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Abstract

Let u be a cyclic word in a free group Fj, of finite rank n that has the minimum length over all cyclic
words in its automorphic orbit, and let N («) be the cardinality of the set {v: |v| = |u| and v = ¢ (1) for some
¢ € Aut F, }. In this paper, we prove that N (1) is bounded by a polynomial function with respect to |u| under
the hypothesis that if two letters x, y with x £ y 1 oceur in u, then the total number of occurrences of x*+!
in u is not equal to the total number of occurrences of yElinu. A complete proof without the hypothesis
would yield the polynomial time complexity of Whitehead’s algorithm for F;,.
© 2006 Elsevier Inc. All rights reserved.

1. Introduction

Let F,, be the free group of finite rank n on the set {x1, x2, ..., x,}. We denote by X' the set
of letters of F,, that is, X = {x, x2,.. .,xn}il. As in [1,5], we define a cyclic word to be a
cyclically ordered set of letters with no pair of inverses adjacent. The length |w| of a cyclic word
w is the number of elements in the cyclically ordered set. For a cyclic word w in F},, we denote
the automorphic orbit {y/(w): ¥ € Aut F,,} by Orbaw r, (w).

The purpose of this paper is to provide a partial solution of the following problem raised by
Myasnikov and Shpilrain [6]:
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Problem. Let u be a cyclic word in F,, which has the minimum length over all cyclic words in
its automorphic orbit Orbay £, (1), and let N (u) be the cardinality of the set {v € Orbau £, (1):
|v| = |ul}. Then is N (u) bounded by a polynomial function with respect to |u|?

This problem was settled in the affirmative for F, by Myasnikov and Shpilrain [6], and Khan
[3] improved their result by showing that N (u) has the sharp bound of 8|u| — 40 for F>. The
problem was motivated by the complexity of Whitehead’s algorithm which decides whether, for
given two elements in F},, there is an automorphism of F;, that takes one element to the other.
Indeed, a complete positive solution to the problem would yield that Whitehead’s algorithm
terminates in polynomial time with respect to the maximum length of the two words in question
(see [6, Proposition 3.1]). Recently, Kapovich, Schupp and Shpilrain [2] proved that Whitehead’s
algorithm has strongly linear time generic-case complexity. In the present paper, we prove for F;,
with n > 2 that N («) is bounded by a polynomial function with respect to |u| under the following

Hypothesis 1.1.

(i) A cyclic word u has the minimum length over all cyclic words in its automorphic orbit
Ol‘bAut Fy (Lt)
(ii) If two letters x; (or x;~ 1) and x; (or x;l) with i < j occur in u, then the total number of xii]

occurring in « is strictly less than the total number of xJ".—Ll occurring in u.

Before we state our theorems, we would like to establish several notation and definitions. As
in[1,5],for A, BC X, wewritt A+ Bfor AUBiIfANB=@,and A—BforANB“if BC A,
where B¢ is the complement of B in X'. We define a Whitehead automorphism o of F, as an
automorphism of one of the following two types (cf. [4,7]):

(W1) o permutes elements in X.

(W2) o is defined by a set A C ¥ and a multiplier « € X with both a,a™! ¢ A in such a way
that if x € X then (a) o (x) = xa provided x € A and x~! ¢ A; (b) o (x) = a~'xa provided
both x, x~! € A; (¢) o(x) = x provided both x, x ! ¢ A.

If o is of the second type, then we write 0 = (A, a). By (A,a™'), we mean the Whitehead
automorphism (¥ — A — a*', a=1). It is then easy to see that (A, a)(w) = (A, a Y (w) for any
cyclic word w in Fj,.

For a Whitehead automorphism o of the second type, we define the degree of o as follows:

Definition 1.2. Let 0 = (A, a) be a Whitehead automorphism of F,, of the second type. Put
A’ ={i: either x; € A or xfl € A, but not both}. Then the degree of o is defined to be max A’.
If A’ = @3, then the degree of o is defined to be zero.

Let w be a fixed cyclic word in F,, that satisfies Hypothesis 1.1(i). For two letters x,y € X,
we say that x depends on y with respect to w if, for every Whitehead automorphism (A, a) of
F,, such that

ag|xF v ), [ NA£0, and 3w € Orbawr, (w): |(A, @)(v)| = |v| = w],

we have {x*!} C A. Then we have the following
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Claim. If x depends on y with respect to w, then y depends on x with respect to w.

Proof. Suppose on the contrary that y does not depend on x. Then there exists a Whitehead
automorphism (A, a) of F, such that a ¢ {x=!, y=1}, x¥' N A £ 0, (A, ) (v)| = |v| = |w] for
some v € Orbay F, (w), but such that y*! ¢ A. Then (A, a~")(v)| = |v| = |w| and y*' N A # @.
Since x depends on y, x*! C A. This gives x*' N A = @, which is a contradiction. O

We then construct the dependence graph Iy, of w as follows: Take the vertex set as X', and
connect two distinct vertices x, y € X by a non-oriented edge if either y = x~! or y depends on
x with respect to w. Let C; be the connected component of I, containing x;. Here, we make the
following remark.

Remark.

(1) Iy =TIy forany v € Orbay r, (w) with |v| = |w].
(ii) If x; depends on x;, then C; = C;.
@) If xjil € C; with i # j, then every Whitehead automorphism (A, a) such that either x; € A
or xil € A but not both and such that [(A, a)(v)| = |v| |w| for some v € Orbay F, (w)
must have the multiplier a only in C;, for otherwise xE ; !'C A but then xil ¢ A, which is a

contradiction because xijEl NA#Q.
Clearly there exists a unique factorization
w=uvvy---v; (without cancellation),

where each v; is a non-empty (non-cyclic) word consisting of letters in C;, with Cj, # Cj,,,
(i mod k). The subword v; is called a Cj;-syllable of w. By the C;-syllable length of w denoted
by |w|c;, we mean the total number of C;-syllables of w.

For Theorem 1.4, we suppose further that a cyclic word u satisfies the following

Hypothesis 1.3.

(1) The C,-syllable length |u|c, of u is minimum over all cyclic words in the set {v €
Orbaut , (u): |v| = [ul}.

(ii) If the index j (1 < j < n — 1) is such that C; # Cy for all k > j, then the C;-
syllable length |u|c; of u is minimum over all cyclic words in the set {v € OrbaycF, (u):
[v] = |u] and |v|c, = |u|c, for all k > j}.

For an easy example, consider the cyclic words u = x2x§x§x2 and v = x1x§x1x3x4 in Fy.
Clearly v is an automorphic image of u with |v| = |u|, so I, = I'},. The dependence graph I, =
I, has four distinct connected components, each C; of which contains only xiil. Then u satisfies
Hypotheses 1.1 and 1.3, whereas v satisfies Hypotheses 1.1 and 1.3(i) but not Hypothesis 1.3(ii),
because the C-syllable length of v can be decreased without changing |v| and |U|C, for alli > 1.

For another example, let u = xzxg’xgmx2 x4x3x4 and v = x%x%xé’mx2 x4x3x4 be cyclic
words in F4. Then v is an automorphic image of u with |v| = |u|, so I, = I',. In the dependence
graph I, = I}, there are three distinct connected components Cy, Ca, C3 = C4. While u satisfies
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Hypotheses 1.1 and 1.3, v does not satisfy Hypothesis 1.3(i), because the C4-syllable length of
v can be decreased without changing |v].
Now we are ready to state our theorems, whose proofs will appear in Sections 3—4.

Theorem 1.4. Let u be a cyclic word in F, that satisfies Hypotheses 1.1 and 1.3. Let oy, i =
1,..., ¢, be Whitehead automorphisms of the second type such that |o; - --o1(u)| = |u| for all i.
Then there exist Whitehead automorphisms t1, 1o, ..., Ty of the second type such that

og---0201(U) =75+ - 1271 (1),

where max ;e dego; > degty > degty_1 > --- > degty, and |tj---11(w)| = |u| for all j =
1,...,s.

Theorem 1.5. Let u be a cyclic word in F, that satisfies Hypothesis 1.1, and let N (1) be the car-
dinality of the set {v € Orbau F, (u): |v| = |ul}. Then N (u) is bounded by a polynomial function
of degree n(5n — T)/2 with respect to |u].

The main idea of the present paper is to prove that the action of an automorphism on an
element which satisfies Hypotheses 1.1 and 1.3 can be factored into a composition of automor-
phisms of ascending degrees, which will be achieved through Lemmas 3.1, 3.2 and Theorem 1.4.
The proof of Theorem 1.4 will proceed by double induction on £ and r, where ¢ is the length of
the chain oy - - - 0201 and r = max; ;¢ dego;, with Lemma 3.1 (the case for £ =2 and any r)
and Lemma 3.2 (the case for » = 1 and any £) as the base steps of the induction.

