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Empirical Likelihood Confidence Intervals
for Linear Regression Coefficients

SonG X1 CHEN

Australian National University, Canberra, Australia

Nonparametric versions of Wilks’ theorem are proved for empirical likelihood
estimators of slope and mean parameters for a simple linear regression model.
They enable us to construct empirical likelihood confidence intervals for these
parameters. The coverage errors of these confidence intervals are of order n ™! and
can be reduced to order n "2 by Bartlett correction. ¢ 1994 Academic Press. Inc

1. INTRODUCTION

Empirical likelihood is a nonparametric technique for constructing
confidence regions. It has sampling properties similar to those of bootstrap.
However, instead of putting equal probability weight n~' on each data
value, empirical likelihood chooses the weights by profiling a multinomial
likelihood supported on the sample. The use of empirical likelihood
methods to construct confidence regions for f, which is the vector of
unknown regression coefficients in a linear regression model, has been
studied by Owen [1] and Chen [2]. Owen [1] pioneered this work by
proving a nonparametric version of Wilks’ theorem for the empirical
likelihood ratio of i, which enables us to construct confidence regions for
f using yx° tables. The second order properties of empirical likelihood
confidence regions were discussed by Chen [2], showing that coverage
errors are of order n~ ' and Bartlett correction can be employed to reduce
the coverage error to order n 2.

However, it is not enough to just construct confidence regions for . In
practice, statisticians are often confronted with problems of constructing
confidence intervals for a particular regression coefficient or certain linear

combinations of f.
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In this paper we address the above problem under the simple linear
regression model. A simple linear regression model is

yi=ag+byx,+¢, 1<i<n, (L.1)

where all the variables appearing in (1.1) are scalars. Among them, x; and
y; are the ith fixed design point and response, respectively, the ¢,’s are
independent and identically distributed random errors with mean zero
and variance ¢, and a, and b, are the unknown intercept and slope
parameters, respectively.

There are two aims in this paper. First, we show how to construct
empirical likelihood confidence intervals for the slope parameter A, and
means Y, =a,+ byx, for any fixed x,, under model (1.1). Obviously the
latter case includes the intercept parameter a, when one chooses x,=0.
Second, we study the coverage accuracy and Bartlett correctability of
empirical likelihood confidence intervals for these parameters.

Analyses in Sections 3 and 4 show that both empirical likelihood
confidence intervals for by and y, have coverage errors of order n ', and
that both confidence intervals are Bartlett correctable. Thus, simple scale
adjustments can improve the coverage accuracy of those confidence
intervals from order n "' to order n 2. A simulation study is presented in
Section 5.

2. PRELIMINARIES

In this section we introduce some notation and basic formulae which are
used throughout this paper. We use d, and b, for the least squares
estimates of a, and b, respectively, u; for the jth moment of ¢, for j=1, 2,
and ¥ and y for the means of x,’s and y,’s, respectively. We define auxiliary
variables z;(a, b)= (1, x}7 (y;—a—bx,} for i=1, .., n, where a and b are
any candidate values for a, and b,. Specifically we write z; as z,(aq, bo).
Furthermore, put

ol=n"'Y (x,— %), my=n 'Y (x,~ Xy, j=34

22 SIY g2 - SN .
6r=n""Y &, a=n""Y &, j=3,4,

E=J—ag—byX, where §&,=y,—d—bx,.

Let
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be the average covariance matrix of auxiliary variables z,’s, let v,, and v,,
be the largest and smallest eigenvalues of V,, respectively, and let

1 2
u u ;
— 1 Yy _ 172
UH_ 1 21 Vn
U, U,

be the inverse of the square root matrix of V,. Moreover we define

k
1,2
i wx) =11 (), +u; x,),
I=1

ank=n ! Z E{gjljz -“jk(xi) Ef }’
AN j‘(u, /7) =pn ! Z g)'u':---ik(*\fi)(}"i— a— bx,)k G2k
For simplicity of notation we write

A_(/')],jz, N IS IR “(ao’ bu) and AN gk = g2 .mjk(a, b).

