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Abstract

Reduced HNN extensions of von Neumann algebras (as well*aslgebras) will be in-
troduced, and their modular theory, factoriality and ultraproducts will be discussed. In several
concrete settings, detailed analysis on them will be also carried out.
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1. Introduction

There are two fundamental constructions in combinatorial or geometric group theory,
which are those of free products with amalgamations and of HNN extensions (G.
Higman, B.H. Neumann and H. Neumaifib3]). The interested reader may consult
[16] as a standard reference on the topics. Even in the framework of von Neumann
algebras (as well a§*-algebras), reduced free products with amalgamations ([41,44,28]
and also [38]) have been seriously investigated so far and played key réles in several
resolutions of “existence” questions in the theory of von Neumann algebras (see, e.g.,
[28,32,35,30] and also [37]). However, HNN extensions have never been discussed so
far in the framework.
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Historically, many ideas in group theory, especially part of dealing with countably
infinite discrete groups, have been applied directly and/or indirectly to many aspects in
the theory of von Neumann algebras (as wellCdsalgebras) since the beginning of the
theory. In fact, many explicit examples of von Neumann algebras that opened new per-
spectives in the theory came from group theory (see &é81f,11,3-5] and also recent
breakthroughs [29,22-24]), and it is still expected to find much more “monsters” (i.e.,
concrete examples with very special properties) living in the world of non-amenable
von Neumann algebras. To do so, it seems still to be one of the important guiding
principles to seek for new ideas in group theory. Following this principle, we will in-
troduce reduced HNN extensions in the framework of von Neumann algebras (as well
as C*-algebras) and take a very first step towards serious and systematic investigation
on them with aiming that their construction will play a key réle in future attempts of
constructing new monsters in the world of non-amenable von Neumann algebras.

Let us explain the organization of this article. In 82, we will review free products
with amalgamations of von Neumann algebras with special emphasis of the admissibility
of embedding maps of amalgamated algebras in the construction. Although this slight
generalization of the previously used one is of course a folklore, we will briefly review
it to avoid any confusion since the admissibility of embedding maps plays a key réle in
our construction of HNN extensions. In 83, reduced HNN extensions of von Neumann
algebras will be introduced, and then their characterization (or their “construction-
free” definition) given in terms of expected algebraic relations and “moment-values”
of conditional expectations as in the case of free products with amalgamations. In the
group setting, one standard way of constructing HNN extensions is the use of “shift
automorphisms” on “infinite free products with amalgamations” ogemorphic but
not necessary commasubgroups (in fact, two different embeddings of amalgamated
groups are needed). This amalgamation procedure brings us “difficulty” in constructing
“shift automorphisms” in connection with conditional expectations since the universal
construction is not applicable in the von Neumann algebra setting. Hence, a different
idea is needed to construct the desired ones, and indeed it is based on an observation
coming from our previous work [40] on a different topic. Roughly speaking, our con-
struction can be understood as an “amalgam” (but not a “combination”) of those of
covariant representations without unitary implementations in the crossed-product con-
struction (see [36, vol.ll; Eqg. (10) in p. 241]) and of free products with amalgamations.
Our construction seems somewhat natural from the group theoretic viewpoint. In fact,
the notion of HNN extensions is known to be necessary to describe a subgroup of a
given free product group with amalgamation over a non-trivial subgroup. 84 will con-
cern modular theoretical aspects of reduced HNN extensions. More precisely, we will
give a complete description of modular automorphisms and also show that the contin-
uous core of any reduced HNN extension becomes again a reduced HNN extension. In
85, we will discuss the factoriality and investigate the ultraproducts of reduced HNN
extensions. The results correspond to what we obtained in our previous work [39] on
free products with amalgamations. In 86, we will investigate reduced HNN extensions
of von Neumann algebras in several concrete settings. The first one is naturally arisen
from non-commutative 2-tori, the second from the tensor product operation, and the
third from regular and singular MASAs in the crossed-products by (non-commutative)
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Bernoulli shifts. The third one seems important for further investigation because any
given surjective (partialx-isomorphism between regular and singular MASASs in ques-
tion can never be extended to any globehutomorphism on the given “base” algebras.

In 87, reduced HNN extensions ¢f*-algebras will be introduced in the same manner

as in the von Neumann algebra setting, and then some basic facts will be given. Further
analysis on them will be presented elsewhere.

Part of this article was presented in the conference “Recent Advances in von Neu-
mann Algebras” celebrated to Professor Masamichi Takesaki’'s 70th birthday, at UCLA
in May, 2003. We would like to express our sincere thanks to the organizers; Professors
Yasuyuki Kawahigashi, Sorin Popa, and Dimitri Shlyakhtenko, who kindly gave us the
opportunity to present this work in the conference, and also would like to celebrate
Professor Masamichi Takesaki’'s 70th birthday.

2. Preliminaries on free products with amalgamations

Let D and Ny (s S, an index set) bes-finite von Neumann algebras, and we
have a normak-isomorphismi; : D — Ny for eachs e S. Suppose further that the
von Neumann subalgebrg(D) of Ny is the range of a faithful normal conditional
expectationE; for everys € S. Even in this setting, we will be still able to construct
the reduced free product with amalgamation

(N, E) = xp (Ny, Es : 1) .

ses

The discussions in this article will treat the type Il and Il cases in common so that
the approach irf38] to the amalgamated free product construction will be convenient
since complete treatment of modular theory was given there. To construct reduced HNN
extensions, the admissibility of the embeddingés € S) in the construction plays a key
réle. Hence, following [38] we would like to recall (without details) the amalgamated
free product construction with special emphasis on the embeddifsggso avoid any
confusion.

Fix se S for a while, and Iet(HS,NS, JS,PS”) and (L2(D),D, JD,P?)) be the
standard forms. See [36, vol.ll; Chapter 1X, 81] for detailed account of standard forms.
Using the mapping

1/2
fG'PuDI—> ((wé|D)ol;10Es) / E'PE 1)

we can extend the embedding : D — N, to the Hilbert space level and still de-
note it by the same symbal : L2(D)— H,. Here, tpl/zePE denotes the unique
implementing vector of a normal positive linear functionalon N,. This embedding
satisfies the following expected properties: (i) RKoe L?(D) anddy, d» € D, we have
Ls (leDd;JDé) = 15 (d1) Js15 (d2)* Jis (é)y i.e., i (dl ¢ dZ) =15 (d1) - 15 (é) <15 (d2)
with the usual notations in the bimodule theory. (i) For edehP),, the vectori, (¢)



386 Y. Ueda/Journal of Functional Analysis 225 (2005) 383-426

becomes the canonical implementing oneﬂf'l of the state(w€v|D) o110 Es, a con-
sequence from1).
Fix a faithful normal statep on D and denote by, its implementing vector in

PtD. As mentioned above, the vecta);(é(p) becomes the unique implementing one

of the statep o 1;1 o E; in the natural coné’JE. We denote the kernel of; by N?
as usual, and introduce the operatiog Ny — x° := x — Es(x) € N{. We also write
He == H,O1, (L?(D)), and it is clear that the subspagg is invariant under the left
and right actions oD via the embedding map,. Thus the naturaD-D bimodule
structure of the Hilbert spacg:

di-&-do =14 (dr) Jsis (d2)* Js¢, CeH,, di,doeD

is inherited to the subspadé?. When emphasize this bimodule structure, we will use
the symbolsp (,,Hs,) p» b (,Hs1,)p ©OF WHS,, i HS,, for short) instead ofH, Hy,
respectively. Notice here that we have the natural bimodule isomorphism

pL?(D)p ® p (WHs) p =p (Hsiy) p

given by ¢ @ n —> 15 () + 1. Let us construct the Hilbert space

2]
H = LZ(D) ©® Z 1SlH01S1 ®(p 1S2H01S2 ®(/) e ®(p Ig, Holsn
S1#S2FE s

on which the desired algebnd acts. This naturally becomes -D bimodule, and

the left and right actions are denoted kyand p, respectively. For each e S, we

can construct thex-representationl; : Ny — End(Hp) and the anti-representation

P, : Ny — End(p#H) by the same way as if88, pp. 361-362]. To do so, we need only
some basic properties on relative tensor products (see [36, vol.ll; Chapter IX, 83]) and
the bimodule isomorphism#,,, = L3(D) & (,,H2,,) precisely explained above. Let us
consider two von Neumann algebras

N = (U s (Ns)> , L= (U P, (NS)> onH

ses ses

and define) := we, as a vector state, with regardidg < L?(D) as a vector ir.

[

Facts 2.1(Ueda[38, pp. 362—-365]. (A) /A o 15 coincides with the left actiod of D
for eachs € S.

(B) p, o 15 coincides with the right actiop of D for eachs € S.

(C) The vector¢,, is cyclic for both N and L
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(D) The commutantV’ on H contains L (More on this is truethat is the commu-
tation theoremN’ = L holds see[38, Appendixll].) Hence the statey is faithful
(E) For eachx;? € N;’j with 51 # 52 # - - # 5,, We have

¥ (Asy (x3) -+ Ag, (x5)) = 0.
(F) The modular automorphism;p (r e R) satisfies

-1
ol, “oF
a}p ol =Ag0 0;0 s

and a;//oi:)boa;p.
Hence there is a(uniqué y-preserving conditional expectatiof” : N — A(D) thanks
to Takesaks theorem[36, vol.ll; Theorem 4.2 in Chapter IX].

As in [38, lines 8-3 from the bottom in p. 364], the above (C), (E) imply the freeness
(with amalgamation oved (D)) among the von Neumann subalgebriggNy) (s € S)
with respect toEY in the sense of Voiculescu [41, §5]:

EV (4 (65) -+ A, (7)) = 0

wheneverx;. € N;j with 51 # s2 # - - - # s,. Similarly one has
EY (s (x)) = Jg (Ey (x)) = 2 (1;1 o E, (x)) . xeN,.

The conditional expectatiorE¥ can be shown to be independent from the choice
of ¢ (see Fact 2.2 for more precise), and hence we rewfite= EY. The pair

(N, E) constructed so far is the desired one of von Neumann algebra and conditional
expectation, and it is characterized by freeness with amalgamation as follows.