Let Ni(u) be the cardinality of the set {¢(u): ¢ can be represented as a composition s - - - 7]
(s € N) of Whitehead automorphisms t; of F; of degree k such that |t; --- 71 (u)| = |u| for all
i=1,...,s}. Then bounding N (u) reduces to bounding each Ny (u), as will be shown in the
proof of Theorem 1.5 using the result of Theorem 1.4. Lemma 4.1 will be devoted to bounding
No(u), and Lemma 4.2 will show that Ni(u) for kK > 1 is at most No(V,,), where V,, is a certain
sequence of cyclic words constructed from u, thus bounding Ni(u) for k > 1. Furthermore in
Theorem 1.5 we will specifically give a bound for the degree of a polynomial bounding N (u).

2. Preliminaries

We begin this section by setting some notation. Let w be a fixed cyclic word in F},. As in [1],
for x, y € ¥, x.y denotes the total number of occurrences of the subwords xy~! and yx~! in w.
For A, B C ¥, A.B means the sum of a.b for all a € A, b € B. Then obviously a.X is equal
to the total number of a*! occurring in w. For two automorphisms ¢ and v of F,, by writing
¢ = ¥ we mean the equality of ¢ and i over all cyclic words in F,,, that is, ¢ (v) = ¥ (v) for
every cyclic word v in F,.

We now establish two technical lemmas which will play a fundamental role in the proofs in
Sections 3 and 4.

Lemma 2.1. Let u be a cyclic word in F,, that satisfies Hypothesis 1.1(i), and let 0 = (A, a b
and © = (B, b) be Whitehead automorphisms of F, such that o (u)| = |[t(u)| = |u|. Put A =
C+Eand B=D + E, where E=AN B. Then

(i) ifa~" =b, then [(E,a™ ") (u)| = |ul;
(i) ifa"' #b, at' ¢ Band b ¢ A, then |(C,a ") (w)| = |(D, b)(w)| = |ul.
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Proof. It follows from [1, p. 255] that

{ lo@)| —lul=(A+aH.(A+a™") —a.X;
lt@)| —lul=(B+b).(B+b)' —b.%,

where (A+a 'Y =Y —(A+a V) and (B+b) =X — (B +b). Since |6 (u)| = |t(w)| = |ul,
wehave (A+a D).(A+a 'Y —a.X =B +b).(B+b) —b.X =0, so that

(A+aD(A+a) +B+b.(B+b) —a.¥ —b.5=0.

Following the notation in [1, p. 257], we write A = A+a~!, Ay =(A+a~'), By =B +b,
By =(B+b) and P;j = A; N B;. Then as in [1, p. 257], we have

{Pll-Pl/1+P22~P2/2—a-E—b-E =0; @1

P12.P1/2 + P21‘P2/1 —a.X —-b.X =0,

where Pi’j =X —P;j.
For (i), assume that a~' = b. Then we have a—! € P;; and a € Py,. It follows from the first
equality of (2.1) that

PP+ Pp.Pyy—a.X —a. X =(P.P, —a.X)+ (Pn.Py—a.X)
=[(Pi—a""sa”")@)| = lul + (P2 — a,a)@)] — lu] = 0.

Since both |(Pj; —a™',a= ") (u)| — |u| >0 and |(Ps; —a, a)(u)| — |u| > 0 by Hypothesis 1.1(i),
we must have [(P1; —a™', a=")(u)| = |u|, that is, |(E,a~")(u)| = |u|, as required.

For (ii), assume that ¢! # b, a*! ¢ B and b ¢ A. Then we have alepPpn,a ¢ P12, b € Py
and b~ ¢ P,;. Hence the second equality of (2.1) gives us that

P3Py + PPy —a.X —b.X = (P;.P, —a.X) + (Py.Py — b.X)
=|(P2—a"' a ) w)| - lul+ |(Py — b, b)(w)| — u| =0.

As above, it follows from Hypothesis 1.1(1) that [(P;z — a~',a ) (u)| = |u| and
|(Pa; — b, b)(u)| = |u|. Since Pj» —a~' = C and Py — b = D, we have |(C,a " (u)| =
|(D, b)(u)| = |ul, as desired. O

Lemma 2.2. Let u be a cyclic word in F,, that satisfies Hypothesis 1.1, and let 0 = (A, a) be a
Whitehead automorphism of F,, such that | (u)| = |u|. Then a.X > b.X for every b € A with
bl ¢ A.

Proof. In view of the assumption |0 («)| = |u| and [1, p. 255], we have 0 = |o (u)| — |u| =
(A+a).(A+a) —a.X,where (A+a) =X —(A+a),sothat (A+a).(A+a) =a.X. Now
let b € A with 7! ¢ A. Then for the Whitehead automorphism 7 = (A + a — b, b), we have
0<|tw)| — lul=(A+a).(A+a) —b.X.Hence (A+a).(A+a) >b.X;thusa.X >b.X.
Here, the equality a. X = b.X cannot occur by Hypothesis 1.1(ii); therefore a. ¥ > b.X. O
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Remark. By Lemma 2.2, if u is a cyclic word in F,, that satisfies Hypothesis 1.1 and o0 = (A, a)
is a Whitehead automorphism of F;, such that |o (1)| = |u|, then dego is at most n — 1.

3. Proof of Theorem 1.4

The aim of this section is to prove Theorem 1.4. The proof of Theorem 1.4 will pro-
ceed by double induction on £ and r, where ¢ is the length of the chain o;---0201 and r =
max ;¢ dego;. Lemma 3.1 deals with the case for £ =2 and any r as one of the base steps of
the induction. As the other base step, Lemma 3.2 deals with the case for » = 1 and any £.

Lemma 3.1. Let u be a cyclic word in F,, that satisfies Hypothesis 1.1, and let o1 = (A, a) and
02 = (B, b) be Whitehead automorphisms of F,, such that |ocy01(u)| = |o1(u)| = |u|. Suppose
that dego| > degon. Then there exist Whitehead automorphisms 11, ..., Ts of Fy, of the second
type such that

0201 =Ts -+ 12T,

where dego| =degty > --- >degty and |t ---T1(w)| = |u| foralli =1,...,s.

Proof. It suffices to prove that there exist Whitehead automorphisms yy, ..., y; of F), such that
0201 = VYr -+ V2V1,

where the index ¢ isat most 3, |y; - - - y1(u)| = |u| foralli =1, ..., ¢, and either dego; = deg y; >
degyj forall j=1,...,t — 1 or otherwise dego; =degy; foralli =1,...,7. Put u' =o1(u);
then |o; ' ()| = |o2 ()| = |ul, that is,

|(A,a ") @)| = [(B.b))| = lul. 3.1)

Also put ¢ = Xgeg o, - Upon replacing (A, a), (B, b) by (A,a™ ), (B, b)), respectively, if neces-
sary, where A= X — A —a*! and B= % — B — b*!, we may assume that c € A and ¢*! ¢ B
(clearly ¢=! ¢ A). By Lemma 2.2, we have a.X > ¢.X; hence either a*! ¢ B or a*! € B, for
otherwise deg o, > deg oy, contrary to the hypothesis dego; > degoy.

We first treat four cases for a*! ¢ B and then four cases for a*! € B according to whether b
orb! belongs to A. For convenience, we writte A=C + E and B= D + E, where E = AN B.

Case 1.a*! ¢ B and b*! ¢ A.

We consider two cases corresponding to whether or not E is the empty set.
Case 1.1. E=0.
Case 1.1.1. a =b.

It follows from [5, relation R2] that o071 = (A + B, a).
Case 1.1.2. a #b.

By [5, relation R3], we have on01 = (A, a)(B, b).
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Case 1.2. E #0.
Case 1.2.1. a =b.

In view of (3.1) and Lemma 2.1(ii), we have |(C,a ")(w)| = |u|. Since (C,a )W') =
(E,a)(u), we have |(E, a)(u)| = |u|; hence

0201 = (B,a)[(C,a)(E,a)] = [(B,a)(C,a)|(E, a)
=(C+ B,a)(E,a) by Case1.1.1,

where dego) = deg(C + B, a) > deg(E, a).
Case 1.2.2. a~! =b.

Lemma 2.1(i) together with (3.1) gives us that |(E,a~") ()| = |u/, so that |(C, a)(u)| = |ul;
thus

0201 = (B, a_l)[(E, a)(C,a)] = [(B, a_l)(E,a)](C, a)= (D, a_l)(C,a)
=(C,a)(D,a™") by Case1.1.2,

where dego| = deg(C, a) > deg(D, a=h.
Case 1.2.3. a*! #£b.
As in Case 1.2.1, we have |(E, a)(u)| = |u|; hence

op01 = (B, b)[(C, a)(E, a)] = [(B, b)(C, a)](E, a)
=[(C,a)(B,b)](E,a) by Case 1.1.2,

where deg oy = deg(C, a) > deg(B, b), deg(E, a).
Case2.a™' ¢ B,b¢ Aand b~ € A.

