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Abstract

In 1935 Pál Erdős and György Szekeres proved that, roughly speaking, any configuration of n points
in general position in the plane have log n points in convex position — which are the vertices of a convex
polygon. Later, in 1983, Bernhard Korte and László Lovász generalised this result in a purely combinatorial
context; the context of greedoids. In this note we give one step further to generalise this last result for
arbitrary dimensions, but in the context of separoids; thus, via the geometric representation theorem for
separoids, this can be applied to families of convex bodies. Also, it is observed that the existence of some
homomorphisms of separoids implies the existence of not-too-small polytopal subfamilies — where each
body is separated from its relative complement. Finally, by means of a probabilistic argument, it is settled,
basically, that for all d > 2, asymptotically almost all “simple” families of n “d-separated” convex bodies
contains a polytopal subfamily of order d+1

√
log n.

c© 2007 Elsevier Ltd. All rights reserved.

1. Introduction and statement of results

As pointed out by Morris and Soltan [23] “the known results on the Erdős–Szekeres problem
have been proved using only some very simple combinatorial properties of the plane. It is natural
to ask what the most general framework is for studying this problem”. The first attempt in this
direction seems to be the work of Korte and Lovász [19] which is based on the notion of a
greedoid, a common generalisation of a matroid and of a convexity space (see Whitney [33]

E-mail address: strausz@math.unam.mx.

0195-6698/$ - see front matter c© 2007 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ejc.2007.11.011

http://www.elsevier.com/locate/ejc
mailto:strausz@math.unam.mx
http://dx.doi.org/10.1016/j.ejc.2007.11.011


R. Strausz / European Journal of Combinatorics 29 (2008) 1076–1085 1077

Fig. 1. A separoid S with 1 = ρ(S) < κ(S) < γ (S) = 3.

and Levi [21]). More recently, the concept of a separoid was introduced [29–31], a common
generalisation of a graph and of an oriented matroid (see e.g., Hell and Nešetřil [14] and Björner
et al. [3]). Using the notion of a separoid a further step is given – small as it may be – to
understand the Erdős–Szekeres theorem from a purely combinatorial point of view.

A separoid is a (finite) set S endowed with a symmetric relation Ď ⊆

(
2S

2

)
defined on its

family of subsets, which satisfies the following two simple properties: for all A, B ⊆ S,

(∗)
◦ A Ď B H⇒ A ∩ B = ∅,

◦◦ A Ď B and B ⊂ B ′ (⊆ S \ A) H⇒ A Ď B ′.

A pair A Ď B is called a Radon partition, each part (A and B) is called a component, and the
union A ∪ B is called the support of the partition. A pair of disjoint subsets α, β ⊆ S that is not
a Radon partition is said to be separated, and denoted by α | β. The order of the separoid is the
cardinal |S|.

Separoids have several notions of dimension which are meaningful from a geometric
perspective — they reflect basic results of combinatorial convexity (see [7,8]). Let us mention
here a couple: the Radon dimension [27] is the minimum d such that each subset of S with at
least d + 2 elements is the support of a Radon partition; the Kirchberger dimension [17] is the

minimum d such that α | β if and only if for all X ∈

(
S

d+2

)
it follows that (α ∩ X) | (β ∩ X).

We will denote these numbers by ρ(S) and κ(S), respectively.
Now, consider a family of convex sets F = {K1, . . . , Kn} in some Euclidian space Ed . A

separoid S(F) on [n] = {1, . . . , n} can be defined by the following relation:

α | β ⇐⇒

〈⋃
i∈α

Ki

〉
∩

〈⋃
j∈β

K j

〉
= ∅,

where 〈·〉 denotes the convex hull. Conversely, as proved in [1,5], every separoid can be
represented in such a way by a family of convex sets in some Euclidian space. Therefore each
separoid S has a minimum dimension where it can be represented; it is called the geometric
dimension of S and denoted here by γ (S). Furthermore, as proved in [6,30], if the separoid
S is acyclic (i.e., if ∅ | S) then γ (S) ≤ |S| − 1. It is easy to see (Fig. 1) that for all S,
ρ(S) ≤ κ(S) ≤ γ (S).