We assume the following regularity conditions.
There exist positive constants C, and C, such that uniformly in n,

Cy<v,,<v,,<Cy; and n Y E|z]*-0, (2.1)
j=1
where || || is the Euclidean norm. For any candidate values ¢ and b or q,
and by,
a=day+0,n'? and b=by+0,n "?). (2.2)

Let /(a, b) be the empirical log likelihood ratio evaluated at (a, b). Write
P> - P, fOr nonnegative numbers adding to unity. Then, according to the
definition of empirical likelihood,

a,b)= —2 min Y log (np)).

T pizita, by=0 /7,

Using the Lagrange method gives us
la, b)=2Y log {1+ A(1, x)T (y;,—a—bx,)},
and A=(4,, 4,) satifies

(1, xi)T(}’i‘a—bxi)

=0.
2 1+ AL x) T (y,—a—bx,)
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Since the analytic solutions for both 4 and /(a, b) are difficult to obtain, we
have to resort to expansions. Using (2.4) of Chen [2], under conditions
(2.1) and (2.2), we have for /{a, ) the Taylor expansion

n=(a, b)= A4’ — A*AA* + 2 AT AR A + AT 4K 40 A
+%Ajk[AjAkAl—2&'ikmA[mA'jAkAl
+ (a—jkn&hnn _ % ijklm) AjAkAIAm + Op(n— 5;‘2). (23)

Here we use the summation convention according to which, if an index
occurs more that once in an expression, summation over the index is
understood.

3. EMPIRICAL LIKELIHOOD CONFIDENCE INTERVAL FOR b,

In this section we show how to construct empirical likelihood confidence
intervals for the slope parameter b, and analyse the coverage properties of
these confidence intervals. We first prove a nonparametric version of Wilks’
theorem for the empirical log likelihood ratio for b, (Theorem 3.1). Then
we develop an Edgeworth expansion of the distribution of the empirical log
likelihood ratio for b, (Theorem 3.2), which is used to show that the
coverage errors of the confidence intervals are of order n~'. Furthermore
we demonstrate that the empirical likelihood confidence intervals are
Bartlett correctable (Theorem 3.3). This means that simple scale
adjustments can reduce the coverage errors from O(n ') to O(n~?).

The empirical log likelihood ratio for b, may be obtained by minimizing
l(a, by) with respect to a, which is treated as a nuisance parameter in this
section, since we are only interested in constructing confidence intervals
for by. Let d be the optimal @ which minimizes /(a, by). Then

I(by)=1(a, by) =min I(a, b,).

From (2.3), we know that
n~'la, by) = A’(a, by) A/(a, by) — A™*(a, by) A'(a, by) A¥(a, by)
+ {3a* A a, bo) + A(a, by) A*(a, by)} A/a, by) AX(a, by)
+ {2 AM(a, by) — 207%™ 4™ (a, b))}
x A’(a, bo) A*(a, by) A'(a, b,)
+ (@kngmn — L gy 4i(a, by) A¥(a, by) A'(a, by) A™(a, by)
+0,(n 52), (3.1)
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Consider an expansion of d=d+a, +a,+a;, where a,= 0,(n ’/?),
j=1,2, 3. We determine a,, a,, a, successively. Put

=n"! Z g,(x;), Yie = n-! Z ul(x)),
va (@, b)y=n"1Y g (x)(y,—a—bx,),

/,klz(a by=n Izg,k/(‘)( ; —d— b’f)

Some algebra shows that

ay = A/(4)y,/7;7,=%(b—b,),
ay=—(y:7,) "y, AYd) — yea, } [A5 (@) — T {ANa) —y,a,}]

and a;=0,(n"?). In summary we have
d=a4+ ’E([; —bo)—(viv:) ! Y;‘{Ak(a‘) — Yy } [Aik(d) - fijkl{A[(a‘) — Y14, } 1.