We consider this case dividing into two cases according to whether or not E is the empty set.
Case2.1. E=0.

It follows from [5, relation R4] that 0o01 = (A+ B, a)(B, b), where dego| = deg(A+ B, a) >
deg(B, D).

Case 2.2. E # (.
As in Case 1.2.1, we have |(E, a)(u)| = |u|; then

0201 = (B, b)[(C.a)(E,a)| =[(B,b)(C,a)|(E,a)
=[(C+ B,a)(B,b)|(E,a) by Case2.1,

where dego| = deg(C + B, a) > deg(B, b), deg(E, a).
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Case3.a™' ¢ B,bc Aand b ¢ A.

Since 0201 = (B, b)(A,a~"), we can apply Case 2.2 to get

0201 =(B,b)(A,a")=((A\ B)+ B,a ') (B,b)(ANB,a™").
Here, since (A\B)+B=Z’—C—ajEl and AN B = D, we have
001 =(2 - C—a*' a ") (B,b)(D,a™")=(C,a)(B,b)(D,a"),

where deg oy = deg(C, a) > deg(B, b), deg(D, a=b.
Case4.a™! ¢ B and b*! c A.

By Case 1.2.3 applied to op01 = (B, b)(A, a_l), we have

001 =(B,b)(A,a” )= (A\ B,a"")(B,b)(ANB,a™").
From the observation that A \B=XY—-(C+B)— a*! and AN B = D, it follows that
001 = (2 —(C+B)—a*',a "\ (B,b)(D,a")=(C + B,a)(B,b)(D,a™"),

where dego) = deg(C + B, a) > deg(B, b), deg(D, a™ .
Case 5.a*! € B and b*! ¢ A.

Since 0201 = (B, b~ 1)(A, a), we have [(A, a~ ") ()| = (B, b~")(u')| = |u|. This implies by
Lemma 2.1(ii) that |(B \ A, b~ (u')| = |u], so that

oo =(B,b" A, 0)=[(ANB, b7 ") (B\ A, b7")](A, a).

Here, by Case 1.1.2, we have (B\ A, b~ 1)(A,a) = (A,a)(B\ A, b~ ); thus

o1 =(ANB, b7 ") (A, a)(B\ A, b7).
Since ANB=Cand B\ A= X — (C + B) — b*', we finally have

001 =(C,b7")(A,a)(C + B, b),
where dego; = deg(C, b~!) = deg(A, a) = deg(C + B, b).
Case6.aT' ¢ B,b¢ Aand b ! € A.
Case 6.1. c=b"1.
By Case 3 applied to op01 = (B,b~1Y(A, a), we get

oo1=(B,b™")(A,a)=(A\ B,a)(B,b™")(B\ A,a™").
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Here,weseethatA\IE_?zE—i—b_1 andB\A:E—(C—i—B—H)), so that

o1 =(E+b"",a)(B,b)(C+ B+b—a*' a),
where dego| = deg(E + b~ ', a) > deg(B, b), deg(C + B +b —a™!, a).
Case 6.2. ¢ £b~ 1.

In this case, ¢.X > b.X, since dego) is determined by c¢. Apply Lemma 2.1(ii) to the equali-
ties [(A,a™ )~ )| = [(B,b~")(u)| = |u], thatis, | (A, a) (u")| = (B, b~ ()| = |ul, to obtain
|(B\A,b~")(u')| = |u|.Butsincec € B\Aandc~! ¢ B\ A, wehave b.¥ > c.X by Lemma?2.2,
which contradicts c. ¥ > b.X. Hence this case cannot occur.

Case7.a™' e B,bc Aand b~ ¢ A.
Case7.1. c=b.

Applying Case 2.2 to o201 = (B, b~ ") (A, a), we get

o201 =(B,b™")(A,a)=((A\ B) + B,a)(B,b"")(AN B, a).
From the observation that (A\ B) + B=X — (D +b~!) and AN B = C — b, it follows that
oo =(D+b"' —a*!,a ) (B,b)(C —b,a),

where dego| = deg(D +b~! —a*!,a~!) > deg(B, b), deg(C — b, a).
Case 7.2. ¢ #b.

As in Case 6.2, c.X > b.X. By Lemma 2.1(ii) applied to the equahtles [(A, a‘l)(u’)| =
(B, b= 1) = |u|, we get |(B\ A, b~ ") (u')| = |u|. But since c"' € B\ Aand c ¢ B\ A, we

must have b.¥ > c¢.X by Lemma 2.2, contrary to the fact c.X > b.X. Hence this case cannot
happen.

Case 8. a™!' € B and b*! € A.

Apply Lemma 2.1(ii) to the equalities [(A,a”")~! )| = |(B,b~)()| = |ul, that is,
(A, @)W')| = [(B,b~")(u')| = |ul, to obtain | (B \ A, b~")(u)| = |ul; then

oo =(B.b ) (A,a )Y =[(AnB,b7")(B\A, b H](A,a™).
Since (B\ A, b1 (A,a™ ) =(A,a ") (B\ A, b~ ") by Case 1.1.2, we have
oo =(ANB, b ") (A,a ) (B\A,b7Y).
It follows from AN B =X — (C 4+ B) and B\ A= C — b*! that
001 =(C+ B —b*,b) (A, a)(C — b b7,

where dego| = deg(C + B — b*t!, b) =deg(A, a) = deg(C — b*!, b7 1).
The proof of the lemma is now completed. 0O
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Remark. The proof of Lemma 3.1 can be applied without further change if we replace consider-
ation of a single cyclic word u, the length |u| of u#, and the total number of occurrences of xiil in
u with consideration of a finite sequence (u1, ..., u;) of cyclic words, the sum Z:”: | lu;| of the
lengths of u1, ..., u,, and the total number of occurrences of xiil in (uy,...,un), respectively.

Lemma 3.2. Let u be a cyclic word in F,, that satisfies Hypotheses 1.1 and 1.3. Let 0;, i =1,
..., £, be Whitehead automorphisms of the second type such that |o; - --o1(u)| = |u| for all i.
Suppose that max | ;¢ dego; = 1. Then there exist Whitehead automorphisms t1, 12, ..., s of
the second type such that

o¢---0201(U) =75 - 1271 (1),
where 1 > degty > degzs—y > --- >degty, and |tj---1i(u)| = [u| forall j =1, ....5.

Proof. We proceed by induction on €. The case for £ =2 is already proved in Lemma 3.1. Now
leto;,i=1,...,¢+ 1, be Whitehead automorphisms of F;, such that |o; - - - o1 (u)| = |u| for all
i and such that max¢;<¢+1dego; = 1. Then by the induction hypothesis, there exist Whitehead
automorphisms 7y, 13, ..., Ty of F}, such that

0¢410¢ - --0201(U) = 0¢41Ts - - - 1271 (1), (3.2)

where 1 > degzy >degty_1 > --->degry,and |7j---1y(u)| = |u| forall j=1,...,s.

Putt; = (Aj,a;) for j=1,...,s, and put opy1 = (B, b). If degog1 =1 or degt; =0 for
all j, then there is nothing to prove. So let degoy4+1 = 0, and let ¢ (1 <7 < s) be such that
degty, =degty_1 =---=degt, =1 and degt;—1 = --- = deg o = degt; = 0. Upon replacing
7; and o¢4+1 by (Al-, al._l) and (E, b_l), respectively, if necessary, we may assume that x; € A;
for all + <i <'s and that xlﬂEl ¢ B. We may also assume without loss of generality that (B, b)
cannot be decomposed into (B, b)(B1, b), where B = B1 + B;, deg(B1,b) = deg(B>,b) =0
and |(B1, b)ts - - T1(w)| = |ul.

Claim 1. We may further assume that ts = (As, as) cannot be decomposed into (Asz, as)(As1, ds),
where Ay = Ag1 + Ay, deg(Asly as) =0, deg(ASZa as) =1, [(As1,a5)Ts—1 - T1 ()| = |ul, and
aiil ¢ Ag1 foralli witht <i <s.

