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Abstract

Reduced HNN extensions of von Neumann algebras (as well asC∗-algebras) will be in-
troduced, and their modular theory, factoriality and ultraproducts will be discussed. In several
concrete settings, detailed analysis on them will be also carried out.
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1. Introduction

There are two fundamental constructions in combinatorial or geometric group theory,
which are those of free products with amalgamations and of HNN extensions (G.
Higman, B.H. Neumann and H. Neumann[13]). The interested reader may consult
[16] as a standard reference on the topics. Even in the framework of von Neumann
algebras (as well asC∗-algebras), reduced free products with amalgamations ([41,44,28]
and also [38]) have been seriously investigated so far and played key rôles in several
resolutions of “existence” questions in the theory of von Neumann algebras (see, e.g.,
[28,32,35,30] and also [37]). However, HNN extensions have never been discussed so
far in the framework.
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Historically, many ideas in group theory, especially part of dealing with countably
infinite discrete groups, have been applied directly and/or indirectly to many aspects in
the theory of von Neumann algebras (as well asC∗-algebras) since the beginning of the
theory. In fact, many explicit examples of von Neumann algebras that opened new per-
spectives in the theory came from group theory (see e.g. [18,17,11,3–5] and also recent
breakthroughs [29,22–24]), and it is still expected to find much more “monsters” (i.e.,
concrete examples with very special properties) living in the world of non-amenable
von Neumann algebras. To do so, it seems still to be one of the important guiding
principles to seek for new ideas in group theory. Following this principle, we will in-
troduce reduced HNN extensions in the framework of von Neumann algebras (as well
asC∗-algebras) and take a very first step towards serious and systematic investigation
on them with aiming that their construction will play a key rôle in future attempts of
constructing new monsters in the world of non-amenable von Neumann algebras.

Let us explain the organization of this article. In §2, we will review free products
with amalgamations of von Neumann algebras with special emphasis of the admissibility
of embedding maps of amalgamated algebras in the construction. Although this slight
generalization of the previously used one is of course a folklore, we will briefly review
it to avoid any confusion since the admissibility of embedding maps plays a key rôle in
our construction of HNN extensions. In §3, reduced HNN extensions of von Neumann
algebras will be introduced, and then their characterization (or their “construction-
free” definition) given in terms of expected algebraic relations and “moment-values”
of conditional expectations as in the case of free products with amalgamations. In the
group setting, one standard way of constructing HNN extensions is the use of “shift
automorphisms” on “infinite free products with amalgamations” overisomorphic but
not necessary commonsubgroups (in fact, two different embeddings of amalgamated
groups are needed). This amalgamation procedure brings us “difficulty” in constructing
“shift automorphisms” in connection with conditional expectations since the universal
construction is not applicable in the von Neumann algebra setting. Hence, a different
idea is needed to construct the desired ones, and indeed it is based on an observation
coming from our previous work [40] on a different topic. Roughly speaking, our con-
struction can be understood as an “amalgam” (but not a “combination”) of those of
covariant representations without unitary implementations in the crossed-product con-
struction (see [36, vol.II; Eq. (10) in p. 241]) and of free products with amalgamations.
Our construction seems somewhat natural from the group theoretic viewpoint. In fact,
the notion of HNN extensions is known to be necessary to describe a subgroup of a
given free product group with amalgamation over a non-trivial subgroup. §4 will con-
cern modular theoretical aspects of reduced HNN extensions. More precisely, we will
give a complete description of modular automorphisms and also show that the contin-
uous core of any reduced HNN extension becomes again a reduced HNN extension. In
§5, we will discuss the factoriality and investigate the ultraproducts of reduced HNN
extensions. The results correspond to what we obtained in our previous work [39] on
free products with amalgamations. In §6, we will investigate reduced HNN extensions
of von Neumann algebras in several concrete settings. The first one is naturally arisen
from non-commutative 2-tori, the second from the tensor product operation, and the
third from regular and singular MASAs in the crossed-products by (non-commutative)
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Bernoulli shifts. The third one seems important for further investigation because any
given surjective (partial)∗-isomorphism between regular and singular MASAs in ques-
tion can never be extended to any global∗-automorphism on the given “base” algebras.
In §7, reduced HNN extensions ofC∗-algebras will be introduced in the same manner
as in the von Neumann algebra setting, and then some basic facts will be given. Further
analysis on them will be presented elsewhere.