Fact 2.2 (Voiculescu[41, 85.6] also see Uedd38, Proposition 2.5]. Let P be a von
Neumann algebra with a normad-isomorphismn : D — P. Suppose that there are
normal x-isomorphismst, : Ny — P with 7y 01, = © and a faithful normal conditional
expectationF : P — w(D) such that
e the 7y (N;)'s generate the whole;P
e Fomy=moi;toE, for everyseS;
e the 7y (N;)'s are free with amalgamation with respect to F
Then there is a unique surjective normatisomorphismll : N — P such thatlloA; =
7y for everyse S andIlo E = F o Il.
. -1 v o1 1E

Sincey = (¢|2(D))0E = @ol o E, we see that, = "D o’ " (1 eR), where
the right-hand side is understood as free produet—atjtorﬁce)rphisms (constructed based
on the characterization by freeness, see 8, p. 366)), i.e.,

o 710 : A o 710 ¢
(*D 07) s Es) ()vs(x)) = A (0? ts o ks (x)) , XE€EN;.

seS
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Thanks to Connes’ cocycle Radon-Nikodym theorem (@& {ol. II; Chapter VIII,
83]), this formula of modular automorphisms is still valid even for every semifinite
weight:

Proposition 2.3 (Ueda[38, Theorem 2.6} For a faithful normal semifinite weigh
on D we have

-1 1
L ToE Iy oEy
0';[)0/ = xp a,d)o s %" (teR).

ses
3. Construction and characterization

One would encounter “difficulty” in dealing with conditional expectations (in con-
nection with “shift automorphisms”) if straightforward adaptation of one of the group
theoretic constructions of HNN extensions (see 4, Chapter I, 81.4]) was attempted
in the von Neumann algebra setting. This forced us to seek for another route towards the
construction of reduced HNN extensions. The rough idea is still essentially the same,
but our method is completely different, avoiding the use of “shift automorphisms” on
“infinite free products with amalgamations.” The method is based on a simple fact on
“matrix multiplications” that we observed in our previous investigation on the reduced
algebra of a certain amalgamated free product by a projection, see [40, 87].

Let N be agc-finite von Neumann algebra arid be a distinguished von Neumann
subalgebra with a faithful normal conditional expectatEﬁ : N — D. Let us suppose
that we have an (at most countably infinite) fam@ of normal x-isomorphismsf :

D — N with faithful normal conditional expectationE{)‘zD) :N— 0(D).

Set®1 :={1:=1dp}u®, a disjoint union. Let us define the normaisomorphism

lo: D®L* (1) — N ® B (€%(01)) by

L x®e11 if 6=1,
lo (x ® egp) = {0(x)®699 if 0c®

for eachx € D, where theey,,’s denote the canonical matrix unit systemlfiir(z2 (@1)).
Namely, in the operator matrix representation, we have

1 D

lg = E 0 . 1o (D®E*(Oy) = (D)

We also define the faithful normal conditional expectatiég : N ® B (62 (@1)) —
10 (D ®£*(01)) by

N
ED

o
Eg := EN =| 2 Edp) ®ldcey | o (dy @ Ev)
0(D) 0cO
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where Ey~ is the unique conditional expectation froBﬁ(Z2 (@1)) onto £%° (®1). Let
us denote by the inclusion map ofD ® ¢ (®1) into N ® B (¢2(®1)), and define
the faithful normal conditional expectatiofi; : N ® B (EZ (®1)) — D ® £ (01) by

Ep

E1:= £ - (Eg ® |dzoo(®l)) o (Idy ® Eg) = (Eg ® E(oo) .

We then construct the reduced free product with amalgamation:

WN, & = (N ® B (Zz (@1)) LEg : l@) D®(Z°:(®1) (N ® B <£2 (®1)> LEq: 11) .

The embedding maps oV ® B (Zz (®1)) onto the first/second free components are
denoted bylg and A1, respectively, and the embedding map @fR £*° (®1) into N
by 4, i.e., A = lg o1 = A1 011. The desired HNN extension & by ® with respect

to EV and theEé{D)’s will be constructed inside a corner subalgebra\of
Let us define

u(0) := A1 (e1p) Ao (eg1)

with identifying eg,p, = 1®eg,p,, and the following equation is a key to our construc-
tion:

u(0)2e (0(d) ® e11) u(0)* = Jo (d®@e1), deD,

which simply comes fromig (0(d) ® egy) = A(d @ egy) = 71(d ® egp) for each
de D, 0e®1. We also define the projection

p = A(e11) = Ao (e11) €N

and then introduce the unital normaisomorphismz from N into the corner subalgebra
pN p defined by

nn) =l (n®e11), neN.

The partial isometriex(0)’s, can be thought of as unitaries in the corng¥p since
their left and right supports are the projectipnand the above-mentioned key equation
is translated into the following algebraic relation:

u(0)n (0 (d)) u@* =n(d), deD. (2)
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Set
M :=n(N)v{u®) :0€0}" C pNp.

Let us consider a faithful normal semifinite weight éh® £*° (©1):

P =0® (Tr’ew(e)l))

with a faithful normal statep on D, where Tr is the (non-normalized) canonical normal
trace onB (¢2(©y)).

Lemma 3.1. We have

o0 () = p, o

o () =n <a§” E> (n)) , @
1

ol % (w0) =u)n ([Doo 07 o By, - Do o EY] ) ©

for eachteR, ne N, 0<0O.

Proof. Egs. @) and (4) are straightforward from Proposition 2.3, while the last one
needs some additional efforts. In fact, we have

-1 o170 o1zto
A7 o) =i (o G e ) 20 (70 )
— 1 (1®e1p) do ([D(p 007LoE), Do Eg] ® 691)
t
= J1(ew) /o (eg) 2o ([ D@ 0 07 0 Efyy 2 Do Eﬁ]t ® e11)
_ -1 N . N
—u(O)n ([Dq) o0LoE), : Dpo ED][) ,

where the second equality comes from the so-called “balanced weight technique” due
to Connes (see [36, vol. II; Chapter VIII, 83, pp. 111-113]}J

Since n(N) = pie (N ® B (¢?(®1))) p, the restriction of the normal conditional
expectation

fo: N~ o (N®B(12©@n))
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that preserves o iteg (and hencef = £ o £g holds) toM gives a faithful normal
conditional expectation

E%N) = E@|M : M — n(N).

We have(qb oito 5) |y =@oEyon oLl and hence, by Takesaki's theorem

[36, vol. Il; Theorem 1.2 in Chapter VIII, 81] we get

N_ -1 M h—
QoEpom OEn(N) ol l.e
O-f = O-I |

e [€ER (6)

-1
sinceo—f"M °€(M)= M for everyt € R thanks to Lemma8.1.

Definition 3.1 (Reduced HNN ExtensionsWe call the pair(M, E%N)) constructed
so far the reduced HNN extension (or HNN extension, in shortNoby ® with

respect toEN and theEé\iD)’s, and denote it by

(v £260) = (V- 25) 1 (- {Ziln ) o)

When no confusion occurs, we will writéf = NB® for short. The given von Neu-
mann algebraN is called the base algebra, and eagH) the stable unitary of) € ©.

Definition 3.2 (Reduced Words An element (inM)
w=u (00)80 w(ny)u (91)81 w(no)---mw(ne)u (0@)‘ez

with n1,n2,...,ng €N, 0p,01,...,0, €0, 9, ¢1, ..., € {1, —1} (possibly withw =
u (00)™) is called a reduced word (or said to be of reduced formy;if; = 6; and
gj—1 # &j imply that

o GNg = KerEgiD) with 0 := 9.,'_1 = 0/', when gjic1=1 ¢ =-1;

e n;eN° = KerEg, whene;_1 =-1, ¢; =1

We should point out that our definition of reduced words agrees with so-called
Britton’s lemma in combinatorial group theory (s¢E5, p. 181]), where a reduced
word is named as a normal form, and the sets of representatives of right cosets of
distinguished subgroups should be regarded as the counterpawts afid theNy’s in
our consideration.

Remark 3.2. It is plain to see that (01) - --u (0,)* is of reduced form in the above
sense if and only if so iﬁil e G? in the free groupF (®) over the generating s&.
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Definition 3.3. We introduce the following two conditions:
(A) uO)m (0(d)u(0)* =n(d) for everyd e D, 0 €O®.
(M) For every reduced worel, one hasE%N) (w) =0.

Theorem 3.3. The pair(M, E%N)) constructed above satisfies conditiqAg and (M).

On the other handconditions(A) and (M) characterize the pai(M, EQ{N)) completely
under the assumption that(N) and theu(0)'s generate M as von Neumann algebra.
Strictly speaking the conditional expectation of the pair in question is completely

determined by those conditions.

Proof. Let us denote the first/second free componentsVoby Ng, N1, respectively,
for short, i.e, N := Je (N ® B (€%(©1))), N1 := 11 (N ® B (¢?(©1))), and set
NG :=No NKeré = Jg (KerEg) and N7 := N1 NKer& = /4y (Ker Ep) as usual.

Condition (A) was already verified, see EQ),(and thus it suffices to check condition
(M) for the first half of the assertions. Let us choose a word

w=u (90)80 m(ny)u (91)81 w(ng)---mw(ne)u (0@)”

and then we have

w = (41 (e10) 20 (¢051)) ™ 20 (11 ® e11) (4 (e10,) 2o (e0y1))™
e (ne ® e11) ()Ll (el()l) A0 (e()ll))go .

Here, we briefly explain how to manipulate this word in a typical case;lh = —1,
ej =1, then

(9»1 (elej,l) 40 (69,-,11»8#1 Jo (nj ® e11) (’11 (el(’j) 2 (€9j1>)€j

=l <el(')j71) e (Eg (n]) ® 691.7101.) yre) (e(.)jl)

+ 10 (619_,,1) A1 (60_,~,11> ) <nj ® 611) Vil (ew,-) e <€9_,v1)

with n$ =n; — Epy (n;). If nj € N°, then this belongs tdVg A7 NGNTAG since the
first term disappears in this case. On the other hand, ifs arbitrary but0;_1 # 0;,
then it belongs toVg NP NG +NGNTNGNTNG. In this way, one can easily observes
that, if the wordw is of reduced form, then it belongs to the linear span of alternating
words inN(‘j) and N7 of length greater than 2. Therefore, we hag (w) = 0, which
asserts condition (M).
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Next, we will show the latter half of the assertions. To do so, it is enough to explain
how one can compute the moment-value:

E%N) (u (90)50 T(x)u (91)51 T (x2) T (Xm) U (9,,,)5'”)

of any givenxi, x2,...,x, €N, 00,01,...,0, €0, d0,01,...,d, €Z\ {0}, by using

only conditions (A) and (M). In fact, if the resulting value could be expressed uniquely
in terms of only the data oftl, do) , x1, (01. 1) . ..., Xm, (O, 6,u) together withE

and theE(’,\’D 's, then the desired assertion would follow. Our technique is the essen-
tially same as in the case of free products with amalgamations. Namely, we use the
decompositions:

n=EN (n)+n° or EO(D) (n) +[n]j neN,

where we defingnly := n — Eév(m (n). By the repeated use of the decompositions
together with condition (A), we can make the moment-value in question a (finite) sum
of the form:

> 7 (n(w)) EMy,(w)

w: reduced word or 1

with coefficientsn(w) being words inD and (D) (in N), and all the coefficients(w)

and all the wordsw (the moment—valueE%N)(w) takes 0 ifw is of reduced form or
otherwise,w = 1) appeared in the above expression are uniquely determined from the
given data(0o, do), x1, (01, 61), - .., Xm, (Om. o) together withEY and theEé‘iD)’
Therefore, our desired assertion followd.]

