observation that Ā \ B = Σ − (C + B) − a±1 and Ā ∩ B = D, it follows that

σ2σ1 ≡ (
Σ − (C + B) − a±1, a−1)(B,b)

(
D,a−1) ≡ (C + B,a)(B,b)

(
D,a−1),

where degσ1 = deg(C + B,a) > deg(B,b), deg(D,a−1).

Case 5. a±1 ∈ B and b±1 /∈ A.

Since σ2σ1 ≡ (B̄, b−1)(A,a), we have |(A,a−1)(u′)| = |(B̄, b−1)(u′)| = |u|. This implies by
Lemma 2.1(ii) that |(B̄ \ A,b−1)(u′)| = |u|, so that

σ2σ1 ≡ (
B̄, b−1)(A,a) ≡ [(

A ∩ B̄, b−1)(B̄ \ A,b−1)](A,a).

Here, by Case 1.1.2, we have (B̄ \ A,b−1)(A,a) ≡ (A,a)(B̄ \ A,b−1); thus

σ2σ1 ≡ (
A ∩ B̄, b−1)(A,a)

(
B̄ \ A,b−1).

Since A ∩ B̄ = C and B̄ \ A = Σ − (C + B) − b±1, we finally have

σ2σ1 ≡ (
C,b−1)(A,a)(C + B,b),

where degσ1 = deg(C,b−1) = deg(A,a) = deg(C + B,b).

Case 6. a±1 ∈ B , b /∈ A and b−1 ∈ A.

Case 6.1. c = b−1.

By Case 3 applied to σ2σ1 ≡ (B̄, b−1)(A,a), we get

σ2σ1 ≡ (
B̄, b−1)(A,a) ≡ (A \ B̄, a)

(
B̄, b−1)(B̄ \ A,a−1).
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Here, we see that A \ B̄ = E + b−1 and B̄ \ A = Σ − (C + B + b), so that

σ2σ1 ≡ (
E + b−1, a

)
(B,b)

(
C + B + b − a±1, a

)
,

where degσ1 = deg(E + b−1, a) > deg(B,b), deg(C + B + b − a±1, a).

Case 6.2. c �= b−1.

In this case, c.Σ > b.Σ , since degσ1 is determined by c. Apply Lemma 2.1(ii) to the equali-
ties |(Ā, a−1)−1(u′)| = |(B̄, b−1)(u′)| = |u|, that is, |(Ā, a)(u′)| = |(B̄, b−1)(u′)| = |u|, to obtain
|(B̄ \Ā, b−1)(u′)| = |u|. But since c ∈ B̄ \Ā and c−1 /∈ B̄ \Ā, we have b.Σ > c.Σ by Lemma 2.2,
which contradicts c.Σ > b.Σ . Hence this case cannot occur.

Case 7. a±1 ∈ B , b ∈ A and b−1 /∈ A.

Case 7.1. c = b.

Applying Case 2.2 to σ2σ1 ≡ (B̄, b−1)(A,a), we get

σ2σ1 ≡ (
B̄, b−1)(A,a) ≡ (

(A \ B̄) + B̄, a
)(

B̄, b−1)(A ∩ B̄, a).

From the observation that (A \ B̄) + B̄ = Σ − (D + b−1) and A ∩ B̄ = C − b, it follows that

σ2σ1 ≡ (
D + b−1 − a±1, a−1)(B,b)(C − b, a),

where degσ1 = deg(D + b−1 − a±1, a−1) > deg(B,b), deg(C − b, a).

Case 7.2. c �= b.

As in Case 6.2, c.Σ > b.Σ . By Lemma 2.1(ii) applied to the equalities |(A,a−1)(u′)| =
|(B̄, b−1)(u′)| = |u|, we get |(B̄ \ A,b−1)(u′)| = |u|. But since c−1 ∈ B̄ \ A and c /∈ B̄ \ A, we
must have b.Σ > c.Σ by Lemma 2.2, contrary to the fact c.Σ > b.Σ . Hence this case cannot
happen.

Case 8. a±1 ∈ B and b±1 ∈ A.

Apply Lemma 2.1(ii) to the equalities |(Ā, a−1)−1(u′)| = |(B̄, b−1)(u′)| = |u|, that is,
|(Ā, a)(u′)| = |(B̄, b−1)(u′)| = |u|, to obtain |(B̄ \ Ā, b−1)(u′)| = |u|; then

σ2σ1 ≡ (
B̄, b−1)(Ā, a−1) ≡ [(

Ā ∩ B̄, b−1)(B̄ \ Ā, b−1)](Ā, a−1).
Since (B̄ \ Ā, b−1)(Ā, a−1) = (Ā, a−1)(B̄ \ Ā, b−1) by Case 1.1.2, we have

σ2σ1 ≡ (
Ā ∩ B̄, b−1)(Ā, a−1)(B̄ \ Ā, b−1).

It follows from Ā ∩ B̄ = Σ − (C + B) and B̄ \ Ā = C − b±1 that

σ2σ1 ≡ (
C + B − b±1, b

)
(A,a)

(
C − b±1, b−1),

where degσ1 = deg(C + B − b±1, b) = deg(A,a) = deg(C − b±1, b−1).
The proof of the lemma is now completed. �
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Remark. The proof of Lemma 3.1 can be applied without further change if we replace consider-
ation of a single cyclic word u, the length |u| of u, and the total number of occurrences of x±1

i in
u with consideration of a finite sequence (u1, . . . , um) of cyclic words, the sum

∑m
i=1 |ui | of the

lengths of u1, . . . , um, and the total number of occurrences of x±1
i in (u1, . . . , um), respectively.

Lemma 3.2. Let u be a cyclic word in Fn that satisfies Hypotheses 1.1 and 1.3. Let σi , i = 1,

. . . , �, be Whitehead automorphisms of the second type such that |σi · · ·σ1(u)| = |u| for all i.
Suppose that max1�i�� degσi = 1. Then there exist Whitehead automorphisms τ1, τ2, . . . , τs of
the second type such that

σ� · · ·σ2σ1(u) = τs · · · τ2τ1(u),

where 1 � deg τs � deg τs−1 � · · · � deg τ1, and |τj · · · τ1(u)| = |u| for all j = 1, . . . , s.

Proof. We proceed by induction on �. The case for � = 2 is already proved in Lemma 3.1. Now
let σi , i = 1, . . . , � + 1, be Whitehead automorphisms of Fn such that |σi · · ·σ1(u)| = |u| for all
i and such that max1�i��+1 degσi = 1. Then by the induction hypothesis, there exist Whitehead
automorphisms τ1, τ2, . . . , τs of Fn such that

σ�+1σ� · · ·σ2σ1(u) = σ�+1τs · · · τ2τ1(u), (3.2)

where 1 � deg τs � deg τs−1 � · · · � deg τ1, and |τj · · · τ1(u)| = |u| for all j = 1, . . . , s.
Put τj = (Aj , aj ) for j = 1, . . . , s, and put σ�+1 = (B,b). If degσ�+1 = 1 or deg τj = 0 for

all j , then there is nothing to prove. So let degσ�+1 = 0, and let t (1 � t � s) be such that
deg τs = deg τs−1 = · · · = deg τt = 1 and deg τt−1 = · · · = deg τ2 = deg τ1 = 0. Upon replacing
τi and σ�+1 by (Āi , a

−1
i ) and (B̄, b−1), respectively, if necessary, we may assume that x1 ∈ Ai

for all t � i � s and that x±1
1 /∈ B . We may also assume without loss of generality that (B,b)

cannot be decomposed into (B2, b)(B1, b), where B = B1 + B2, deg(B1, b) = deg(B2, b) = 0
and |(B1, b)τs · · · τ1(u)| = |u|.