The above formula suggests using a+ x(h— by) as an initial value for a in
numerically searching for 4. In the author’s experience, this works well.
Now, with & substituted into (3.1), the empirical likelihood ratio statitstic
at b, is given by

n b)) ={A(d)—y,a, } {ANd)—v,a,}

~{A™(@) =2y, (@) ay +ypai}{A(d) —y,a, )
x {A4a) —yea } + 38 {A@) —y,a,}

{AMa) —yia, } {A@) —y,a,} + 47(@) A(@){A(@) = y,a,}
x {A* (@) —year} —v7,05+ 5 {AM@) — 1, 200) 01}
x {A/(a)—y,a,}{A*(a) —yea, }{A (@) —y,a,} =28+ A" ()
x {A(a)—y,a, }{A* (@) —yra, }{A(@) —y,a, } + &*a™"
x {ANa)~y;a, }{AMa) = yea }{AN@) —y,a H{A™(@) = ya,
—3a k’m{ (a)— V/al}{A (@)= yea, }{A' (@) ~y,a,}

x {A™(d) = yna;} + 0, (n" ).

X

For the purpose easy analysis, we next express /(b,) in terms of powers
of (b—b,). Let us define n,=02u;, where u,2 is the (j,2) element in

x%j
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the matrix U,. Using the facts that n,n7,=¢2/0° and {A/(d)—y,a,}
{A/(@)—y;a,} = (b—by)* a2 /a’, it may be shown that

|Q
"N

nMbo)==3(b— by —nn AL — bo)* + 3 &%, nn (b — by

[N}

g

F N 1 &= 7B+ AJALND — by )?

— (17 " L AG AT = 28 A — by)

+ Mg (b — bo)? 1 (b — by)?

+ 3 (AP = 3y, 28— 285 ALN(B — bo)?

+ (@A — L) 1 (B — Bo)?

+0,(n 2. (3.2).

The following nonparametric version Wilk’s theorem is a direct conse-
quence of expansion (3.2).

THeOREM 3.1 (Wilks’ theorem). Assume conditions (2.1). Then,
P{l(by)<c}=P(xi<c)+o(l), as n-—» .

Proof.  Since Vargé—bo}zn"az/ai, by the Central Limit Theorem,
we know that n'’(b—b,) 0o /o has asymptotically a standard normal
distribution. Thus from (3.2),

”"2‘ 7 2 —172 2
{bg)=—= (b—bo)"+ O, (n "*)=yxi+0,1)

o

Hence the theorem is proved. |l

From Theorem 3.1 an empricial likelihood confidence interval for b, with
nominal coverage level a can be construced as follows. First find from 3
tables the value ¢, such that P(yi <c,)=x Then I, = {b,|l(by) < c,} is the
a level confidence interval for b,. Theorem 3.1 ensures that I, has correct
asymptotic coverage.

In the remainder of this section we investigate coverage accuracy of I,.
To do this, we decompose /(b,) from (3.2) as

I(by)=nR2+0,(n ?), (3.3)
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where R,=R,, + R, + R,; and R,;=0,(n ’?) for j=1,2,3. Put

1
'l ﬂl'ln']p (}'/ Tm + —97.__‘? ’1,"7m)

+ ’1’ Mk ”['Im( 3 x/k" gimn _

Cv . _l A/ nmp
1 30

1 —jkim
3% )

Comparing (3.2) with (3.3) yields

[N
Ry =— (b— ho)s
a

a, - o - ,
-6— R,>= ‘% ’7,"7/\'/‘6"(/”/70)4‘ % 9‘//‘['7;"7/«-’7/“7—ho)~

"“Rm—'?,'h(Anr ,,,,\f‘ +3 A(’)IA:()I)(b bo) +C(b he)’

2
g

- (7 VATl M + g5 MMk rmm) AFAG" (b~ by)

v

+ % ﬂ;'lk'l/A'(;([(f"b<))2

25k l = jkm
+ {odal“”k "Im”/ (’\l!/ﬁl’n + -6—;3 ”jnu) - all‘ '7/’]/(’7':)}
X AG"(h—bo)” (3.4)
Before we develop an Edgeworth expansion for /(b,) we introduce some
notations. From (3.4) we see that there exists a smooth function H such
that R, = H(U), where U

, =(b—by, & A}, AL AT, AN AV, A2, AP,
Let

- 142 - 1,2
Vn] ® an
1,2 S 12
Bl - an ® VnZ
Y] 12
anl ® Vn2
and

VeV Lrer,”