The separoid S is said to be in general position if no subset of ρ(S)+1 elements is the support
of a Radon partition. We say that S is polytopal [22] – or in convex position if you will – if every
element is separated from its complement; that is, if for every x ∈ S it follows that x | (S \ x).
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The following theorem is an easy corollary of the Erdős–Szekeres’ “happy ending”
theorem [9] when generalised to higher dimensions (see e.g. [15]; see also [23,28] and the
references therein).

Theorem A. For each d > 1, there is a function ξd : N → N such that if S is a separoid of order
|S| = ξd(n) in general position and d = ρ(S) = γ (S), then S contains a polytopal subseparoid
P ⊂ S of order |P| = n.

The best known bounds for ξd are

(ESzTV) 2n−2
+ 1 ≤ ξ2(n) ≤

(
2n − 5
n − 2

)
+ 2,

and

(KV) Ω(C
d−1√n) ≤ ξd(n) ≤

(
2n − 2d − 1

n − d

)
+ d,

where C = C(d) is a constant which only depends on d. The left inequality of (ESzTV) is due
to Erdős and Szekeres [9] and is conjectured to be the best possible; the right one is due to Géza
Tóth and Pavel Valtr [32]. The right inequality in (KV) is due to Gyula Károlyi [15] and the left
one is due to Károlyi and Valtr [16].

Some generalisations of the Erdős–Szekeres theorem, to include convex sets instead of points,
are due to Tibor Bisztriczky and Gabor Fejes Tóth [2], and János Pach and Géza Tóth [26]. In
their works, the notion of “polytopal” is replaced by the following: a family of convex sets is
said to be in “convex position” if none of its elements is contained in the convex hull of the
union of the others. Also, their notion of “general position” is in terms of the notion of “convex
position”: every (d+1)-subset is required to be in convex position. Observe that these notions are
not separoidal; that is, the separoid of a family of convex sets does not distinguish if an element
intersects or if it is contained in the convex hull of others — they are simply non-separated.
Furthermore, while for points the definitions of polytopal and convex position are equivalent, for
convex sets we only have that polytopal implies convex position.

Due to the second condition in (∗), a separoid is determined by its minimal Radon partitions.
Thus, to construct a separoid – and therefore a family of convex bodies – it is enough to define
some Radon partitions and close the separoid to become a symmetric filter (in the canonical order
A Ď B � C Ď D iff A ⊆ C and B ⊆ D). In this way, it is easy to construct separoids in general
position without non-trivial polytopal subseparoids; simply fix d = ρ(S) and for each (d + 2)-
subset X of S choose a Radon partition of the form x Ď (X \ x) — clearly this indicates that for
such separoids, ρ(S) = κ(S) < γ (S) holds. So, it is natural to ask at this point for “meaningful”
conditions which guarantee the existence of polytopal subseparoids. For example, we may add a
Hadwiger-type hypothesis [13] which implies the following.

Theorem B. Let S be a separoid and d > 1. If there exists a homomorphism S −→ P onto
a separoid of points P ⊂ Ed in general position (i.e., a mapping which preserves the minimal
Radon partitions), then there exists a polytopal subseparoid of S of order ξd

−1(|P|).

The Hadwiger-type hypotheses are “geometric” in nature; they are geometric restrictions to
the “position” of the convex sets that represent the separoid (see [7] for the early work on such a
“special position” hypotheses, and see [8,11] for excellent updates on the subject). The following
questions arise. How far can the hypothesis of Theorem B be weakened without changing the
conclusion? Is there a purely combinatorial Erdős–Szekeres-type theorem?
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Fig. 2. A separoid in general position which is not dispersed.

We now introduce the following new concept. A separoid S is dispersed if it is in general
position and it satisfies the following three conditions:

1. α | β and x ∈ S \ (α ∪ β) H⇒ (α ∪ x) | β or α | (β ∪ x).
2. α | β and α 6= ∅ H⇒ ∃x ∈ α : (α \ x) | (β ∪ x).
3. x Ď B minimal H⇒ ∀y 6∈ B ∪ x ∃!b ∈ B : x Ď (B ∪ y \ b).