Claim 1. We may further assume that τs = (As, as) cannot be decomposed into (As2, as)(As1, as),
where As = As1 + As2, deg(As1, as) = 0, deg(As2, as) = 1, |(As1, as)τs−1 · · · τ1(u)| = |u|, and
a±1
i /∈ As1 for all i with t � i < s.

Proof. Suppose that τs can be decomposed in the same way as in the statement of the claim.
Then continuously applying Case 1 or Case 4 of Lemma 3.1 to (As1, as)τs−1 · · · τt at most 1 +
2 + 22 +· · ·+ 2s−t−1 times (here, note that if s = t , we do not need to apply Lemma 3.1), we get

(As1, aj )τs−1 · · · τt = τ ′
s−1 · · · τ ′

t εp · · · ε1,

where τ ′
s−1, . . . , τ

′
t are Whitehead automorphisms of degree 1 and εp, . . . , ε1 are Whitehead

automorphisms of degree 0, so that

(B,b)τs · · · τt · · · τ1(u) = (B,b)(As2, as)τ
′
s−1 · · · τ ′

t εp · · · ε1τt−1 · · · τ1(u), (3.3)

where the length of u is constant throughout both chains. We then replace the chain on the right-
hand side of (3.2) with that of (3.3). �
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We consider three cases corresponding to whether or not b = x±1
1 .

Case 1. b �= x±1
1 .

For all i with t � i � s, either b±1 ∈ Ai or b±1 /∈ Ai , since deg τi = 1. If a±1
s ∈ B , then the re-

quired result follows immediately from Case 5 or Case 8 of Lemma 3.1 applied to (B,b)τs .
So let a±1

s /∈ B . If b±1 /∈ As and As ∩ B = ∅, then by Case 1.1.2 of Lemma 3.1 we have
(B,b)τs ≡ τs(B,b). Also if b±1 ∈ As and B ⊂ As , then Case 4 of Lemma 3.1 yields that
(B,b)τs ≡ τs(B,b). Hence, in either case, we have

(B,b)τs · · · τt · · · τ1(u) = τs(B,b)τs−1 · · · τt · · · τ1(u);

then the desired result follows by induction on s − t . Now suppose that either both b±1 /∈ As and
As ∩ B �= ∅ or both b±1 ∈ As and B � As . We argue two cases separately.

Case 1.1. a±1
s /∈ B , b±1 /∈ As and As ∩ B �= ∅.

By Case 1.2.3 of Lemma 3.1, we have (B,b)τs ≡ (As \ B,as)(B,b)(As ∩ B,as); thus

(B,b)τs · · · τt · · · τ1(u) = (As \ B,as)(B,b)(As ∩ B,as)τs−1 · · · τt · · · τ1(u).

By Claim 1, there is j with t � j < s such that a±1
j ∈ As ∩ B . Let r be the largest such index.

First suppose that there exists a chain ηm · · ·η1 of Whitehead automorphisms ηi = (Gi, gi) of
degree 1 with g±1

i /∈ B , Gi ⊂ As and Gi ∩ B = ∅ such that |ηi · · ·η1τs · · · τ1(u)| = |u| for all i =
1, . . . ,m and such that |(H,a−1

r )ηm · · ·η1τs · · · τ1(u)| = |u| for some Whitehead automorphism
(H,a−1

r ) of degree 1 with H ⊂ As . Then

(B,b)τs · · · τ1(u) = (B,b)η−1
1 · · ·η−1

m ηm · · ·η1τs · · · τ1(u)

= η−1
1 · · ·η−1

m (B,b)ηm · · ·η1τs · · · τ1(u) by Case 1.1.2 of Lemma 3.1.

Put v = ηm · · ·η1τs · · · τ1(u). By Lemma 2.1(ii) applied to |(B̄, b−1)(v)| = |(H,a−1
r )(v)| =

|u|, we have |(B̄ \ H,b−1)(v)| = |u|. It follows from B̄ \ H = Σ − (B ∪ H) − b±1 that
|(B ∪ H,b)(v)| = |u|, so that

(B,b)τs · · · τ1(u) = η−1
1 · · ·η−1

m

(
H \ B,b−1)(B ∪ H,b)ηm · · ·η1τs · · · τ1(u),

where degη−1
i = deg(H \ B,b−1) = deg(B ∪ H,b) = degηi = 1, as required.

Next suppose that there does not exist such a chain ηm · · ·η1 as above. Considering all the
assumptions and the situations above, we can observe that this can possibly happen only in the
case where all of as and a−1

s that are lost in passing from τs−1 · · · τ1(u) to τs · · · τ1(u) were newly
introduced in passing from τq−1 · · · τ1(u) to τq · · · τ1(u) for some r < q < s, and where for such
τq = (Aq, a−1

s ) (here note that aq = a−1
s ),

(B,b)τs · · · τt · · · τ1(u)

= (B,b)(As \ B,as)τs−1 · · · τq+1
(
Aq \ (As ∩ B),a−1

s

)
τq−1 · · · τt · · · τ1(u),



46 D. Lee / Journal of Algebra 301 (2006) 35–58
where the length of u is constant throughout the chain on the right-hand side. It then follows
from Case 1.1.2 of Lemma 3.1 applied to (B,b)(As \ B,as) that

(B,b)τs · · · τt · · · τ1(u)

= (As \ B,as)(B,b)τs−1 · · · τq+1
(
Aq \ (As ∩ B),a−1

s

)
τq−1 · · · τt · · · τ1(u).

Then induction on s − t yields the desired result, which completes the proof of Case 1.1.

Case 1.2. a±1
s /∈ B , b±1 ∈ As and B � As .

In this case, replace τi by (Āi , a
−1
i ) for all t � i � s and then follow the arguments of Case 1.1.

Case 2. b = x1.

We divide this case into two cases according to whether a±1
s ∈ B or not.

Case 2.1. a±1
s ∈ B .

In this case, we have by Case 7.1 of Lemma 3.1 applied to (B,x1)τs that

(B,x1)τs · · · τ1(u) = (
B \ As + x−1

1 − a±1
s , a−1

s

)
(B,x1)(As \ B − x1, as)τs−1 · · · τ1(u). (3.4)

Here if As \ B − x1 = ∅, then

(B,x1)τs · · · τt · · · τ1(u) = (
B \ As + x−1

1 − a±1
s , a−1

s

)
(B,x1)τs−1 · · · τt · · · τ1(u);

hence the desired result follows by induction on s − t .
So let As \ B − x1 �= ∅. By Claim 1, there is j with t � j < s such that a±1

j ∈ As \ B − x1.
Let r be the largest such index. The following Claims 2–4 show that we may assume that ar , as

and x1 belong to distinct connected components of the dependence graph Γu of u.

Claim 2. ar and x1 belong to distinct connected components of Γu.