Proof. Suppose that 75 can be decomposed in the same way as in the statement of the claim.
Then continuously applying Case 1 or Case 4 of Lemma 3.1 to (A1, as)Tg—1 - - T; at most 1 +
24224 ... 425! times (here, note that if s = ¢, we do not need to apply Lemma 3.1), we get

/ /
(As1,a))Ts—1 T =T;_q -+ T,&p - &1,

where ‘L";_l, ..., 7/ are Whitehead automorphisms of degree 1 and €p, ..., & are Whitehead
automorphisms of degree 0, so that

(B,b)ts -1+ T1(u) = (B, b) (A2, as) Ty - T €p - €1T1—1 - - T1 (U), (3.3)

where the length of u is constant throughout both chains. We then replace the chain on the right-
hand side of (3.2) with that of (3.3). O
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We consider three cases corresponding to whether or not b = xftl .

Case 1. b # xf—Ll.

For all i with t <i <s, either b*! A; or p*! ¢ A;,sincedegt; = 1. If afl € B, then the re-
quired result follows immediately from Case 5 or Case 8 of Lemma 3.1 applied to (B, b)t;.
So let aF! ¢ B. If b*! ¢ A; and A; N B = ¢, then by Case 1.1.2 of Lemma 3.1 we have
(B,b)ts = 14(B, b). Also if b*! € A; and B C A;, then Case 4 of Lemma 3.1 yields that
(B, b)ty = 14(B, b). Hence, in either case, we have

B,bD)ts--7-11(w) =17(B,D)T5—1 -7 - T1 (W)

then the desired result follows by induction on s — 7. Now suppose that either both b*! ¢ A, and
Ay N B # @ or both b*! € A and B ¢ A. We argue two cases separately.

Case 1.1. a' ¢ B,b*! ¢ Ay and A;N B #0.
By Case 1.2.3 of Lemma 3.1, we have (B, b)ty = (A5 \ B, a5)(B, b)(As N B, ay); thus
B,D)tg-- 1+ -T1(w) = (A \ B,ag)(B,b)(A; N B, ag)ts_1 -+ -7+ 11 ().

By Claim 1, there is j with r < j < s such that atle As N B. Let r be the largest such index.

First suppose that there exists a chain 1, - - - n1 of Whitehead automorphisms n; = (G, g;) of
degree 1 with gl.jEl ¢ B,Gi C Ayand G; "B =@ suchthat |n;---n7s---11(0)| = |u| foralli =
1,...,m and such that |(H, ar_l)nm <o+ Ts -+ - T1 ()] = |u| for some Whitehead automorphism
(H, ar_l) of degree 1 with H C A;. Then

(B, b)ts---t1(u) = (B, bY)ny " - -5+ 71 ()

= nfl -~-n,,_11(B,b)nm - M Ts---T1(w) by Case 1.1.2 of Lemma 3.1.

Put v = 9y - M T+ 71 (u). By Lemma 2.1(ii) applied to [(B,b™")(v)| = |(H,a; ) (v)| =
lu|, we have |(B \ H,b~")(v)| = |u|. It follows from B\ H = ¥ — (B U H) — b*! that
[(BUH, b)(v)| = |ul, so that

B, byt =n; " n, (H\ B, b~ ) (BUH, by -ty - 11 (1),

where deg 771._1 =deg(H \ B,b~!) =deg(B U H, b) =degn; = 1, as required.

Next suppose that there does not exist such a chain 7, --- 11 as above. Considering all the
assumptions and the situations above, we can observe that this can possibly happen only in the
case where all of a; and a;] that are lost in passing from 74_1 - - - 71 (1) to T - - - T1 () were newly
introduced in passing from 7,1 --- 71 (1) to 74 - - - 71 (1) for some r < g < s, and where for such
7y = (Ay, as_l) (here note that a, = as_l),

(B, b)Ts -7+ 71 (1)
= (B,b)(As\ B,as)Ts—1 - Tg+1(Ag \ (As N B),ay ) tgmi -1 - 11 (),
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where the length of u is constant throughout the chain on the right-hand side. It then follows
from Case 1.1.2 of Lemma 3.1 applied to (B, b)(As \ B, ay) that

(B,b)ts -7+ 11(u)
= (As\ B,ay)(B,b)Ts—1 -+ Tgq1(Ag \ (As N B),ay )ttt -+ 71 ().
Then induction on s — ¢ yields the desired result, which completes the proof of Case 1.1.
Case 1.2. aF' ¢ B, b*!' € A; and B ¢ A;.
In this case, replace t; by (A,-, a; 1) for all ¥ < i < s and then follow the arguments of Case 1.1.
Case 2. b = x.
We divide this case into two cases according to whether X! € B or not.
Case 2.1. af!' € B.
In this case, we have by Case 7.1 of Lemma 3.1 applied to (B, x1)7s that
(B, x1)Ty - ti(w) = (B\ A +x; ' —aF' a7 ) (B, x))(Ag \ B —x1,a9)t-1 - 1i(u). (3.4)
Here if A\ B — x| =, then
(B, x)Ts- 1+ T1(0) = (B \ Ay —i—x]_l —a;tl,a;l)(B,xl)rs_l ey ey (1)

hence the desired result follows by induction on s — ¢.

So let Ay \ B — x| # #. By Claim 1, there is j with 7 < j < s such that ajﬂ € A\ B —x1.
Let r be the largest such index. The following Claims 2—4 show that we may assume that a,, a;
and x belong to distinct connected components of the dependence graph I, of u.

Claim 2. a, and x| belong to distinct connected components of T,.

Proof. Suppose on the contrary that a, and x; belong to the same connected component Cj. Put
W = {«: « is a Whitehead automorphism of degree 0 such that |« (v)| = |v| = |u| for some v €
Orbau £, )}. Then by (3.4), (As \ B — x1,a5) € W and (B, x1) € W. Since x*' ¢ A;\ B — x
and a,il € Ay \ B — x1, we see from the construction of I, that a; also belongs to Cy and that
every path from a, or a, Uto x1 or X, ! passes through ag or a; I Also since arﬂ ¢ B and
a;“ € B, every path from ay or a "to a, or a, ! passes through x| or xl_l, which contradicts the

above fact that every path from a, or a, "'to xy or X ! passes through a; or a; Lo

Claim 3. We may assume that a; and x| belong to distinct connected components of I,.
Proof. Suppose that a; and x| belong to the same connected component C;. First consider the

case where there exists a chain ¢ - - - {; of Whitehead automorphisms ¢; = (E;, ¢;) of degree 1
with eiil € Band E; C (B+xp)suchthat & ---¢1Tg--- T1(u)| = |u| foralli =1, ..., k and such
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that |(H, a;‘)gk -+ 81 Ts -+ - 71 ()| = |u| for some Whitehead automorphism (H, ar_l) of degree 1
with H C Ay. Then

(B,x))T - 1i() = (B,x)¢y -4 G Q1T - T (u)
=pr--Pp1(B,x1)¢k -+ 1T ---T1(u) by Case 7.1 of Lemma 3.1,

where p; = (B\ Exs1-i +x7 ' — e} epbi ) fori=1,... k. Putv=_{ 1751 (0).

Then |(B,x)()| = [(H,a7")()| = |u|, that is, |(B,x)@)| = [(H,a,)(v)| = |u]. By
Lemma 2.1(ii) applied to these equalities, we have |(H \ B, a,)(v)| = |u|, so that

|(H + (H\ B), a;)(H,a, ') City - 11 @)| = Jul.
It then follows from H + (H \ B) = X — (B \ H) — a*' that
(B\H.a;")(H,a; Yo+ 175 - T1()| = Jul.

This implies that (B \ H, a, 'y € W, where W is defined in the proof of Claim 2. Since aiﬁl €
B\ H and xfﬂ ¢ B\ H, a, must also belong to C; by the construction of I';,, which contradicts
Claim 2.

Next consider the case where there does not exist such a chain ¢ - - - £1 as above. Considering
all the assumptions and the situations above, we can observe that this can possibly happen only
in the case where all of a; and a;‘ that are lost in passing from ts_1 - - - 71 (1) to 7y - - - 71 () Were
newly introduced in passing from 7,1 --- 71 (1) to 7, --- 71 (1) for some r < g < s, and where
for such 7, = (44, as_l) (here note that a; = as_l),

(B, x)t5- -7 - -11(u)
= (B, x1)(As N B,a))Ts—1 - Tg41(Ag \ (Ag \ B),a; N tymt -1 - 11 (w),

where the length of u is constant throughout the chain on the right-hand side. It then follows
from Case 7.1 of Lemma 3.1 applied to (B, x1)(As N B, ay) that
(B, x1)Ts -7+ T1 (1)

_ -1 +1 -1 -1

= (B \ A +x, —ag . ag )(Bv X)Ts—1"- Tq—'rl(Aq \ (A5 \ B), A )Tq—l st T (U).

So in this case, apply induction on s — ¢ to get the desired result of the lemma, which completes
the proof of Claim 3. O

Claim 4. a, and as belong to distinct connected components of T,.

