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Reversed Frontotemporal Connectivity During
Emotional Face Processing in Remitted Depression
Nia Goulden, Shane McKie, Emma J. Thomas, Darragh Downey, Gabriella Juhasz, Stephen R. Williams,
James B. Rowe, J.F. William Deakin, Ian M. Anderson, and Rebecca Elliott

Background:  Vulnerability to relapse persists after remission of an acute episode of major depressive disorder. This has been attributed to
abnormal biases in the processing of emotional stimuli in limbic circuits. However, neuroimaging studies have not so far revealed consistent
evidence of abnormal responses to emotional stimuli in limbic structures, such as the amygdala, in remitted depression. This suggests the
problem might lie in the integrated functioning of emotion processing circuits.

Methods:  We recruited 22 unmedicated patients in remission from major depressive disorder (rMDD) and 21 age-matched healthy control
subjects. Functional magnetic resonance imaging was performed during a face emotion processing task. Dynamic causal modeling was
used with Bayesian model selection to determine the most likely brain networks and valence-specific modulation of connectivity in healthy
control subjects and rMDD.

Results:  In healthy volunteers, sad faces modulated bi-directional connections between amygdala and orbitofrontal cortex and between
fusiform gyrus and orbitofrontal cortex. Happy faces modulated unidirectional connections from fusiform gyrus to orbitofrontal cortex. In
rMDD, the opposite pattern was observed, with evidence of happy faces modulating bidirectional frontotemporal connections and sad faces
modulating unidirectional fusiform– orbitofrontal connections.

Conclusions:  Participants with rMDD have abnormal modulation of frontotemporal effective connectivity in response to happy and sad
face  emotions,  despite  normal  activations  within  each  region.  Specifically,  processing  of  mood  incongruent  happy  information  was
associated with a more richly modulated frontotemporal brain network, whereas mood congruent sad information was associated with less

by Elsevier - Publisher Connector 
network modulation. This supports a hypothesis of dysfunction within cortico–limbic connections in individuals vulnerable to depression.
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M ajor  depressive  disorder  (MDD)  is  characterized  by  im-
paired cognitive and emotional processing (1– 4), includ-
ing recognition and categorization of face emotion (5– 8).

Emotion categorization studies have usually but not always found
reduced discrimination of face emotions in MDD (8). Some studies
have  additionally  reported  biases  toward  sad  and/or  away  from
happy  faces.  There  is  also  evidence  for  altered  recognition  after
remission  from  MDD  (7–9),  although  studies  are  inconsistent
(4,10,11). Functional magnetic resonance imaging (fMRI) has iden-
tified neuronal substrates of face processing abnormalities in MDD,
particularly  enhanced  amygdala  responses  to  sadness  (12–14).
Some evidence suggests enhanced responses to sad faces persist-
ing  into  remission  (14),  although  most  studies  have  shown  that
abnormalities are state-dependent (6,11,12,15).

Although there is an established literature on abnormal function
of specific brain regions during face emotion processing in MDD,
there has been relatively little direct exploration of how the disor-
der affects connectivity between brain regions. Many neurobiolog-
ical models of depression focus on network dysfunction, particu-
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arly dysfunction of a cortical–limbic “mood-regulating circuit” (16 –
8). In a specific model of emotion perception in MDD, Phillips et al.

2) argued that  limbic overactivity during  initial evaluation, com-
ined with failure of cortical control, causes a bias toward process-

ng negative information.
Recent research has  investigated resting state  functional con-

ectivity in depression (19 –21) and reported abnormal connectiv-
ty  in regions of a mood-regulating circuit, which might relate to
bnormal  limbic–prefrontal  white  matter  connectivity  observed
ith diffusion tensor imaging (22). However, resting state studies
o not optimally test network dysfunction models (2), which pro-
ose specific abnormalities during processing of emotional stimuli

ather than at rest. Connectivity analyses of fMRI data can provide
xplicit tests of network interactions in response to emotional chal-

enges.  Functional  connectivity,  assessed  by  psychophysiological
nteractions (PPIs) and related methods, explores context-depen-
ent correlations between brain regions. This technique has impli-
ated  abnormal  connectivity  during  emotional  processing  in  de-
ression (23–27) and bipolar disorder (22), including abnormalities
f amygdala–prefrontal connectivity in remitted patients. Cremers
t  al.  (28)  suggest  that  amygdala–prefrontal  connectivity  during
ace processing is influenced by neuroticism, a trait associated with
epression vulnerability.