These conditions can be interpreted as follows. Condition 1 guarantees that every separation
extends to a maximum one, i.e., a separation of the form H | (S \ H) — it allows to define
the closure operator [A] :=

⋂
{H ⊃ A : H | (S \ H)}. Condition 2 guarantees that the

hyperplane which separates α from β can be moved in one of its “complementary directions”
while traversing exactly one element — it implies that the closure operator [·] defines a convex
geometry (or an antimatroid; see (AM) below). Finally, condition 3 is a special case of the
Steinitz exchange lemma for Radon partitions (see (Z) below) — it is a key ingredient in the
Korte and Lovász’s generalisation of the Erdős–Szekeres theorem. Clearly, separoids of points in
general position are dispersed (Fig. 2 represents a separoid which is not dispersed; furthermore,
it does not satisfies any of the 3 conditions enumerated above).

With this definition at hand, we can prove the following

Theorem C. For each d > 1, there exists a function ξd : N → N such that for each dispersed
separoid S of order |S| = ξd(n) and dimension d = κ(S), there exists a polytopal subseparoid
P ⊂ S of order |P| = n.

As pointed out by Patrice Ossona de Mendez [personal communication], a separoid that
satisfies conditions 1 and 2 above, is an antimatroid; i.e., it satisfies that

(AM) x | B, y | B and x Ď (B ∪ y) H⇒ y | (B ∪ x).

Thus, Theorem C extends that of Korte and Lovász [19] to higher dimensions. Furthermore, as it
is easy to see, uniform oriented matroids are also dispersed separoids, therefore

Corollary D. For each d > 1, there exists a function ξd : N → N such that for each uniform
oriented matroid M of order |M | = ξd(n) and rank d + 1, there exists a polytopal oriented
matroid P ⊂ M of order |P| = n.

Finally, by means of a probabilistic argument for random hypergraphs, it will be proved that

Theorem E. Asymptotically almost all Radon separoids of order n in general position and
dimension d = ρ(S) > 2, contains a polytopal subseparoid of order d+1

√
log n.
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Fig. 3. Some classes of separoids.

2. Preliminaries and Theorems A and B

In order to be self-contained, we start with some basic notions and results on separoids. First,
let us enumerate some important classes of separoids (see Fig. 3 for some small examples). Let
S be a separoid. S is a Radon separoid (or a simple separoid) if each minimal Radon partition is
unique in its support; i.e., iff for all minimal A Ď B and C Ď D, it follows that

(R) A ∪ B ⊆ C ∪ D H⇒ {A, B} = {C, D}.

Clearly, if S is a Radon separoid, then ρ(S) = κ(S).
S is a Steinitz separoid if it satisfies the so-called Steinitz exchange axiom; namely,

(Z) A Ď B minimal H⇒ ∀x 6∈ A ∪ B ∃y ∈ A ∪ B : (A \ y) Ď (B ∪ x \ y).

An oriented matroid is a Radon separoid which satisfies the so-called weak elimination axiom;
namely,

(OM)
A Ď B,C Ď D minimal, and x ∈ B ∩ C H⇒

∃E Ď F minimal : E ⊆ A ∪ C \ x and F ⊆ B ∪ D \ x .

As observed by Michel Las Vergnas [20], oriented matroids are Steinitz separoids.
The following result allows to study separation properties of convex sets from a purely

combinatorial point of view (cf. [1,5,30]).

Theorem 1. Every separoid S can be represented by a family of convex sets in some Euclidian
space. Furthermore, the separoid is acyclic if and only if it can be represented by compact convex
sets; in such a case, it can be represented in the (|S| − 1)-dimensional Euclidian space.

Sketch of the proof. We consider here only the acyclic case (i.e., when AĎB H⇒ |A||B| > 0).
Let S be identified with the set {1, . . . , n}. For each element i ∈ S and each (minimal) Radon
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Fig. 4. A separoid of order 4 in E3.

partition A Ď B such that i ∈ A, consider the point

ρi
AĎB = ei +

1
2

[
1

|B|

∑
b∈B

eb −
1

|A|

∑
a∈A

ea

]
,

where ei denotes the i th vector of the canonical basis of Rn . Then, each element i ∈ S is
represented by the convex hull of all such points:

i 7→ Ki =

〈
ρi

AĎB : i ∈ A and A Ď B
〉
.

Observe that the convex sets Ki live in the affine hyperplane spanned by the basis (e.g., in Fig. 4
the separoid depicted in Fig. 1 is represented using this construction).

To prove that this construction is correct, two steps are needed. First, consider a Radon

partition A Ď B and observe that the baricenters of
〈
ρa

AĎB : a ∈ A
〉

and
〈
ρb

BĎA : b ∈ B
〉

are equal.

