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Abstract

In this paper, we construct the additional symmetries of the supersymmetric BKP (SBKP) hierarchy. 
These additional flows constitute a B type SW1+∞ Lie algebra because of the B type reduction of the super-
symmetric BKP hierarchy. Further we generalize the SBKP hierarchy to a supersymmetric two-component 
BKP (S2BKP) hierarchy equipped with a B type SW1+∞

⊕
SW1+∞ Lie algebra. As a bosonic reduction 

of the S2BKP hierarchy, we define a new constrained system called the supersymmetric Drinfeld–Sokolov 
hierarchy of type D which admits a N = 2 supersymmetric Block type symmetry.
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

In the study of integrable hierarchies, it is interesting to find their symmetries and identify 
the algebraic structure of the symmetries. Among these symmetries, the additional symmetry 
is an important type which contains dynamic variables explicitly and these additional flows 
do not commute with each other. Additional symmetries of the Kadomtsev–Petviashvili (KP) 
hierarchy were introduced by Orlov and Shulman [1] which contain one important symme-
try, i.e. the so-called Virasoro symmetry. These symmetries form a centerless W1+∞ algebra 
closely related to matrix models by means of the Virasoro constraint and string equations [2–5]. 
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Two sub-hierarchies as the BKP hierarchy and CKP hierarchy [6–11] have been shown to possess 
additional symmetries, with consideration of the reductions on the Lax operators.

Various generalizations and supersymmetric extensions [12] of the KP hierarchy have deep 
implications in mathematical physics, particularly in the theory of Lie algebras. In [13,14], 
the theory of the super-Lie algebras was surveyed by considering super-boson–fermion Cor-
respondences. One important supersymmetric extension is the supersymmetric Manin–Radul 
Kadomtsev–Petviashvili (MR–SKP) hierarchy [15] which contains a lot of integrable super-
solitary equations equipped with the super-pseudodifferential operators. Apart from the Manin–
Radul one, Mulase supersymmetrize the KP hierarchy by constructing a hierarchy called the 
Jacobian SKP hierarchy which does not possess a standard Lax formulation [16]. This hierarchy 
has strict Jacobian flows, i.e. it preserves the super-Riemann surface about which one can also 
see [17]. The additional symmetries for super-hierarchies were firstly found in the paper [18] by 
constructing the standard Orlov–Schulman additional nonisospectral flows. Later the additional 
symmetry of the MR–SKP hierarchy was studied by Stanciu [19]. The ghost symmetries, Hamil-
tonian structures and extensions of the MR–SKP hierarchy were studied as well as reductions 
of the MR–SKP hierarchy [20,21]. Later the supersymmetric BKP (SBKP) hierarchy was con-
structed in [22]. After that these series of super-hierarchies were seldom studied in mathematical 
physics partly because of their extreme complexities.

For the symmetry of the two-component BKP hierarchy, there is a series of works such as 
[7,23–25]. In the paper [26], we construct the generalized additional symmetries of the two-
component BKP hierarchy and identify its algebraic structure. Besides, the D type Drinfeld–
Sokolov hierarchy was found to be a good differential model to derive a complete Block type 
infinite dimensional Lie algebra. About the Block algebra related to integrable systems, we did 
a series of works in [27–29]. In this paper, we will construct the additional symmetries of the 
supersymmetric BKP hierarchy. These additional flows constitute a B type SW1+∞ Lie algebra. 
Further we generalize the SBKP hierarchy to a supersymmetric two-component BKP hierarchy 
(S2BKP hierarchy) and derive its algebraic structure. As a reduction of the S2BKP hierarchy, in 
this paper a new supersymmetric Drinfeld–Sokolov hierarchy of type D will be constructed and 
proved to have a super-Block type additional symmetry.

In (1 + 1) dimensional sypersymmetric integrable systems, starting from 1980s, there is also 
a series of work about superversions of Korteweg–de Vries (KdV), Toda–KdV equations and 
so on [30–33]. Most of them are related to the conformal field theory and string theory [31,32]. 
The generalized KdV equations and Toda lattice equations are particularly interesting integrable 
nonlinear systems in connection with conformal field theories. Their Virasoro symmetry can be 
extended to a Wn algebra which is known to arise from the Hamiltonian structure of the general-
ized KdV equation [34] by incorporating conserved currents of higher spins. The supersymmetric 
version of the Drinfeld–Sokolov reduction of the Toda–KdV theories gives the generators of the 
related super-W -algebra with the commutation relations provided by the associated Hamiltonian 
structure [35]. In this paper we will extend the Lie algebraic method of Drinfeld and Sokolov 
[34] to the sypersymmetric case and develop a Lie superalgebraic method for a supersymmetric 
D type Drinfeld–Sokolov hierarchy. We further derive that the supersymmetric Drinfeld–Sokolov 
hierarchy of type D possesses a N = 2 supersymmetric Block type Lie algebraic structure.

This paper is arranged as follows. In the next section we recall some necessary facts of the 
SBKP hierarchy. In Sections 3, we will give the additional symmetries for the SBKP hierar-
chy. The ghost symmetry of the SBKP hierarchy will be devoted to Sections 4 and 5 using 
the techniques in [20]. Further in Sections 6 and 7, we generalize the SBKP hierarchy to a 
S2BKP hierarchy and derive its B type SW1+∞

⊕
SW1+∞ algebra. As a bosonic reduction of the 
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supersymmetric two-component BKP hierarchy, we define a new constrained system called the 
supersymmetric Drinfeld–Sokolov hierarchy of type D which possesses a N = 2 supersymmetric 
Block type Lie algebra in the following two sections. Finally, we will give a short conclusion and 
a further discussion.

2. The supersymmetric BKP hierarchy

Let us firstly recall some basic facts [22] on the supersymmetric BKP system which is well 
defined by two Lax operators.