V«-ll/Z @ Vv ~ll/2® V - 1/’2

B, = V,,'ll&@ V’:Zl 2® V 71 2
GG Y S

be 3 x 4 and 4 x 8 matrices, respectively, where ® is the Kronecker product
of matrices and V' is the jth row of V' =172, j

, j=1, 2. From the definition
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of A% and A, U can be expressed as U=n"'3 U,, where U, is a vector
of nine dimensions having from

Ui: [o\:rz(xi‘j)ai’ Eiv {(lxi)®(lx1)} Bllg,zs {(lxi)®(le)®(lxl)} Béf?]

Put T,=n""'Y cov(U,) as the average covariance matrix of U,’s and g, as
the density functlon of %2 distribution. Then, we have the following
theorem.

THEOREM 3.2. Assume that

(1) there exists positive constants C,, C, such that uniformly
inn C,<uvy, vy, £Cy; (1) {x{’s for 1 i< n are
uniformly bounded, (ii) E |e,|"> < oo; (iv) for every positive 1,
im, . § ey > em 16,11 =05 (v) the smallest eigenvalue of T,
is bounded away from zero; (Vi) the characteristic function h of
U, satisfies lim sup,, ., (1) <1 (3.5}

Then P{l(bo)<c,}=a—(1+ 11, —11)n 'e,g(c,)+O(n ), where

2
Ha H3 1 Ny .
1y =3 My, tL=—gmi, my=n'Y (x,—x), for j=3 4
alc? c%8

Proof. Let k,, be the jth cumulant of n'?R,. Calculations show that

kyy=—g1°n 12+ 0(n"?),
kp,=1+(1+31t,—-8)n"+0(n?),
w=0n "%,  j=3

A formal Edgeworth expansion for the distribution function of R, can be
constructed as

PR, <x)=[ W) $lv) do+ O(n 2, (36)
where W(v)=1+230%vm "2+ 5 (1 +51,—51,)(v>— 1) n~". Accepting that

expansion (3.6) may be justified, we establish an Edgewroth expansion for
I(by) as

P{l(bg)<c} = P(——c“"z <n'"?R,<c"?)+0(n )
—j W(v) $(0) do + O(n )
=a—(1+36—3n)n""egi(c)+O0(n*?),

683/49/1-3
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where g, is the density function of 2 distribution. By the evenness and
oddness of the polynomials in the above Edgeworth expansion, it can
be shown that the O(n *?) term is actually O(n2). This leads us to
Theorem 3.2.

It remains to check that expansion (3.6) is valid. Remember that
R, = H(U), where H is a sufficient smooth function and ¥ is the mean of
independent but not identically distributed random variable U,’s. For this
case, Bhattacharya and Rao [3, Theorem 20.2] have developed a valid
Edgeworth expansion. It may be shown that conditions (3.5) imply the
conditions of Theorem 20.2 of Bhattacharya and Rao [3]. Thus, a valid
Edgeworth expansion for U can be obtained. Consequently, the Edgeworth
expansion of I/ may be transformed by smooth function H to yield another
valid Edgeworth expansion (3.6) for R,, by using the results given by
Skovgaard [4]. Therefore the theorem can be established. }

Theorem 3.2 states that the empirical likelihood confidence interval 7,
has coverage error at order of n '. By looking at the coeflicient of the n ™"
term in the Edgeworth expansion for the distribution function of /(b,), we
see that the coverage error is dominated by a combination of four factors:
the moments of ¢;, the “moments” of the fixed design points, the nominal
coverage level, and the sample size n. We should note that the conditions
listed in (3.5) are just sufficient conditions for deriving the Edgeworth
expansion given in Theorem 3.2.

Based on the expression for Ry, j=1,2,3 in (3.4), we may show that

E{lthy)} =n{E(Ry))* +2E(R,;  Ryy) + E(R,,)* + 2E(R R,3) } + O(n ?)
=1+(+5 -3 "+ 0(n 2.