Proof. Suppose on the contrary that ar and x1 belong to the same connected component C1. Put
W = {α: α is a Whitehead automorphism of degree 0 such that |α(v)| = |v| = |u| for some v ∈
OrbAutFn(u)}. Then by (3.4), (As \ B − x1, as) ∈ W and (B,x1) ∈ W . Since x±1

1 /∈ As \ B − x1

and a±1
r ∈ As \ B − x1, we see from the construction of Γu that as also belongs to C1 and that

every path from ar or a−1
r to x1 or x−1

1 passes through as or a−1
s . Also since a±1

r /∈ B and
a±1
s ∈ B , every path from as or a−1

s to ar or a−1
r passes through x1 or x−1

1 , which contradicts the
above fact that every path from ar or a−1

r to x1 or x−1
1 passes through as or a−1

s . �
Claim 3. We may assume that as and x1 belong to distinct connected components of Γu.

Proof. Suppose that as and x1 belong to the same connected component C1. First consider the
case where there exists a chain ζk · · · ζ1 of Whitehead automorphisms ζi = (Ei, ei) of degree 1
with e±1 ∈ B and Ei ⊂ (B +x1) such that |ζi · · · ζ1τs · · · τ1(u)| = |u| for all i = 1, . . . , k and such
i
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that |(H,a−1
r )ζk · · · ζ1τs · · · τ1(u)| = |u| for some Whitehead automorphism (H,a−1

r ) of degree 1
with H ⊂ As . Then

(B,x1)τs · · · τ1(u) = (B,x1)ζ
−1
1 · · · ζ−1

k ζk · · · ζ1τs · · · τ1(u)

= ρk · · ·ρ1(B,x1)ζk · · · ζ1τs · · · τ1(u) by Case 7.1 of Lemma 3.1,

where ρi = (B \ Ek+1−i + x−1
1 − e±1

k+1−i , e
−1
k+1−i ) for i = 1, . . . , k. Put v = ζk · · · ζ1τs · · · τ1(u).

Then |(B,x1)(v)| = |(H,a−1
r )(v)| = |u|, that is, |(B,x1)(v)| = |(H̄ , ar )(v)| = |u|. By

Lemma 2.1(ii) applied to these equalities, we have |(H̄ \ B,ar)(v)| = |u|, so that

∣∣(H + (H̄ \ B),ar

)(
H,a−1

r

)
ζk · · · ζ1τs · · · τ1(u)

∣∣ = |u|.

It then follows from H + (H̄ \ B) = Σ − (B \ H) − a±1
r that

∣∣(B \ H,a−1
r

)(
H,a−1

r

)
ζk · · · ζ1τs · · · τ1(u)

∣∣ = |u|.

This implies that (B \ H,a−1
r ) ∈ W , where W is defined in the proof of Claim 2. Since a±1

s ∈
B \ H and x±1

1 /∈ B \ H , ar must also belong to C1 by the construction of Γu, which contradicts
Claim 2.

Next consider the case where there does not exist such a chain ζk · · · ζ1 as above. Considering
all the assumptions and the situations above, we can observe that this can possibly happen only
in the case where all of as and a−1

s that are lost in passing from τs−1 · · · τ1(u) to τs · · · τ1(u) were
newly introduced in passing from τq−1 · · · τ1(u) to τq · · · τ1(u) for some r < q < s, and where
for such τq = (Aq, a−1

s ) (here note that aq = a−1
s ),

(B,x1)τs · · · τt · · · τ1(u)

= (B,x1)(As ∩ B,as)τs−1 · · · τq+1
(
Aq \ (As \ B),a−1

s

)
τq−1 · · · τt · · · τ1(u),

where the length of u is constant throughout the chain on the right-hand side. It then follows
from Case 7.1 of Lemma 3.1 applied to (B,x1)(As ∩ B,as) that

(B,x1)τs · · · τt · · · τ1(u)

= (
B \ As + x−1

1 − a±1
s , a−1

s

)
(B,x1)τs−1 · · · τq+1

(
Aq \ (As \ B),a−1

s

)
τq−1 · · · τt · · · τ1(u).

So in this case, apply induction on s − t to get the desired result of the lemma, which completes
the proof of Claim 3. �
Claim 4. ar and as belong to distinct connected components of Γu.

Proof. Suppose on the contrary that ar and as belong to the same connected component. Note
that a±1

r /∈ B , a±1
s ∈ B and that (B,x1) ∈ W , where W is defined in the proof of Claim 2. It

then follows from the construction of Γu that as and x1 must belong to the same connected
component, which contradicts Claim 3. �

So let C1, Cr ′ and Cs′ be the distinct connected components of Γu containing x1, ar , and as in
that order. Here notice that C1 consists of only x±1, since there exists a Whitehead automorphism
1
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(As, as) of degree 1 such that as /∈ C1 and such that |(As, as)(v)| = |v| = |u| for some v ∈
OrbAutFn(u) (see Remark (iii) in the introduction).

Put u1 = τt−1 · · · τ1(u).

Claim 5. We may assume that τiτj ≡ τj τi for all 1 � i �= j � t − 1.

Proof. Put M = {v: v = φ(u) and |v|Ci
= |u|Ci

for all i = 1, . . . , n, where φ is a chain of
Whitehead automorphisms of degree 0 throughout which the length of u is constant}. Taking an
appropriate v ∈ M, we have Whitehead automorphisms δj = (Dj , dj ) of Fn of degree 0 such
that

u1 = δh · · · δ1(v), (3.5)

where |δj · · · δ1(v)| = |v| and |δj · · · δ1(v)|Ckj
> |v|Ckj

for the connected component Ckj
con-

taining dj and for each j = 1, . . . , h. Then for any δi = (Di, di) and δj = (Dj , dj ) with
dj �= d±1

i , if we replace δi and δj with (D̄i, d
−1
i ) and (D̄j , d

−1
j ), respectively, if necessary so that

d±1
i /∈ Dj and d±1

j /∈ Di , then Di ∩Dj = ∅. Hence by Case 1.1.2 of Lemma 3.1 that δj δi ≡ δiδj ;
thus (3.5) can be re-written as

u1 = δ
qptp

ptp
· · · δqp1

p1 · · · δq1t1
1t1

· · · δq11
11 (v), (3.6)

where dki = dki′ and Dki �= Dki′ provided i �= i′; dk′i �= d±1
ki and (δ

qk′ t
k′

k′tk′ · · · δqk′1
k′1 )(δ

qktk

ktk
· · · δqk1

k1 ) ≡
(δ

qktk

ktk
· · · δqk1

k1 )(δ
qk′ t

k′
k′tk′ · · · δqk′1

k′1 ) provided k �= k′. Here we may assume by Case 1.2.1 of Lemma 3.1

that Dki ⊂ Dki′ if i < i′. Then δki′δki ≡ δkiδki′ by Case 1.2.1 of Lemma 3.1; hence δk′i′δki ≡
δkiδk′i′ for any δki and δk′i′ in chain (3.6). Thus replace τt−1 · · · τ1(u) with the right-hand side of
(3.6) to get our desired result. �

By Claim 5, we may write

u1 = τt−1 · · · τpτp−1 · · · τ1(u),

where τi has multiplier in Cr ′ provided p � i � t − 1; τi has multiplier not in Cr ′ provided
1 � i � p − 1. Put

u2 = τp−1 · · · τ1(u).