Let u (g), g € F(®), be the natural group isomorphism from the free grdui®)
into the unitary groupg/ (M) given by the correspondendee ® — u(0) el (M).
Let us denote by ( - ) the usual word length function with respect to the generating
set®. The computation given in the above proof implies the following corollary:

Corollary 3.4. Let w = ug *n(n) u (01)" (nz) - m(ng)u (0,)" be a word in

M, and setg := 007" --- 0}, a word in F (®) (obtained by replacing alk;’s by the
identity 1). Then we have

t(g) #0= En(N) (w)=0

In particular, the unitariesu(0)’s form a free family of Haar unitariesso that they
generate the free group factdr (F (®)).

The following corollary is also straightforward from Theore8:
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Corollary 3.5. Let G x5 0 = (G,t : t0(h)t™ = h, he H) be an HNN extension
of base group G with stable letter t by group isomorphi8nfrom H into G. Then

the group von Neumann algeblfa(G *p 0) can be identified with the reduced HNN
extension of the base algebfa(G) with the stable unitaryt (¢), where all the necessary
conditional expectations are chosen as the canonical tracial state preserving ones

We then discuss what phenomenon occurs wbheand the((D)’s are assumed to
be all mutually inner conjugate. LétM, E¥) be as above with identifying = n(n),
ne N. We here suppose that evefye ® has a unitarywy e N with the following
properties: (i) Adwy o 0 € Aut(D); and (ii) EQQD) = Adwj o Eg o Ad wy. Define the
actiony of F(®) on D in such a way thap, = Ad wyo0, and consider the free product
with amalgamation:

(L, F[L,) - (N, Eg) . (D>4;,[F(G)), ng"m)) ,
Dx,F(®) . . L. . . .
where E )"’ is the canonical conditional expectation. The faithful normal condi-

tional expectation fronL onto the first free componei that preservesF,g is denoted
by FAL, Then, we have the following simple corollary:

Corollary 3.6. In the above settingthe correspondence

neMw— nel, neN,

u(@eM — ()*wpeL, 0O

gives ax-isomorphism between M and L that intertwinE# and Fﬁ. Herg, A7 :
F(®)— Dx,F(®) (S L) denotes the canonical unitary representation

Proof. It is plain to verify that the pair(Z 2 N, FL) with the unitaries/” (0)" wy,

0 €O, satisfies conditions (A) and (M) with respect ® and EY, Eé‘ED) oo
€

In fact, condition (A) follows from the above (i), while the (M) from the fact that
XENy = KerEgﬁD) if and only if woxwj;eN°® = KerEg thanks to the above
@i). d

Remarks 3.7. (1) [HNN extensions arising from inner conjugate Cartan subalgebrals
Assume thatN is a non-type | factor with separable predual (or more generally, a
von Neumann algebra with separable predual having no type | direct summand) and
further thatD and thef(D)’s are all Cartan subalgebras i (see B] for the notion of
Cartan subalgebras). By the uniqueness of normal conditional expectations onto those
Cartan subalgebras, if those Cartan subalgebras are all mutually inner conjugate, then
Corollary 3.6 enables us to apply our previous results [38—40] to the HNN extension
M = N xp ® without any change. However, we have no general result without this
inner conjugacy assumption among Cartan subalgebras in question.
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(2) A special case of Corollard.6 was one of the starting points of the present
work. In fact, in the setting of Corollary 3.6, the group theoretic construction based
on shift automorphisms on infinite amalgamated free products is valid when all the
wg = 1 (so thatyy = 0). Concerning this, we point out that the amalgamated free
product appeared in Corollary 3.6 has the crossed-product decomposition:

M = N (©) x[ (®)

by the free Bernoulli shift on

N (©) := o (N, EV yg> .

(See e.g.[12, 83], where only the case a0 = C1 was treated, but the argument
works even in this case.) More on this will be discussed in the next section with full
generality.

4. Modular theory

Let

(v Ext) = (¥.25) 3 (©- | £in ], o)

be the HNN extension of base von Neumann algelravith stable unitariesu(0),

0 € ®. Here, we will use the construction and the notations of HNN extensions given
in the previous section; however, in what follows, we will identify= = (n), n € N, so

7 will be omitted. The next theorem is immediately derived from Len8rhwith the

aid of Connes’ cocycle Radon—Nikodym theorem (see [36, vol. II; Chapter VIII, 8§3]).

Theorem 4.1. For a faithful normal semifinite weight on D, we have

o] NO M
/DN (4(0)) = u(0) [Dl//o 07 o E) ) Do Eg] . 1€R.
t
This theorem implies the following criterion for the existence of traces on HNN
extensions:

Corollary 4.2. If N has a faithful normal semifinite trace and if the givenEg and

N y . .
the EH(D) s satisfy the relation

T= (‘L’|D)OEg = (‘C|D)00_10E$](D), 0e®,
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then so does Mand more preciselyr o E% becomes a trace. In particulaif N
is semifinite with a faithful normal semifinite trace and if the given conditional
expectations are-preserving andr|ypy = (t|p) o 0 holds thenz o Elf‘f is a trace

A crossed-product decomposition fact for HNN extensions was given in Remarks
3.7,(2) under a very special assumption. Here, we give such a fact with full generality.

Corollary 4.3. Let us denote by (®) the von Neumann subalgebra generated by all
theu (g) Nu (g)*, g € F(®). Then we have the crossed-product decomposition :of M

M = N(®) >4Adu”:(®)
with the natural adjoint actiomdu : g € F (®) — Adu (g) € Aut (N (®)).

Proof. First of all, we should remark that Theorefnl shows that there is a unique
faithful normal conditional expectation fromfl onto N (®) that preservesE]AVl . Thus,

the desired assertion is derived from Corollary 3.4 together with the well-known char-
acterization of discrete crossed-products in terms of conditional expectatiohs.

Remark 4.4. Theorem4.1 says that each subalgebedg) Nu (g)*, g €F(®) with
g # e (e denotes the identity), is not necessary to be globally invariant under the
modular automorphism associated wifo E% .

Theorem 4.1 enables us to show that the continuous core of the HNN extévision
in question becomes again an HNN extension. For a better description, it is convenient
to use a recent formulation of continuous cores due to Yamagami [45]. (See also [7],
and the reader may consult [36, vol. II; Chapter XII, 86] for more detailed account.)
Following the formulation, the continuous core of a givenP can be understood as
an abstract von Neumann algebra generated by two kinds of symkoR and /'’
with a faithful normal semi-finite weigh{ on P, which satisfy the relations:

Yyt = ol (0, I =g T = D Dy,

for faithful normal semi-finite weightg, y on P. It is known that such a von Neumann
algebra P can be realized as the crossed-prodétct ,,R, where y'" denotes the
canonical unitary implementatioﬁa‘/’ (1) of R inside the crossed-product, amd’ =
[D¢ : DY), ¥ = [D¢: DY], 2¥ (1) in general.

In our setting, the inclusion relationd > N 2 D, M 2 N 2 0(D), 0 € ®, with the
faithful normal conditional expectations’ : M — N, EY : — D, Eév(m : N = 0(D)
give us the following natural embeddings and mapping:
iep“BYiepc N W,

~ identify

DN by ‘ i
p'eD & (poEp) €N,
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- - deDw 0(d) e(D)C NCN,
0:D— N by '

. ~ it ~
¢''eD > ((p09 oEé\ED)) EN,

~

N Nldentlfy MCM
N M b ne <~ ne

Q')l ‘ |dent|fy ~

(QS EM)ll‘ M
and the conditional expectations

——
~

NV R N _7 M. N
Ep:N—D, Ey,,: N—0MD)=0(D), EN:M—N

constructed in such a way that
EN| =EN. EN((poEN ") = ey
pIN = ED> D poLp =\poLp) ,
EN | =EV EN 0o Y V) = (pobtord, )"
O(D) N = Fo)y oy \\ PV o Lyp =\¢e° °Eopy) >
— M — M it M it
EIA\;I|M:EN’ E%((QSOEN) ):(¢°EN)

for faithful normal positive linear functionalg € D,., ¢ € N,, where one should remind
the following formula:

3((oo8) ") (=3(") ) = (00020 i)

For a faithful normal state» on D, we have, in the continuous coré,

it it
(q) oENo E%)’ 1(0) = u(0) ((p o0 o EN, o E;‘f)' . 1eR, @)
thanks to Theorend.1. The general assertion given below is a simple application of
formula (7) and Theorem 3.3, i.e., the characterization of HNN extensions.
Theorem 4.5. The pair (]VI @4) is again the HNN extension of the base algelﬁfa
by the family® := {5 : ee(a} with the stable unitaries:(9), 0 € ©, with respect to

the conditional expectationEN and EY . 0e®, that is

0(D)’

<A7I’ E,@) B (ﬁ’ Eg) <(:) { O(D)}()e@)'

We will often denote this identification W © for short

t
D
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Proof. Condition (A) follows from formula 7). Indeed, for eackd € D, ¢ € R, formula
(7) enables us to compute

it

w0 <d ((p ° Eﬁ)”) u(@)* =d (go o EN o E%)it —d (q) ° Eg)

Hence, it suffices to verify condition (M). The argument to do so is similar to that in
[38, Theorem 5.1]. Letw be a word inM, i.e.,

wW=u (90)50 niu (01)81 S Heu (0@)‘%

with 71, ..., 7%, € N. Then, Kaplansky’s density theorem enables us to reduce our con-
sideration to the case that eaagh is in a (not necessary common) suitable dense
x-Subalgebra ofV. Such a dense- -subalgebra is chosen as thaealgebra generated by

N and the(¢p o Eg) teR, or by N and the(q)oe ()(D)) , t€R, and we can

it
assume that eachi; is of the form:n (¢ o EX)" or n (q) 00 to E(])‘QD)> thanks to

[38, Lemma 5.2]. Ifw is of reduced form, then the repeated use of formula (7) enables
us to makew a word of the form:

it
(a reduced word M) x <(p oENo E%)l or
- 1N M\’
(a reduced word irv) x ((p o "o Epp) © EN>

and the desired assertion follows from that the origilMakatisfies condition (M). [

5. Factoriality and central sequences

Let us begin by fixing our setting and notations throughout this sectionNLbe
a o-finite von Neumann algebra, arttl: D — N be a normal«-isomorphism from a
von Neumann subalgebia of N into N. Suppose further that there are faithful normal
conditional expectation€ : N — D and EQED) N — 0(D). Let us consider the
HNN extension:

M N N
(M, En(N)) = (N» ED) * (0’ EH(D)) ;

and write M = N » 0 for short, when no confusion arises. The discussions in what

D
follows heavily depend upon the construction of HNN extensions given in §3, and thus
we should briefly recall the procedure to fix notations. We first begin by constructing
the free product with amalgamation:

WN.E)=(N®@M2(C),Eg:19) * (N®M2(C),Er:11),
D®C?
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EN EN
E():[ b EN :|v E].:I: b ENjI’
D

|dD IdD
19:=|: 01|, ll:=|: |dDi|'

Here, we denote the canonical embedding map&vah M2 (C) onto the first/second
free components by, 11, respectively, and the embedding map f® C? into A/
by /. Note thatl = Ayo1y = A1011. As before, we will writeNy := 1y (N ® M> (C)),
N1 =21 (N ® M (C)) and NS := Ny NKer& = 4y (KerEp), N? := N1 NKer€ =
J1 (Ker E1), and moreover denot® := 4 (D ® C?). Setp := 2 (1® e11) € (D ® C?)
( € N). Then, the HNN extensioM = N 50 is obtained asVf := (n (N), u(0))” <

pN p with

where

nn) =lg(n®e11) = plg(n®L)p, neN,
u(0) =721 (1®e12) 1p (L Q e21) .