We see that the difference between the means of /(b,) and limiting distribu-
tion y7 is of order n~'. Next we show that Barlett correction can reduce the
coverage errors of emprirical likelihood confidence intervals to order n~2
Let p,=1+1%1,—51, be the Bartlett correction for I(b,). We have
the following theorem about the Bartlett correctability of confidence

interval /,:
THEOREM 3.3.  Assume condition (3.5). Then,
P{l(bg)<c {1+ p,n ")} =a+0(n ).
Proof. The method of proof is identical to that of Theorem 2.3 of
Chen [2].

Theorem 3.3 implies that a simple Bartlett correction can increase
the coverage accuracy of empirical likelihood confidence intervals for b,
from O(n~') to O(n—?). However, p, is usually unknown because of
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unknown p; and 4, the third and fourth moments of ¢, in ¢, and 7,. An
n'?-consistent estimate of p,, denoted by p,, can be obtained by defining
pr=1+3%7 —51,, where {, and 7, are obtained by replacing u; and y, in
t; and t, by fi; and f,, respectively, where ji; and f, are the moment
estimators of u; and p,. We may get the same order of accuracy by
replacing p, with §, in Theorem 2.3, under moderate conditions such as:
the joint distribution of components of the /(b,) and j, admits multivariate
Edgeworth expansions.

4. EMPIRICAL LIKELIHOOD CONFIDENCE INTERVAL FOR MEANS

In this section we construct empirical likelihood confidence intervals
for the mean value yo,= E(y|x=x,)=ay+ bgx,, for any fixed x,. Since
yo=4ay, when x,=0, we may confine our attention to constructing
empirical likelihood confidence intervals for a general y,. The empirical log
likelihood ratio for y,, denoted as /(y,), may be obtained by minimizing
l(a, h) given in (2.3), under the constraint of a + bxy =y, that is,

Hyo)=Ua b)= min Ia,b).

a+ bxg=yp

Suppose @ and b have expansions d=d+a, +a,+a; and b= b+b,+
b, + by, where a;, b;=0,(n"’?), j=1,2,3. Note that we use notations a
and a; again here, but with meanings different from those in Section 3. In

the following, a,, b;, j=1, 2, 3, are determined successively. Put

=n"'Y g{x)x, Bu=n""% gulx;) x,,
Bu=n""'Y gu(x)x;,  Bua=n'Y gulx)x},
B (a,b)=n""} gu(x)(y;~a—bx,),
BiuiAa, by=n""Y gy (x)y;—a—bx)

Let Wo=d+bxo— yo=0,(n""%) and t'=A4%(a,b)—y,a,—B,b,. After
some algebra we may show that

(X —x¢)

6%+ (X —x,)°

0%+ (X —x,)’
by={( ﬁ,,—/,,’fo)(ﬁ ’CU)
) AGMP(Bi~y1%0) — A(a, b) V(B — 1ex0)},

a,= —b,x,, ay=0,(n"?), by=0,(n"?).

WOs bI: W():

a, =
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Now substitute 4, b into the formula for 'I(a, b), obtaining
n M(yo) =1t — {AMa, b) =2y, 1al = 2B, b,

+ 7@l +2Ba, b+ Buabi} 't
+ % e — (B, — v, xo) B, —¥;%0) bg
+ A4, by 4¥(a,b) v'i*
+ 3 LAMG, BY = 3y 0 20y — 3B b)) IR
—2&%m 44, [;) vkt 4 (@t — L gk ke
+0,(n 3. (4.1)

Define @*(xo)=07/{07+ (¥ —x,)’} and &'=u +ulx,j=1,2 Then we
have t/=a%(xq) E'W,, Pr=o*(xy)a * W2, and (B, — 7% B, —7,%0) =
620 a2 ?(x,). Substituting these formulae into (4.1), we obtain

n~ (o) = a%(xo) 0 I i —at(x) SE AW
+3a%x) AN W — g Paal(x,)
x {@*u?(xo) EEX(Br— 1, X0) Wi — ENBi—vixo) AFW, )
+ 20 (x0) EE (B — T 1 Xo )by + b —bo) W
— o (xg) EE (B2 = 2BucXo + 7 X0)
X (by +b—bo)?— ALALY W
+0%(xo) EERE (3 AL = 2B — 7 s 57%0)
x (b, +b—bo)—2a*"4lmy W}
— 2a5(x,) EEREW S + a¥(xo)
X (@7 — L @) S W
+0,(n 7). (4.2)
The following nonparametric version of Wilks’ theorem is a conclusion
of (4.2).
THEOREM 4.1 (Wilks’ theorem). Assume conditions (2.1) and (2.2). Then,
Pillys)<c}=P(xi<c)+o(l), n-— .
Proof. From (4.2), we know that
l(yo)=na(xo)* a *Wi+0,(n"'?)