The  PPI  approaches  are  data-driven  and  give  no  information
bout direction or causality. To determine causal influences among
rain regions and more directly assess theoretical anatomical mod-
ls  requires  testing  of  “effective  connectivity,”  with  models  that
mbody causal connections such as structural equation modeling

29) or generative models such as dynamic causal modeling (DCM)
30,31). Studies using structural equation modeling have reported
bnormalities in limbic–prefrontal networks in MDD during emo-
ional face processing (32). Structural equation modeling allows a
respecified  model  to  be  tested;  however,  a  major  advantage  of

CM  over  other  connectivity  approaches  is  the  evidence-based

BIOL PSYCHIATRY 2012;72:604–611
© 2012 Society of Biological Psychiatry

Open access under CC BY license.

https://core.ac.uk/display/82240265?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:rebecca.elliott@manchester.ac.uk
mailto:rebecca.elliott@manchester.ac.uk
http://dx.doi.org/10.1016/j.biopsych.2012.04.031
http://creativecommons.org/licenses/by/3.0/


t
w
c
i
r
h
j
e
a
c

E

5
t
w
t
i
a
s
a
(
w
d
b
W
l
r

I

h
T
c
3
g
t
.
s

A

u
m
r
w
t

r
i
w
i
p
e
a
a
m
f
g

D

r

N. Goulden et al. BIOL PSYCHIATRY 2012;72:604–611 605
model comparison procedure. This supports inferences of direc-
tionality and allows comparison of models to infer changes in net-
work organization, over and above changes in connection strength
within a standard network. Dynamic causal modeling employs an
optimized neurovascular forward model enabling inferences to be
made at the neuronal level of intrinsic and modulatory connections
among multiple brain regions. A Bayesian model selection proce-
dure allows direct comparison of different brain network models,
determining which model of connectivity is most likely, given the
data.

Dynamic causal modeling analyses have been carried out previ-
ously for face-processing tasks in healthy volunteers (33–36), show-
ing emotional modulation of effective connectivity between fusi-
form gyrus (FG), amygdala, and orbitofrontal cortex (OFC). There
have been relatively few studies using DCM in MDD, although re-
cent studies with very simple models (typically modeling intrinsic
connectivity between two nodes) have reported abnormal effec-
tive connectivity to faces in bipolar disorder and distinct abnormal-
ities to happy faces in MDD (37). To our knowledge there have been
no attempts to assess altered effective connectivity to emotional
stimuli, in remitted major depressive disorder (rMDD).

The goal of the present study was to use DCM to explore abnor-
malities of connectivity during processing of happy and sad faces in
rMDD. Rowe et al. (38) recently demonstrated that DCM is suffi-
ciently robust and sensitive to study clinical populations. Indeed, a
connectivity approach can be more sensitive to neuropsychiatric
disorders than classical imaging analysis of regional activations
(39). We adopted the Bayesian model selection approach of Rowe et
al. (38) and predicted that happy and sad emotion would differen-
tially modulate effective connectivity associated with face process-
ing in rMDD compared with healthy control subjects.

Methods and Materials

Participants
All participants were right-handed with normal or corrected-to-

normal vision and no contraindications to fMRI. Volunteers with
current or past history of neurological disorder, substance depen-
dence, or Axis 1 psychiatric disorder other than MDD or anxiety
disorders were excluded, as were people taking current medica-
tions.

Healthy Control Subjects
Twenty-nine healthy control volunteers were recruited, of

whom 21 were included in DCM analysis (see Results). On the Mini-
International Neuropsychiatric Interview (M.I.N.I.)-screen for Struc-
tured Clinical Interview for DSM interview (40), these volunteers
had no personal or family history of psychiatric illness (Table 1).

rMDD Subjects
Thirty remitted depressed volunteers were also recruited, of

whom 22 were included in DCM analysis (see Results). These sub-

Table 1. Participant Characteristics

Healthy Control (n � 21) rMDD (n � 22)

Male:Female 7:14 6:16
Mean Age (SEM) 31.1 (9.97) 33.73 (10.69)
MADRS (SEM) .92 (1.44) 2.31 (3.24)
Past Episodes — 3.13 (2.6)