Let & : M — Ny be the conditional expectation onto the first free component, condi-
tioned by¢&, i.e., £ o0& = £. The conditional expectatioE%N) : M — n(N) is given

as the restriction o€y to M. In this section, any embedding map appearing in the

above construction will be not omitted to avoid any confusion as long as when we
will treat the amalgamated free produtf = N Z*)/\/1 to get any result on the HNN

extensionM = N B 0.

Next, we briefly summarize some of the basics on ultraproducts of von Neumann
algebras needed in this section. We refef2b, Chapter 5] for the topic. (Also see [39],
§2.2] as a brief summary fitting into our treatment.) Fix a free ultrafiber f(N) \ N.

For a giveno-finite von Neumann algebrR, let us denote byZ/ the set of bounded
sequencesx,), < n in P satisfyings-s*-lim, . ,, x, = 0. With letting M (Z0) := the
multiplier algebra ofZ” inside the algebra™ (N, P) = P ® ¢* (N) of all bounded
sequences i, the ultraproductP® is defined as the quotieiit*-algebraM (Z7)) /70
with quotient mapr’. In what follows, we will need the following standard facts: (1)
Every constant sequence khbelongs to the multiplier algebrat (I(’;). In particular,
this implies thatP can be embedded int®® via =2. (2) If Q is a von Neumann
subalgebra oP that is the range of a faithful normal conditional expectatifyrnthen
the ultraproductQ® is naturally embedded into the bigger o’ and E is lifted to

a faithful normal conditional expectatioB® : P — Q% in the natural way. (3) For
a projectionp € P, the reduced von Neumann algetpa(P“’) p (with pe P — P%)

is naturally identified with(pPp)®. Although it sounds trivial, one needs to care
with (only) the case of infinite von Neumann algebras because of the definition of
ultraproducts.
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Proposition 5.1 (cf. Popa[27, Lemma 2.1]and Ueda[39, Proposition 5). Let N' =
Ny ENl be as above. Suppose that there are faithful normal stateg¢, on D and

unitaries v € N, px, v € N such that

-1
@yol oEé\{D)

Eg (”n) = E(%D) (vn) =0, Eg(m (vg) =0

as long asn # 0. Define the state) on D ® C? and the unitaryV e /\/l//orlog by

. 1
¥ (diag[d11, d22]) := > (¢ (d11) + @y (d22))

V=g ([ . D € 7o (N ® M2 (©))yotop, ) S Nyostuge

respectively. Therwe have for every X € (V) N N?,

Ju® (X ~ &5 0O zgpcey < 10 X]] 20

where the canonical injectiov\(l// i log

)’ : N© — L? (N'®) with respect tathe canon-
ical lifting of state (yo 27* o€>w is omitted

The idea of the proof given below is essentially the same as th&%fHroposition
5], but not exactly the same becaugé)) is not in a single free component and
indeed is in N7 g, a set of reduced words of length 2. Here is a good place to
mention the following: In the statement of [39, Proposition 5], it is commented that
“ubDu* = D = wDw*", one of the assumptions there, is automatic from the other one
given there. This is a wrong comment, but we would like to emphasize that all the
cases treated in [39] satisfy the condition, and moreover that the condition is never
used in the proof there.

Proof. Let us begin by introducing the following decomposition:

- ([0 o) KerE) KerE)
NP =2y <|: i|> NY =g (D) 1.
0 0 O 0 N Kergj,

where

Note that for each pair

XA — 0 0x) c 0 0(D) yv o= | Y vz | o KerEg KerE%D)
0 0 0 0 J° y21 Y22 N Kere), |’
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we have

Axy VY _ 0 0 _ 0 0 _
Ey (X21Y )‘E9<[9<x>*y11 9()5)*)’12:|>_|:0 0(x>*EgV(D)(ylz)}—°' ®

This decomposition is essential in what follows.
In the standard Hilbert spade? (\V), we introduce the following five subspaces:

Ay :=the closed subspace generatedAy, ;1 . (Vg A7),
&2 :=the closed subspace generated/Ayy, ;-1 . (VT Ng).,
A3:=the closed subspace generatedAy, ;-1 o (N7 -~ AT),

X4 :=the closed subspace generated/q%flog (NPNT - NG,
Xs :=the closed subspace generated/q’yo/rlog (NVYNT - N,

where Al//ol—log denotes the canonical injection of into L?(N) with respect to
Yol to&. Then, we have

L2V =[metetsex]etse V). L2Wp "TYA, . V.

Note here thatt; and A5 are orthogonal, which follows from8j. We will treat the
subspacesty, X, X3, X4 in common, while will doXs carefully by looking atu(0).
We introduce the operatdfy«, n € Z, on L2 (N) defined by

Tyn Ay t0e (X) = Ay sm1e (VIXVT"), XeN.

SinceV is in the centralizer of,bo/TloE due to Propositior2.3, one can easily verify:
Ty is a unitary; andl'y, = Ty», Ty Px, = Prax, Ty for everyn € Z. Here, Py denotes
the projection onto a closed subspage

Claim. Fori =1,2,3,4 (#5), we haveT;X; L T A; as long asn # m.
Proof. The first three subspace¥;, A», X3 are treated exactly in the same way as in
the proof of [39, Proposition 5]. But we would like to explain below the caseYpf

because it is somewhat non-trivial, and then the cas&of
Let us choose two alternating words Mg, N7 starting atV; and ending atVy:

WO =XD1YD1--- YDy, W@ =X2)1Y D)1+ Y (D),

with X (k); e Ny and Y (k); € NT. Since
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XeNy= X—-EX)eNj, YeN1 =Y —-EXY)eN?
(thanks to€|;, = Ago Ego iy* and E|p, = /10 Ego yY), we have
(TVA yort0g (WD) [T A 1,6 (WD) 12y,
=yoitog (Y7, - Y@iX@QiV""X(D1Y D1 Y (D, V')
=Y ol o€ (Y@, Y@IE(X@IV" "X (D) YD1+ Y (D V")

by using the freeness. lterating this procedure we finally see that

(T&A Joi-tog (W) |TPA 1 e ((W(2)))L2(N) -0
if ¢1 # €2; or otherwise (i.e., wheri, = ¢; de:”?tez), we have

(T&Awo}v—log (W) [TV Ay gy1,e ((W(Z))>L2(N)

=Yoo M E(X@E(--E(X@E(X@5VX (1)1) Y (D)) - - )
YD) E(V"T))
and this becomes 0 as long &' " ¢ N(_;’, i.e., m # n. Hence we are done in the

case ofX].
To treat the case afty, it suffices to note the following simple fact: For each pair

a3 ). xama([3 )

in N7*, we have

, k0 1
x@vx@=i([yeiy o) ['o [0 6" )

- (To 0 !
:“’([0 0 (x(2))* vke(x(ln]) €Ny

as long ask # 0. Hence, for each pair of alternating words
WO =XD1YD1--- YD XDy, W(2) = X2D1Y (D)1 Y (D), X (D),
with X (k); e Ng, Y(k); € N} (2<j <ty or £2) and X (1)1, X(2)1 e N}, we have

(TVAyost0g (WD [TV Ay o106 (W) 12y = O
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since X (2)1V""X (1)1 € Ny as long ast #m. [

Let us choose an elemeit= 7/ ((X)ken) satisfyingX = VX V* with identifying
V=rN(v,v,..)). Set

X =20 X3 X308 Ay,

and, in the same way as if89, Proposition 5] based on the above Claim, we see
that, for eache > 0, there is a neighborhoo#; at w (in the w*-topology on the
Stone€ech compactification (N)) such that

H PXAlporlos (Xk)‘

<&
L2(N)

as long aske W, N N. For the sake of completeness, we will repeat the detailed

argument. In what follows, we will denotd := Al//O/«L—lOS, A? = A@ 1 5)“’ for

simplicity. For each fixed: € Z, we have

im A (Xe = V"X V) llzvy = IIAY (X = VXV ") [l 2(wvey = 0

|
k— o

and hence, for each > 0 and for eachig € N, there is a neighborhood/ at @ such
that

IA (Xk = V" Xk V") 2y < 0
for everyke W NN andn € Z with |[n|<ng, and thus for each # 5,
| P2 A X072, = 1T P A (X0 [ 200,
= [ Tvn P A (Xi) = Pry A (X0) + Pru A (X |20,
< 2| Pr A (VXY = X0) 2o, + | P A K022 )

< 2|0+ [ PrnacA (X0 22 |



404 Y. Ueda/Journal of Functional Analysis 225 (2005) 383-426
and hence

@0+ 1) | P A (X072, <2{(2n0+1)52+ > HPTWX,.A<Xk)H§2W)]

In] <no
< 2{(2no+ 1) 6% + ||A(Xk)||iz(N)}

by the previous Claim. Thus, we have

2 2
||P)(,~A(Xk)||L2(N) <2{5 + 2no+1

2
||Xk||oo}

as long ask e W N N. Therefore, we get the desired assertion siAtes the direct
sumAX1 @ Ao d A3 b Ay.
For a while, the right«(0) in the quantityu(0)X — Xu(0) (= [u(0), X]) is replaced

;-1
by an analytic elemeny eNng under the modular action;/’” °f, (Note that the

—1
restriction ofa;/"’)’ ¢ to NN is nothing but the “produotﬁ"‘”l"El( . )a;""’”OE”( ")

The Hilbert spaceLz( ‘“) can be isometrically embedded into the ultraproduct
Hilbert spaceL? (V) (see e.g[39, §2.2]), and the embedding is given by the cor-
respondence\” (n{}f ((nen)) € L2 (N®?) — [(A (x”))neN]Lz(/\/')“’ e L2 (N)®, the
quotient class of the given bounded seque(wdx,)), _y € € (N, L2 (\)). Hence,
we will regard L? (N'®) as a closed subspace bf (M) via the embedding.