2

. sW2i+0,n'?).

2 g
a3+ (¥~ xo)

=no
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Thus the theorem is proved by the fact that W, is asymptoticaliy normal
with mean zero and variance n ‘o [ *{al+ (¥ —x,)?). |

An empirical likelihood confidence interval for v, with asymptotic
coverage level o can be constructed as J,= {y,|/(3,)<ec,} such that
P(3}<c,)=a. In the rest of this section we investigate the second order
properties of J,.

A signed root decomposition of /(y,) can be obtained from (4.2) as

(yg)= anb +0,(n 512y,

where R, =R, ;+ R
algebra shows that

2+ R, 5, and R, ,=0,(n "?) for j=1,2,3. A little

Yo+

R, =alxg)o "W,
R, »=a(xo) a&/E*{~F AL W+ faP(xo) @NEW ),
Ry Ry = (o) S By~ vip 1%0)(by + b —bo) Wi+ C, W
— 3 0% (x0) EE Bz = 2B X0+ 7 X3)by + b —bo)® W
—a®(x,) sz'iém{ % 0. (B —vix0) (B — 74 X0) + g ¢}
X AFAT W+ oa¥(xq) 0
X {a 2@ (B~ y,%0) (B~ 7 X0)
+ G ANEIEREEME —a P xg) @ CEREIEREL AW
+ 3ot (x) ERERAJAGW T+ L ab(xy) ETERE AW}
—a®(xp) Gzijékil(ﬁ/k/, 2= Vs 2 X )by + h— bo) W,
where
Cy= —3a"(xo) a’a [ *{a™EEH (B, — Y1X0) )’
— .1_ ot'o(xo) GZJgﬂdé\/ékél}l

( )(l 5 Jkn o l‘mn_l —Iklm)é'é C/ém

In order to assess the coverage accuracy of the confidence interval J, we
establish an Edgeworth expansion for the distribution of /(y,). To this end,
we note from expressions for R, jj=1, 2, 3, that there is a smooth function
Q, such that R, = Q,(S), where

§=(Wo,b]+5—b0,A(’)',A(')Z,A(z,z,A[l)”,A(')'Z,Aézz,A(z,zz).
Since b, = (X —x){X—x0)2} ' W, and W,=&+ (X —x,)(h—b,), there
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exists another smooth function @, such that §=Q,(U), where U was
defined in Section 3. So, putting 0 =Q,Q,, we have R, = O(U). Define

5= 9‘4(3‘0) 0'74#4‘11 > ;= 0‘6(3‘70) Uﬁb/‘,ﬁ‘]; 3= 9‘4(x0) q3,
where
X—xg)? X—x,)° x—xy)*
Y C o VY it Y Gt
GX o-A\' U.\’
F—xo) (X—x,)°
N i S i
(X —xp)° (-’?‘xo)z (X —x,)*
q3=1—3 o’i 0‘? m4+ 0’1
*—x) (¥—x
+2{( x| )}m
O’,\’ O-Y

Now the coverage accuracy of confidence interval J, is discussed in the
following theorem.