Proof. Suppose on the contrary that a, and a; belong to the same connected component. Note
that a,il ¢ B, af] € B and that (B, x1) € W, where VW is defined in the proof of Claim 2. It
then follows from the construction of I, that a; and x; must belong to the same connected
component, which contradicts Claim 3. O

Solet Cq, C,» and Cy be the distinct connected components of [}, containing x1, a,, and a; in
that order. Here notice that C; consists of only xlil , since there exists a Whitehead automorphism
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(Ag, as) of degree 1 such that a; ¢ C; and such that |(As, as)(v)| = |v| = |u| for some v €
Orbaut F, () (see Remark (iii) in the introduction).
Putu=t_1---11(00).

Claim 5. We may assume that t;tj = t;7; forall 1 <i#j <t —1.

Proof. Put M = {v: v=¢ () and |v|c; = |ulc; forall i =1,...,n, where ¢ is a chain of
Whitehead automorphisms of degree O throughout which the length of u is constant}. Taking an
appropriate v € M, we have Whitehead automorphisms 6; = (D}, d;) of F, of degree 0 such
that

up =96p---61(v), 3.5

where [6;---81(v)| = |v| and |5; - - '51(U)|ij > |v|c,. for the connected component Ck_/. con-
taining d; and for each j =1,...,h. Then for any §; = (D;,d;) and §; = (D;,d;) with
dj # dl.il, if we replace §; and §; with (l_),-, dl._l) and (Dj, d/._l), respectively, if necessary so that
afl.jEl ¢ Dj and d]j.El ¢ D;, then D; N D; = @. Hence by Case 1.1.2 of Lemma 3.1 that §,;6; = §;6;;
thus (3.5) can be re-written as

qpt, J q
ui z(sp‘[’pp ...5211‘ ...51;1’1 8T (v), (3.6)
here dy; = di and Dy; % D ided i £ 1'; dp; £ dE" and (5% ... %1y (sT L sB1y =
where dij = dii and Dy; # Dyir provided i #i'; dii # dy;- and (8, 7 -+ 8,7 ) (8" -+ 8p) =
qaK't,, / .
(SZZ" ~--5,€§’)(8ka:’/‘ ---841) provided k # k. Here we may assume by Case 1.2.1 of Lemma 3.1

that Dy; C Dy, if i < i’. Then 8;/8x; = 8;i8ki» by Case 1.2.1 of Lemma 3.1; hence 88 =
ki dxiv for any 8x; and &7 in chain (3.6). Thus replace t;_1 - - - T1 (1) with the right-hand side of
(3.6) to get our desired result. O

By Claim 5, we may write
U =71 TpTp—1---T1(1),

where 7; has multiplier in C,» provided p <i <t — I; 7; has multiplier not in C,» provided
1<i<p—1.Put

U =1Tp—1-"- ‘[1(14).
Note that the number of C,s-syllables of 4 remains unchanged throughout this chain.

Claim 6. There exist Whitehead automorphisms & = (E;j,a;), t < i < s, such that
lej - -e;(ua)| = |u| foralli =t,...,s, where E; =0 provided a; € C,/; E; is one of the three
forms A;, A; + C,» and A; — C,1, whichever is smallest possible with priority given to lower i,
provided a; ¢ C,.

Proof. Suppose the contrary. It can possibly happen only when the number of C,/-syllables of
u is decreased by 7 ---17,7;—1 - -- T, (for some j > t) followed by a chain of Whitehead auto-
morphisms of degree 0 with multiplier in C,/, where the length of u» is constant throughout the
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chain. Choosing the smallest such index j, put {ji, ..., jr} = {i: t <i < j and 7; has multiplier
in C,v}. Then we can observe that there is a chain &, - - - {1 of Whitehead automorphisms of de-
gree 0 with multiplier in C,» such that |, --- {17, - -~ Tj; Tr—1 - - Tp(u2)| = |u2| and the number
of C,s-syllables of &, - - - £1Tj -+ - Tj; Tr—1 - - - Tp(u2) is less than that of u5. This is a contradiction,
because through the chain &, ---¢17j, -+ - Tj; 74—1 - - T only Cy-syllables and C,--syllables can
mix and increasing the number of Ci-syllables cannot reduce the number of C,--syllables. O

For the chain & - - - &/, we consider two cases separately.
Case 2.1.1. |(B,x1)&g & (up)| = |ul.

For the Whitehead automorphisms 6; = (D;, d;) (p <i <t), where D; = A; \ B and d; = a;
provided xfﬂ ¢ Aj; D = A; \ B and d; = al._l provided xlil € A;, and for the Whitehead
automorphisms w; = (Fj,atjrls_j) and v; = (Hj,a;) (t < j <), where F; =) provided
arys—j € Cp+ B; Fj = E; s ; \ B provided a;y5_; ¢ Cv + B; H; = () provided a; € B;
H;=A;\ B provided a; ¢ B, we have

(B, x)Tg -+ T1(u) = Vs -+ Vb1 -+ Spwg - - (B, x ) - &1 Tp—1 - T1(u),  (3.7)

where the length of u is constant throughout the chain on the right-hand side. By Case 1, it suf-
fices to consider only the chain (B, x1)&; - - - &Tp—1 -+~ 71(1). Since for every j either dege; =1
or ¢; = 1 and since ¢, = 1, the desired result follows by induction on s — ¢ from (3.7).

Case 2.1.2. |(B,x1)&g---&(up)| > |ul.

We see that this case can possibly happen only when the cyclic word ¢; - - - &;(#2) contains a
subword of the form (x;w w2w3)9, where 0 = £1, wy (w1 may be the empty word), wy and w3
are words in B, C,» and Cy/, respectively, and not all of the letters in w3 were newly introduced
in passing from u to & - - - & (uz).

By Claim 5, we may write

U =71 TqTqg—1---T1(1),

where 7; has multiplier in Cy provided ¢ < i <t — 1; t; has multiplier not in Cy provided
1<i<qg—1.Put

U3 =T174-1---71 (u)
Notice that the number of Cy/-syllables of u remains unchanged throughout this chain.

Claim 7. There exist Whitehead automorphisms A = (Ji,a;), t < i < s, such that
(Ao Am3)| = |u| foralli =t,...,s, where J; =@ provided a; € Cy; J; is one of the three
forms A;, Aj + Cy and A; — Cy, whichever is largest possible with priority given to lower i,
provided a; ¢ Cy.

Proof. Suppose the contrary. In view of all the assumptions and the situations above, this can
possibly happen only when the number of C,/-syllables of u3 is decreased by 7;--- ;7,1 -+ - 74
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(for some j > t) followed by a chain of Whitehead automorphisms of degree O with multiplier
in Cy, where the length of u3 is constant throughout the chain. Choosing the smallest such
index j, put {ji,..., jx} ={i: t <i < j and 7; has multiplier in Cy}. Then we can observe
that there exists a chain §,, - - - §; of Whitehead automorphisms of degree 0 with multiplier in
Cy such that [6,, --- 81T, -+ Tj Tr—1 - - - Tg(u3)| = |u|, and such that the number of Cy -syllables
of 8y -+ 81Tj, -~ Tj Tr—1 - T4(u3) is less than that of u3. Reasoning as in Claim 6, we get a
contradiction, which completes the proof of Claim 7. O

We then see that |(B, x1)As - - - A;(#3)| = |u|. Furthermore, for the Whitehead automorphisms
8 = (Di,d;) (g <i <t), where D; = A; N B and d; = a; provided xi™' ¢ A;; D; = A; N B
andd; =a; ! provided xftl € A;, and for the Whitehead automorphisms w; = (K, a;45— ;) and
vj = (Hj,a;") (t < j <s), where K; =0 provided a5 ¢ B— Cy; Kj = B\ Jiys—j +
xl_l —atiJrlsfj provided a; s j € B—Cy; Hj =@ provideda; ¢ B; Hi =B\ A; +x1_1 —ajtl
provided a; € B,

(B, x)Ts - T1(u) = V- V81 - - Sqg -y (B, XA - Ay Tg—1---T1 (),  (3.8)

where the length of u is constant throughout the chain on the right-hand side. By Case 1, it suf-
fices to consider only the chain (B, x{)As--- A, 741 --- 71 (u). Since for every j either deg; =1
or ; = 1 and since A; = 1, the desired result follows by induction on s — ¢ from (3.8). This
completes the proof of Case 2.1.2.

Case2.2. af' ¢ B.

In this case, replace (B, x1) and 1; by (B, xl_l) and (A;, al._l) for all r < i < s, respectively,
and then follow the arguments of Case 2.1.