Part of this article was presented in the conference “Recent Advances in von Neu-
mann Algebras” celebrated to Professor Masamichi Takesaki’s 70th birthday, at UCLA
in May, 2003. We would like to express our sincere thanks to the organizers; Professors
Yasuyuki Kawahigashi, Sorin Popa, and Dimitri Shlyakhtenko, who kindly gave us the
opportunity to present this work in the conference, and also would like to celebrate
Professor Masamichi Takesaki’s 70th birthday.

2. Preliminaries on free products with amalgamations

Let D and Ns (s ∈ S, an index set) be�-finite von Neumann algebras, and we
have a normal∗-isomorphism�s : D→Ns for each s ∈ S. Suppose further that the
von Neumann subalgebra�s(D) of Ns is the range of a faithful normal conditional
expectationEs for every s ∈ S. Even in this setting, we will be still able to construct
the reduced free product with amalgamation

(N,E) = 
D
s ∈ S

(Ns, Es : �s) .

The discussions in this article will treat the type II and III cases in common so that
the approach in[38] to the amalgamated free product construction will be convenient
since complete treatment of modular theory was given there. To construct reduced HNN
extensions, the admissibility of the embeddings�s (s ∈ S) in the construction plays a key
rôle. Hence, following [38] we would like to recall (without details) the amalgamated
free product construction with special emphasis on the embeddings�s ’s to avoid any
confusion.

Fix s ∈ S for a while, and let
(
Hs , Ns, Js,P

s

)
and

(
L2(D),D, JD,P

D

)
be the

standard forms. See [36, vol.II; Chapter IX, §1] for detailed account of standard forms.
Using the mapping

�∈P
D �−→

((
��
∣∣
D

) ◦ �−1
s ◦ Es

)1/2 ∈P
s (1)

we can extend the embedding�s : D→Ns to the Hilbert space level and still de-
note it by the same symbol�s : L2(D)→Hs . Here, �1/2∈P

s denotes the unique
implementing vector of a normal positive linear functional� on Ns . This embedding
satisfies the following expected properties: (i) For�∈L2(D) and d1, d2∈D, we have
�s
(
d1JDd

∗
2JD�

) = �s (d1) Js�s (d2)
∗ Js�s

(
�
)
, i.e., �s

(
d1 · � · d2

) = �s (d1) · �s
(
�
) · �s (d2)

with the usual notations in the bimodule theory. (ii) For each�∈P
D, the vector�s

(
�
)
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becomes the canonical implementing one inP
s of the state

(
��
∣∣
D

) ◦ �−1
s ◦ Es , a con-

sequence from (1).
Fix a faithful normal state� on D and denote by�� its implementing vector in

P
D. As mentioned above, the vector�s

(
��
)

becomes the unique implementing one

of the state� ◦ �−1
s ◦ Es in the natural coneP

s . We denote the kernel ofEs by N◦s
as usual, and introduce the operationx ∈Ns �→ x◦ := x − Es(x)∈N◦s . We also write
H◦s := Hs��s

(
L2(D)

)
, and it is clear that the subspaceH◦s is invariant under the left

and right actions ofD via the embedding map�s . Thus the naturalD–D bimodule
structure of the Hilbert spaceHs :

d1 · � · d2 := �s (d1) Js�s (d2)
∗ Js�, �∈Hs , d1, d2∈D

is inherited to the subspaceH◦s . When emphasize this bimodule structure, we will use
the symbolsD