Note that the number of Cr ′ -syllables of u remains unchanged throughout this chain.

Claim 6. There exist Whitehead automorphisms εi = (Ei, ai), t � i � s, such that
|εi · · · εt (u2)| = |u| for all i = t, . . . , s, where Ei = ∅ provided ai ∈ Cr ′ ; Ei is one of the three
forms Ai , Ai + Cr ′ and Ai − Cr ′ , whichever is smallest possible with priority given to lower i,
provided ai /∈ Cr ′ .

Proof. Suppose the contrary. It can possibly happen only when the number of Cr ′ -syllables of
u2 is decreased by τj · · · τt τt−1 · · · τp (for some j � t) followed by a chain of Whitehead auto-
morphisms of degree 0 with multiplier in Cr ′ , where the length of u2 is constant throughout the
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chain. Choosing the smallest such index j , put {j1, . . . , jk} = {i: t � i � j and τi has multiplier
in Cr ′ }. Then we can observe that there is a chain ζm · · · ζ1 of Whitehead automorphisms of de-
gree 0 with multiplier in Cr ′ such that |ζm · · · ζ1τjk

· · · τj1τt−1 · · · τp(u2)| = |u2| and the number
of Cr ′ -syllables of ζm · · · ζ1τjk

· · · τj1τt−1 · · · τp(u2) is less than that of u2. This is a contradiction,
because through the chain ζm · · · ζ1τjk

· · · τj1τt−1 · · · τp only C1-syllables and Cr ′ -syllables can
mix and increasing the number of C1-syllables cannot reduce the number of Cr ′ -syllables. �

For the chain εs · · · εt , we consider two cases separately.

Case 2.1.1. |(B,x1)εs · · · εt (u2)| = |u|.

For the Whitehead automorphisms δi = (Di, di) (p � i < t), where Di = Ai \ B and di = ai

provided x±1
1 /∈ Ai ; Di = Āi \ B and di = a−1

i provided x±1
1 ∈ Ai , and for the Whitehead

automorphisms ωj = (Fj , a
−1
t+s−j ) and νj = (Hj , aj ) (t � j � s), where Fj = ∅ provided

at+s−j ∈ Cr ′ + B; Fj = Et+s−j \ B provided at+s−j /∈ Cr ′ + B; Hj = ∅ provided aj ∈ B;
Hj = Aj \ B provided aj /∈ B , we have

(B,x1)τs · · · τ1(u) = νs · · ·νt δt−1 · · · δpωs · · ·ωt(B,x1)εs · · · εt τp−1 · · · τ1(u), (3.7)

where the length of u is constant throughout the chain on the right-hand side. By Case 1, it suf-
fices to consider only the chain (B,x1)εs · · · εt τp−1 · · · τ1(u). Since for every j either deg εj = 1
or εj = 1 and since εr = 1, the desired result follows by induction on s − t from (3.7).

Case 2.1.2. |(B,x1)εs · · · εt (u2)| > |u|.

We see that this case can possibly happen only when the cyclic word εs · · · εt (u2) contains a
subword of the form (x1w1w2w3)

θ , where θ = ±1, w1 (w1 may be the empty word), w2 and w3
are words in B , Cr ′ and Cs′ , respectively, and not all of the letters in w3 were newly introduced
in passing from u2 to εs · · · εt (u2).

By Claim 5, we may write

u1 = τt−1 · · · τqτq−1 · · · τ1(u),

where τi has multiplier in Cs′ provided q � i � t − 1; τi has multiplier not in Cs′ provided
1 � i � q − 1. Put

u3 = τq−1 · · · τ1(u).

Notice that the number of Cs′ -syllables of u remains unchanged throughout this chain.

Claim 7. There exist Whitehead automorphisms λi = (Ji, ai), t � i � s, such that
|λi · · ·λt (u3)| = |u| for all i = t, . . . , s, where Ji = ∅ provided ai ∈ Cs′ ; Ji is one of the three
forms Ai , Ai + Cs′ and Ai − Cs′ , whichever is largest possible with priority given to lower i,
provided ai /∈ Cs′ .

Proof. Suppose the contrary. In view of all the assumptions and the situations above, this can
possibly happen only when the number of Cs′ -syllables of u3 is decreased by τj · · · τt τt−1 · · · τq
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(for some j � t) followed by a chain of Whitehead automorphisms of degree 0 with multiplier
in Cs′ , where the length of u3 is constant throughout the chain. Choosing the smallest such
index j , put {j1, . . . , jk} = {i: t � i � j and τi has multiplier in Cs′ }. Then we can observe
that there exists a chain δm · · · δ1 of Whitehead automorphisms of degree 0 with multiplier in
Cs′ such that |δm · · · δ1τjk

· · · τj1τt−1 · · · τq(u3)| = |u|, and such that the number of Cs′ -syllables
of δm · · · δ1τjk

· · · τj1τt−1 · · · τq(u3) is less than that of u3. Reasoning as in Claim 6, we get a
contradiction, which completes the proof of Claim 7. �

We then see that |(B,x1)λs · · ·λt (u3)| = |u|. Furthermore, for the Whitehead automorphisms
δi = (Di, di) (q � i < t), where Di = Ai ∩ B and di = ai provided x±1

1 /∈ Ai ; Di = Āi ∩ B

and di = a−1
i provided x±1

1 ∈ Ai , and for the Whitehead automorphisms ωj = (Kj , at+s−j ) and
νj = (Hj , a

−1
j ) (t � j � s), where Kj = ∅ provided at+s−j /∈ B − Cs′ ; Kj = B \ Jt+s−j +

x−1
1 − a±1

t+s−j provided at+s−j ∈ B − Cs′ ; Hj = ∅ provided aj /∈ B; Hj = B \ Aj + x−1
1 − a±1

j

provided aj ∈ B ,

(B,x1)τs · · · τ1(u) = νs · · ·νt δt−1 · · · δqωs · · ·ωt(B,x1)λs · · ·λtτq−1 · · · τ1(u), (3.8)

where the length of u is constant throughout the chain on the right-hand side. By Case 1, it suf-
fices to consider only the chain (B,x1)λs · · ·λtτq−1 · · · τ1(u). Since for every j either degλi = 1
or λi = 1 and since λs = 1, the desired result follows by induction on s − t from (3.8). This
completes the proof of Case 2.1.2.

Case 2.2. a±1
s /∈ B .

In this case, replace (B,x1) and τi by (B̄, x−1
1 ) and (Āi , a

−1
i ) for all t � i � s, respectively,

and then follow the arguments of Case 2.1.

Case 3. b = x−1
1 .

Replace (B,x−1
1 ) by (B̄, x1) and then repeat the arguments of Case 2. �

Remark. The proof of Lemma 3.2 can be applied without further change if we replace consider-
ation of a single cyclic word u, the length |u| of u, the total number of occurrences of x±1

j in u,
and the Cj -syllable length |u|Cj

with consideration of a finite sequence (u1, . . . , um) of cyclic

words, the sum
∑m

i=1 |ui | of the lengths of u1, . . . , um, the total number of occurrences of x±1
j

in (u1, . . . , um), and the sum
∑m

i=1 |ui |Cj
of the Cj -syllable lengths of u1, . . . , um, respectively.