A is assumed as an algebra of smooth functions of a spatial coordinate x, a Grassmann vari-
able θ and their super-derivation denoted as D = ∂θ + θ∂ . This algebra A has the following 
multiplying rule

Dn� =
∞∑
i=0

[
n

n − i

]
(−1)|�|(n−i)�[i]Dn−i , (2.1)

[
n

n − i

]
=

⎧⎨
⎩

0 i < 0 or (n, i) = (0,1) (mod 2);( [
n
2

][
n−i

2

]
)

i ≥ 0, (n, i) �= (0,1) (mod 2).
(2.2)

Here the value |�| means the super-degree of the operator � which shows the operator � is 
fermionic or bosonic. The supersymmetric derivative D satisfies the supersymmetric analog of 
the Leibniz rule

D(ab) = D(a)b + (−1)|a|aD(b), (2.3)

where a is a homogeneous element of A. We introduce the even and odd time variables 
(t2, t3, t6, t7, ·) and the following definition of even and odd flows

D4i−2 = ∂

∂t4i−2
, D4i−1 = ∂

∂t4i−1
+

∞∑
j=1

t4j−1
∂

∂t4i+4j−2
. (2.4)

We recall that the supercommutator is defined as [X, Y ] = XY − (−1)|X||Y |YX. The bracket has 
a property as [X, YZ] = [X, Y ]Z + (−1)|X||Y |Y [X, Z]. Then D2 = 1

2 [D, D] = ∂ . This family of 
infinite odd and even flows satisfy a nonabelian Lie superalgebra whose commutation relations 
are

[D4i−2,D4j−2] = 0 , [D4i−2,D4j−1] = 0 , [D4i−1,D4j−1] = −2D4i+4j−2 ,

[D4i−2,D] = 0 , [D4i−1,D] = 0. (2.5)

For any operator A = ∑
i∈Z fiD

i ∈A and homogeneous operators P, Q, its nonnegative projec-
tion, negative projection, adjoint operator are respectively defined as

A+ =
∑
i≥0

fiD
i, A− =

∑
i<0

fiD
i, A∗ =

∑
i∈Z

(−D)i · fi, (2.6)

(PQ)∗ = (−1)|P ||Q|Q∗P ∗, (P −1)∗ = (−1)|P |(P ∗)−1. (2.7)

Also for the operator Dk , the adjoint operator is defined as

(Dk)∗ = (−1)
k(k+1)

2 Dk. (2.8)
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Basing on definitions in [22], the Lax operator of the supersymmetric BKP hierarchy has a 
form as

L = D +
∑
i≥1

uiD
1−i , u2 = −1

2
u

[1]
1 . (2.9)

The supersymmetric BKP hierarchy is defined by the following Lax equations

D4k−2L = [(L4k−2)+,L], D4k−1L = [(L4k−1)+,L] − 2L4k, k ≥ 1. (2.10)

One can rewrite the operator L in a dressing form as

L = �D�−1, (2.11)

where

� = 1 +
∑
i≥1

aiD
−i , (2.12)

satisfy

�∗ = D�−1D−1. (2.13)

We call Eq. (2.13) the B type condition of the supersymmetric BKP hierarchy. Given L, 
the dressing operator � is determined uniquely up to a multiplication to the right by operators 
with constant coefficients. The dressing operator � takes values in a B type Volterra group. The 
supersymmetric BKP hierarchy (2.10) can also be redefined as

∂�

∂t4k−2
= −(L4k−2)−�,

∂�

∂t4k−1
= −(L4k−1)−�, (2.14)

with k ≥ 1.
With the above preparation, it is time to construct additional symmetries for the supersym-

metric BKP hierarchy in the next section.

3. Additional symmetries of the supersymmetric BKP hierarchy

In this section, we are to construct additional symmetries for the supersymmetric BKP hier-
archy by using the Orlov–Schulman operators whose coefficients depend explicitly on the time 
variables of the hierarchy. The Orlov–Schulman operators Mi and auxiliary operator Q are con-
structed in the following dressing structure

Mi = ��i�
−1, i = 0,1; Q= �Q�−1,

where

�0 = x + 1

2

∑
k≥1

(4k − 2)t4k−2D
4k−4 + 1

2
(4k − 1)t4k−1D

4k−3

− 1

2

∑
k≥1

t4k−1∂
2k−2Q +

∑
i,j≥1

(i − j)t4i−1t4j−1∂
2i+2j−2, (3.1)

�1 = θ +
∑
k≥1

t4k−1∂
2k−1, (3.2)

where Q = ∂θ − θ∂ .
Then one can get the following lemma.
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Lemma 3.1. The operators �j , Q satisfy

[D4i−2 − D4i−2,�j ] = [D4i−1 − D4i−1,�j ] = 0; j = 0,1, (3.3)

[D4i−2 − D4i−2,Q] = [D4i−1 − D4i−1,Q] = 0, (3.4)

[Q,�0] = −�1, [Q,�1] = 1, [∂,�0] = 1. (3.5)

Proof. For the proof, one can do the following direct calculation

[D4i−2 − D4i−2,�0] = 1

2
(4i − 2)D4i−4 − [D4i−2, x]

= (2i − 1)∂2i−2 − [∂2i−1, x] = 0, (3.6)

[D4i−1 − D4i−1,�0]

= [ ∂

∂t4i−1
−

∞∑
j=1

t4j−1
∂

∂t4i+4j−2
− D4i−1,�0] (3.7)

= 1

2
(4i − 1)D4k−3 − 1

2
∂2i−2Q + 2

∑
j≥1

(i − j)t4j−1∂
2i+2j−2

−
∞∑

j=1

(2i + 2j − 1)t4j−1D
4i+4j−4

− [D4i−1, x − 1

2

∑
k≥1

(4k − 1)t4k−1D
4k−3]. (3.8)

Because

[D4i−1, x] = [∂2i−1D,x] = (2i − 1)D4i−3 + ∂2i−1θ∂x = 1

2
(4i − 1)D4k−3 − 1

2
∂2i−2Q,

[D4i−1,
1

2

∑
k≥1

(4k − 1)t4k−1D
4k−3] = −

∑
j≥1

(4j − 1)t4j−1D
4i+4j−4, (3.9)

then

[D4i−1 − D4i−1,�0] = 0. (3.10)

For �1, we have

[D4i−2 − D4i−2,�1] = 0, (3.11)

[D4i−1 − D4i−1,�1] = [ ∂

∂t4i−1
−

∞∑
j=1

t4j−1
∂

∂t4i+4j−2
− D4i−1, θ +

∑
k≥1

t4k−1∂
2k−1]

= ∂2i−1 − D4i−2 = 0. (3.12)

For Q, the following identities hold

[D4i−2 − D4i−2,Q] = 0, (3.13)
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[D4i−1 − D4i−1,Q] = [ ∂

∂t4i−1
−

∞∑
j=1

t4j−1
∂

∂t4i+4j−2
− D4i−1,Q] = 0, (3.14)

[Q,�0] = [Q,x] − [Q,
1

2

∑
k≥1

t4k−1∂
2k−2Q],

= −θ −
∑
k≥1

t4k−1∂
2k−1 = −�1, (3.15)

[Q,�1] = [Q,θ ] = 1. � (3.16)

Then it is easy to get the following lemma by dressing structures.