MADRS, Montgomery-Åsberg Depression Rating Scale; rMDD, remitted
major depressive disorder.
jects met criteria for major depression in full remission on Struc- S
ured Clinical Interview for DSM interview (41). For inclusion, they
ere required to have been remitted for at least 3 months, with

urrent scores of �12 on the Montgomery-Åsberg Depression Rat-
ng Scale (MADRS) and to be medication-free (Table 1). A t test
evealed that, although within the normal range, rMDD volunteers
ad significantly higher MADRS scores than healthy control sub-

ects (t � �2.15, p � .04). A history of anxiety disorder was not an
xclusion criterion; however, only 4 of 22 subjects in the DCM
nalysis had history of clinically significant anxiety, and none had
urrent symptoms.

motional Face Processing Task
A series of faces was presented, each displayed for 3 sec with a

00-msec gap. There were four different emotion conditions—neu-
ral (N), happy (H), sad (S), and fear (F)—and a rest condition (R),
hich was fixation on a central cross. The emotions of interest in

his study were happy and sad, because abnormalities in process-
ng these mood-relevant emotions have been most consistently
ssociated with MDD. Each face block lasted 21 sec and consisted of
ix faces (three male; three female). Standard face stimuli of Ekman
nd Friesen were used, in conjunction with a morphing procedure
42) such that faces displayed emotions at 80% intensity. There

ere 22 blocks presented in an NHNSNFNRSNHNFNRFNSNHNR or-
er; total duration was 7 min 42 sec. Volunteers responded with a
utton press to each face indicating whether it was male or female.
e present results for sad and happy emotions, in line with fMRI

iterature emphasizing the particular significance of these mood-
elated emotions to depressive disorders.

maging
Images were acquired on a 1.5T Philips Intera scanner (Eind-

oven, the Netherlands) with a single-shot echo-planar sequence.
wo hundred eighteen volumes were acquired, each comprising 29
ontiguous axial slices (repetition time/echo time � 2100/40 msec,
.5 � 3.5 mm in-plane resolution, slice thickness 4.5 mm, .5 mm slice
ap). A T1-weighted structural scan (256 � 256 matrix, repetition

ime � 8.99 msec, echo time � 4.2 msec, 160 axial slices, voxel size
875 � .875 � 1 mm) was acquired for each participant to be used in
patial normalization.

nalysis of Region-Specific Responses
Pre-processing was carried out with SPM8 (http://www.fil.ion.

cl.ac.uk/spm). All images were realigned to the first to correct for
ovement, spatially normalized to standard space (Montreal Neu-

ological Institute) and smoothed with a Gaussian kernel of full
idth at half maximum 7 � 7 � 10 mm. A high-pass filter of twice

he maximum stimulus repetition time was applied.
To determine coordinates of regional maxima for DCM analysis,

andom effects analysis was carried out to identify regional changes
n blood oxygen level– dependent response to all faces compared

ith rest across the whole subject group. We performed a region of
nterest (ROI) analysis in four regions comprising a network of face-
rocessing regions where effective connectivity is modulated by
motional valence (34,36): primary visual cortex (V1), FG, amygdala,
nd OFC. Maxima were identified in each ROI in the random effects
nalysis. For each individual, local maxima within 14 mm of the
aximum group activation were found, and data were extracted

rom a 6-mm radius sphere centered at these local maxima. Re-
ional responses at these maxima are reported in Table 2.

CM of Effective Connectivity
Dynamic causal modeling was used to examine the effect of

MDD on effective connectivity with a set of models specified in

PM8, following methods recommended by Stephan et al. (30,43),

www.sobp.org/journal
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which have reliably detected between-group differences in con-
nectivity (38). The analysis schema is given in Supplement 1.

The anatomical network model proposed by Fairhall and Ishai
(34) includes V1, superior temporal sulcus, FG, amygdala, inferior
frontal gyrus, and OFC. However, connections between V1, FG,
amygdala, and OFC were particularly sensitive to modulation by
emotion, and therefore we specifically include only these areas; see
also Dima et al. (36). Left hemisphere responses were less extensive
and less consistent across subjects, as has previously been ob-
served (44,45). Reliable DCM analysis requires exclusion of subjects
who do not show response in all network foci, and we therefore
performed DCM only on the right hemisphere network. We have
previously demonstrated with the model used here that adequate
power can be achieved to detect subtle group differences (46).

A three-stage approach to model selection was used. First, con-
nections between the ROIs were specified as intrinsic connections
with all faces compared with rest modeled as input to V1. We tested
seven structurally distinct models (Supplement 1). Bayesian Model
Selection within each group clearly identified the fully intercon-
nected model as most likely, with feedforward and feedback con-
nections (Figure 1A).