Case 3. b =x1_1.
Replace (B, xl_l) by (B, x1) and then repeat the arguments of Case 2. [

Remark. The proof of Lemma 3.2 can be applied without further change if we replace consider-
ation of a single cyclic word u, the length |u| of u, the total number of occurrences of xtlin u,

and the C;-syllable length |u|c_/, with consideration of a finite sequence (u, ..., u;) of cyclic
words, the sum Zl’-"zl |u;| of the lengths of uy, ..., u,, the total number of occurrences of xjj.tl
in (u1,...,uy), and the sum Zf”zl |u; |C.,~ of the Cj-syllable lengths of uy, ..., u,,, respectively.

We are now in a position to prove Theorem 1.4.

Proof of Theorem 1.4. The proof proceeds by double induction on £ and r, where ¢ is the
length of the chain oy - - - 0201 and r = max; ;¢ dego;. The base steps were already proved in
Lemma 3.1 (the case for £ =2 and any r) and Lemma 3.2 (the case for » = 1 and any ).

Let ;7, i =1,...,£ +1 (£ + 1 > 3), be Whitehead automorphisms of F, such that
loj ---o1(m)| = |u] for all i =1,...,£+ 1 and such that max;g;<¢+1dego; =r + 1> 2. By
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the induction hypothesis on ¢, there exist Whitehead automorphisms 71, 72, ..., Ty of F;, such
that

Opy10¢---0201(U) =0p41Ts -+ 12T (U),

where r +1 > degzy > degt, 1 > --- >degty,and |7j-- -7y ()| = |u| forall j =1,...,5s.

If either degoy4+1 =r + 1 or both deg 7y < r and deg o4 > r, then there is nothing to prove.
Also if deg t; < r and degoyy| < r, then we are done by the induction hypothesis on . So let ¢
(1<t <s)besuchthatdegt; =7+ 1 provided r <i < s and degt; <r provided 1 <i <#, and
letdegoypy) <.

Put 7; = (Aj,aj) for j =1,...,5 and o441 = (B,b). Upon replacing 7; and o¢41 by
(Ai, ai_l) and (B, b_l), respectively, if necessary, we may assume that x| € A; forallr <i <s
and that xrﬁl | ¢ B. We may also assume without loss of generality that (B, b) cannot be decom-
posed to (B>, b)(B1, b), where B = By + B and |(B1, b)tg - - - t1(u)| = |u|. We may further as-
sume as in Claim 1 of Lemma 3.2 that 7, = (Ay, a5) cannot be decomposed to (A2, as)(As1, as),
where Ay = A1 + Ao, deg(Ayg1, a5) <1, deg(As2,a5) =1 + 1, [(As1, a5)Ts—1 - - 1 ()| = |ul,
and @' ¢ Ay forall i with 7 <i <.

There are three cases to consider.

Case 1. b = x;.

If a,-il ¢ B for all r <i < s, then continuous application of Cases 1-4 of Lemma 3.1 to
(B,x1)Tg -+~ 7, atmost 1 +2+22+ ... 42577 times together with the induction hypothesis on r
yields the desired result. The following claim shows that it is indeed true that a;*' ¢ B for all
r<i<s.

Claim. a;*' ¢ B forall t <i <s.

Proof. Suppose on the contrary that aiil € B forsome t <i <. Firstlet asil € B.Ifeither x; €
Agorx; lea s but not both, then we have a contradiction by Cases 6.2 and 7.2 of Lemma 3.1,
sincedegty, =r+12>2.1If xllLl € Ay, then by Case 8 of Lemma 3.1,

(B, x1)(Ays, a5) = (A; U B — x3' x1) (A, a5) (A \ B —xF 1),
but the existence of (A \ B — xlil Xy ]) in this chain contradicts Lemma 2.2, because x,41 €
As\ B —xf“ and xrjrll ¢ Ag\ B — xlﬂ. IfxljEl ¢ Ay, then by Case 5 of Lemma 3.1,
(B.x1)(As. a5) = (As \ B.x7 ') (As, a5) (Ag U B, x1),

but the existence of (Ay U B, x1) in this chain also contradicts Lemma 2.2, since x,4+1 € A; U B
and x;ll ¢ A; UB.

Next let a;tl ¢ B. Suppose that ¢;*! € B for some t <i < s. Let k be the largest such index.
Putv=1_1---11(u). If x; € Ay and xl_l ¢ Ay, then we can observe based on all the assump-
tions and the situations above that there exists a Whitehead automorphism (F, x;) of degree
r + 1 with (B U Ay — x1) € F such that |(F, x1)tx(v)| = |u|. But this yields a contradiction to
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Lemma 2.2, since x,41 € F and xrjrll ¢ F. For a similar reason, the case where x| ¢ Ay and

xl_l € Ay cannot happen, either. So A; must contain either both of xlﬂ or none of xfd.

If there exists a chain ¢, ---¢; of Whitehead automorphisms of degree less than or equal
to r + 1 such that [(B, x()t&p - - &1(W)| = |twlp - - -1 ()| = [&p - - £1 (V)| = |u|, then as in the
case where a;tl € B we reach a contradiction. Otherwise, choose chains ¢, ---¢1 and wy - - - w1
of Whitehead automorphisms of degree less than or equal to r + 1 with ¢ smallest possible
such that |w; -+ @1y -+ £1 (V)] = [Telp -+ E1 (V)| = - 1 (V)] = |u] for all j=1.....q.
and such that [(B, x))wg - - - 017Tk&p -+ - £1(v)| = |ul. Clearly g < s — k.

Put w; =(Gj,gj) for j=1,...,q. If fo ¢ Ak, then we see from the choice of k and the
chain @, - - - w1 that glﬂEl ¢ Ag. We also see that for the Whitehead automorphisms y; = (H}, g;),
j=1,...,q, where H;j = G; \ Ay provided akil ¢ G;; Hi = G; U Ay provided akjEl €Gj,
(B, x1)Vq - vitk&p -1 = |yj - vitp---C1(w)| = |u| for all j =1,...,q. Then by
Case 1.1.2 or Case 5 of Lemma 3.1, we have yitx = txy1, which means the chain y, ---y2
of shorter length has the same property as wj, - - - w1 does, contrary to the choice of the chain
wy oy If xljtl € Ag, replace 1 by (Ag, a,:l). Then we get a contradiction in the same way,
which completes the proof of the claim. 0O

Case 2. b =x1_1.
Repeat similar arguments to those in Case 1.

+1

Case3.b # x| .

Let p (1 < p <1t)be such that degt; =0 provided 1 <i < p;degt; > 1 provided p <i <.
As in Claim 5 of Lemma 3.2, we may assume that 7;7; = t;7; forall 1 <i # j < p. So there
exists ¢ with 1 < g < p such that t; has multiplier in C; provided 1 <i < ¢; t; has multiplier
not in Cp provided ¢ <i < p.

Put w = 74_1---71(4). Notice that C;-syllables remain unchanged throughout the chain
Ty—1--- 71 forall i > 2. Write

W= y1u1ysuz - - - Ymiy, without cancellation, (3.9)
where for each i = 1,...,m, y; = x1 or y; = x;l, and u; is a (non-cyclic) subword in
{x2, ..., xn}il. Let F}, 43 be the free group on the set

(X1, s X,y X1, X2n41, X3n411)-
From (3.9) we construct a sequence V, = (v1, v2, ..., vy) of cyclic words vy, va, ..., Uy, in Fjyy3

with Z?:l |vj| = 2|u|, where m is the total number of occurrences of fo in u, as follows: for
each j=1,...,m,

if yj =x1and y; 11 =x1, then v; =x1ujx3n+1u;l;

if y; =x;1 and y;;1 =x1, then v; =xn+1“jx3n+1ujf1;
ify; =x;and yj 41 :xl’l, then v; =xlujx2n+1u;1;

if y; =xf1 and yjq1 :x;l, then v; =xn+1MjX2n+1u;1,

where Ym+1 = Y1
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Put I = {xl,xn+1,xzn+1,x3n+1}il. From now on, when we say that (S, s) is a Whitehead
automorphism of Fj, 3, the following restrictions are imposed on S and s:

(1) s €{xy, ...,xn}il.
(2) S satisfies one of (i) I C S; (i) INS = {xl,xzn+1}i1; i) INS = {xn+1,X3n+1}i1;
vy INnS=40a.

Then we can prove the following claim.

Claim 1. For each Whitehead automorphism t© = (A,a) of F, such that a # xlil and
|T(w)| = |w|, there exists a Whitehead automorphism o of F,4+3 such that 27:1 le(v;)| =

Z;":l [v;| and o (Viy) = Vi (wy).