We are now in a position to prove Theorem 1.4.

Proof of Theorem 1.4. The proof proceeds by double induction on � and r , where � is the
length of the chain σ� · · ·σ2σ1 and r = max1�i�� degσi . The base steps were already proved in
Lemma 3.1 (the case for � = 2 and any r) and Lemma 3.2 (the case for r = 1 and any �).

Let σi , i = 1, . . . , � + 1 (� + 1 � 3), be Whitehead automorphisms of Fn such that
|σi · · ·σ1(u)| = |u| for all i = 1, . . . , � + 1 and such that max1�i��+1 degσi = r + 1 � 2. By
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the induction hypothesis on �, there exist Whitehead automorphisms τ1, τ2, . . . , τs of Fn such
that

σ�+1σ� · · ·σ2σ1(u) = σ�+1τs · · · τ2τ1(u),

where r + 1 � deg τs � deg τs−1 � · · · � deg τ1, and |τj · · · τ1(u)| = |u| for all j = 1, . . . , s.
If either degσ�+1 = r + 1 or both deg τs � r and degσ�+1 � r , then there is nothing to prove.

Also if deg τs � r and degσ�+1 < r , then we are done by the induction hypothesis on r . So let t

(1 � t � s) be such that deg τi = r + 1 provided t � i � s and deg τi � r provided 1 � i < t , and
let degσ�+1 � r .

Put τj = (Aj , aj ) for j = 1, . . . , s and σ�+1 = (B,b). Upon replacing τi and σ�+1 by
(Āi , a

−1
i ) and (B̄, b−1), respectively, if necessary, we may assume that xr+1 ∈ Ai for all t � i � s

and that x±1
r+1 /∈ B . We may also assume without loss of generality that (B,b) cannot be decom-

posed to (B2, b)(B1, b), where B = B1 + B2 and |(B1, b)τs · · · τ1(u)| = |u|. We may further as-
sume as in Claim 1 of Lemma 3.2 that τs = (As, as) cannot be decomposed to (As2, as)(As1, as),
where As = As1 + As2, deg(As1, as) � r , deg(As2, as) = r + 1, |(As1, as)τs−1 · · · τ1(u)| = |u|,
and a±1

i /∈ As1 for all i with t � i < s.
There are three cases to consider.

Case 1. b = x1.

If ai
±1 /∈ B for all t � i � s, then continuous application of Cases 1–4 of Lemma 3.1 to

(B,x1)τs · · · τt at most 1 + 2 + 22 + · · ·+ 2s−t times together with the induction hypothesis on r

yields the desired result. The following claim shows that it is indeed true that ai
±1 /∈ B for all

t � i � s.

Claim. ai
±1 /∈ B for all t � i � s.

Proof. Suppose on the contrary that ai
±1 ∈ B for some t � i � s. First let a±1

s ∈ B . If either x1 ∈
As or x−1

1 ∈ As but not both, then we have a contradiction by Cases 6.2 and 7.2 of Lemma 3.1,
since deg τs = r + 1 � 2. If x±1

1 ∈ As , then by Case 8 of Lemma 3.1,

(B,x1)(As, as) ≡ (
As ∪ B − x±1

1 , x1
)
(As, as)

(
As \ B − x±1

1 , x−1
1

)
,

but the existence of (As \ B − x±1
1 , x−1

1 ) in this chain contradicts Lemma 2.2, because xr+1 ∈
As \ B − x±1

1 and x−1
r+1 /∈ As \ B − x±1

1 . If x±1
1 /∈ As , then by Case 5 of Lemma 3.1,

(B,x1)(As, as) ≡ (
As \ B,x−1

1

)
(As, as)(As ∪ B,x1),

but the existence of (As ∪ B,x1) in this chain also contradicts Lemma 2.2, since xr+1 ∈ As ∪ B

and x−1
r+1 /∈ As ∪ B .

Next let a±1
s /∈ B . Suppose that ai

±1 ∈ B for some t � i < s. Let k be the largest such index.
Put v = τk−1 · · · τ1(u). If x1 ∈ Ak and x−1

1 /∈ Ak , then we can observe based on all the assump-
tions and the situations above that there exists a Whitehead automorphism (F, x1) of degree
r + 1 with (B ∪ Ak − x1) ⊆ F such that |(F, x1)τk(v)| = |u|. But this yields a contradiction to
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Lemma 2.2, since xr+1 ∈ F and x−1
r+1 /∈ F . For a similar reason, the case where x1 /∈ Ak and

x−1
1 ∈ Ak cannot happen, either. So Ak must contain either both of x±1

1 or none of x±1
1 .

If there exists a chain ζp · · · ζ1 of Whitehead automorphisms of degree less than or equal
to r + 1 such that |(B,x1)τkζp · · · ζ1(v)| = |τkζp · · · ζ1(v)| = |ζp · · · ζ1(v)| = |u|, then as in the
case where a±1

s ∈ B we reach a contradiction. Otherwise, choose chains ζp · · · ζ1 and ωq · · ·ω1
of Whitehead automorphisms of degree less than or equal to r + 1 with q smallest possible
such that |ωj · · ·ω1τkζp · · · ζ1(v)| = |τkζp · · · ζ1(v)| = |ζp · · · ζ1(v)| = |u| for all j = 1, . . . , q ,
and such that |(B,x1)ωq · · ·ω1τkζp · · · ζ1(v)| = |u|. Clearly q � s − k.

Put ωj = (Gj , gj ) for j = 1, . . . , q . If x±1
1 /∈ Ak , then we see from the choice of k and the

chain ωq · · ·ω1 that g±1
1 /∈ Ak . We also see that for the Whitehead automorphisms γj = (Hj , gj ),

j = 1, . . . , q , where Hj = Gj \ Ak provided a±1
k /∈ Gj ; Hj = Gj ∪ Ak provided a±1

k ∈ Gj ,
|(B,x1)γq · · ·γ1τkζp · · · ζ1(v)| = |γj · · ·γ1τkζp · · · ζ1(v)| = |u| for all j = 1, . . . , q . Then by
Case 1.1.2 or Case 5 of Lemma 3.1, we have γ1τk ≡ τkγ1, which means the chain γq · · ·γ2
of shorter length has the same property as ωq · · ·ω1 does, contrary to the choice of the chain
ωq · · ·ω1. If x±1

1 ∈ Ak , replace τk by (Āk, a
−1
k ). Then we get a contradiction in the same way,

which completes the proof of the claim. �
Case 2. b = x−1

1 .

Repeat similar arguments to those in Case 1.

Case 3. b �= x±1
1 .

Let p (1 � p � t) be such that deg τi = 0 provided 1 � i < p; deg τi � 1 provided p � i � s.
As in Claim 5 of Lemma 3.2, we may assume that τiτj ≡ τj τi for all 1 � i �= j < p. So there
exists q with 1 � q � p such that τi has multiplier in C1 provided 1 � i < q; τi has multiplier
not in C1 provided q � i < p.