Lemma 3.2. The operators Mj, Q, L satisfy

[Q,M0] = −M1, [Q,M1] = 1, [L2,M0] = 1, (3.17)

DkMj = [(Lk)+,Mj ], DkQ = [(Lk)+,Q], k = 4i − 2,4i − 1, i ∈ Z+. (3.18)

Proof. The dressing structure

�[D4i−1 − D4i−1,�1]�−1 = 0; (3.19)

will lead to

[�D4i−1�
−1 − �D4i−1�−1,M1] = 0; (3.20)

and further to

[D4i−1 − �4i−1�
−1 +

∞∑
j=1

t4i−1�4i+4j−2�
−1 − L4i−1,M1] = 0. (3.21)

Then we get

[D4i−1 − (D4i−1�)�−1 − L4i−1,M1] = 0; (3.22)

and using Eq. (2.14) we can derive

[D4i−1 − (L4i−1)+,M1] = 0. (3.23)

The other identities can be proved using the similar dressing techniques. �
From now on, we will introduce the following operator Bmklp defined as

Bmklp = Mk
0 Ml

1Q
pL2m − (−1)pl+m+p+lL2m−1(Qp)Ml

1M
k
0 L, (3.24)

where k, m ≥ 0; l, p = 0, 1. This operator is the generator of the additional symmetry of the 
SBKP hierarchy which shows the difference between generators of the SKP and SBKP hierar-
chies. For the SKP case in [15], in the construction of Bmklp, it contains only one term.

Then the following proposition can be got.

Proposition 3.3. The operator Bmnlp satisfies the following flow equations

D4k−2Bmnlp = −[(L4k−2)−,Bmnlp], D4k−1Bmnlp = −[(L4k−1)−,Bmnlp]. (3.25)
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Proof. The lemma can be proved by dressing the following identities by �

[D4k−2 − D4k−2,�n
0�l

1Q
p∂m] = [D4k−1 − D4k−1,�n

0�l
1Q

p∂m] = 0. � (3.26)

To prove that Bmnlp satisfies the B type condition, we need the following lemma.

Lemma 3.4. The operators Mi satisfy the following conjugate identities,

M∗
i = (−1)iDL−1MiLD−1, Q∗ = −DL−1QLD−1. (3.27)

Proof. Using

�∗ = D�−1D−1, �∗
i = (−1)i�i, Q∗ = −Q, (3.28)

the following calculations

M∗
i = �∗−1�∗

i �∗ = (−1)iD�D−1�iD�−1D−1 = (−1)iD�D−1�−1Mi�D�−1D−1,

will lead to this lemma. The anti adjoint property of Q can be proved in a similar way. �
It is easy to check the following proposition holds basing on Lemma 3.4 above.

Proposition 3.5. The operator Bmklp satisfies a B type condition, namely

B∗
mklp = −DBmklpD−1. (3.29)

Proof. Using Proposition 3.4, the following calculation will lead to this proposition

B∗
mklp = (Mk

0 Ml
1Q

pL2m − (−1)pl+m+p+lL2m−1QpMl
1M

k
0 L)∗

= (−1)plL2m∗(Qp)∗Ml∗
1 Mk∗

0 + (−1)m+p+lL∗Mk∗
0 Ml∗

1 (Qp)∗L2m−1∗

= (−1)pl+m+p+lDL2m−1QpMl
1M

k
0 LD−1 − DMk

0 Ml
1Q

pL2mD−1

= −D(Mk
0 Ml

1Q
pL2m − (−1)pl+m+p+lL2m−1QpMl

1M
k
0 L)D−1. �

Basing on above proposition, it is reasonable to define additional flows of the supersymmetric 
BKP hierarchy as

DmklpL = [−(Bmklp)−,L], k,m ≥ 0; l, p = 0,1. (3.30)

Proposition 3.6. The flows (3.30) commute with the flows of the supersymmetric BKP hierarchy. 
Namely, one has[

Dmnlp,Dk

] = 0, m,n ≥ 0; l, p = 0,1, k = 4i − 2,4i − 1, i ∈ Z+, (3.31)

which holds in the sense of acting on �.

Proof. The proposition can be checked case by case with the help of Eq. (3.25). For example,[
Dmnlp,Dk

]
�

= DmnlpDk� − (−1)(l+p)kDkDmnlp�

= (−1)(l+p)k[(Lk)−, (Bmnlp)−]�
+ [(Bmnlp)−,Lk]−� + (−1)(l+p)k[(Lk)+,Bmnlp]−� = 0. � (3.32)
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This proposition tells us that the additional flows of the supersymmetric BKP hierarchy are in 
fact its symmetries whose algebraic structure can be shown in the following proposition.

Proposition 3.7. The algebra of additional symmetries of the SBKP hierarchy given by Eq. (3.30)
is isomorphic to the Lie algebra SW1+∞.

Proof. The isomorphism is given by

z �→ ∂, ξ �→ Q + �1∂, (3.33)

∂z �→ �0, ∂ξ �→ �1, (3.34)

which further lead to

z �→ L2, ξ �→Q+ M1L
2, (3.35)

∂z �→ M0, ∂ξ �→ M1. (3.36)

One can find the above construction keeps ξ commuting with z. �
4. Ghost symmetry of supersymmetric BKP hierarchy

In this section, we will give another special symmetry which does not contain time variables 
explicitly. Before that, we firstly need to define the super-Baker–Akhiezer function (super-BA) 
and adjoint super-BA function as

�BA = �eξ , �∗
BA = �∗−1e−ξ , (4.1)

where

ξ(λ, η, θ, t) =
∞∑

k=1

λ4k−2t4k−2 + ηθ + (η − λθ)

∞∑
k=1

λ4k−2t4k−1, t2 ≡ x. (4.2)

The following property can be found

D4i−2e
ξ = ∂2i−1eξ , D4i−1e

ξ = D2i−1eξ . (4.3)

Then we can prove that

L2�BA = λ�BA, L2∗�∗
BA = −λ�∗

BA, (4.4)

D4i−2�BA = (L4i−2)+�BA, D4i−2�
∗
BA = −(L4i−2)∗+�∗

BA, (4.5)

D4i−1�BA = (L4i−1)+�BA, D4i−1�
∗
BA = −(L4i−1)∗+�∗

BA. (4.6)

The B type condition implies that the adjoint super-BA function 	BA can be in fact the super-
symmetric derivative of its corresponding super-BA function �BA, i.e.

	BA(t, λ) = −λ−1�
[1]
BA(t,−λ). (4.7)

Then we can also define super-eigenfunctions of the supersymmetric BKP hierarchy as

D4i−2φ = (L4i−2)+φ, D4i−2ψ = −(L4i−2)∗+ψ, (4.8)

D4i−1φ = (L4i−1)+φ, D4i−1ψ = −(L4i−1)∗ ψ. (4.9)
+
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The super-eigenfunctions have the following spectral representation in term of integrals of 
Baker–Akhiezer functions as

φ(t, θ) =
∫

dλdηφ(λ,η)�BA(t, θ;λ,η), ψ(t, θ) =
∫

dλdηψ̄(λ, η)�∗
BA(t, θ;λ,η).