Proof. Given a Whitehead automorphism t = (A, a), we define a Whitehead automorphism «
of Fy43 as follows: If xlil €A, thena=(A+ xnﬂl + xzin]H + xilﬂ,a); if only x1 € A, then
o= A+x"+x3!  a)ifonlyx; € A thena = (A —x; ' +x,) | +xil L anifxf! ¢ A,
then o = (A, a).

Then each newly introduced letter x,il in passing from w to 7(w) that remains in t(w) pro-
duces two newly introduced letters xrjEl in passing from V,, to «(V,) that remain in o(Vy,),
and vice versa. Also each letter xril in w that is lost in passing from w to t(w) produces two
letters x;tl in V,, that are lost in passing from V,, to a(V,,), and vice versa. This yields that
S el =Y Jvjl-

Moreover it is clear that «(Vy) = V(). O
The following claim is a converse of Claim 1.

Claim 2. For each Whitehead automorphism a = (S,s) of F,4+3 such that ZT:I la(vj)| =

Z';’:l |vjl, there exists a Whitehead automorphism t = (A,a) of F, such that a # x?ﬂ,
|z (w)| = |w| and such that a(Vyy) = Ve (w).

Proof. Given a Whitehead automorphism @ = (S, s) of Fy, 43, put 7 = S\ /. And define a White-
head automorphism t of F,, as follows: T = (T + xftl,s) provided I € S; © = (T + x1,5)
provided I N S = {x1, x2,,+1}i1; t=(T +x1_1, s) provided I NS = {x,+1, x3n+1}i1; t=(T,s)
provided / N S = . Then reasoning in the same way as in Claim 1, we get a desired result. O

For each ; = (A;, a;), g < i < s, define a Whitehead automorphism «; of F;,13 as in Claim 1.
Also as in Claim 1, define a Whitehead automorphism g of F, 3 from oy4| = (B, b). Then we
have 27’:1 |Botg -+ otg (V)] = 27:1 IR ACHIES Z’;’:l lvj| foralli =gq,...,s. Moreover,
by the construction of ¢; and g, the Whitehead automorphisms «; and 8 of F; 3 are of degree
at most » 4 1, and each of defining sets of «; and B contains either both of xlﬂEl or none of xlil.
This yields the same situation as for a chain of Whitehead automorphisms of F,3 of maximum
degree r.

Here we notice from Claims 1 and 2 that if I, consists of g connected components, then either
I'y,, consists of g+ 1 connected components such that C; equals C; of I', for all C;’s of I'y, with
C; # Cyand C; # Cy41, Cy equals Cy of I, plus xzinlJr] , and such that C,, 1 = {x,41, X3n+1}il;
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or I'y,, consists of g connected components such that C; equals C; of I, for all C;’s of I'y, with
C; # C1 and such that C; equals Cp of I, plus {x,+1, Xon+1, X3n+1 }il.

The sequence V,, = (v1, ..., vy) satisfies neither Hypothesis 1.1 nor Hypothesis 1.3. How-
ever, this fact does not affect the proof of the base steps of the induction (that is, Lemmas 3.1
and 3.2) for the following four reasons: first each of the Whitehead automorphisms «; and
B has multiplier only in {xs, ..., x,}*!; second only the proof of Case 2.1 of Lemma 3.2 is
concerned with the C;-syllable length, but in the proof of Case 2.1 a, or a; cannot belong to
the connected component Cy of I'y, (in fact, if a, or as belonged to Cy, such a situation as
Case 2.1 could not occur); third Claim 5 holds for V,, by replacing M with the set {¢(Vy,): ¢ is
a chain of Whitehead automorphisms of degree 0 throughout which the length of V,, is constant,
¢ (Vw)lc; = IVl forall C; with C; # Cq, and [¢(Vy)|c; < ¥ (Vw)lc, for every ¥ which
has the same property as ¢}; finally the same arguments as used in Claims 6 and 7 in Case 2.1 of
Lemma 3.2 are valid for V,,, since Hypothesis 1.3 holds for V,, if we only consider C;’s of I,
such that x| ¢ C; and x,,+1 ¢ C.

This observation allows us to apply the induction hypothesis on 7 to Boy - - - oy (V). Hence,
there exist Whitehead automorphisms y1, 3, ..., s of F,4+3 such that

Bas-ag(V) =y v2y1(Va), (3.10)

where r +1 > degy;, > degyn—1 > --- > degy; (here note that there is no y; of degree 1), and
Z?I:l lyi- (vl = ZT:I lvj| foralli=1,...,h.

As in Claim 2, from each y; we define a Whitehead automorphism ¢; of F},. Let k be such that
deg¢; < 1 for 1 < j <k and deg¢; > 2 for k < j < h. Since Bos -+~ 0g(Viy) = Vo701, (w)
and yp, - - - V21 (V) = Vi-t02, (w)» We have by (3.10) that

O¢+1Ts - "Tq(w) =&n 061 (w),

where r + 1 > deg¢y > deglp—1 = -+ >degly =22, and |§;--- &1 (w)| = |w| fori =1,...,h.
Applying the base step for » =1 (that is, Lemma 3.2) to {y_1---{174—1 - - - T1 (1) completes the
proof of Case 3. O

4. Proof of Theorem 1.5

The aim of this section is to prove Theorem 1.5. For a cyclic word w in F,,, let Nx(w) denote
the cardinality of the set £2; (w) = {¢(w): ¢ can be represented as a composition 7 - - - 71 (s € N)
of Whitehead automorphisms t; of F,, of degree k such that |z7; ---71(w)| = |w| for all i =
1,...,s}. Then bounding N (u) reduces to bounding each N (), which is shown in the proof
of Theorem 1.5 using the result of Theorem 1.4. In Lemma 4.1 we bound Ng(u). In Lemma 4.2
we show that Ny (u) for k > 1 is at most No(V,,), where V,, is a certain sequence of cyclic words
constructed from u, thus bounding Ny (u) for k > 1.

Lemma 4.1. Let u be a cyclic word in F,,. Then No(u) is bounded by a polynomial function of
degree n — 2 with respect to |u|.

Proof. Let m; be the number of occurrences of xl.il inu fori =1,...,n. Clearly

No(u) < No(x;'“x;"z . -x’"").

n
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So it suffices to show that No(x|"' x5 -+ x,") is bounded by a polynomial function of degree
n — 2 with respect to |u|. For a cyclic word v in F;,, define |v|s as

n
ls=Y_lvlg;.

i=1

Notlng that |x{"'x5"% - x,"|s = n, put M = {v: |v|y =n and v = 2o(x]"' x5+ x,")}, and
={v: |v|y >n and v=0Q0(x]"' x5+ -x,™)}. Obviously the cardinality of M is (n — 1)!.

For the cardinality of £, letv € L',. Taking an appropriate u” € M (note that u’ can be chosen as

follows: Write v = x, wlxk2 wz - Xk, Wp (without cancellation), where w; is a (non-cyclic) word

in {xk,, ..., xg}; then u' = xk x,zkz . -x,':lk” ), we have Whitehead automorphisms 7; = (A, a;)
of F, of degree O such that

v="15---11(), 4.1
where |7;---11(u')| = |u'| and |z --- 71 ()]s > |Tj—1--- 11 (u')|s forall j =1,...,s. Then for

any T, = (A;,a;) and 7; = (A;,a;) with a; ;éail if we replace 7; and 7; by (A,,a_l) and
(Aj, a; b, respectively, if necessary so that a ¢ Aj and at ¢ Aj, then A; N A; ={. Hence
by Case 1.1.2 of Lemma 3.1 that 7;7; = 7; 7} thus (4.1) can be re-written as

_ rtp 9qp1 911y q11
V=Tp, Ty Ty W, “4.2)
. ., 9K’y 4k
where ay; = ak,-r and Ay; # Ay providedi #i'; ay; # akiil and (tk, K. ,3"1/1)( ktk’k el =

rik

(¢

that Agi C Ak,/ 1fz < i’. Then 14;: ki = ti T by Case 1.2.1 of Lemma 3.1; hence ;T =
Tk Ty for any t; and 17 in chain (4.2).

q“ (T k’ t , rk," ") provided k # k’. Here we may assume by Case 1.2.1 of Lemma 3.1

Claim. The length of the chain of Whitehead automorphisms on the right-hand side of (4.2) is at
most n — 2 without counting multiplicity, that is, Z{;l i <n-—2.