Put w = τq−1 · · · τ1(u). Notice that Ci -syllables remain unchanged throughout the chain
τq−1 · · · τ1 for all i � 2. Write

w = y1u1y2u2 · · ·ymum without cancellation, (3.9)

where for each i = 1, . . . ,m, yi = x1 or yi = x−1
1 , and ui is a (non-cyclic) subword in

{x2, . . . , xn}±1. Let Fn+3 be the free group on the set

{x1, . . . , xn, xn+1, x2n+1, x3n+1}.
From (3.9) we construct a sequence Vw = (v1, v2, . . . , vm) of cyclic words v1, v2, . . . , vm in Fn+3
with

∑m
j=1 |vj | = 2|u|, where m is the total number of occurrences of x±1

1 in u, as follows: for
each j = 1, . . . ,m,

if yj = x1 and yj+1 = x1, then vj = x1ujx3n+1u
−1
j ;

if yj = x−1
1 and yj+1 = x1, then vj = xn+1ujx3n+1u

−1
j ;

if yj = x1 and yj+1 = x−1
1 , then vj = x1ujx2n+1u

−1
j ;

if yj = x−1
1 and yj+1 = x−1

1 , then vj = xn+1ujx2n+1u
−1
j ,

where ym+1 = y1.
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Put I = {x1, xn+1, x2n+1, x3n+1}±1. From now on, when we say that (S, s) is a Whitehead
automorphism of Fn+3, the following restrictions are imposed on S and s:

(1) s ∈ {x2, . . . , xn}±1.
(2) S satisfies one of (i) I ⊆ S; (ii) I ∩ S = {x1, x2n+1}±1; (iii) I ∩ S = {xn+1, x3n+1}±1;

(iv) I ∩ S = ∅.

Then we can prove the following claim.

Claim 1. For each Whitehead automorphism τ = (A,a) of Fn such that a �= x±1
1 and

|τ(w)| = |w|, there exists a Whitehead automorphism α of Fn+3 such that
∑m

j=1 |α(vj )| =∑m
j=1 |vj | and α(Vw) = Vτ(w).

Proof. Given a Whitehead automorphism τ = (A,a), we define a Whitehead automorphism α

of Fn+3 as follows: If x±1
1 ∈ A, then α = (A + x±1

n+1 + x±1
2n+1 + x±1

3n+1, a); if only x1 ∈ A, then

α = (A + x−1
1 + x±1

2n+1, a); if only x−1
1 ∈ A, then α = (A − x−1

1 + x±1
n+1 + x±1

3n+1, a); if x±1
1 /∈ A,

then α = (A,a).
Then each newly introduced letter x±1

r in passing from w to τ(w) that remains in τ(w) pro-
duces two newly introduced letters x±1

r in passing from Vw to α(Vw) that remain in α(Vw),
and vice versa. Also each letter x±1

r in w that is lost in passing from w to τ(w) produces two
letters x±1

r in Vw that are lost in passing from Vw to α(Vw), and vice versa. This yields that∑m
j=1 |α(vj )| = ∑m

j=1 |vj |.
Moreover it is clear that α(Vw) = Vτ(w). �
The following claim is a converse of Claim 1.

Claim 2. For each Whitehead automorphism α = (S, s) of Fn+3 such that
∑m

j=1 |α(vj )| =∑m
j=1 |vj |, there exists a Whitehead automorphism τ = (A,a) of Fn such that a �= x±1

1 ,
|τ(w)| = |w| and such that α(Vw) = Vτ(w).

Proof. Given a Whitehead automorphism α = (S, s) of Fn+3, put T = S \I . And define a White-
head automorphism τ of Fn as follows: τ = (T + x±1

1 , s) provided I ⊆ S; τ = (T + x1, s)

provided I ∩ S = {x1, x2n+1}±1; τ = (T + x−1
1 , s) provided I ∩ S = {xn+1, x3n+1}±1; τ = (T , s)

provided I ∩ S = ∅. Then reasoning in the same way as in Claim 1, we get a desired result. �
For each τi = (Ai, ai), q � i � s, define a Whitehead automorphism αi of Fn+3 as in Claim 1.

Also as in Claim 1, define a Whitehead automorphism β of Fn+3 from σ�+1 = (B,b). Then we
have

∑m
j=1 |βαs · · ·αq(vj )| = ∑m

j=1 |αi · · ·αq(vj )| = ∑m
j=1 |vj | for all i = q, . . . , s. Moreover,

by the construction of αi and β , the Whitehead automorphisms αi and β of Fn+3 are of degree
at most r + 1, and each of defining sets of αi and β contains either both of x±1

1 or none of x±1
1 .

This yields the same situation as for a chain of Whitehead automorphisms of Fn+3 of maximum
degree r .

Here we notice from Claims 1 and 2 that if Γu consists of g connected components, then either
ΓVw consists of g+1 connected components such that Ci equals Ci of Γu for all Ci ’s of ΓVw with
Ci �= C1 and Ci �= Cn+1, C1 equals C1 of Γu plus x±1 , and such that Cn+1 = {xn+1, x3n+1}±1;
2n+1
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or ΓVw consists of g connected components such that Ci equals Ci of Γu for all Ci ’s of ΓVw with
Ci �= C1 and such that C1 equals C1 of Γu plus {xn+1, x2n+1, x3n+1}±1.

The sequence Vw = (v1, . . . , vm) satisfies neither Hypothesis 1.1 nor Hypothesis 1.3. How-
ever, this fact does not affect the proof of the base steps of the induction (that is, Lemmas 3.1
and 3.2) for the following four reasons: first each of the Whitehead automorphisms αi and
β has multiplier only in {x2, . . . , xn}±1; second only the proof of Case 2.1 of Lemma 3.2 is
concerned with the Ci -syllable length, but in the proof of Case 2.1 ar or as cannot belong to
the connected component C1 of ΓVw (in fact, if ar or as belonged to C1, such a situation as
Case 2.1 could not occur); third Claim 5 holds for Vw by replacing M with the set {φ(Vw): φ is
a chain of Whitehead automorphisms of degree 0 throughout which the length of Vw is constant,
|φ(Vw)|Ci

= |Vw|Ci
for all Ci with Ci �= C1, and |φ(Vw)|C1 � |ψ(Vw)|C1 for every ψ which

has the same property as φ}; finally the same arguments as used in Claims 6 and 7 in Case 2.1 of
Lemma 3.2 are valid for Vw , since Hypothesis 1.3 holds for Vw if we only consider Ci ’s of Γvw

such that x1 /∈ Ci and xn+1 /∈ C1.
This observation allows us to apply the induction hypothesis on r to βαs · · ·αq(Vw). Hence,

there exist Whitehead automorphisms γ1, γ2, . . . , γh of Fn+3 such that

βαs · · ·αq(Vw) = γh · · ·γ2γ1(Vw), (3.10)

where r + 1 � degγh � degγh−1 � · · · � degγ1 (here note that there is no γi of degree 1), and∑m
j=1 |γi · · ·γ1(vj )| = ∑m

j=1 |vj | for all i = 1, . . . , h.
As in Claim 2, from each γi we define a Whitehead automorphism ζi of Fn. Let k be such that

deg ζj � 1 for 1 � j < k and deg ζj � 2 for k � j � h. Since βαs · · ·αq(Vw) = Vσ�+1τs ···τq (w)

and γh · · ·γ2γ1(Vw) = Vζh···ζ2ζ1(w), we have by (3.10) that

σ�+1τs · · · τq(w) = ζh · · · ζ2ζ1(w),

where r + 1 � deg ζh � deg ζh−1 � · · · � deg ζk � 2, and |ζi · · · ζ1(w)| = |w| for i = 1, . . . , h.
Applying the base step for r = 1 (that is, Lemma 3.2) to ζk−1 · · · ζ1τq−1 · · · τ1(u) completes the
proof of Case 3. �
4. Proof of Theorem 1.5