In the second step, the fully connected anatomical model, with
intrinsic connectivity as in the preceding text, was used to make 21

Table 2. Coordinates of Activations Found for DCM Analysis

Region BA x y z
Cluster Size

(Voxels) t Score

Left V1 17 �14 �98 0 865 12.95
Right V1 17 18 �95 0 865 11.45
Left Fusiform �35 �77 �20 865 7.64

ight Fusiform 42 �60 �15 865 8.02
eft Amygdala �18 �7 �15 142 4.03
ight Amygdala 25 �4 �15 113 4.67

Left OFC 47 �42 21 �15 33 1.97
Right OFC 47 28 32 �15 46 2.06

Threshold set at p � .05 uncorrected.
BA, Brodmann area; DCM, dynamic causal modeling; OFC, orbitofrontal

cortex; V1, visual cortex.
ww.sobp.org/journal
odels. Each of these models was subject to distinct profiles of
odulation by emotion (Figure 1B). The 21 models were fitted with

ata from each subject, generating the model log-evidences and
osterior probabilities—parameters that provide an index of the
ccuracy of the model, adjusting for model complexity and depen-
encies among parameters.

The models were then partitioned into different families, ac-
ording to shared model features. This facilitates optimum model
election and interpretation. Details are given in Supplement 1.
aving identified the optimum model family, we then compared

ndividual models within those families, again with Bayesian model
election (30,38,43,47).

unctional Connectivity Analysis with PPI
The DCM with Bayesian model selection approach allows us to

est our hypotheses that the best-fitting models for happy and sad
aces differ between patients and control subjects but rests on
everal assumptions and limitations in model design and fitting.
ollowing the approach of Passamonti et al. (48,49), DCM analysis
as therefore supplemented by an analysis of PPIs with general

inear models, with fewer anatomical constraints and no inverse
odeling of neurovascular coupling but without model compari-

on or inferences of directionality. Separate PPIs were carried out
or happy versus neutral and sad versus neutral with the right
mygdala as a seed region. Data from the amygdala were extracted
rom an 8-mm sphere, constructed around the focus used in the
CM analysis (25, �4, �15). A time series was calculated for each
articipant with the first eigenvariate from the time series of all
oxels within the sphere. The PPI regressor was calculated as the
roduct of the right amygdala neuronal time series and a vector
oding for the task comparison (happy–neutral or sad–neutral).
ubject-specific PPI contrast images were entered into second-

evel analysis, identifying brain areas where the change in emotion-
elated connectivity with the amygdala differed between groups.

e also examined whether in the rMDD group, there were correla-
ions between connectivity and MADRS depression ratings. This
as a post hoc ROI analysis to supplement the DCM findings, and
e therefore used a composite ROI comprising FG and OFC, defined

natomically, thresholded at p � .05 corrected.

Figure 1. The models tested with Bayesian model selec-
tion. (A) Fully connected model of intrinsic connectivity
with feedforward and feedback connections for each part
of the network; (B) the patterns of modulatory influences
of emotion on connectivity among fusiform gyrus (FG),
amygdala (Amyg), and lateral orbitofrontal cortex (LOFC).
These 21 models belong to one of seven model “families”
(see Methods). V1, visual cortex.
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Results

fMRI Activations
When responses to emotional faces were contrasted with rest in

all subjects, right-sided maxima were observed in the pre-specified
ROIs: V1 (18, �95, 0), FG (42, �60, �15), amygdala (25, �4, �15),
and OFC (28, 32, �15) (Table 2) (note: left hemisphere maxima also
reported for completeness). No other regions of significant activa-
tion were observed, and there were no differences between the
groups at p � .001 uncorrected.

For DCM analysis, we selected subjects who exhibited activity
(p � .05 uncorrected) within 14 mm of all regional maxima in the t

Table 3. Bayesian Model Selection within Best-Fitting Families of Models

Healthy Control

Most Likely Family Most Likely Model Posterior Proba

Happy 1 5 .86
Sad 7 21 .81

Figure 2. Results of Bayesian Model Selection for identification of the most lik
(Models 1–3 in Family F7, Models 1– 6 in Family F1). Results are shown sepa
Healthy Control Group Sad Condition; families and models; (C) Remitted
Depressed Group Sad Condition; families and models. For each of A–D, the

Families 1 and 7 are highly significant (very strong evidence for a difference), wi
differences in the posterior probabilities of each family/model.
ontrast of emotional faces compared with rest. For the right hemi-
phere, significant response within 14 mm of all maxima was ob-
erved in 21 of 29 healthy control subjects and 22 of 30 rMDD
olunteers, and only these participants were included in DCM. Re-
ults of the standard subtraction analysis in the full sample are
eported and discussed elsewhere (11).