THEOREM 4.2. Assume condition (3.5). Then,

P{I(yo)«-m}:a—(‘;—‘—s—;wts_;)n‘cag1<c,)+0(n“). (4.3)
Proof. Let k,, j=1,2,., denote the jth cumulants of n”zRyo.
Calculations show that

L2 12 32
kyi=—553n +O(n )s

kmz:l+(%sl—£s2+s3)n"+O(n’2), (4.4)
k,,=0(n=?),  jz3

A formal Edgeworth expansion for the distribution of n""“zR}.o can be set up
from (4.4) as

P(n""sz<x)=J‘x I1(v) ¢(v) dv + O(n =), (4.5)

- o

where I(v)=1+§s%m "2+ 5(3s, — {5, +s3)(0* —~1)n ', The validity
of expansion (4.5) can be demonstrated in the same way that validity for
expansion (3.6) in the proof of Theorem 3.2 was demonstrated. And the
theorem can be obtained from expansion (4.5) in the same way that we
derived Theorem 3.2. |}
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Theorem 4.2 states that the coverage errors of empirical likelihood
confidence intervals for y,=a + bx, are of order of n !, provided that the
X, is fixed and independent of sample size n. From the n ' order term in
(4.3) and the definitions of s,, 5,, and s,, we see that the coverage error is
dominated by the combination of the following five factors: the moments
of ¢;, the “moments” of the fixed design points, the nominal coverage level,
the sample size n, and the size of (¥ —x,)/o.—the standard distance
between x, and the centre, X, of the design points.

In analogy with the Bartlett correction for the slope parameter b,
developed in Theorem 3.3, we do the same thing here fore y,. Calculations
reveal that

5

E{l(yo)} =n{E(R, ) +0(n *)}=1+ <5—%+s3> n~ i+ 00 2.

Put p, =(s5,/2—5,/3+s;), the Bartlett correction for /(y,). The Bartlett
correction property for the empirical likelihood confidence intervals for y,
is proved by the following theorem.

THEOREM 4.3. Assume conditions (3.5). For any x>0 and fixed x,,
P{l{yo)<c,(1+p,n~ ")} =a+0(n"?).

Thus a simple scale adjustment can increase the coverage accuracy of
empirical likelihood confidence intervals for y, from O(n~') to O(n ?).
In practice, p, is usually unknown, because u; and u, are unknown.
However, an n'/?-consistent estimate p,, of p, can be obtained by replacing
o’ u3, and p, with 62, iy, and f,, respectively, in s, and s,, that is, §, =
(§1/2—52/3 + 5,), where §, =a*(xy)d "*fisq, and §,=0a%(x,)d %hiqs. It
may be shown that we may obtain the same order of accuracy by replacing
Py, With g, in Theorem 3.3.

5. SIMULATION RESULTS

This section describes simulation experiments carried out to examine the
coverage properties of the empirical likelihood confidence intervals for &,
and y, proposed in the previous sections. The following simple linear
regression model was treated:

yi=l+x,+¢, i=1,.,n

The data set x, was the one which has been displayed in Chen [2]. We
chose sample sizes n =15, 30, 50 and nominal coverage level a = 0.90, 0.95.
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We assigned two error patterns for ¢,. One was ¢,= N(0, 1) and another
was ¢, = E(1.00) — 1.00, where N(0, 1) and E(1.00) were random varniables
with the standard normal distribution and the exponential distribution
with unit mean, respectively. The normal and exponential random
variables were generated by the routines of Press ef al. [S].

For each combination of n, a, and ¢, we display in Table I the coverages
of the uncorrected confidence intervals and two Bartlett corrected
confidence intervals based on 10,000 simulations. One of the corrected
confidence intervals used the theoretical Bartlett correction; another used
the empirical Bartlett correction. Standard errors are given for each of the
simulated coverages. To empirically justify the expansions developed in
Theorems 3.2 and 4.2, we also calculated theoretical coverages up to
second order in Edgeworth expansions for /(b,) and /(y,). Since the
coverages can be obtained without simulation, they are called “predicted
coverages”.