(
�sHs �s

)
D

, D

(
�sH◦s �s

)
D

(or �sH◦s �s , �sH◦s �s for short) instead ofHs , H◦s ,
respectively. Notice here that we have the natural bimodule isomorphism

DL
2(D)D ⊕ D

(
�sH◦s �s

)
D

�D

(
�sHs �s

)
D

given by �⊕ � �−→ �s
(
�
)+ �. Let us construct the Hilbert space

H := L2(D)⊕
∑

s1 �=s2 �=···�=sn

⊕
�s1H◦�s1 ⊗� �s2 H◦�s2 ⊗� · · · ⊗� �snH◦�sn

on which the desired algebraN acts. This naturally becomes aD–D bimodule, and
the left and right actions are denoted by� and 	, respectively. For eachs ∈ S, we
can construct the∗-representation�s : Ns→End(HD) and the anti-∗-representation
	s : Ns→End(DH) by the same way as in[38, pp. 361–362]. To do so, we need only
some basic properties on relative tensor products (see [36, vol.II; Chapter IX, §3]) and
the bimodule isomorphism�sHs �s�L2(D)⊕ (�sH◦s �s

)
precisely explained above. Let us

consider two von Neumann algebras

N :=
(⋃
s ∈ S

�s (Ns)

)′′
, L :=

(⋃
s ∈ S

	s (Ns)

)′′
on H

and define� := ���

∣∣
N

, as a vector state, with regarding�� ∈L2(D) as a vector inH.

Facts 2.1(Ueda [38, pp. 362–365]). (A) �s ◦ �s coincides with the left action� of D
for each s ∈ S.

(B) 	s ◦ �s coincides with the right action	 of D for eachs ∈ S.
(C) The vector�� is cyclic for both N and L.
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(D) The commutantN ′ on H contains L. (More on this is true, that is, the commu-
tation theoremN ′ = L holds, see[38, AppendixII].) Hence, the state� is faithful.

(E) For eachx◦j ∈N◦sj with s1 �= s2 �= · · · �= sn, we have

�
(
�s1

(
x◦1
) · · · �sn (x◦n)) = 0.

(F) The modular automorphism��
t (t ∈R) satisfies

��
t ◦ �s = �s ◦ �

�◦�−1
s ◦Es

t and ��
t ◦ � = � ◦ ��

t .

Hence, there is a(unique) �-preserving conditional expectationE� : N→ �(D) thanks
to Takesaki’s theorem[36, vol.II; Theorem 4.2 in Chapter IX].

As in [38, lines 8–3 from the bottom in p. 364], the above (C), (E) imply the freeness
(with amalgamation over�(D)) among the von Neumann subalgebras�s (Ns) (s ∈ S)
with respect toE� in the sense of Voiculescu [41, §5]:

E� (�s1

(
x◦1
) · · · �sn (x◦n)) = 0

wheneverx◦j ∈N◦sj with s1 �= s2 �= · · · �= sn. Similarly one has

E� (�s (x)) = �s (Es (x)) = �
(
�−1
s ◦ Es (x)

)
, x ∈Ns.

The conditional expectationE� can be shown to be independent from the choice
of � (see Fact 2.2 for more precise), and hence we rewriteE := E�. The pair
(N,E) constructed so far is the desired one of von Neumann algebra and conditional
expectation, and it is characterized by freeness with amalgamation as follows.

Fact 2.2 (Voiculescu[41, §5.6]; also see Ueda[38, Proposition 2.5]). Let P be a von
Neumann algebra with a normal∗-isomorphism
 : D→P . Suppose that there are
normal ∗-isomorphisms
s : Ns→P with 
s ◦ �s = 
 and a faithful normal conditional
expectationF : P→
(D) such that
• the 
s (Ns)’s generate the whole P;
• F ◦ 
s = 
 ◦ �−1

s ◦ Es for every s ∈ S;
• the 
s (Ns)’s are free with amalgamation with respect to F.
Then, there is a unique surjective normal∗-isomorphism� : N→P such that�◦�s =

s for every s ∈ S and � ◦ E = F ◦�.