The B type condition also implies that the adjoint eigenfunction ψ can be chosen as the 
supersymmetric derivative of its corresponding eigenfunction φ, i.e.

ψ = φ[1]. (4.10)

The supersymmetric tau function of the supersymmetric BKP hierarchy can be defined by the 
residue (the coefficient before D−1) of supersymmetric Lax operators as

D4k−2D ln τ = resL4k−2, D4k−1D ln τ = resL4k−1. (4.11)

Define two eigenfunctions φ1, φ2 and the following operator

Bg = φ1D
−1φ

[1]
2 − (−1)|φ2|φ2D

−1φ
[1]
1 , |φ1| ≡ |φ2|, (4.12)

which is used to generate the ghost flows. According to

D−1φ = (−1)|φ|[φD−1 − D−1φ[1]D−1], (4.13)

one can find the operator Bg satisfies the B type condition, i.e.

B∗
g = −DBgD

−1. (4.14)

Then the ghost flow of the supersymmetric BKP hierarchy can be defined as following

DZL = [Bg,L] = [φ1D
−1φ

[1]
2 − (−1)|φ2|φ2D

−1φ
[1]
1 ,L], (4.15)

where functions φ1, φ2 are the eigenfunction and adjoint eigenfunction of the supersymmetric 
BKP hierarchy. The following proposition will tell you the above flow is a symmetry of the 
supersymmetric BKP hierarchy.

Proposition 4.1. The additional flow DZ commutes with the supersymmetric BKP flows Dn, i.e.,

[DZ,Dn]L = 0, n = 4i − 2,4i − 1, i ∈ Z+. (4.16)

Proof. Note that the derivatives φ[1]
1 , φ[1]

2 are in fact adjoint supersymmetric eigenfunctions. The 
commutativity between ghost flows and supersymmetric BKP flows is in fact equivalent to the 
following zero-curvature equation which includes the following detailed proof

DZBn − Dn(Bg) + [Bn,Bg]
= [Bg,L

n]+ − φ1tnD
−1φ

[1]
2 − φ1D

−1ψ
[1]
2tn

+ (−1)|φ2|[φ2tnD
−1φ

[1]
1 + φ2D

−1φ
[1]
1tn

]
+ [Bn,φ1D

−1φ
[1]
2 − (−1)|φ2|φ2D

−1φ
[1]
1 ]

= (Bnφ1D
−1φ

[1]
2 )− − (φ1D

−1φ
[1]
2 Bn)− − P0(Bnφ1)D

−1φ
[1]
2 + φ1D

−1P0(B
∗
nφ

[1]
2 )

− (−1)|φ2|[(Bnφ2D
−1φ

[1]
1 )− − (φ2D

−1φ
[1]
1 Bn)−

− P0(Bnφ2)D
−1φ

[1]
1 + φ2D

−1P0(B
∗
nφ

[1]
1 )] = 0.

In the above proof the P0(A) means the coefficient over the term D0 of the operator A. �
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5. The supersymmetric two-component BKP hierarchy

Let us firstly define the supersymmetric two-component BKP hierarchy by two Lax operators. 
Now we introduce the even and odd time variables (t2, t3, t6, ·; ̂t2, ̂t3, ̂t6, ·) and the following 
definition of even and odd flows

D4i−2 = ∂

∂t4i−2
, D4i−1 = ∂

∂t4i−1
+

∞∑
j=1

t4j−1
∂

∂t4i+4j−2
, (5.1)

D̂4i−2 = ∂

∂t̂4i−2
, D̂4i−1 = ∂

∂t̂4i−1
+

∞∑
j=1

t̂4j−1
∂

∂t̂4i+4j−2
. (5.2)

This two families of odd and even flows satisfy a nonabelian Lie superalgebra whose commu-
tation relations are

[D4i−2,D4j−2] = 0 , [D4i−2,D4j−1] = 0 , [D4i−1,D4j−1] = −2D4i+4j−2 ,

[D4i−2,D] = 0 , [D4i−1,D] = 0, (5.3)

[D̂4i−2, D̂4j−2] = 0 , [D̂4i−2, D̂4j−1] = 0 , [D̂4i−1, D̂4j−1] = −2D̂4i+4j−2 ,

[D̂4i−2,D] = 0 , [D̂4i−1,D] = 0, [D̂m,Dn] = 0. (5.4)

The two Lax operators of the supersymmetric two-component BKP hierarchy will be defined 
in forms as

L = D +
∑
i≥1

uiD
1−i , L̂ = D−1û0 +

∑
i≥1

ûiD
i−1, |ui | = i, |ûi | = i + 1, (5.5)

such that

L∗ = −DLD−1, L̂∗ = −DL̂D−1. (5.6)

We call Eqs. (5.6) the B type condition of the supersymmetric two-component BKP hierarchy. 
The supersymmetric two-component BKP hierarchy is defined by the following Lax equations:

DiL = −[(Li)−,L], D̂iL̂ = [(L̂i)+, L̂], (5.7)

DiL̂ = [(Li)+, L̂], D̂iL = −[(L̂i)−,L], i = 4k − 1,4k − 2, k ∈ Z+, (5.8)

which is equivalent to the following equations

D4k−2L = [(L4k−2)+,L], D̂4k−2L̂ = −[(L̂4k−2)−, L̂], (5.9)

D4k−1L = [(L4k−1)+,L] − 2L4k, D̂4k−1L̂ = −[(L̂4k−1)−, L̂] + 2L̂4k, (5.10)

D4k−2L̂ = [(L4k−2)+, L̂], D̂4k−2L = −[(L̂4k−2)−,L], (5.11)

D4k−1L̂ = [(L4k−1)+, L̂], D̂4k−1L = −[(L̂4k−1)−,L], (5.12)

k ∈ Z+.
One can write the operators L and L̂ in a dressing form as

L = �D�−1, L̂ = �̂D−1�̂−1, (5.13)
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where

� = 1 +
∑
i≥1

aiD
−i , �̂ = 1 +

∑
i≥1

biD
i, (5.14)

satisfy

�∗ = D�−1D−1, �̂∗ = D�̂−1D−1. (5.15)

Given L and L̂, the dressing operators � and �̂ are determined uniquely up to a multiplication to 
the right by operators with constant coefficients. The dressing operators � and �̂ take values in 
two separated B type Volterra groups. The supersymmetric two-component BKP hierarchy can 
also be redefined as