We have
2

HAw () (X = £ (X)) = [(O PasA (X)) 20y L2(N)®

2
S kesuliEN |1(0) (Arznry = Praonyy = Pas) A (X0 | 20,

< sup [[Px (XI5, <e

ke W.NN
and hence
A? (”(9) (X - Sg’ (X))) = [(“(Q)PXsA (Xk))keN]LZ(/\/)‘”
;-1
inside L2 (\)® sincee is arbitrary. With the notations; := ¢/** °¢, J := Jpoitog
we compute

2
A (X =& (X0)y) — [(Jo_n () JPX5A<Xk>> }
keNd L2(\)H@

2

LZ(N)(”
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2

< sup |[Jo = (V) IAXk —Ep (X)) — Jo =1 (V) TP A (Xp)
ke W.nN 2 2 L2(N)
<oz (07)] e
2 )

Sincee is arbitrary, we get

A? (X =& (X)) y) = [(JUH () JPX5A(Xk)> }
2 keNJdL2(N\H)®

inside L2 (M)®. We also have
A (u(0) (X = &5 (X)) ¥) = [(A (O)Ey (Xi) = £ (X ¥))en] 2y
inside L2 (N)®. Therefore, it suffices to show that
WO (VAT - N7) . (NAT - NG) (VENG) . (@G + Ny (NZAG)

are mutually orthogonal with respect tbo 1o €. Indeed, if this assertion was true,
then it would follow that

u(0) PrsA (X), Jo_a (y) TPxA (X0) ., A& (Xp) — Ey (Xp) y)

are mutually orthogonal i.? (\) for everyk, and so are

A? (w(0) (X — & (X)),  AY((EF (X) — X)u(0)),

A? (@)Y (X) — £Y (X) u(0))
in L2( C") (or more precisely, insidd. (AV)®) since one can find a bounded net of
analytic elements inVy N that converges ta(0) in the o-strong' topology.

Let us now show the desired orthogonal relation among the words in question. For
an alternating word

WZX1Y2~-~X[EN()VN10~--N5

with

N N
o X X2 |\ o av Ker Ep, KerE%D)
P20\ | x21 x22 0 N KerEj, |’



406 Y. Ueda/Journal of Functional Analysis 225 (2005) 383-426

«ov=a(ls o)) ([3 o) » ([ 2])m

01 0 O o NSO NSO
[O 0:|))“9<[x11 x12D Yo eNTNGAT -

we have

and hence

u(O)(NYNT - Ng ) SNTNGAT -+ Ny is of length ¢ + 1>4.
—_— —™ —
length ¢4

Since

(NYNT - N ) (NTANG) is of lengthé, + 235,
~————— —
length ¢>

we see that the first two sets of words in question are orthogonal. Notice here that the
length of every reduced word living in the set

WONg + No (NND) € N3 + NSNS + NGNTNG ©)

is less than 3, and hence the left-hand side 9)fi§¢ easily seen (by looking at the
lengths of words) to be orthogonal to the other two sets of words in question. Hence
we are done. [

Here, we should give simple facts concerning ultraproducts: (a) It is easy to see that
n:N— M andf: D— N can be lifted to the normal-isomorphismst® : N — M“
and 0“ : D® — N® in the obvious manner (note thalN) and (D) are the ranges
of faithful normal conditional expectations), and it follows from their construction that
n? (N®) = n(N)® (inside M®) and 0” (D) = 0(D)® (inside N®). (b) We have
n®|y = m via the embeddingdf — M® and N — N®. We will use these facts with
no explicit explanation in what follows.

Theorem 5.2. Suppose that there are faithful normal states¢, on D and unitaries

VE Nyophs Vg € N(p(}o()—loE{/)\iD) such that

Eg (”n) = Egio) (Un) =0, Eé\ED) (v;}) =0
as long asn # 0. Then we have

(m (), u(®) "M < n(N)”=n”(N”) =N? (via n°).
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The same relative commutant property still holds when repladifiy and n(N)® by
M and n(N), respectively. Namelywe have

(), u@®) NM C n(N)=N (via n).

Proof. Notice thatrn (N) = pN@p CMC pr. i.e., TC(N)w — (PNE)P)w — p./\/'(gup C
M® C (pNp)® = pN®p and thatr (v) = pV = Vp = pVp. Hence, the first assertion
follows from Proposition5.1. In fact, we have

(r),u@®) NM® C(V,u(®)) N pN®p € pN®p = (N)®

sinceu(0)*u(0) = u(Ou(0)* = p.
Let us chooser € M N (N)® inside M®, and then we get

[0) ) i
v = (EMy) @) =[(EMy) 0. Elyy @).....) | = EMy (0 em(V) (inside M©),
Hence, the last assertion follows[]

Corollary 5.3. Under the same assumption as in Theorgm, we have

ZM)= @) Nn(ZN) ={xeDNOD)NN":0(x)=x} (via n),
MM =M NaN)?’={xeD”NO”(D’)NN":0”(x) =x} (via ).

Therefore if N is further assumed to be a factothen so is the HNN extension.M
Moreover the same is true for the continuous cpthat is

Z (#) = w©) n% (2 (V)

I

[xeBNTDB) NN ) = x} wia P,

where M D N 2 D, 0: D— N, etc, are as in84. Thus the flow of weights of M is
a factor flow of that of N

Proof. Thanks to Theorens.2, it suffices to show the following:
(i) W@ Nn(ZW) ={xeDNOD)NN':0(x)=x} via .
(i) (@) NNy Nz? (N?) = {xeD”N 6" (D?) N N'": 60°(x) = x} via n°,
(iii) One can construct faithful normal statés ¢, on D in such a way thav and vy

. . — ~ =1 —y .
are in the centralizers dp o Egi and@pol o E{,\;D), respectively.
Note here that the continuous coké can be written again the HNN extension of the

base algebraV by 0 : D — N with respect toEY and Ej,, thanks to Theorerd.5
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—

and also thateN (v") = E(/)\ED) W) = E(/)‘QD) (vj) =0 as long as: # 0 sinceE} |, =

EN and E(’)\ED)|N = E{){D). Thus, the above (iii) is indeed enough to complete the proof

of the assertion on the continuous cove

Let us chooser € Z (N) with u()n(x)u(0)* = n(x) (and henceu(0)*n(x)u(0) =
n(x)). Then, the characterization of HNN extensions, i.e., TheoB# (especially,
condition (M)), enables us to compute

n(x) = ENy (u(@n(x)u(0)*)
= My, (407 (x = By 0) u (@) + By, (2 (07 (EN )
—n (9—1 (Eg{D)(x))) e (D)

and similarly z(x) = E%N) (u(@*n(x)u®)) = n (0 (EN(x))) € n(0(D)). These imply
the desired assertion ().

Assertion (ii) is shown in the same manner, but the reader should notice the fol-
lowing two simple facts: (@u(0)n® (0‘“(x))u(0)* = 7 (x) for every x e D®. (b)
The restriction Of(E%N)>w to x-Alg (n (N®), u(0)) satisfies condition (M), where
#-Alg (n” (N®) , u(0)) denotes thex-algebra algebraically generated b (N®) and
u(6). (Concerning (ii), we do not know whether or na1® ~N©® 5 0 since it is

highly non-trivial whether or notM® is generated by:® (N“’) and u«(0) as von Neu-
mann algebra. Probably, “No!".)

We will finally prove the desired assertion (iii). Let us consider the faithful normal
conditional expectations

i

$:D(SN)—Ly(R) :=<((poEg)t(t€R)> ~L(R),

Pp:D(SN) > Ly, (R) := <(g09 ° Eg)” (te R)> ~L(R)

constructed in such a way that

7 (/oo x(t) ((p ° Eg)” dt) - /oo o (x(1)) ((p ° Eg)” dr,

%o (/_Z yo) (990 £3)" dr) - /io 00 ) (g0 ES)" dr

for “smooth” functionsx(¢), y(#) : R — D. We then construct two faithful normal states
® ==Y o, @y = Yyo @y on D with faithful normal states) and y, on L, (R)



Y. Ueda/Journal of Functional Analysis 225 (2005) 383-426 409

and L, (R), respectively. These are the desired ones. In fact, we have
~ ~-1 o0 _ it
Qpol "o EéV(D) (vg (/ x(1) (@0 00 1o E(%D)) dl))
—00

= RN
=({yol o Eyipy x(t)(goHOH OEG(D)) dt | vy | .
—0Q

This follows from the assumption thaiy is in the centralizer ofp,) o 07 o Eypy

o —

- . ~_1 . o
Hence,vy is in the centralizer ofpyo 6 o E(’)VD too. The other case is quite similar

and easier to show, and thus left to the reader. Hence, the desired assertion (iii) is
verified. O

Remark 5.4 (Analog of Higman, Neumann and Neumann’s thedrefollowing
Higman, Neumann and Neumaift3] (see also [16, Theorem 3.1 in p. 188]), we can
show the following:Each finite von Neumann algebra P with separable predual has a
full type Il factor P generated by two Haar unitariegnto which P can be embedded
What is new is that the generators Bf are chosen to be Haar unitaries. In fact, for

a givenP, there are several ways based on known results to construct such a bigger
type ll; factor with two unitary generators, and moreover it can be made to be full
or to have the Property’. However, the construction given below remains to work
even in theC*-algebra setting. We should also point out that Connes’ approximate
embedding problem (see [2, lines 13-9 from the bottom in p. 105]) can be read, from
the viewpoint here, as whether or not any possible set of “relations” between two Haar
unitaries can be realized in the ultraprodutt of the AFD type I} factor.

Proof of the assertion in Remark 5.4.SinceP has the separable predual, it has an at
most countable generating set of unitaries, &ay}, c 7 with up = 1. We choose two
copiesS T of the free group factod. (F2) with x-free Haar unitary generatois b
and ¢, d, respectively. Choose a faithful normal tracial staieon P, and lettg and

Tr be the unique tracial states @and T, respectively. We first embeld into the free
product with amalgamation:

N:=(PxS) = T
L(F

o)

with respect totp, tg and Ty (or more precisely, the conditional expectations de-
termined by them), where the amalgamation is taken by the identificatianS >

uy (b"ab*") < d"cd*" € T. In fact, it is known that the"ab*"’s and thed"cd*"’s
form x-free families of Haar unitaries i® and T, respectively, and furthermore it can
be easily verified that tha,b"ab*"’s also form ax-free family of Haar unitaries in

P % S since theu,’s and theb"ab*"'s are chosen from different free components of
P x S. Thus, theu,b"ab™"’s and thed"cd*"’s generate two copie®; and Q» of the
free group factorL (F,) inside P x S and T, respectively. Therefore, the above amal-
gamation procedure is justified and agrees with the tracial statestg and 7, and
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hence the free product statg := (tp * t5) * 77 becomes a trace (s¢28, 8§3]). Since
ug =1, one hase = c andu,, = (d"cd*") (b"a*b*") = d"cd*"b"c*b*" € (b, c,d)” SO
that N is generated by three Haar unitarigsc, d. By using the normak-isomorphism
0 from § = (b,c = a)’ onto T = {c,d)” given by b — ¢ andc — d, we finally
embedP (= N) into the HNN extension

P:=N * 0= (N,u(®)
L(F2)

with respect to thery-preserving conditional expectations. Since= u(0)du(6)* and
b = u(0)2du(0)*2, we see thatP = (d, u(6))”. It remains only to show thaP is a
full type Il factor.

SinceSandT are isomorphic type {lfactors, we gets = tro0, and hence Corollary
4.2 says thatty is extended to a tracial state oR by the canonical conditional
expectation fromP onto N sincety agrees withtg, t7. Setv := bd, a unitary inN.