This implies that
〈⋃

a∈A Ka
〉
∩

〈⋃
b∈B Kb

〉
6= ∅.

Second, consider a separation α | β and define the affine extension ψα|β : Rn
→ R of the

equations

ψα|β(ei ) =

−1 if i ∈ α,

1 if i ∈ β,

0 otherwise.

A straight-forward argument shows that ψα|β(ρ
i
AĎB) < 0 whenever i ∈ α ∩ A and, analogously,

ψα|β(ρ
i
AĎB) > 0 whenever i ∈ β ∩ A. This implies that the families {Ka : a ∈ α} and

{Kb : b ∈ β} are separated. •

It is simple to verify that the implicit bound γ (S) ≤ n − 1 is tight.
If the separoid can be represented by a family of points in some Euclidian space, it is called

a point separoid [22] (also known as a linear oriented matroid [3] or as an order type [10]). The
following characterisation appears in [5,6].

Theorem 2. A separoid S in general position is a point separoid if and only if ρ(S) = γ (S).

Sketch of the proof. Let S be represented with a family of convex sets in Ed , where d = ρ(S) =

γ (S). Choose a point in each convex set to construct the point separoid P , and let ϕ: P → S be
the obvious bijection. Now, it is enough to prove that ϕ is an isomorphism of separoids (i.e., to
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prove that α | β ⇐⇒ ϕ(α) | ϕ(β)). One side is clear; for the other, let A Ď B be a minimal
Radon partition of S. Since S is in general position, the support A ∪ B consists of d + 2 or
more elements. Then its preimage ϕ−1(A ∪ B) is a set of at least d + 2 points in Ed which,
due to Radon’s lemma, induces a partition C Ď D such that C ∪ D = ϕ−1(A ∪ B). The proof
concludes by showing that every separoid S in general position such that ρ(S) = γ (S) is a Radon
separoid. •

Proof of Theorem A. Let S be a separoid in general position. If ρ(S) = γ (S) then, due to
Theorem 2, S is a point separoid and it can be represented with a family of points P ⊂ Ed ,
where d = γ (S). Therefore, the Erdős–Szekeres theorem applies (in its general form) and there
exists a subfamily of ξd

−1(|S|) elements in convex position. •

A function µ: S → P is called a homomorphism if it preserves the minimal Radon partitions;
i.e., iff µ(A)Ďµ(B) is a minimal Radon partition whenever AĎB is (see Nešetřil and Strausz [24]
where the concept was introduced as a generalisation of graph homomorphisms and studied from
a structural point of view). Clearly, to check that a function µ: S → P is a homomorphism it is
enough to check it for all (κ(S)+ 2)-subsets of S.

Proof of Theorem B. Let S be a separoid and P ⊂ Ed a point separoid in general position.
Suppose that in addition, there exists a homomorphism µ: S → P . Since P is in general position,
the Erdős–Szekeres theorem applies and we can find a subfamily Q ⊂ P of |Q| = ξd

−1(|P|)

points in convex position. Now, let T = {x ∈ µ−1(q) : q ∈ Q} be a “choice” in µ−1(Q). We
claim that T is polytopal. For, suppose that there exists an x ∈ T such that x Ď(T \x). Then, there
exists a T ′

⊆ T such that x Ď T ′ is minimal. This implies that µ(x) Ď µ(T ′) but this contradicts
that µ(x) | (Q \ µ(x)). •

3. Theorem C

We say that the separoid S is quasi-Radon if it satisfies

(q R) x Ď B minimal and b ∈ B H⇒ b | (B \ b ∪ x).

Clearly, Radon separoids are quasi-Radon. Furthermore, we have that

Lemma 1. Antimatroids in general position are quasi-Radon.

Proof. Suppose that x Ď B is a minimal Radon partition of an antimatroid S in general position.
The minimality and the general position implies that b | (B \b) and x | (B \b), whenever b ∈ B.
It follows that (AM) implies (qR). •

We now prove the analogue of Ester Klein’s observation for dispersed separoids.

Lemma 2. Let S be a separoid with dimension d = ρ(S). If S is dispersed, then

(K ) ∀A ∈

(
S

d + 3

)
∃P ∈

(
A

d + 2

)
: ∀p ∈ P : p | (P \ p).