D4k−2� = −(L4k−2)−�, D4k−2�̂ = (L4k−2)+�̂, (5.16)

D̂4k−2� = −(L̂4k−2)−�, D̂4k−2�̂ = (L̂4k−2)+�̂, (5.17)

D̂4k−1� = −(L4k−1)−�, D4k−1�̂ = (L4k−1)+�̂, (5.18)

D̂4k−1� = −(L̂4k−1)−�, D̂4k−1�̂ = (L̂4k−1)+�̂, (5.19)

with k ∈ Z+.
Denote t = (t2, t3, t6, t7, . . .), t̂ = (t̂2, ̂t3, ̂t6, ̂t7, . . .) and introduce two wave functions

w(z) = w(t, t̂; z) = �eξ(t;z), ŵ(z) = ŵ(t, t̂; z) = �̂exz+ξ̂ (t̂;−z−1), (5.20)

where the functions ξ, ξ̂ are defined as ξ(t; z) = ∑
k∈Z+ t4k−2z

4k−2 + t4k−1z
4k−1, ξ̂ (t̂; z) =∑

k∈Z+ t̂4k−2ẑ
4k−2 + t̂4k−1ẑ

4k−1. It is easy to see Diexz = ziexz, i ∈ Z and

Lw(z) = zw(z), L̂ŵ(z) = z−1ŵ(z). (5.21)

With the above preparation, it is time to construct additional symmetries for the supersym-
metric two-component BKP hierarchy in the next section.

6. Additional symmetries of the supersymmetric two-component BKP hierarchy

In this section, we are to construct additional symmetries for the supersymmetric two-
component BKP hierarchy by using the Orlov–Schulman operators whose coefficients depend 
explicitly on the time variables of the hierarchy.

With the same dressing operators given in Eq. (5.14), Orlov–Schulman operators Mi , M̂i , Q, 
Q̂ are constructed in the following dressing structure

Mi = ��i�
−1, M̂i = �̂�̂i�̂

−1, i = 0,1; Q = �Q�−1, Q̂ = �̂Q�̂−1,

where

�0 = x + 1

2

∑
k≥1

(4k − 2)t4k−2D
4k−4 + 1

2
(4k − 1)t4k−1D

4k−3

− 1

2

∑
t4k−1∂

2k−2Q +
∑

(i − j)t4i−1t4j−1∂
2i+2j−2, (6.1)
k≥1 i,j≥1
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�̂0 = x + 1

2

∑
k≥1

(4k − 2)t̂4k−2D
−4k + 1

2
(4k − 1)t̂4k−1D

−1−4k

− 1

2

∑
k≥1

t̂4k−1∂
−1−2kQ +

∑
i,j≥1

(i − j)t̂4i−1 t̂4j−1∂
−2i−2j , (6.2)

�1 = θ +
∑
k∈Z+

t4k−1∂
2k−1, (6.3)

�̂1 = θ +
∑
k∈Z+

t̂4k−1∂
−2k, (6.4)

where Q = ∂θ − θ∂ .
Then one can derive the following lemma similarly as the case of the single-component su-

persymmetric BKP hierarchy.

Lemma 6.1. The operators �i and �̂i satisfy

[D4i−2 − D4i−2,�i] = [D4i−1 − D4i−1,�i] = 0, (6.5)

[D̂4i−2 + D−4i+2, �̂i] = [D̂4i−1 + D−4i+1, �̂i] = 0; (6.6)

[D4i−2, �̂i] = [D4i−1, �̂i] = [D̂4i−2,�i] = [D̂4i−1,�i] = 0; (6.7)

where i = 0, 1.

Proof. For the proof, we do the following calculation

[D̂4i−2 + D2−4i , �̂0] = 1

2
(4k − 2)D−4k + (1 − 2i)∂−2i = 0, (6.8)

[D̂4i−1 + D1−4i , �̂0]

= [ ∂

∂t̂4i−1
−

∞∑
j=1

t̂4j−1
∂

∂t̂4i+4j−2
+ D1−4i , �̂0] (6.9)

= 1

2
(4i − 1)D−1−4k − 1

2
∂−1−2iQ + 2

∑
j∈Z

(i − j)t̂4j−1∂
−2i−2j

−
∞∑

j=1

(2i + 2j − 1)t̂4j−1D
−4i−4j + [D1−4i , x + 1

2

∑
k∈Z+

(4k − 1)t̂4k−1D
−1−4k].

(6.10)

Because

[D1−4i , x] = [∂−2i D̂, x] = −2iD−4i−1 + ∂−2i−1θ∂ = −1

2
(4i − 1)D−1−4i + 1

2
∂−1−2iQ,

[D1−4i ,
1

2

∑
(4k − 1)t̂4k−1D

−1−4k] =
∑

(4j − 1)t̂4j−1D
−4i−4j , (6.11)
k∈Z+ j∈Z
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then

[D̂4i−1 + D4i−1, �̂0] = 0. (6.12)

For �̂1, we get

[D̂4i−1 + D1−4i , �̂1] = [ ∂

∂t̂4i−1
−

∞∑
j=1

t̂4j−1
∂

∂t̂4i+4j−2
+ D1−4i , θ +

∑
k∈Z+

t̂4k−1∂
−2k]

= ∂−2i − D−4i = 0. (6.13)

Further one can derive

[D̂k,�i] = [Dk, �̂i] = 0. (6.14)

For Q, we can get

[Dk,Q] = [D̂k,Q] = 0, (6.15)

[Q, �̂0] = [Q,x] − [Q,
1

2

∑
k∈Z+

t̂4k−1∂
−1−2kQ] (6.16)

= −θ −
∑
k∈Z+

t̂4k−1∂
−2k = −�̂1. � (6.17)

Then it is easy to get the following lemma using the above lemma and dressing structures.