The aim of this section is to prove Theorem 1.5. For a cyclic word w in Fn, let Nk(w) denote
the cardinality of the set Ωk(w) = {φ(w): φ can be represented as a composition τs · · · τ1 (s ∈ N)
of Whitehead automorphisms τi of Fn of degree k such that |τi · · · τ1(w)| = |w| for all i =
1, . . . , s}. Then bounding N(u) reduces to bounding each Nk(u), which is shown in the proof
of Theorem 1.5 using the result of Theorem 1.4. In Lemma 4.1 we bound N0(u). In Lemma 4.2
we show that Nk(u) for k � 1 is at most N0(Vu), where Vu is a certain sequence of cyclic words
constructed from u, thus bounding Nk(u) for k � 1.

Lemma 4.1. Let u be a cyclic word in Fn. Then N0(u) is bounded by a polynomial function of
degree n − 2 with respect to |u|.

Proof. Let mi be the number of occurrences of x±1
i in u for i = 1, . . . , n. Clearly

N0(u) � N0
(
x

m1x
m2 · · ·xmn

n

)
.
1 2
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So it suffices to show that N0(x
m1
1 x

m2
2 · · ·xmn

n ) is bounded by a polynomial function of degree
n − 2 with respect to |u|. For a cyclic word v in Fn, define |v|s as

|v|s =
n∑

i=1

|v|Ci
.

Noting that |xm1
1 x

m2
2 · · ·xmn

n |s = n, put M = {v: |v|s = n and v = Ω0(x
m1
1 x

m2
2 · · ·xmn

n )}, and
L= {v: |v|s > n and v = Ω0(x

m1
1 x

m2
2 · · ·xmn

n )}. Obviously the cardinality of M is (n − 1)!.
For the cardinality of L, let v ∈ L. Taking an appropriate u′ ∈ M (note that u′ can be chosen as

follows: Write v = xk1w1xk2w2 · · ·xknwn (without cancellation), where wi is a (non-cyclic) word

in {xk1 , . . . , xki
}; then u′ = x

mk1
k1

x
mk2
k2

· · ·xmkn

kn
), we have Whitehead automorphisms τj = (Aj , aj )

of Fn of degree 0 such that

v = τs · · · τ1(u
′), (4.1)

where |τj · · · τ1(u
′)| = |u′| and |τj · · · τ1(u

′)|s � |τj−1 · · · τ1(u
′)|s for all j = 1, . . . , s. Then for

any τi = (Ai, ai) and τj = (Aj , aj ) with aj �= a±1
i , if we replace τi and τj by (Āi , a

−1
i ) and

(Āj , a
−1
j ), respectively, if necessary so that a±1

i /∈ Aj and a±1
j /∈ Ai , then Ai ∩ Aj = ∅. Hence

by Case 1.1.2 of Lemma 3.1 that τj τi ≡ τiτj ; thus (4.1) can be re-written as

v = τ
qptp

ptp
· · · τqp1

p1 · · · τq1t1
1t1

· · · τq11
11 (u′), (4.2)

where aki = aki′ and Aki �= Aki′ provided i �= i′; ak′i �= a±1
ki and (τ

qk′ t
k′

k′tk′ · · · τqk′1
k′1 )(τ

qktk

ktk
· · · τqk1

k1 ) ≡
(τ

qktk

ktk
· · · τqk1

k1 )(τ
qk′ t

k′
k′tk′ · · · τqk′1

k′1 ) provided k �= k′. Here we may assume by Case 1.2.1 of Lemma 3.1

that Aki ⊂ Aki′ if i < i′. Then τki′τki ≡ τkiτki′ by Case 1.2.1 of Lemma 3.1; hence τk′i′τki ≡
τkiτk′i′ for any τki and τk′i′ in chain (4.2).

Claim. The length of the chain of Whitehead automorphisms on the right-hand side of (4.2) is at
most n − 2 without counting multiplicity, that is,

∑p

i=1 ti � n − 2.

Proof. The proof proceeds by induction on the number of subwords of u′ of the form x
mi

i which

are fixed throughout chain (4.2). For the base step, suppose that u′ has two such subwords x
mr1
r1

and x
mr2
r2 (note that u′ must have at least two such subwords). The cyclic word u′ can be written

as u′ = x
mr1
r1 w (without cancellation), where w is a non-cyclic word that contains x

mi

i for all
i �= r1. Upon replacing τij by (Āij , a

−1
ij ) if necessary, we may assume that x±1

r1
/∈ Aij for all τij

in chain (4.2). Then the length of w is constant throughout the chain and only the subword x
mr2
r2

of w is fixed in passing from w to τ
qptp

ptp
· · · τqp1

p1 · · · τq1t1
1t1

· · · τq11
11 (w). It follows that the length of

this chain is precisely (n−1)−1 = n−2 without counting multiplicity. So the base step is done.
Now for the inductive step, suppose that u′ has k subwords of the form x

mi

i which are fixed

throughout chain (4.2), say x
mr1
r1 , . . . , x

mrk
rk . Write the cyclic word u′ as u′ = x

mr1
r1 w (without

cancellation), where w is a non-cyclic word that contains x
mi

i for all i �= r1. As above, upon
replacing τij by (Āij , a

−1) if necessary, we may assume that x±1
r /∈ Aij for all τij in chain
ij 1
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(4.2). We then have that only the subwords x
mr2
r2 , . . . , x

mrk
rk of w are fixed in passing from w to

τ
qptp

ptp
· · · τqp1

p1 · · · τq1t1
1t1

· · · τq11
11 (w), where the length of w is constant throughout the chain.

Let (w) be the cyclic word associated with w. If none of τij in chain (4.2) is of the form either
(Σ − x±1

r1
− x±1

g , xg) or (Σ − x±1
r1

− x±1
g , x−1

g ), then chain (4.2) can be applied to (w) with
τij �= 1 on (w) for every τij in the chain. Then by the induction hypothesis applied to (w), the
length of the chain is at most (n−1)−2 = n−3 without counting multiplicity, as desired. If one
of τij in chain (4.2) is of the form either (Σ − x±1

r1
− x±1

g , xg) or (Σ − x±1
r1

− x±1
g , x−1

g ), then
we see that there can be only one of τij of such a form, so that chain (4.2) can be applied to (w)

with only one τij = 1 on (w). This together with the induction hypothesis applied to (w) yields
that the length of chain (4.2) is at most (n − 1) − 2 + 1 = n − 2 without counting multiplicity, as
required. �

Obviously each multiplicity qij is less than the number of a±1
ij occurring in u, so less than |u|.