Since� =
(
�
∣∣
�(D)

)
◦E = �◦�−1◦E, we see that��

t = 
D
s ∈ S

�
�◦�−1

s ◦Es

t (t ∈R), where

the right-hand side is understood as free product of∗-automorphisms (constructed based
on the characterization by freeness, see e.g.[38, p. 366]), i.e.,(


D
s ∈ S

�
�◦�−1

s ◦Es

t

) (
�s(x)

) := �s

(
�

�◦�−1
s ◦Es

t (x)

)
, x ∈Ns.
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Thanks to Connes’ cocycle Radon-Nikodym theorem (see [36, vol. II; Chapter VIII,
§3]), this formula of modular automorphisms is still valid even for every semifinite
weight:

Proposition 2.3 (Ueda [38, Theorem 2.6]). For a faithful normal semifinite weight�
on D we have

��◦�−1◦E
t = 
D

s ∈ S
�

�◦�−1
s ◦Es

t (t ∈R).

3. Construction and characterization

One would encounter “difficulty” in dealing with conditional expectations (in con-
nection with “shift automorphisms”) if straightforward adaptation of one of the group
theoretic constructions of HNN extensions (see e.g.[34, Chapter I, §1.4]) was attempted
in the von Neumann algebra setting. This forced us to seek for another route towards the
construction of reduced HNN extensions. The rough idea is still essentially the same,
but our method is completely different, avoiding the use of “shift automorphisms” on
“infinite free products with amalgamations.” The method is based on a simple fact on
“matrix multiplications” that we observed in our previous investigation on the reduced
algebra of a certain amalgamated free product by a projection, see [40, §7].

Let N be a �-finite von Neumann algebra andD be a distinguished von Neumann
subalgebra with a faithful normal conditional expectationEN

D : N→D. Let us suppose
that we have an (at most countably infinite) family� of normal ∗-isomorphisms� :
D→N with faithful normal conditional expectationsEN

�(D)
: N→ � (D).

Set�1 := {1 := IdD} ��, a disjoint union. Let us define the normal∗-isomorphism
�� : D ⊗ �∞ (�1) →N ⊗ B

(
�2 (�1)

)
by

�� (x ⊗ e��) :=
{
x ⊗ e11 if � = 1,
�(x)⊗ e�� if �∈�

for eachx ∈D, where thee�1�2’s denote the canonical matrix unit system inB
(
�2 (�1)

)
.

Namely, in the operator matrix representation, we have

�� =


1

. . .

�
. . .

 , ��
(
D ⊗ �∞ (�1)

) =

D

.. .

�(D)

. . .

 .

We also define the faithful normal conditional expectationE� : N ⊗ B
(
�2 (�1)

) →
�� (D ⊗ �∞ (�1)) by

E� :=


EN
D

. . .

EN
�(D)

. . .

 =
 ∑

�∈�1

⊕
EN

�(D)
⊗ IdCe��

 ◦ (IdN ⊗ E�∞) ,
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whereE�∞ is the unique conditional expectation fromB
(
�2 (�1)

)
onto �∞ (�1). Let

us denote by�1 the inclusion map ofD ⊗ �∞ (�1) into N ⊗ B
(
�2 (�1)

)
, and define

the faithful normal conditional expectationE1 : N ⊗ B
(
�2 (�1)

) →D ⊗ �∞ (�1) by

E1 :=


EN
D

. . .

EN
D

. . .

 =
(
EN
D ⊗ Id�∞(�1)

)
◦ (IdN ⊗ E�∞) =

(
EN
D ⊗ E�∞

)
.