Lemma 6.2. The operators Mj, Q, L,M̂j , Q̂, L̂ satisfy

[Q,M0] = −M1, [Q,M1] = 1, [L2,M0] = 1, (6.18)

DkMj = [(Lk)+,Mj ], DkQ= [(Lk)+,Q], k = 4i − 2,4i − 1, i ∈ Z+, (6.19)

D̂kMj = [−(L̂k)−,Mj ], D̂kQ = [−(L̂k)−,Q], k = 4i − 2,4i − 1, i ∈ Z+, (6.20)

[Q̂, M̂0] = −M̂1, [Q̂, M̂1] = 1, [L̂−2, M̂0] = 1, (6.21)

DkM̂j = [(Lk)+, M̂j ], DkQ̂= [(Lk)+, Q̂], k = 4i − 2,4i − 1, i ∈ Z+, (6.22)

D̂kM̂j = [−(L̂k)−, M̂j ], D̂kQ̂ = [−(L̂k)−, Q̂], k = 4i − 2,4i − 1, i ∈ Z+. (6.23)

From now on, we will introduce the following two operators Bmklp and B̂mklp , given any pair 
of integers (m, k, l, p) with m, k ≥ 0, l, p = 0, 1, as

Bmklp = Mk
0 Ml

1Q
pL2m − (−1)pl+m+p+lL2m−1(Qp)Ml

1M
k
0 L, (6.24)

B̂mklp = M̂k
0 M̂l

1Q̂
pL̂−2m − (−1)pl+m+p+l L̂−2m+1(Q̂p)M̂l

1M̂
k
0 L̂−1. (6.25)

As a corollary, the following proposition can be got.
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Proposition 6.3. For any B̄mklp = Bmklp, B̂mklp , one has

DnB̄mklp = [(Ln)+, B̄mklp],
D̂nB̄mklp = [−(L̂n)−, B̄mklp], n = 4i − 2,4i − 1, i ∈ Z+. (6.26)

To prove that Bmklp and B̂mklp satisfy the B type condition, we need the following lemma.

Lemma 6.4. Operators Mi and M̂i satisfy the following conjugate identities,

M∗
i = (−1)iDL−1MiLD−1, M̂∗

i = (−1)iDL̂M̂iL̂
−1D−1, (6.27)

Q∗ = −DL−1QLD−1, Q̂∗ = −DL̂Q̂L̂−1D−1. (6.28)

Proof. Using

�∗ = D�−1D−1, �̂∗ = D�̂−1D−1, (6.29)

the following calculations

M∗
i = �∗−1�∗

i �∗ = (−1)iD�D−1�iD�−1D−1 = (−1)iD�D−1�−1Mi�D�−1D−1,

M̂∗
i = �̂∗−1�̂∗

i �̂∗ = (−1)iD�̂D−1�̂iD�̂−1D−1 = (−1)iD�̂D−1�̂−1M̂i�̂D�̂−1D−1,

will lead to this lemma. �
It is easy to check the following proposition holds basing on Lemma 6.4 above.

Proposition 6.5. Operators Bmklp and B̂mklp satisfy the B type condition, namely

B∗
mklp = −DBmklpD−1, B̂∗

mklp = −DB̂mklpD−1. (6.30)

Proof. Using Proposition 6.4, the following calculation will lead to the first identity of this 
proposition

B̂∗
mklp = (M̂k

0 M̂l
1Q̂

pL̂2m − (−1)pl+m+p+l L̂2m−1Q̂pM̂l
1M̂

k
0 L̂)∗

= (−1)plL̂2m∗(Q̂p)∗M̂l∗
1 M̂k∗

0 + (−1)m+p+l L̂∗M̂k∗
0 M̂l∗

1 (Q̂p)∗L̂2m−1∗

= (−1)pl+m+p+lDL̂2m−1Q̂pM̂l
1M̂

k
0 L̂D−1 − DM̂k

0 M̂l
1Q̂

pL̂2mD−1

= −D(M̂k
0 M̂l

1Q̂
pL̂2m − (−1)pl+m+p+l L̂2m−1Q̂pM̂l

1M̂
k
0 L̂)D−1.

The second identity can be proved in a similar way. �
Now we can define the following additional equations as

Dmklp� = −(Bmklp)−�, Dmklp�̂ = (Bmklp)+�̂, (6.31)

D̂mklp� = −(B̂mklp)−�, D̂mklp�̂ = (B̂mklp)+�̂. (6.32)

These equations are equivalent to the following Lax equations
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DmklpL = [−(Bmklp)−,L], DmklpL̂ = [(Bmklp)+, L̂], (6.33)

D̂mklpL = [−(B̂mklp)−,L], D̂mklpL̂ = [(B̂mklp)+, L̂]. (6.34)

Similarly, we will get the following proposition.

Proposition 6.6. The flows (6.33) and (6.34) commute with the flows of the supersymmetric 
two-component BKP hierarchy. Namely, for any D̄mnlp = Dmnlp, D̂mnlp and D̄k = Dk, D̂k one 
has [

D̄mnlp, D̄k

] = 0, m,n ∈ Z+; l, p = 0,1; k = 4i − 2,4i − 1, i ∈ Z+, (6.35)

which holds in the sense of acting on � or �̂.

Proof. The proposition can be checked case by case with the help of Eq. (6.26) and
Eqs. (6.31)–(6.34). For example,[

Dmnlp, D̂k

]
� = DmnlpD̂k� − (−1)(l+p)kD̂kDmnlp�

= (−1)(l+p)k[(L̂k)−, (Bmnlp)−]�
− [(Bmnlp)+, L̂k]−� − (−1)(l+p)k[(L̂k)−,Bmnlp]−� = 0,[

D̂mnlp,Dk

]
�̂ = (−1)(l+p)k[(Lk)+, (B̂mnlp)+]�̂ + [−(B̂mnlp)−,Lk]+�̂

− (−1)(l+p)k[(Lk)+, B̂mnlp]+�̂ = 0.

The other cases can be proved in similar ways. This is the end of this proposition. �
Similarly as the SBKP hierarchy, the algebraic structure of the additional symmetry of the 

S2BKP hierarchy will be talked about in the next proposition.

Proposition 6.7. The algebra of additional symmetries of the two-component SBKP hierarchy 
is isomorphic to the Lie algebra of super-quasi-differential operators, which is isomorphic (as a 
Lie algebra) to SW1+∞

⊕
SW1+∞.

Proof. The isomorphism is given by

z �→ ∂, ξ �→ Q + �1∂, (6.36)

∂z �→ �0, ∂ξ �→ �1, (6.37)

ẑ �→ ∂, ξ̂ �→ Q + �̂1∂, (6.38)

∂ẑ �→ �̂0, ∂
ξ̂

�→ �̂1, (6.39)

which further lead to

z �→ L2, ξ �→ Q+ M1L
2, (6.40)

∂z �→ M0, ∂ξ �→ M1, (6.41)

ẑ �→ L̂−2, ξ̂ �→ Q̂+ M̂1L̂
−2, (6.42)

∂ẑ �→ M̂0, ∂
ξ̂

�→ M̂1. (6.43)

One can find the above construction keeps ξ commuting with z and ξ̂ commuting with ẑ. �
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If we do a (4n, 2)-reduction from the supersymmetric two-component BKP hierarchy, a re-
duced hierarchy called the supersymmetric D type Drinfeld–Sokolov hierarchies with a super-
symmetric Block type additional symmetry which will be discussed in the next section.