Proof. Let S be a dispersed separoid. Due to Lemma 1, S is a quasi-Radon separoid. With out
loss of generality, suppose that d = κ(S) and let A be a (d + 3)-subset of S. We may suppose
that A = B ∪ {x, y}, where x Ď B and y Ď B.
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Fig. 5. Five points in the plane.

Since S is dispersed, there exist a, b ∈ B such that x Ď (B \a ∪ y) and y Ď (B \b ∪ x). Observe
that, since S is in general position and is quasi-Radon, such that a and b are unique; furthermore,
they are different. Now, let c ∈ B \ {a, b} and let P = A \ c. We will show that P is polytopal
(see Fig. 5).

The uniqueness of a and b implies that x | (P \ x) and y | (P \ y). It also implies that
x | (B \ b ∪ y). Since x Ď (B ∪ y) and S is an antimatroid, it follows that b | (A \ b) and therefore
b | (P \ b). Analogously a | (P \ a), which concludes the case d = 2.

For d > 2, let z ∈ P \ {x, y, a, b}. The uniqueness of a implies that x | (A \ {x, z}), condition
(qR) implies that z | (A\{x, z}), and clearly x Ď(A\x). Then, since S is an antimatroid, z | (A\z)
and therefore z | (P \ z). •

We are ready to conclude the

Proof of Theorem C. Let ξ = ξd(m) = Rd+2(m, d + 3) be the Ramsey number which
guarantees the existence of a monochromatic m-subset or a monochromatic (d + 3)-subset, in
all two colourings of the (d + 2)-subsets of ξ elements. Then, given a d-dimensional dispersed
separoid S of order ξ , if we colour its (d +2)-subsets green whenever they are in convex position,
and red whenever they are not, by the Ramsey theorem there should exist either m elements all
of whose (d + 2)-subsets are green, or d + 3 elements all of whose (d + 2)-subsets are red. Due
to Lemma 2, this last is impossible and we are done. •

4. Theorem E

Let H = Hr (n, p) be the random uniform hypergraph of rank r and order n in which each
edge appears with probability p (we will suppose that 1

2 ≤ p < 1). Let ω(H) be its clique
number.

Theorem 3. While n → ∞, Pr
[
ω(H) ≥ r−1

√
log n

]
→ 1.

Sketch of the proof. We set

E [X ] =

(n

k

)
p

(
k
r

)
the expected number of k-cliques of the random hypergraph H . The function E [X ] drops under
one at k ∼ r−1

√
log n — roughly speaking it is like nk pkr

. So, let k = k(n) satisfy k ∼ r−1
√

log n
and E [X ] → ∞. We show now that

Var [X ]
(E [X ])2

→ 0.

A standard argument proves that it is enough to show that

k∑
t=r

(
k
t

) (
n−k
k−t

)
( n

k

) p−
( t

r

)
→ 0.
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For, we simply bound the sum with the geometric series showing that(
k
t

) (
n−k
k−t

)
( n

k

) p−
( t

r

)
≤

(
k2

2kr−1

)t

.

The details are omitted since they add nothing to the present context. •

Proof of Theorem E. Let d > 2 be a fixed number, and S = [n] be an n-set. We define
a separoid on S with the following minimal Radon partitions: for each X ∈

(
S

d+2

)
, choose

randomly and uniformly a subset A ∈ 2X
\ {∅, X} and let A Ď (X \ A). With this construction, S

becomes a Radon separoid in general position with dimension d = ρ(S) = κ(S).
Clearly, the probability that A is a singleton, or its complement, is

Pr [|A| = 1 or |A| = n − 1] =
2(d + 2)

2d+2 − 2
<

1
2
.

Thus, the probability that X is polytopal is 1
2 ≤ p < 1. Given such an S, we construct a uniform

hypergraph H with vertex set [n] and with an edge e ∈ E(H) ⊂

(
[n]

d+2

)
whenever e is polytopal

as a subset of S. Therefore, due to Theorem 3, asymptotically almost always we can find a
polytopal subseparoid P ⊂ S of order d+1

√
log n. •

Remark. Clearly, any improvement on Theorem 3 would imply immediately an improvement
on Theorem E — e.g., for the random graph Gn it is well known that ω(Gn) = Θ(2 log n). Also,
the hypothesis on S seems to be just an artefact of the proof. . .

. . . let us close with a nice open question: Is the “random separoid” dispersed?
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