CM Analysis
Table 3 and Figure 2 show the results of Bayesian model

election for each group, indicating very significant differences
n model evidences (50), with opposite directions of effect in the
wo groups.

Remitted Depressed

Most Likely Family Most Likely Model Posterior Probability

7 21 .98
1 2 1

mily (F1–F7) and, within the winning family, the most likely network models
for: (A) Healthy Control Group Happy Condition; families and models; (B)

ressed Group Happy Condition; families and models; and (D) Remitted
ences in log-evidences between the first- and second-place models within
bility
ely fa
rately

Dep
differ
th standard Bayesian thresholds (50), as can most easily be seen from the

www.sobp.org/journal
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For healthy control subjects viewing happy faces, the most likely
family was Family 1, and within that family, the most likely model
was Model 5 (posterior probability .86). This network is defined by
modulation of the single backward connection from OFC to FG. For
healthy control subjects viewing sad faces, the most likely family
was Family 7, and within that family, the most likely model was
Model 21 (posterior probability .81). This network is defined by
modulation of bidirectional connections between OFC and
amygdala and between OFC and FG.

For rMDD subjects viewing happy faces, the most likely family
was Family 7, and within that family, the most likely model was
Model 21 (posterior probability .98). Thus the most likely model for
rMDD participants viewing happy faces was the same model that
best fitted control subjects viewing sad faces. For rMDD subjects
viewing sad faces, the most likely family was Family 1, and within
that family, the most likely model was Model 2 (posterior probabil-
ity 1.0), with modulation of the single forward connection from the
OFC to FG. Thus the best-fitting model for rMDD participants view-
ing sad faces was similar to the model that best fitted control
subjects viewing happy faces, with only the unidirectional OFC–FG
connection modulated but in a different direction.

PPI Results
For happy faces, right amygdala connectivity to FG (31, �56, 5)

nd OFC (25, 32, �10) was significantly reduced (p � .05, family-
ise error corrected) in healthy control subjects compared with

MDD. For sad faces, right amygdala connectivity to FG (28, �63,
15) and OFC (11, 40, �5) was significantly reduced (p � .05,

amily-wise error corrected) in rMDD patients compared with
ealthy control subjects (Figure 3). There were no correlations be-

ween amygdala connectivity and either Clinical Anxiety Scale or
ADRS scores in any brain regions even at a liberal threshold of p �

Figure 3. Results of psychophysiological interaction analysis. (A) Relative
strengths of connectivity from the amygdala for processing sad versus
neutral faces in remitted major depressive disorder (rMDD) and healthy
control subjects (HC). (B) Relative amygdala connection strengths for pro-
cessing happy versus neutral faces. OFC, orbitofrontal cortex.
01 uncorrected. c

ww.sobp.org/journal
iscussion

In this study we identified how emotional valence modulated
onnectivity within a network of regions involved in face pro-
essing in healthy control subjects and rMDD. Happy and sad
motions modulated connectivity differently in the two groups,
ven though there were no significant differences in either re-
ion-specific responses or intrinsic connectivity associated with

ace processing.
Inferences about the directionality of connections (forward,

ackward, bidirectional, or absent) are important in the context
f emotion networks and made possible by DCM model compar-

son procedures. Because we were primarily interested in the
elationship between rMDD and the emotional modulation of
etwork connectivity, we used a first stage of DCM modeling to

dentify the most likely network. Within this fully connected
etwork, we then characterized the pattern of emotional modu-

ation of connections in each group. Strikingly, the family-based
ayesian model selection suggested a reversal of the association
etween emotion, connectivity, and group. Although DCM does
ot directly compare model fits from different datasets (e.g.,
ifferent groups), the reversal of the Bayesian model compari-
ons between groups implies highly significant differences in
nderlying neural architectures for emotional processing in the

wo groups (48). We went on to corroborate our findings with
PIs, a complementary technique that does not support infer-
nces of causality or directionality but uses simpler general lin-
ar models to infer differences in functional connectivity.