The following broad conclusions may be drawn from the results sum-
marized in Table 1. First, the differences between the uncorrected coverages
and their corresponding “predicted coverages” converge to zero as »n
increases. This gives empirical justification for Theorems 3.2 and 4.2.
Second, substantial improvements on coverage accuracy have been made
by implementing Bartlett corrections. This can be observed by looking at

TABLE 1

Estimated True coverages, from 10,000 Simulations, of x-level Empirical Likelihood
Confidence Regions for by and y¢'s

N, 1) E(1.00)— 1.00

n a 0.90 0.95 0.90 095

(1) Coverages for slope parameter b,

15  predic. 0.840 0.909 0.750 0.849
uncorr. 0.803 (0.40) 0.860 (0.35) 0.789 (0.41) 0.858 (0.35)
Phy 0.859 (0.35) 0911 (0.28) 0.904 (0.30) 0.950 (0.22)
Py 0.853 (0.35) 0.906 (0.29) 0.856 (0.35) 0.916 (0.28)

30 predic. 0.878 0.935 0.845 0913
uncorr. 0.862 (0.35) 0.919 (0.27) 0.840 (0.37) 0.902 (0.30)
Py 0.884 (0.32) 0.935 (0.25) 0.880 (0.31) 0.931 (0.24)
Py 0.883 (0.32) 0.934 (0.25) 0.871(0.34) 0.928 (0.26)

50  predic. 0.888 0.939 0.870 0.930
uncorr. 0.882 (0.32) 0.9386 (0.24) 0.860 (0.35) 0.926 (0. 26)
P, 0.896 (0.31) 0.948 (0.22) 0.887 (0.32) 0.944 (0.23)
P, 0.896 (0.31) 0.948 (0.22) 0.880 (0.33) 0.938 (0.24)

(Table continued)
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€, N(O, 1) E(1.00) — 1.00

n b1 0.90 0.95 0.90 0.95

(2) Coverages for intercept parameter a,

IS predic. 0.858 0.921 0.802 0.884
uncorr. 0.822 (0.38) 0.884 (0.32) 0.805 (0.40) 0.868 (0.34)
Py 0.861 (0.35) 0918 (0.27) 0.883 (0.32) 0.927 (0.26}
Bro 0.857 (0.35) 0915 (0.28) 0.848 (0.36) 0.900 (0.30)

30 predic. 0.880 0.937 0.865 0.921
uncorr. 0.864 (0.34) 0.922 (0.27) 0.840 (0.37) 0.901 (0.30)
P 0.888 (0.32) 0.937 (0.24) 0.874 (0.33) 0.933 (0.25)
Pro 0.884 (0.32) 0.936 (0.24) 0.863 (0.34) 0.922 (0.27)

50 predic. 0.887 0.941 0.871 0.93]
uncorr. 0.883 (0.32) 0.933 (0.25) 0.860 (0.35) 0.920 (0.27)
Py 0.894 (0.31) 0.942 (0.23) 0.884 (32) 0.942 (0.23)
Py 0.894 (0.31) 0.942 (0.23) 0.877 (0.33) 0.933 (0.25)

(3) Coverages for mean parameter y, with x,=5.00

15  predic. 0.865 0.926 0.840 0.909
uncorr. 0.837 (0.37) 0.899 (0.30) 0.815(0.39) 0.869 (0.34)
o 0.871 (0.34) 0.924 (0.27) 0.868 (0.34) 0.908 (0.29)
P 0.867 (0.34) 0.922 (0.27) 0.846 (0.36) 0.893 (0.31)

30 predic. 0.885 0.940 0.875 0.934
uncorr. 0.882 (0.32) 0.936 (0.25) 0.861 (0.35) 0922 (0.27)
Py, 0.897 (0.30) 0.946 (0.23) 0.884 (0.32) 0.938 (0.24)
Ao 0.897 (0.30) 0.946 (0.23) 0.876 (0.33) 0.932 (0.25)

50 predic. 0.889 0.943 0.879 0.936
UNCOIT. 0.887 (0.32) 0.937 (0.24) 0.871 (0.33) 0.923 (0.27)
[ 0.898 (0.30) 0.945 (0.23) 0.891 (0.31) 0.939 (0.25)
Py 0.897 (0.30) 0.944 (0.23) 0.884 (0.32) 0.933(0.25)

Note. Rows headed “predic.,” “uncorr.,” “b," or “y;" and “b," or “F," give the predicted,

uncorrected, and Bartlett-corrected coverages, respectively. The figures in parentheses are 107
times the standard errors associated with the simulated coverages.

both the standard errors and the absolute errors. Third, the empirical

Bartlett correction performs similarly to its theoretical Bartlett correction

counterpart, except for small sample skewed case.
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