This together with the claim yields that the total number of chains of Whitehead automorphisms
with the same properties as in (4.2) is less than

(
r

n−2

)|u|n−2, where r is the number of Whitehead

automorphisms of Fn of degree 0. Thus the cardinality of L is less than (n− 1)!( r
n−2

)|u|n−2, and
therefore

N0
(
x

m1
1 x

m2
2 · · ·xmn

n

) = #M+ #L� (n − 1)! + (n − 1)!
(

r

n − 2

)
|u|n−2,

which completes the proof the lemma. �
Remark. The proof of Lemma 4.1 can be applied without further change if we replace considera-
tion of a single cyclic word u, the length |u| of u, and the total number of occurrences of x±1

j in u

with consideration of a finite sequence (u1, . . . , um) of cyclic words, the sum
∑m

i=1 |ui | of the
lengths of u1, . . . , um, and the total number of occurrences of x±1

j in (u1, . . . , um), respectively.

Lemma 4.2. Let u be a cyclic word in Fn that satisfies Hypothesis 1.1. Then for each k = 1,

. . . , n − 1, Nk(u) is bounded by a polynomial function of degree n + 3k − 2 with respect to |u|
(note that k is at most n − 1 by the remark after Lemma 2.2).

Proof. Let mi be the number of occurrences of x±1
i in u for i = 1, . . . , n, and let �k = ∑k

j=1 mj

for k = 1, . . . , n − 1. Write

u = y1u1y2u2 · · ·y�k
u�k

without cancellation, (4.3)

where for each i = 1, . . . , �k , yi = xj or yi = x−1
j for some 1 � j � k, and ui is a (non-cyclic)

subword in {xk+1, . . . , xn}±1. Let Fn+3k be the free group on the set

{x1, . . . , xn, xn+1, . . . xn+k, x2n+1, . . . , x2n+k, x3n+1, . . . , x3n+k}.

From (4.3) we construct a sequence Vu = (v1, . . . , v�k
) of cyclic words v1, . . . , v�k

in Fn+3k with∑�k |vi | = 2|u| as follows: for each i = 1, . . . , �k ,
i=1
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if yi = xj and yi+1 = xj ′ , then vi = xjuix3n+j ′u−1
i ;

if yi = x−1
j and yi+1 = xj ′ , then vi = xn+j uix3n+j ′u−1

i ;

if yi = xj and yi+1 = x−1
j ′ , then vi = xjuix2n+j ′u−1

i ;

if yi = x−1
j and yi+1 = x−1

j ′ , then vi = xn+j uix2n+j ′u−1
i ,

where y�k+1 = y1.

Claim. For each Whitehead automorphism σ of Fn of degree k such that |σ(u)| = |u|, there
exists a Whitehead automorphism τ of Fn+3k of degree 0 such that

∑�k

i=1 |τ(vi)| = ∑�k

i=1 |vi |
and τ(Vu) = Vσ(u).

Proof. Let σ = (S, a) be a Whitehead automorphism of Fn of degree k such that |σ(u)| = |u|.
Upon replacing σ by (S̄, a−1), we may assume that σ = (S, xr). Note by Lemma 2.2 that the
index r is bigger than k, since degσ = k. Put S = T + P + Q, where T = S ∩ {xk+1, . . . , xn}±1,
P = S ∩ {x1, . . . , xk} and Q = S ∩ {x1, . . . , xk}−1 (here note that T = T −1, since degσ = k).

Then we consider the Whitehead automorphism τ = (T + P1 + Q1, xr ) of Fn+3k of de-
gree 0, where P1 = {x±1

i , x±1
2n+i | xi ∈ P } and Q1 = {x±1

n+i , x
±1
3n+i | x−1

i ∈ Q}. If the sequence
Vu = (v1, . . . , v�k

) of cyclic words v1, . . . , v�k
in Fn+3k is constructed as above, then each newly

introduced letter x±1
r in passing from u to σ(u) that remains in σ(u) produces two newly intro-

duced letters x±1
r in passing from Vu to τ(Vu) that remain in τ(Vu), and vice versa. Also each

letter x±1
r in u that is lost in passing from u to σ(u) produces two letters x±1

r in Vu that are lost in
passing from Vu to τ(Vu), and vice versa. This yields that

∑�k

i=1 |τ(vi)| = ∑�k

i=1 |vi |. Moreover
it is clear that τ(Vu) = Vσ(u). �

It is easy to see that if u′ ∈ Ωk(u) with u′ �= u, then Vu′ �= Vu. This together with the claim
gives us that Nk(u) � N0((v1, v2, . . . , v�k

)). By the remark after Lemma 4.1, N0((v1, v2, . . . , v�k
))

is bounded by a polynomial function of degree n + 3k − 2 with respect to 2|u|, which completes
the proof of the lemma. �

Finally we give a proof of Theorem 1.5.

Proof of Theorem 1.5. Without loss of generality we may assume that u was chosen from the
set {v ∈ OrbAutFn(u): |v| = |u|} so that u satisfies Hypothesis 1.3. Let v ∈ OrbAutFn(u) be such
that |v| = |u|. By Whitehead’s theorem, there exist Whitehead automorphisms π of the first type
and σ1, . . . , σ� of the second type such that v = πσ� · · ·σ1(u), where |σi · · ·σ1(u)| = |u| for all
i = 1, . . . , �. Then by Theorem 1.4, there exist Whitehead automorphisms τ1, . . . , τs such that
v = πτs · · · τ1(u), where n − 1 � deg τs � deg τs−1 � · · · � deg τ1, and |τj · · · τ1(u)| = |u| for all
j = 1, . . . , s (here, note by the Remark after Lemma 2.2 that deg τs � n − 1). This implies that

N(u) � CN0(u)N1(u) · · ·Nn−1(u),

where C is the number of Whitehead automorphisms of the first type of Fn (which depends only
on n). For each k = 0,1, . . . , n − 1, Nk(u) is bounded by a polynomial function of degree n +
3k − 2 with respect to |u| by Lemmas 4.1 and 4.2. Therefore, N(u) is bounded by a polynomial
function of degree n(5n − 7)/2 with respect to |u|, as required. �
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5. Limitations

We close this paper with a brief explanation why the presented technique is incapable of
covering the entire problem domain (e.g. for u = x2

1x2
2x3

3x4
4 the presented arguments cannot be

applied). This amounts to explaining why condition (ii) of Hypothesis 1.1 cannot be dropped.
As a matter of fact, in the presented arguments, condition (ii) of Hypothesis 1.1 played a most
essential role, without which all of our arguments except Lemmas 2.1 and 4.1 would have broke
down. Owing to Lemma 2.2 where we first used Hypothesis 1.1(ii), we were able to assume
throughout the paper that

j > i when considering Whitehead automorphisms
(
A,x±1

j

)
of degree i. (5.1)

This allowed us to exclude the worst case such as a ∈ B , a−1 /∈ B , b ∈ A and b−1 /∈ A in
Lemma 3.1, for which case there does not exist a composition of Whitehead automorphisms
of ascending degrees that equals (B,b)(A,a). Also we proceeded with the proofs of Lemma
3.2 and Theorem 1.4 based on (5.1). For instance, Claim 1 in the proof of Lemma 3.2 yielded
the existence r such that a±1

r ∈ As ∩ B in Case 1.1, where we did not have to worry about the
case where ar ∈ As ∩ B but a−1

r /∈ As ∩ B . Furthermore, the equality in the claim in the proof of
Lemma 4.2 would not have hold without (5.1).
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