Proof. The proof proceeds by induction on the number of subwords of u” of the form xl.mi which
are fixed throughout chain (4.2). For the base step, suppose that u’ has two such subwords x:'ll !
and x;Zrz (note that ' must have at least two such subwords). The cyclic word u’ can be written
as u' = x:’f” w (without cancellation), where w is a non-cyclic word that contains xmi for all
i # r1. Upon replacing 7;; by (A,], a;; ) if necessary, we may assume that x lg A;j for all r,,

in chain (4.2). Then the length of w is constant throughout the chain and only the subword x,2

of w is fixed in passing from w to rzf;p - tz‘l’ Lo thlllt‘ -+-7{{" (w). It follows that the length of
this chain is precisely (n — 1) — 1 = n — 2 without counting multiplicity. So the base step is done.
Now for the inductive step, suppose that 1’ has k subwords of the form xm’ which are fixed

throughout chain (4.2), say x,l LU ,k . Write the cyclic word u’ as u’' = x:':” w (without

cancellation), where w is a non-cyclic word that contains xmi for all i # r1. As above, upon
replacing 7;; by (A; T Dy if necessary, we may assume that x L'¢ A ; for all 7;; in chain
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’ my . .
(4.2). We then have that only the subwords x:; 2, ..., Xy © of w are fixed in passing from w to
th;p . r;]‘l’ Lo rftlltl -+-7{!' (w), where the length of w is constant throughout the chain.

Let (w) be the cyclic word associated with w. If none of 7;; in chain (4.2) is of the form either
(2 —xit = xFh xg) or (F — ! — xg! x 1), then chain (4.2) can be applied to (w) with
7jj # 1 on (w) for every 7;; in the chain. Then by the induction hypothesis applied to (w), the
length of the chain is at most (n — 1) — 2 = n — 3 without counting multiplicity, as desired. If one
of 7;; in chain (4.2) is of the form either (X' — x;'ltl — x;,tl, Xg) or (¥ — x;fl — x;,“, xg_l), then
we see that there can be only one of 7;; of such a form, so that chain (4.2) can be applied to (w)
with only one 7;; =1 on (w). This together with the induction hypothesis applied to (w) yields
that the length of chain (4.2) is at most (n — 1) — 2 4+ 1 = n — 2 without counting multiplicity, as

required. O

Obviously each multiplicity ¢;; is less than the number of aii.1 occurring in u, so less than |u|.
This together with the claim yields that the total number of chains of Whitehead automorphisms
with the same properties as in (4.2) is less than ( niz) lu|"~2, where r is the number of Whitehead

automorphisms of F, of degree 0. Thus the cardinality of £ is less than (n — 1)!(n12) lu"~2, and
therefore

No(x("' x5 - x) = #M+H#L < (n = D! + (n — 1)!( ' 2)|u|"—2,
.

which completes the proof the lemma. O

Remark. The proof of Lemma 4.1 can be applied without further change if we replace considera-
tion of a single cyclic word u, the length |u| of u, and the total number of occurrences of xjﬂ.El inu

with consideration of a finite sequence (ui, ..., un) of cyclic words, the sum Y /., |u;| of the
lengths of uy, ..., u,, and the total number of occurrences of xfl in (uy,...,un), respectively.

Lemma 4.2. Let u be a cyclic word in F, that satisfies Hypothesis 1.1. Then for each k =1,
...,n — 1, Ni(u) is bounded by a polynomial function of degree n + 3k — 2 with respect to |u|
(note that k is at most n — 1 by the remark after Lemma 2.2).

Proof. Let m; be the number of occurrences ofxl.il inufori=1,...,n,andlet {; = Zﬁ:] m;
fork=1,...,n— 1. Write

u=yiu1ysus---ye g, without cancellation, 4.3)

where foreachi =1,..., 4, yi=xj ory; = X; ! for some 1 < j <k, and u; is a (non-cyclic)

subword in {xg4+1,..., xn}il . Let F,, ;3¢ be the free group on the set

(X1, oo X0, X1 o e Xy X204 15+ o> X204k X3n415 « - - > X3n4k -

From (4.3) we construct a sequence V,, = (vy, ..., vg,) of cyclic words vy, ..., vg, in Fj 3¢ with
Zf’;l |vi| = 2|u| as follows: foreachi =1, ..., ¢,
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if y; = x; and y; 41 = x, then v; =x]-u,~X3n+j/uf1;

if y; =x;1 and y;j 1 =xj, then v; =x,1+ju,-x3n+j/u;1;

if y; =x; and y; 11 =xj_,1, then v; =xjuix2n+jfui_l;

if y; :)cj_l and y; 11 :xj_,l, then v; :xn+juixzn+j/ui_l,
where yg+1 = y1.

Claim. For each Whitehead automorphism o of F,, of degree k such that |o (u)| = |ul|, there
exists a Whitehead automorphism t of F,y3i of degree 0 such that Z s ltu)l = Zf"zl [vi
and t(Vy) = Vo).

Proof. Let o = (S, a) be a Whitehead automorphism of F;, of degree k such that |o (u)| = |u].
Upon replacing o by (S,a~"), we may assume that o = (S, x,). Note by Lemma 2.2 that the
index r is bigger than k, since dego = k. Put S=T + P+ Q,where T = SN {Xf41, ..., xn}il,
P=SN{xy,...,xx}and Q=S N{xy,.. .,xk}_l (here note that T =T~ since dego =k).

Then we consider the Whltehead automorphism t = (T + P; + Q1,x;) of F,y3; of de-
gree 0, where P = {x x2n+l | x; € P} and Q1 = {xnil,x3n+l | x;” e Q}. If the sequence
Vi = (v1,...,vg) of cyclic words vy, ..., vg, in F, 3k is constructed as above, then each newly
introduced letter x;: *1 in passing from u to o () that remains in o () produces two newly intro-
duced letters xil in passing from V,, to t(V,,) that remain in 7(V,), and Vice versa. Also each
letter xil inu that is lost in passing from u to o (#) produces two letters x in V, that are lost in
passing from V,, to 7(V,,), and vice versa. This yields that Zi:l lT(v;)| = Zi:l |vi]. Moreover
itis clear that (V) = V(). O

It is easy to see that if u’ € 2, (u) with u’ # u, then V,» # V,. This together with the claim
gives us that N () < No((v1, v2, ..., v, ). By the remark after Lemma 4.1, No((vy, v2, ..., vg,))
is bounded by a polynomial function of degree n + 3k — 2 with respect to 2|u|, which completes
the proof of the lemma. O

Finally we give a proof of Theorem 1.5.

Proof of Theorem 1.5. Without loss of generality we may assume that # was chosen from the
set {v € Orbauc, (u): |v| = |u|} so that u satisfies Hypothesis 1.3. Let v € Orbay , (1) be such
that |v| = |u|. By Whitehead’s theorem, there exist Whitehead automorphisms 7 of the first type
and o1, ..., oy of the second type such that v =m0y --- 01 (1), where |o; - - - o1 (u)| = |u] for all
i=1,...,¢ Then by Theorem 1.4, there exist Whitehead automorphisms ty, ..., 7, such that
v=mTs---71(u), wheren — 1 > degty > degts—1 > --- > degty, and |7 - - - 71 ()| = |u| for all
j=1,...,s (here, note by the Remark after Lemma 2.2 that deg t; < n — 1). This implies that

N(u) < CNo(u)N1(u) - - - Np—1(u),

where C is the number of Whitehead automorphisms of the first type of F,, (which depends only
on n). Foreach k =0,1,...,n — 1, Ny(u) is bounded by a polynomial function of degree n +
3k — 2 with respect to |u| by Lemmas 4.1 and 4.2. Therefore, N (u) is bounded by a polynomial
function of degree n(5n — 7)/2 with respect to |u|, as required. O



58 D. Lee / Journal of Algebra 301 (2006) 35-58

5. Limitations

We close this paper with a brief explanation why the presented technique is incapable of
covering the entire problem domain (e.g. for u = x%x%x%xi the presented arguments cannot be
applied). This amounts to explaining why condition (ii) of Hypothesis 1.1 cannot be dropped.
As a matter of fact, in the presented arguments, condition (ii) of Hypothesis 1.1 played a most
essential role, without which all of our arguments except Lemmas 2.1 and 4.1 would have broke
down. Owing to Lemma 2.2 where we first used Hypothesis 1.1(ii), we were able to assume

throughout the paper that

J > i when considering Whitehead automorphisms (A, xjil) of degree i. S.D

This allowed us to exclude the worst case such as a € B, a™! ¢ B, be A and b1 ¢ A in
Lemma 3.1, for which case there does not exist a composition of Whitehead automorphisms
of ascending degrees that equals (B, b)(A, a). Also we proceeded with the proofs of Lemma
3.2 and Theorem 1.4 based on (5.1). For instance, Claim 1 in the proof of Lemma 3.2 yielded
the existence r such that a;tl € A; N B in Case 1.1, where we did not have to worry about the
case where a, € A; N B but a,” "¢ Ay N B. Furthermore, the equality in the claim in the proof of
Lemma 4.2 would not have hold without (5.1).
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