It is not hard to verify that" (n # 0) is orthogonal toQ1 with respect to the tracial
statetp x7g. It is also known that the canonical unitary generato”Zoh the crossed-
product descriptiorl’ = Q2% 7 is given byd (see [25, Proposition 4.1 and Corollary
4.2]). These two facts show that= bd is in ((P x ) ©01) (T ©Q2), a set of reduced
word of length 2 in the free product with amalgamatin= (P x S 2 Q1) x (T 2 Q2).
Therefore,E?S\’ " = E}V (v™) = 0 as long asn # 0. Hence, Corollary 5.3 implies
that P is a type Iy factor and(P) N (P)” < N’ N N®. The above-mentioned two
facts onb, d also say that the unitarids d satisfy the necessary conditions to apply
[39, Proposition 5] toN = (P xS 2 Q1) x (T 2 Q») (n.b, the regularity conditions
bQ1b* = Q1, dQ2d* = Q> are not needed, see the comment given just below the
statement of Proposition 5.1), and theref?feN N® C L (Foo) N L (Foo)® = C1 since
01=02=L(Fx). U

6. Several concrete settings

To illustrate how the results obtained in 85 can be applied, we will investigate HNN
extensions of von Neumann algebras in three kinds of concrete settings.

6.1. The HNN extensions associated with non-commutative tori

6.1.1. Setting

Let [0, 1) be an irrational number, and the non-commutative tcﬂ,’lﬁﬁ) is the
universal C*-algebra generated by two unitaries, v, with uyv, = ez"ﬂ“v Uy. It
is known that there is a unique tracial stateon C(T2) determined by, (ul ’") =
0,0 9mo, and its GNS representation gives the AFD typefHctorR, i.e., R = C(Ti)”
(in the representation) with the unique tracial stage which is the natural extension
of 7, to R Notice that the generating unitarieag and v, generate, respectively, two
distinguished Cartan subalgebras, := (u,)” and C, := (v,)” in R, which are both
isomorphic toL°°(T). Then, let us define the normalisomorphisnd, : D, — C;, C R
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in such a way that, (u,) = v,. There are two unique normal conditional expectations
ER ER(D )= ER from R onto D, and 0, (D,) = C,, respectively, both of which
preserve the traceR, and we then construct the HNN extension

(¥ £3) = (R EB,) 5 (0 B0,

with stable unitaryu (o) := u (6,() where the canonical embedding map Rfinto M
is omitted.

6.1.2. Trace
It is plain to see that

TR = (TR’D) o Ega = (TR|D<X) o 9;10 ng(Da)' (20)

Thus, by Corollary4.2, Ty, := 1 o E?f’* becomes a tracial state.

6.1.3. Factoriality and fullness

With letting v := u,vy = 2™ ~"v,u,, it is plain to see that R (") = ER(D (™)
= 0 for everyn # 0. Thus, thanks to the trace property (10), Corollary 53 shows that
M, N My < DY NCy. Here, we need two simple lemmas (which will be used not
only here but also later too), and the former has been probably known in the context
of orthogonal pairs due to Popa [26]. The proofs are both straightforward so that the
details are left to the reader.

Lemma 6.1. Let N be a von Neumann algebrand let A and B be its von Neu-
mann subalgebras. Suppose that there are faithful normal conditional expect#tjons
N— A, Egp: N— B and Exnp : N - AN B satisfying the condition

EAOEBZEAQB. (ll)
Then we haveA®” N B® = (AN B)®” inside N®.

Lemma 6.2. Let y : G — Aut(P) be an action of a discrete group G on &finite
von Neumann algebra,Rand assume thap is a faithful normal invariant state on P
under the actiony. Let N := Px,G be the crossed-product with the canonical unitary
representationl’ : G — N and the canonical conditional expectatioﬁg :N—P.

Let A be a von Neumann subalgebra of which is the range of a faithful normal
conditional expectationE® : P — A. Let us also choose a von Neumann subalgebra

B of 27(G)”, and denote byEﬁ(G)" : J/(G)" — B the conditional expectation that
preserves the canonical tracial statg; on A7(G)”. Then we have the foIIowirtg
(i) The Fubini map¢ ® IdB(lz(G)) gives a conditional expectatiol, : N —

PGy
A'(G)" as the restriction to N
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(i) The faithful normal conditional expectations

Ex=EfoEN :N—>A Eg=E, " oEN,, :N—B

satisfy condition(11) with A N B = C1 so thatA® N B® = C1 inside N® due to
Lemma6.1.

It is known thatR = C (T,)"” can be identified with the crossed-produc¥ (T) x, 7
by the correspondengg, < =, (id), vy < /'2(1), wherey, is the action induced from

the group rotationf e T eZ“*/?l“C e T and “id” denotes the function @) := _,
{eT. Thus, Lemma 6.2 implies thab N Cy = C1, and henceM, N M’ = C1.
Summarizing the discussions so far we conclude

Theorem 6.3. The HNN extensio,, obtained from the non-commutative tonﬁﬂi)
with irrational o €[0, 1) in the above manner always becomes a full tyjpefactor
generated by two Haar unitaries

6.1.4. Remark and question

A similarity (in some sense) between free entropy dimensions[&3J and costs of
equivalence relations (see [9]) gives us the question whether or not the (modified) free
entropy dimension oft, (or v,) andu(x) is 1. Moreover, we do not know whether or
not M, depends on the choice of

6.2. HNN extensions associated with tensor product algebras

6.2.1. General setting
For given

e o-finite von Neumann algebras;, N2, N3;

e two isomorphic von Neumann subalgebras (C N1), D2 (S N2) with a surjective
(i.e., automatically, normal}-isomorphismfy1 : D1 — D»;

e a von Neumann subalgebi@az (C N3) with an automorphisntls € Aut (D3);

o faithful normal conditional expectationﬁgi : N1— D, Egj . Ny — Do, Egj :
N3 — Ds,

we set

N:=N1®N>®N3, D:=D1®ClQ® D3
and define the normai-isomorphismf : D — N by

0:d1®1Qd3eD— 1®021(d) ®03(d3) eC1l® D, ® D3 C N

(i.e., the interchange between the first and second tensor components by the surjective
x-isomorphismd,; : D1 — D> together with thex-automorphisnfs on the third tensor
componentD3). Here, we mention that the third componeNt allows a type llb
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example, see 86.2.6, Case 2. For given faithful normal statesp, on D1, Dy,
respectively, we define

N N. N. s
Ep = Ep ® ((pz © ED§> ® Epy: Ejp) = ((Pl ° EDi) © Ep, @ Ep,

Let us construct and investigate the HNN extension:

(v £) = (v £5) 5 (0 Eio)

with stable unitaryu (), where the embedding map bfinto M is omitted as before.

6.2.2. Assumption

In what follows, let us assume the condition: There are two unitazﬁies(Nl)q) gV
1°Epy

XS (Nz) poE"2 satisfying
2
910 Ep; (V) = @0 Ep? (v8) =0
as long as: # 0.
6.2.3. Consequences from Corollary 5.3
With letting v := v1 ® v2 ® 1 it is plain to see thaElN (v") = E(’)‘ED) (") =0 as

long asn # 0. For a fixed faithful normal state; on D3, we define the two states
@, @y on D in such a way that

P ®d3) =1 ® @3(d1®d3), @g(d1®d3) = Ppp ® p3(021(d1) ® 03 (d3))

for eachd1 ® d3e D1 ® D3~D1 ® C1® D3 = D (with the identificationd; ® d3 <
d1 ® 1® ds), and hence

0o EY = (proEN) @ (020 EN2) @ (930 ENS) = @po 07 o N,

Thus the unitary belongs to both the centralizef%(poEg = Nw o0 LoEL ) . Therefore,
Corollary 5.3 implies that

ZM)={xeDNOMD)NN":0(x) =x}, (12)

Z(M)={xeDnG(B)NN'": b = x}, (13)

M NM?={xeD’NOD)’ NN :0”x) =x}. (14)

6.2.4. Factoriality and flow of weights
To investigate the factoriality and the flow of weights Mf it suffices to determine
the right-hand sides ofl@) and (13) explicitly. Thanks to [36, vol. |; Theorem 5.9,
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Corollary 5.10 in Chapter 1V], we see that
DNOMD)NN' =Cl®Cl® (D3N Nj)
and hence, by the definition ¢f we get
[xeDNOMD)NN' : O(x) =x} =D N N,

. . poEN 901°EZ1 ¢2°Ezz (P3°EZ3 . ~
With letting o, :=0, ” =0, *®o0,  ?®a, 3, the continuous cored >

D, 5(5) = 0/(2)/) are captured as the simultaneous fixed-point algebras:
~ P o ®@Ad A_;
N=N18N2®Ng) xR = (M ® N2® N3y ® B (L2 (R)) ) ,

~ 2 o, ®QAd A_,
B=(D1®C18 Dy ;R = ((D1®CL® D9) © B (L (R))) :

~ o QAd 1,
0(D)=(C1l® D2® D3) x4R = ((Cl@ D>® D3) ® B (L2 (R))) ©

by the Takesaki duality theorem (s§&6, vol. II; Theorem 2.3 in Chapter X]). Thus,

we have
3

o3oE},
P3@ad i,

bni(b)=ciecie (D B(L2R))"

=Cl®Cl® <D3><]O_</)3°Eg3 R)

3

and then

[xeDme(D)mN/:e(x)zx]=<01®01®(Dg>4 N3R> )mv/
0_‘03°ED3

with the canonical extensio({o, of 03. Summing up what we have done, we conclude
Theorem 6.4. Under Assumptior6.2.2, we have
Z (M) =D NNy = DY N Z (Na)

and in particular, if N3 is a factor or D§3 is the trivial algebraCl, then so is M.
Moreover we also have

2 (i) = (c1®01® (53‘73 mZ(i\Tg,))) nz(¥).
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where ]%3 53 is the inclusion of the continuous cores d§ 2O D3 determined by
Egg and 03 is the canonical extension k.

6.2.5. Fullness
To determine whether or ndd is full, we first have to determine the right-hand side

of (14). To do so, we will use Lemma 6.1. For everg N, we haveE ) (E{,‘ED) (x)> =

((q)l ° Eg;) ® (q)z ° Egg) ® Egg) (x) € CL® C1® Ds3. Note thatD N0(D) = C1®
Cl® D3 thanks to [36, vol. II; Corollary 5.10 in Chapter 1V], and hence the condition
in Lemma 6.1 holds. Therefore we get:

Theorem 6.5. Under Assumptior.2.2, we have
My € M 0 M2 = (D9)% N,

In particular, if N3 is the trivial algebra then M always becomes a full factor. Also
if the right-hand side sit in the asymptotic centralizg¥s),,, then the first inclusion
relation would become the identity

6.2.6. More concrete cases

We should first remark that there is a variety of concrete examples which satisfy
Assumption 6.2.2. In fact, if a given pail, ) of von Neumann algebra and faithful
normal state had the non-atomic centraliZef, one would be able to find a Haar
unitary in L, with respect toj. Thus, in what follows, we may assume that the given

two quartets(N1 > Dy, Egi qol), (Nz > Dy, Egj (pz) satisfy Assumption 6.2.2.
Case 1: Assume thatN3 is the trivial algebra, that is, no presence of the triple
N3 D D3, 03€Aut (D3) in our initial dataN 2 D, 0 : D— N. Then, Theorem$.4

and 6.5 say thaM is a full factor, and the center of its continuous core is computed
as follows:

Z (M) = (CxR) N Z (N1 ® N2) %,R) (15)

P10E ! P20E 2
with o, =0, " ®a, 2. The above 15), in particular, shows that the flow of

weights of M is a factor flow of the translation on the real lif® so thatM does
never become of type {4l To find the exact number” in the Il )-classification, one
must determine the right-hand side of (15) in more concrete form or the T-@¢?)

very explicitly, both of which seem somewhat delicate tasks except for several simple
cases. We will next illustrate how the T-set can be determined in one of such simple

cases. Assume further that two states ¢, are chosen so thag, o 021 = ¢,. Then,
(/)oE%OE%

Theorem 4.1 implies that, (u(0)) = u(0), and hence by Theorem 5.2 we have
/ / . .
(Mong’oE;‘g) NM < (u(0)) NN. Here, we do the same argument as in the first part
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of the proof of Corollary5.3 and get(M(poEchx,) NM = C1 sinceDN (D) = C1.
This computation implies that

N1 N2
(plOEDl (pZOEDZ

T(M):{teR:at =1d =g, }

whose right-hand side is computable when all the initial data are given concretely.