Dynamic causal modeling indicated that the pattern of modula-
ion by sad faces in control subjects was the same as for happy faces
n patients, involving bi-directional connections between OFC and
oth amygdala and FG. By contrast, happy faces in control subjects
nd sad faces in rMDD participants were associated with modula-
ion of unidirectional connection between the OFC and FG (the
ackward connection in control subjects and the forward connec-

ion in rMDD). This was corroborated by a direct comparison of
unctional connectivity between the two groups with PPI. This anal-
sis showed relatively reduced amygdala connectivity in rMDD dur-

ng processing of sad faces but relatively enhanced amygdala con-
ectivity during processing of happy faces.

Our finding that emotional valence specifically modulates effec-
ive connectivity in a face processing network in healthy control
ubjects is broadly consistent with previous reports (33–35). How-
ver, there are some discrepancies. Fairhall and Ishai (34) reported
nhanced forward connectivity between inferior occipital gyrus,
G, and amygdala, whereas we observed enhanced OFC–FG feed-
ack connectivity for happy faces and enhanced bidirectional con-
ectivity to OFC to both FG and amygdala for sad faces. One reason

or the difference is that Fairhall and Ishai (34) combined positive
nd negative emotions, simply assessing effects of “emotional”
aces. Here we show that happy and sad emotions modulate effec-
ive connectivity in different ways, suggesting that—as for stan-
ard fMRI analysis— combining different emotions might obscure
ignificant effects. Dima et al. (36) recently showed that different
egative emotions modulate connectivity in specific ways, with sad

aces particularly modulating the FG–OFC connection. A second
ritical difference is in the nature of the task demands. The Fairhall
nd Ishai paradigm was passive viewing. Here, as in Dima et al. (36),
e required subjects to make active decisions about faces. Evi-
ence suggests that precise cognitive and attentional demands of a

ask might be critical determinants of neuronal response to emo-
ional faces, both in region-specific fMRI analysis (35) and effective

onnectivity modeling (51).
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Our main finding is that emotion-specific modulation of effec-
tive connectivity is abnormal in rMDD. Neither behavioral perfor-
mance nor region-specific neuronal responses to emotional faces
have conclusively distinguished rMDD from control subjects ([4] for
review). A number of studies, including our own, suggest that rMDD
subjects show increased recognition of emotions, particularly neg-
ative emotions (8,9,52), although the effects are subtle. Studies of
region-specific neural abnormalities have reported mixed results,
with both enhanced (14) and normal (8) amygdala responses ob-
served in rMDD. Probably the most consistent finding is normaliza-
tion of abnormalities found in current MDD with short-term suc-
cessful treatment (6,12,13). In the cohort described here, there were
no significant group differences in region-specific responses to
happy or sad faces.

However, in the absence of region-specific differences, the best
fitting model families for the two groups are reversed for the two
emotions, providing evidence for group differences in connectivity.
In support of the DCM results, a PPI analysis reveals a reversal of
emotion-specific face processing-related amygdala connectivity
between the two groups on direct statistical comparison. Behavior-
ally, healthy control subjects are biased toward processing happy
information in various contexts, whereas rMDD might be associ-
ated with bias toward negative, specifically sad, information (4). If
we consider—as a shorthand— happy and sad faces as “congruent”
with the biases seen in control subjects and rMDD subjects, respec-
tively, and the other emotion “incongruent,” our results can be
interpreted as indicating that the processing of congruent emotion
in both control subjects and rMDD subjects is associated with mod-
ulation of FG–OFC connectivity only. Conversely, incongruent face
emotion is associated with the same connectivity modulation in
both groups: increased modulation of bidirectional connectivity of
the OFC to both FG and amygdala. Thus, for control subjects and
rMDD, only incongruent emotion modulates the amygdala–OFC
connection. Enhanced processing of mood-congruent information
might depend on decreased inhibitory cortico–limbic connectivity
in both patients and control subjects. Almeida et al. (53) have pre-
viously reported abnormal top-down OFC–amygdala connectivity
during overt processing of happy faces in MDD, which they inter-
pret as reflecting increased inhibition of positive emotion. This is
consistent with our suggestion that mood-incongruent informa-
tion might be associated with greater inhibitory connectivity,
whereas mood-congruent information is associated with de-
creased inhibitory connectivity. It cannot be concluded from the
present results whether different patterns of connectivity between
patients and control subjects represent a general mechanism for
mediating subtle attentional biases in rMDD or whether the find-
ings are specific to face emotion-processing. However, the results
indicate clearly that connectivity approaches (both DCM and PPI)
might importantly detect abnormalities that are not observed with
“classic” region-specific fMRI.