7. Supersymmetric D type Drinfeld–Sokolov hierarchy

Assume a new Lax operator L which has the following relation with two Lax operators of the 
supersymmetric two-component BKP hierarchy introduced in the last section

L = L4n = L̂2, n ≥ 2. (7.1)

Then the Lax operators of the supersymmetric two-component BKP hierarchy will be reduced 
to the following Lax operator of the supersymmetric D type Drinfeld–Sokolov hierarchy whose 
bosonic case can be seen in [24–26]

L = D4n +
n∑

i=1

D−1
(
viD

4i−1 + D4i−1vi

)
+ D−1ρD−1ρ; |vi | = 0, |ρ| = 1. (7.2)

One can easily find the Lax operator L of the supersymmetric D type Drinfeld–Sokolov hier-
archy will satisfy the following B type condition

L∗ = DLD−1. (7.3)

This Lax operator L of the supersymmetric D type Drinfeld–Sokolov hierarchy has the following 
dressing structure [25]

L = �D4n�−1 = �̂D−2�̂−1. (7.4)

Here

� = 1 +
∑
i≥1

aiD
−i , �̂ = 1 +

∑
i≥1

biD
i (7.5)

are pseudo supersymmetric differential operators that also satisfy the following B type condition

�∗ = D�−1D−1, �̂∗ = D�̂−1D−1. (7.6)

The dressing structures inspire us to define two fractional operators as

L 1
4n = D +

∑
i≥1

uiD
−i , L 1

2 = D−1û−1 +
∑
i≥1

ûiD
i. (7.7)

Two fractional operators L 1
4n and L 1

2 can be rewritten in a dressing form as

L 1
4n = �D�−1, L 1

2 = �̂D−1�̂−1. (7.8)

The supersymmetric D type Drinfeld–Sokolov hierarchy being considered in this paper is 
defined by the following Lax equations:

DkL = [(L k
4n )+,L], D̂kL = [−(L k

2 )−,L], k = 4i − 2,4i − 1, i ∈ Z+. (7.9)

The dressing operators � and �̂ are same as the ones of the supersymmetric two-component 
BKP hierarchy. Given L, the dressing operators � and �̂ are uniquely determined up to a 
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multiplication to the right by operators of the form (7.5) and (7.6) with constant coefficients. 
The supersymmetric D type Drinfeld–Sokolov hierarchies can also be redefined as the following 
Sato equations

Dk� = −(L k
4n )−�, Dk�̂ = (L k

4n )+�̂, (7.10)

D̂k� = −(L k
2 )−�, D̂k�̂ = (L k

2 )+�̂, (7.11)

with k = 4i − 2, 4i − 1, i ∈ Z+.
After the above preparation, we will show that this supersymmetric D type Drinfeld–Sokolov 

hierarchy has a nice Block symmetry as its appearance in the bigraded Toda hierarchy [27].

8. Supersymmetric Block symmetries of supersymmetric D type Drinfeld–Sokolov 
hierarchies

In this section, we will put the constrained condition Eq. (7.1) into the construction of the 
flows of the additional symmetry which form a N = 2 supersymmetric extension of the well-
known Block algebra [36].

With the dressing operators given in Eq. (7.8), we introduce two new Orlov–Schulman oper-
ators as following

Mi = MiL
2−4n, M̂i = M̂iL̂

−4. (8.1)

It is easy to see the following lemma holds.

Lemma 8.1. The operators Mj and M̂j satisfy

[L,M0] = 1, [L,M̂0] = 1; [Q̂,M̂0] = −M̂1; (8.2)

and

DkMj = [(L k
4n )+,Mj ], DkQ = [(L k

4n )+,Q], k = 4i − 2,4i − 1, i ∈ Z+, (8.3)

D̂kMj = [−(L k
2 )−,Mj ], D̂kQ = [−(L k

2 )−,Q], k = 4i − 2,4i − 1, i ∈ Z+, (8.4)

DkM̂j = [(L k
4n )+,M̂j ], DkQ̂ = [(L k

4n )+, Q̂], k = 4i − 2,4i − 1, i ∈ Z+, (8.5)

D̂kM̂j = [−(L k
2 )−,M̂j ], D̂kQ̂ = [−(L k

2 )−, Q̂], k = 4i − 2,4i − 1, i ∈ Z+, (8.6)

which can be simplified to

DkM̄j = [(L k
4n )+,M̄j ], D̂kM̄j = [−(L k

2 )−,M̄j ], (8.7)

where M̄j =Mj or M̂j , k = 4i − 2, 4i − 1, i ∈ Z+.

To make the operators used in the additional symmetry satisfying the B type condition, we 
need to prove the following B type property of Mi − M̂i which is included in the following 
lemma.

Lemma 8.2. The difference of two Orlov–Schulman operators M0 and M̂0 for the super-
symmetric D type Drinfeld–Sokolov hierarchy has the following D type property:

L∗(M0 − M̂0)
∗ = −DL(M0 − M̂0)D

−1. (8.8)
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Proof. It is easy to find the two Orlov–Schulman operators M0 and M̂0 of the supersymmetric 
D type Drinfeld–Sokolov hierarchy can be expressed by Orlov–Schulman operators M0, M̂0 and 
Lax operators L, L̂ of the supersymmetric two-component BKP hierarchy as

M0 = M0L
2−4n, M̂0 = −M̂0L̂

−4. (8.9)

Using Lemma 6.4, putting Eq. (8.9) into (M0 − M̂0)
∗ can lead to

(M0 − M̂0)
∗ = −DL1−4nM0LD−1 + DL̂−3M̂0L̂

−1D−1

= −D(L1−4nM0 − L−4n)D−1 + D(L̂−4M̂0 + L̂−2)D−1, (8.10)

which can further lead to

L∗(M0 − M̂0)
∗ = −D(LM0 −LM̂0)D

−1. (8.11)

In the above calculation, the commutativity between L and M0 − M̂0 is already used. Till 
now, the proof is finished. �

One can also get

M∗
i = −DL−1MiLD−1, M̂∗

i = −DL̂M̂i L̂
−1D−1. (8.12)

For the supersymmetric D-type Drinfeld–Sokolov hierarchy, we define the additional operator 

Blpl̂p̂
mk as

Blpl̂p̂
mk = (M0 − M̂0)

k(Ml
1Q

pM̂l̂
1Q̂

p̂

− (−1)
∏ + ∑ +kL̂−1Q̂pM̂l̂

1L̂LQpMl
1L

−1)Lm, (8.13)

where l, p, ̂l, p̂ = 0, 1; ∏ = ∏
a,b=l,p,l̂,p̂

ab, 
∑ = ∑

a=l,p,l̂,p̂
a.

One can get the following proposition.