Case2: Assume thatD3 is a non-trivial algebra, whilés € Aut(D3) is assumed to
be ergodic orN3 to be a factor. Then, Theoref4 says thaM is a factor. We further
assume that botp; o Egi and ¢, o Eg; are traces. In this case, it is plain to see, by
Theorem 6.4, that

2 (M) =D3" N 2 (Na)

so that the type oM is completely determined from the dat& 2 D3, 03 € Aut (D3),
andM can be of type Ily in this case. Instead of assuming tlato Egi and (pzoEgi
are traces, we will next impose the extra assumption that the sigte®, and @5
are chosen so thap, o 021 = ¢, and @3 o 03 = @5. Then, Theoremd.1 implies that

° No M . .
of Epoky (u(O)) = u(0), and hence by the same argument as in the final part of Case
/
1, we get(Mq,oEgoENM) N M = C1. Thus,M is not of type Ilh, and the T-sef (M)
is computed as

N1 N2 N3
O_goloEbl o_(pzoED2 _ 6(/)30ED3
t t -Vt

=Id¢.

T(M):[IER :

In all the cases treated in Case 2, it seems difficult to determine the asymptotic cen-
tralizer M, (or whetherM is full or not) except for the case thdds is a finite von
Neumann algebra because it is non-trivial in general whetigr= M’ N M® or not.

6.3. HNN extensions arising from pairs of regular and singular MASAs

6.3.1. General setting
Let Q be ao-finite von Neumann algebra with a faithful normal statg, andG be a
countably infinite discrete group. We then construct the infinite tensor productGver

(P.or) = Q) (2. 90), -

geGCG

where the(Q,(pQ)g’s are copies of(Q. ¢,). The canonical embedding map &f
onto thegth tensor component iR is denoted by:,. By the construction, for distinct
elementsgy, ..., g, € G and forxy, ..., x, € Q, the operators,, (x1), ..., g, (x;) Mu-
tually commute andpp (1g; (x1) - - 1g, (xa)) = @ (x1)--- @ (x,). Let us denote by
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7 the Bernoulli shift action ofG on P defined in such a way tha, (1, (x)) := 15, (x)
(xeQ, h,geG), and we will consider the crossed-produt := P x,G with the
canonical unitary representatioli : G — N and the canonical conditional expecta-
tion Eﬁ : N — P. Sincey is invariant under the product state,, the Fubini map
@p ®ldp(2(G)) gives a faithful normal conditional expectation frohonto (GY,

see Lemmd.2, and it is denoted bE%(G)”. Let us choose a subgrou of G and a
von Neumann subalgebia of P with the ¢ ,-preserving conditional expectatioﬁ,’; :
P— D in such a way tha{D, ¢p|p) = (2'(H)".t6|;7my) In the state-preserving
way. Letting t := @p|p and 1y = 16l my, We have a surjective-isomorphism
0:D— A'(H)" with the property:

T=1yo00. (16)
Let EQ”EE)G))N : 2N(G)"— 0(D) = A'(H)" be thetg-preserving conditional expectation,
and set

N ._ P N N ._ G N
ED = ED oF N EO(D) = EH(D) o E}:"(G)”’

conditional expectations from\N onto D and (D) = A’(H)", respectively. Then we
construct the HNN extension

MY\ __ N N
(. £X) = (V. E5) (0. Elin))
with stable unitaryu(6), where the embedding map bfinto M is omitted as before.
6.3.2. Assumptions
In what follows, we will assume that (i) there is a unitanjn the centralizerQq,Q

such thatp, (1) = 0; (ii) G has an elemengo € G of infinite order.

6.3.3. Consequences from Corollary 5.3
Letting v := 1.(u)A” (go) € N, we have, for everyr e N,

ES (") = E5 (1000 1400 @) EY (7 (68))

Ejpy (V") =0p (’e N (”)) Egipy (# (88)) =0.

O»

Note that
‘CoEgzquoEgz‘C(;oE]Lv(G)=’L’HOE$€D) a7)
and hence by16)

roEgeroEé\ED)zroﬁ_loEé\ED). (18)
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N
By the above computationl{) we geta,TOED (v) = v so that the unitary is in the
centralizerN v = N_ -1 v . Thus, Corollary 5.3 shows thalf, € M’ N M® C
D 0(D)
D® N 6® (D). Furthermore, Lemmas 6.1 and 6.2 show tit N 6 (D”) = C1.
Therefore, we conclude

Theorem 6.6. Under Assumption$.3.2,the HNN extension M is a full factor

6.3.4. Modular automorphisms and type classification
Thanks to the abovelB) together with Theorem 4.1, we observe

N M
ToEpoEy

g, (u(@)) = u(0) I:D‘Eoe_loE{j)\éD) : D‘coEg][ = u(0) (19)

and hence the type classification Mf is the same as that of the crossed-productn
fact, Theoremb5.2 together with (19) implies that

! /
<M10Eg’oE%> NMC(vu@®)NnMCSN

/
so that <M10EgoE}AV4) NM C (u(0)) N N. Now, by the same argument as in the first
part of the proof of Corollanb.3, we see that the right-hand side of the above sits in
D N O(D) being the trivial algebraC1 by Lemma 6.2. Therefore, we have the trivial
/
relative commutant properthroEgoE% N M = C1. This says that the T-s&t(M)

is enough to determine the type bf and in particular thatM can never become of
type llx nor type lllp (see e.g. the discussions given in [38, pp. 377-388]). Moreover,
the relative commutant property implies that

N M
ToE [ oEy

roEg
T(M)=iteR : o =ld} =4teR : g =ld¢.

Here, the second equality simply comes frodB), Since the product state, is
invariant under the Bernoulli shift actiopy we observe that

Byl 4
proE?Y = <P‘/’P’ )“Y(G» =Py, X, G

(see e.g. the discussion on the free analog of Connes—Stgrmer’'s Bernoulli shifts in
[12]), and this algebra is clearly a type lfactor. Hence, by (17)

ToEN
0P =ld e ol =ld =0, =1d.

Therefore, we conclude
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Theorem 6.7. Under Assumption$.3.2,the HNN extension M is of typk; or Il
with 1 # 0, and the type is completely determined by the T-set. The T-set is computed
as follows

T(M)=T(N) = {teR Lol = Id}. (20)

6.3.5. Concrete cases: regular vs. singular MASAs
We will give type Ilp and Ill; (0 < A<1) concrete examples of HNN extensions
M = NBG such thatD is a regular MASA inN while 0(D) a singular MASA inN

(so thatf cannot be extended to amyautomorphism ofN). In what follows, all von
Neumann algebras that we will deal with are assumed to have separable preduals. Let
Do be a von Neumann subalgebra of the centrali@e,,rg, and denote byD the von
Neumann subalgebra generated by th€Do)'s, that is, (D, 1) is the infinite tensor
product of (Do. ¢l n,) over G. SinceD sits in the centralizeP,,, the ¢ »-preserving
conditional expectatiorEg : P— D exists.

The next lemma seems a folklore, and the main part of its proof is actually the same
as that of showing that non-commutative Bernoulli shifts are free actions. The details
are left to the reader.

Lemma 6.8. If Dg is a MASA in Qthen so is D in N. Furthermordf Dg is regular
in Q, then sois D in N

Let us give the paifQ, ¢,) more concretely.

Case 1. We discuss the case @ = Dg, and treat the following two cases in
common: (1)Q = Dg is the abelian von Neumann algebra of finite dimension greater
than 2; (2) 0 = Do is a diffuse abelian von Neumann algebra. In case (2), we
will be able to treat an arbitrary faithful normal state because one can easily find
a Haar unitary with respect to the given statg,, while in case (1), the given
state ¢, should be constructed from the equal probability vector for the require-
ment of Assumptions 6.3.2. Assume further th@t=H =7 and go=1€Z. Then,
(D= P,pp) = (L[0, 1], Lebesgue measurex (1’ (Z)",tz), and hence a surjective
normal x-isomorphism@ : D — A7 (Z)" with property (6) exists. Thus, the given data
Q=Do=C" ¢p, U, G=H = Z, go = 1 can be treated in the framework that
we have worked out in this subsection. Hence, by Theorems 6.6 andM6ig,a full
factor of type Ih. The von Neumann subalgebia is clearly (from the setting here)

a regular MASA in the base algebid, while it is known thatd(D) = A7 (2)" is a
singular MASA in N thanks to [20] (also see [19, Theorem 2.1] for a recent elegant
proof). It is clear thatM is generated byp and the stable unitary, and also thathas

a Haar unitary generator. Hendd, is generated by two Haar unitaries.

Case2: Let us assume tha is a non-type | factor with separable predual and
Dg is a Cartan subalgebra (i.e., in particular, a regular MASARiwith the unique
conditional expectation‘igO : Q@ — Dp. Thanks to [38, Lemma 4.2], one can find a

faithful normal statey on Do and a unitaryu € Ql/wEQ satisfying thatEgo W) =0
Do
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for everyn # 0. With letting ¢, := ) o Ego, the triple (Q. ¢ . u) satisfies condition

(i) in Assumptions 6.3.2. Note here that the subalgebgesits in the centralizeQ¢Q.

As in Case 1, we assume thaét = H = Z and gog = 1€ Z, and get a surjective
x-isomorphism6 : D — A7 (Z)"” with property (6). Hence, these given data D Do,

$g, U, G=H =7, go=1 can be treated in our framework. Hence, Theorems 6.6
and 6.7 say thaM is a full factor, not of type llj, and the T-set is computed as
(20). Note that the T-sel'(M) does not coincide, in general, with the T-setQ) of

the initially given factorQ since the right-hand side of (20) does depend upon the
choice of the statey on Dg. We would like to emphasize that this example of HNN
extension can be regarded as a type Mersion of those given in Case 1 when the
triple (Q 2 Dy, (pQ) is suitably chosen. In fact, as in Case 1, Lemma 6.8 impliesRhat
becomes a regular MASA not only i but also even in the base algelVa= P x,Z,
while 0(D) = A7 (Z)" is a singular MASA inN by [19, Theorem 2.1 and its remark].
Finally, it is easy to give, in this setup, a concré@, <pQ) in such a way that of the
T-set T (M) is computable.