Abnormal connectivity between networks connecting OFC, FG,
and amygdala are consistent with previous studies using various
techniques. Anatomical connectivity can be assessed with tractog-
raphy techniques such as diffusion tensor imaging. Gschwind et al.
(54) demonstrated white matter (structural) connectivity between
visual processing areas and amygdala, although FG–amygdala con-
nectivity was weak (perhaps consistent with the absence of modu-
lation of this connection in the present study). The OFC–amygdala
connection is well-established (55) and has been demonstrated in a
recent tractography study (56). Diffusion tensor imaging studies in
depression suggest abnormalities in structural connectivity of
OFC–amygdala, both in currently depressed patients and those at

high risk (22,57). Direct connections between FG and OFC are less l
ell-established; however, both regions connect via major fiber
racts to temporal pole (58), and therefore indirect anatomical con-
ection is plausible.

Studies of functional and effective connectivity also support a
ypothesis of abnormal connectivity within the network suggested
ere. Resting state connectivity studies (19 –21) describe aberrant
onnectivity associated with depression. More relevant studies of
unctional and effective connectivity in response to emotional chal-
enges also suggest impaired fronto–limbic connectivity (23–
7,32). An important advantage of our study is that we did not rely
n a between-groups comparison of parameter estimates of con-
ection strengths. Early applications of DCM for group effects have
sed the connectivity parameter as a dependent variable, with a
ingle connection (53) or the same model for patients and control
ubjects (59). However, realistic models can be more complex, with

ultiple connections and modulatory influences. In these circum-
tances, reliability of parameter estimates can be poor (38), and

odel-level inference, such as our staged Bayesian model selection
rocedure, is more appropriate (30,43).

A recent study, with a similar approach to ours, showed that
odulation of normal serotonin (5-HT) function by acute trypto-

han depletion altered the connectivity of amygdala and ventrolat-
ral frontal cortex during processing of emotional faces (48). Re-
ions of the network tested here are rich in 5-HT receptors (60), and
tudies (61– 65) show that manipulation of 5-HT in healthy volun-
eers modulates responses to emotional faces in these regions.
isher et al. (66) used multimodal imaging to show that 5-HT recep-
ors are specifically implicated in emotion-modulated coupling of
mygdala and OFC. It therefore seems plausible that the differences

n connectivity we observe depend on 5-HT mechanisms. There is
bundant evidence for impaired 5-HT neurotransmission in depres-
ion (4), although evidence for ongoing abnormalities of 5-HT func-
ion in rMDD is more mixed. Our present results might suggest
ngoing subtle abnormalities of 5-HT mediated connectivity in

esponse to emotional stimuli, although this hypothesis requires
xplicit testing.

One limitation of this study is that not all participants activated
ll regions in response to faces at a standard threshold. The require-
ents of plausible DCM analysis necessitate exclusion of those who

o not activate all nodes, but this raises questions about whether
ncluded participants are a distinct subset of rMDD patients. It
hould be noted that: 1) similar proportions of rMDD and healthy
ontrol subjects were excluded, and 2) included participants did
ot differ from the whole group on any demographic measures. A

urther limitation is that, although scoring within the normal range,
MDD patients had significantly higher MADRS scores than control
ubjects. In a traditional fMRI analysis, it would be possible to exam-
ne the contribution of residual symptomatology with correlations,
ut this cannot yet be applied within DCM model selection. How-
ver, in our PPI analysis, covarying for symptom scores did not

nfluence the principal results.
In conclusion, we have shown that rMDD is associated with a

eversal of the normal pattern of valence-specific modulation of
ace-processing connectivity. The rMDD participants show greater
idirectional OFC–amygdala connectivity for happy faces than con-

rol subjects and less OFC–amygdala connectivity for sad faces. This
attern might reflect increased inhibitory control of mood-incon-
ruent information and decreased inhibitory control of mood-con-
ruent information. Our findings further support the use of DCM to
xplore aberrant connectivity in depression. Future studies are re-
uired to determine whether abnormal connectivity predicts re-
apse to MDD or severity of depressive episodes.
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