Proposition 8.3. The operator Blpl̂p̂
mk satisfies a B type condition, namely

(Blpl̂p̂
mk )∗ = −DBlpl̂p̂

mk D−1, l,p, l̂, p̂ = 0,1. (8.14)

Proof. Using the Proposition 6.4, the following calculation will lead to

(Blpl̂p̂
mk )∗ = ((M0 − M̂0)

k(Ml
1Q

pM̂l̂
1Q̂

p̂ − (−1)
∏ + ∑ +kL̂−1Q̂pM̂l̂

1L̂LQpMl
1L

−1)Lm)∗

= Lm∗[(−1)
∏

(Q̂p̂)∗M̂l̂∗
1 Qp∗Ml∗

1

+ (−1)
∑ +kL−1∗Ml∗

1 Qp∗L∗L̂∗M̂l̂∗
1 Q̂p̂∗L̂−1∗](M0 − M̂0)

k∗

= DLm[(−1)
∏ + ∑ +kL̂−1Q̂p̂M̂ l̂

1L̂LQpMl
1L

−1

− (Ml
1Q

pM̂l̂
1Q̂

p̂)](M0 − M̂0)
kD−1

= −D(M0 − M̂0)
k(Ml

1Q
pM̂l̂

1Q̂
p̂

− (−1)
∏ + ∑ +kL̂−1Q̂pM̂l̂ L̂LQpMlL−1)LmD−1. �
1 1
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That means it is reasonable to define the additional flow of the supersymmetric D type 
Drinfeld–Sokolov hierarchy as

∂L

∂c
lpl̂p̂
mk

= [−(Blpl̂p̂
mk )−,L], l,p, l̂, p̂ = 0,1;m,k ∈ Z+. (8.15)

Whether these additional flows are symmetries of the supersymmetric D type Drinfeld–Sokolov 
hierarchy will be answered in the next proposition.

Proposition 8.4. The flows in Eq. (8.15) can commute with original flows of the supersymmetric 
Drinfeld–Sokolov hierarchy of type D, namely,⎡

⎣ ∂

∂c
lpl̂p̂
mk

,Dn

⎤
⎦ = 0,

⎡
⎣ ∂

∂c
lpl̂p̂
mk

, D̂n

⎤
⎦ = 0,

where l, p, ̂l, p̂ = 0, 1; m, k ∈ Z+, n = 4i − 2, 4i − 1, i ∈ Z+, which hold in the sense of acting 
on �, �̂ or L.

Proof. According to the definition,

[∂
c
lpl̂p̂
mk

,Dn]� = ∂
c
lpl̂p̂
mk

(Dn�) − Dn(∂
c
lpl̂p̂
mk

�),

and using the actions of the additional flows and the flows of the D type Drinfeld–Sokolov hier-
archy on �, we have

[∂
c
lpl̂p̂
mk

,Dn]� = −∂
c
lpl̂p̂
mk

(
(L k

4n )−�
)

+ Dn

(
(Blpl̂p̂

mk )−�

)

= −(∂
c
lpl̂p̂
mk

L k
4n )−� − (L k

4n )−(∂
c
lpl̂p̂
mk

�)

+ [Dn(Blpl̂p̂
mk )]−� + (Blpl̂p̂

mk )−(Dn�).

Using Eq. (7.9) and Eq. (8.7), it equals

[∂
c
lpl̂p̂
mk

,Dn]� = [
(
Blpl̂p̂

mk

)
−

,L k
4n ]−� + (L k

4n )−
(
Blpl̂p̂

mk

)
−

�

+ [(L k
4n )+,Blpl̂p̂

mk ]−� − (Blpl̂p̂
mk )−(L k

4n )−�

= [(Blpl̂p̂
mk )−,L k

4n ]−� − [Blpl̂p̂
mk , (L k

4n )+]−�

+ [(L k
4n )−, (Blpl̂p̂

mk )−]�
= 0.

The other cases of this proposition can be proved in similar ways. �
The above proposition indicates that Eq. (8.15) is a symmetry of the supersymmetric D type 

Drinfeld–Sokolov hierarchy. Further we can prove that the following identities hold true

∂Mi

∂c
lpl̂p̂

= [−(Blpl̂p̂
mk )−,Mi], ∂M̂i

∂c
lpl̂p̂

= [(Blpl̂p̂
mk )+,M̂i], (8.16)
mk mk
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∂w(z
1

4n )

∂c
lpl̂p̂
mk

= −(Blpl̂p̂
mk )−w(z

1
4n ),

∂ŵ(z
1
2 )

∂c
lpl̂p̂
mk

= (Blpl̂p̂
mk )+ŵ(z

1
2 ). (8.17)

Using same techniques used in [27], the following theorem can be derived.

Theorem 8.5. The flows in Eq. (8.15) about additional symmetries of supersymmetric D type 
Drinfeld–Sokolov hierarchy compose a supersymmetric type Block Lie algebra which contains 
the following Block Lie algebra while l = p = l̂ = p̂ = 0

[∂c0000
ml

, ∂c0000
sk

] = (km − sl)∂c0000
m+s−1,k+l−1

, m, s, k, l ∈ Z+, (8.18)

which holds in the sense of acting on �, �̂ or L.

Proof. The similar proof for Eq. (8.18) can be found in our paper [26]. �
This is one kind of supersymmetric extensions of the Block algebra because it is involved with 

the supersymmetric variables and supersymmetric derivative D. However, its algebra structure is 
still not clear now, which deserves further study in the future.

9. Conclusions and discussions

Our earlier papers show that the Block type algebras appear not only in Toda type difference 
systems but also in differential systems such as two-BKP hierarchy, D type Drinfeld–Sokolov hi-
erarchy [26]. The above results show that in their corresponding supersymmetric systems, there 
also exists the hidden N = 2 Block type supersymmetric algebraic structures. These results fur-
ther show that the Block type infinite dimensional Lie algebra has a certain of universality in 
integrable hierarchies.

Although the supersymmetric two-component BKP hierarchy and supersymmetric Drinfeld–
Sokolov hierarchy of type D might be not available in the fermionic string theory now comparing 
with the application of the classical KP hierarchy to the bosonic string, they have a great advan-
tage of showing their superconformal structures. In this paper, we also show the structure of a 
super-Block algebra of the supersymmetric two-BKP hierarchy and its reduced hierarchy. The 
superconformal algebra may appear in the related Hamiltonian structures by considering the re-
ductions of super-BKP hierarchies like reductions of the super-KP system to super-KdV system. 
This may be an interesting subject for our future study which may relate the supersymmetric 
BKP systems in this paper to problems in physics. There are also some other interesting subjects 
such as the relation of the hierarchies introduced in this paper with the quantum spin chains as in 
[37]. These directions might be included in our future study.
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