7. Reduced HNN extensions oC*-algebras
7.1. Preliminaries on reduced free products with amalgamations

Because of the same reason as in the von Neumann algebra case, we need to review
reduced amalgamated free products with special emphasis on the réle of embedding
maps of common amalgamaté&t-algebras.

Let C, A; (s€ S, an index set) be unitalC*-algebras, and we have a unital
x-isomorphismi; : C — A for eachs e S. Suppose that the*-subalgebraig(C)
of A is the range of a conditional expectatidh : A; — 1,(C) for everyse S. For
eachs € §, let X, be the separation and completion Af with respect to the pre-norm
aeAs — ||Eg (a*a) |¥? with the canonical map), : A; — X,. The Banach space
X, is equipped with theC-valued inner product - | - )¢ and the right action ofd;
defined in such a way thdl,(x)|n,(»)). := Es (x*y) and 5,(x) - a := 1, (xa) for
eachx, y,a € A;. One can also define the left action df, as ax-homomorphism
into the adjointable operatorB (X;) on the Hilbert right A;-module X, defined by
a-n,(x) :==n,(ax) for eacha, x € A;. This left action ofA; is usually called the GNS
representation associated witfy. We can regardX; as aC-C bimodule (viai;) by
restricting both the left and right actions df; to the subalgebra,(C). The restriction
of n, to 1,(C) is clearly injective, and;, (1,(C)) becomes a complimented closed sub-
bimodule of X thanks to the decompositioA; = 15 (C) + Ker E;. Hence, we have
X;21,(C) @ X2=C @ X7 as aC-C bimodule by the identificatiom, (1;(c) + a°) <
15(c) ® 1, (a°) <> c ®n, (a°).

By the construction in [41, 85] together with the above-mentioned factCon
bimodules, we obtain a unitdl*-algebraA, two kinds ofx-homomorphisms. : C — A,

As Ay — A, s €S, and a conditional expectatiafi : A — A(C) satisfying (i)A is gen-
erated by thel; (Ay)’s; (ii) Asoty, = A, s €8 (iii) Eoldy = AoE, s € S; (iv) the A, (Ay)'s
are free with amalgamation with respectEp(v) if x € A satisfiesE (a*x*xa) = 0 for
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all a € A, thenx = 0. These five conditions characterize the p@ir E) together with
A and /g, s €S, completely, sed41, 85.6] for details (also see 82 for more careful
explanation on the admissibility of embedding maps of amalgamated algebras). We
denote

(A,E) = *c (As, Es 1 15)

ses

and call it the free product of thd’s with amalgamation ove€ via 1; with respect
to the Ej’s.

7.2. Reduced HNN extensions ©f-algebras

Let B be a unitalC*-algebra andC be a distinguished unital’*-subalgebra with
a conditional expectation‘:lcg : B— C. Let us suppose that we have a fam® of
x-isomorphisms : C — B with conditional expectationﬁig(c) :B—0(C), 0€0O. In
what follows, we will do the same construction as in the von Neumann algebra case.
Set ®1 := {1 := Idp} u ®, a disjoint union. Define the embedding mag :
C®(®(®1) - B® B((?(01)) by

_Jx®e11 if 0=1,
o (x ® eqp) = {9()6)(8)699 if 0c®

for eachx € C, where theey,p,’s denote the canonical matrix unit systemBirf¢? (©1)),
and the conditional expectatiatyy : BQB (62 (®1)) — 1 (C ® £ (01)) is defined by

7]
EG) = ( Z E(}B(C) ® |dCe99) O (IdN ® Eeoo) )

0ec®1

where Ey~ is the unique conditional expectation froB1(132 (@1)) onto £%° (®1). Let
us denote the inclusion map @f ® ¢ (®1) into B ® B (¢?(©1)) by 11, and define
the conditional expectatio; : C ® B (62 (@1)) - C ®L*(01) by

Eq, = (Eg ® |d£oo(®l)) o(ldp ® Eyo) = Eg ® Eyo.
We then construct the reduced free product with amalgamation:

(B, &) = (B ® B (zz (@1)) Eg: 1@) carten (B ® B (62 (@1)) E1: 11) :

and the embedding maps &f® B (Zz (®1)) onto the first/second free components are
denoted byie and 11, respectively, and the embedding map ®fg (> (®1) into B

by /4 as usual. As in the von Neumann algebra case, we define

e u(0) := /1 (e1p) Lo (eg1) with identifying ep,p, = 1 ® eg,0,;
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e the projectionp := A(e11) = 4@ (e11) €B;

e the unital x-homomorphismr : B — pBp by n(b) := lg (b ® e11) for everyb € B.

The partial isometries(0), 0 € ®, can be thought of as unitaries in the corpdsp,

and by the exactly same way as in the von Neumann algebra case we have the rela-
tion u(0)7 (0 (c)) u(0)* = m(c) for eachce C,0€O. Let us denote byA the unital
C*-subalgebra opBp generated byt (B) and all theu(0)'s. The restriction of the con-
ditional expectatiorfe : B— ¢ (B ® B (¢2(©1))) conditioned bye (i.e., & = Eofp

holds) to A gives rise to a conditional expectation frofmonto n(B), i.e., E;‘(B) =

go|, : A—>m(B), sincen(B) = ple (B ® B (¢?(®1)) p. It is easily verified that

_ B_.—1_pA
Ela=moE;om o Elp)-

Definition 7.1 (Reduced HNN extensignsie call the pair(A, EA ) constructed so

n(B)
far the reduced HNN extension & by © with respect to£Z and theEf ., 0 € O,

. ocy’
and denote it by

(4 £aw) = (5. £8) £ (0 [Flle | )

When no confusion occurs, we will writda = B « ® for short.
C

Not only the notion of reduced words and conditions (A) and (M) are of course
valid even in thisC*-algebra setting, but also so does the following characterization:

Proposition 7.1. The pair (A, Eﬁ(3)> constructed above satisfies both conditigA3

and (M). On the other handconditions(A) and (M) characterize the pair(A, E;‘(B))

completely under the assumptions tiatz(B) and theu(0)’s generate A ag *-algebra
and (i) if xe A satisfiesE{I‘(B) (a*x*xa) = 0 for all a € A, thenx = 0. More precisely

conditions(A) and (M) determine the conditional expectati(E‘Q(B) completely

Remark 7.2. As in the von Neumann algebra case, the following holds: G ety 0 =
(G,t:t0(h)t~t =h, he H) be an HNN extension of grou@ with stable lettert by
group isomorphisn® from a subgrougH of G into G. The reduced groug*-algebra

C) (G *y 0) is identified naturally with the reduced HNN extension @f (G) with
distinguished unitary. (¢), where all the necessary conditional expectations are chosen
as canonical tracial state preserving ones.

Remark 7.3 (Universal HNN extensiols In the C*-algebra setting, there is another
choice of HNN extensions, that is, the universal one. The universal (or full) HNN

extension? = B'x © is defined as the universal*-algebra generated bB and

c

unitariesu (), 0 € ©® with only the relationu(0)0(c)u(0)* = ¢ for everyce C, 0<0O.
Thus, there is a-homomorphism from this universal*-algebra?2l onto A sendingb

and u(0) to n(b) and u(0), respectively. This means that our construction of reduced
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HNN extensions can be thought of as a procedure to construct a conditional expectation
from 2 onto B by using givenEZ, Eg(c), 0 e ® whenr is a faithful representation of

B (this is the case when the given conditional expectations are faithful). The existence
of such universal HNN extension can be shown in the same way as in the group case,
based on the universal amalgamated free product and the universal crossed-product
constructions.

7.3. Embedding of subsystems in the framework of reduced HNN extensions

Assume thatBg 2 Cp sit in B 2 C with the unit-preserving way and th&{Co) <

Bo for all 0 ®. We further assume that the restrictionsl_bg and E&C) to Bg give
Bo

conditional expectationECD and EgOCO) from By onto Cg and 0(Cp), respectively. Let
us consider the following two reduced HNN extensions

Ag _ Bo Bo
(40, Extiy) = (Bo. £¢5) & (®leo: {Edfen } o)

(1 Faw) = (5. 28) £ (0 {Elo ], o)

with @|¢, = {0|CO : Oe @}. The reduced free products with amalgamations appeared
in the procedure of construction are denotedyand BB, respectively. In this setting,
it is natural to ask when the following natural embedding exists:

be Bo+— beB,
Ao = A by {u(0|co) > u(0), 0cO.

To this question, we have a satisfactory answer as simple application of Blanchard and
Dykema'’s work[1]. Namely, if all given conditional expectations have the faithful GNS
representations, then there is such an embedding in the amalgamated free product level,
Bo — B, and hence it is plain to see thap is embedded intd in the above-mentioned

way.

7.4. Exactness of reduced HNN extensions

Our construction has another advantage, which is a criterion for exactness. To explain
it, we should first remark that Dykema—Shlyakhtenko’s result [6, Proposition 4.1] is
still valid without any essential change even when the embedding maps are
imposed upon the construction of free products with amalgamations. In fact, when we
consider the free product of unitél*-algebrasA;, A, with amalgamation over a unital
C*-algebraC via unital embedding mapsg : C — A1, 12 : C — A with respect to
conditional expectation& : A1 — 11(C), E2: A2 — 12(C), it suffices only to replace,
in their proof, theC*-subalgebra of the C*-algebraA := A1® A, and the completely
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positive mapy : A— A by

D= 1u(C)®12(0), nasap = (1013 0 B2 (@), 2017 0 E1(an).,

respectively.

Assume that a given unital*-algebraB is exact and moreover that given conditional
expectationsEg :B—C, Egc): B—0(C), 0O, have the faithful GNS represen-
tations. If ® is a finite set, then Dykema and Shlyakhtenko’s refgjltCorollary 4.2]
implies that the reduced free product with amalgamation

(B, &) = (B ® B (62 (@1)) Eg: 1@) cartion (B ® B (52 (@1)) Eyp: 11>

is exact sinceB ® B (¢2(@1)) is clearly exact, and so is the reduced HNN extension

(A’ EQ(B)) - (B’ Eg) p (®’ {E(I’g@}oe@)

too thanks to[14, Proposition 7.1, (i)]. Wher® is an infinite set, the reduced HNN
extensionA = B x¢ ©® is still exact sinceA = lim B x¢ E with finite subsetsE ~ ©

—_—
and [14, Proposition 7.1, (iv)]. On the other handAit= Bée) is exact, then so should
be B. Hence, the exactness & is necessary and sufficient for that df = B x ®.

C
With Remark 7.2, this fact in particular says that if a given countable discrete group
G is C*-exact, then so is every HNN extensighxy 0 thanks to [15, Theorem 5.2].
This is indeed a fact mentioned in [10].
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