We then construct the reduced free product with amalgamation:

(N , E) =
(
N ⊗ B

(
�2 (�1)

)
, E� : ��

)



D⊗�∞(�1)

(
N ⊗ B

(
�2 (�1)

)
, E1 : �1

)
.

The embedding maps ofN ⊗ B
(
�2 (�1)

)
onto the first/second free components are

denoted by�� and �1, respectively, and the embedding map ofD ⊗ �∞ (�1) into N
by �, i.e., � = �� ◦ �� = �1 ◦ �1. The desired HNN extension ofN by � with respect
to EN

D and theEN
�(D)

’s will be constructed inside a corner subalgebra ofN .
Let us define

u(�) := �1 (e1�) �� (e�1)

with identifying e�1�2 = 1⊗ e�1�2, and the following equation is a key to our construc-
tion:

u(�)��
(
�(d)⊗ e11

)
u(�)∗ = �� (d ⊗ e11) , d ∈D,

which simply comes from��
(
�(d)⊗ e��

) = � (d ⊗ e��) = �1 (d ⊗ e��) for each
d ∈D, �∈�1. We also define the projection

p := � (e11) = �� (e11) ∈N

and then introduce the unital normal∗-isomorphism
 from N into the corner subalgebra
pNp defined by


(n) := �� (n⊗ e11) , n∈N.

The partial isometriesu(�)’s, can be thought of as unitaries in the cornerpNp since
their left and right supports are the projectionp, and the above-mentioned key equation
is translated into the following algebraic relation:

u(�)

(
� (d)

)
u(�)∗ = 
 (d) , d ∈D. (2)
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Set

M := 
 (N) ∨ {u(�) : �∈�
}′′ ⊆ pNp.

Let us consider a faithful normal semifinite weight onD ⊗ �∞ (�1):

� := �⊗
(

Tr
∣∣
�∞(�1)

)
with a faithful normal state� on D, where Tr is the (non-normalized) canonical normal
trace onB

(
�2 (�1)

)
.

Lemma 3.1.We have

��◦�−1◦E
t (p)= p, (3)

��◦�−1◦E
t (
 (n))= 


(
�

�◦EN
D

t (n)

)
, (4)

��◦�−1◦E
t

(
u(�)

)= u(�)

([
D� ◦ �−1 ◦ EN

�(D)
: D� ◦ EN

D

]
t

)
(5)

for each t ∈R, n∈N , �∈�.

Proof. Eqs. (3) and (4) are straightforward from Proposition 2.3, while the last one
needs some additional efforts. In fact, we have

��◦�−1◦E
t

(
u(�)

)= �1

(
�

�◦�−1
1 ◦E1

t (1⊗ e1�)

)
��

(
�

�◦�−1
� ◦E�

t (1⊗ e�1)

)
= �1 (1⊗ e1�) ��

([
D� ◦ �−1 ◦ EN

�(D)
: D� ◦ EN

D

]
t
⊗ e�1

)
= �1 (e1�) �� (e�1) ��

([
D� ◦ �−1 ◦ EN

�(D)
: D� ◦ EN

D

]
t
⊗ e11

)
= u(�)


([
D� ◦ �−1 ◦ EN

�(D)
: D� ◦ EN

D

]
t

)
,

where the second equality comes from the so-called “balanced weight technique” due
to Connes (see [36, vol. II; Chapter VIII, §3, pp. 111–113]).�

Since 
(N) = p��
(
N ⊗ B

(
�2 (�1)

))
p, the restriction of the normal conditional

expectation

E� : N→ ��

(
N ⊗ B

(
�2 (�1)

))
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that preserves� ◦ �−1 ◦ E (and henceE = E ◦ E� holds) toM gives a faithful normal
conditional expectation

EM

(N) := E�

∣∣
M
: M→
(N).

We have
(
� ◦ �−1 ◦ E

) ∣∣
M
= � ◦EN

D ◦ 
−1 ◦EM

(N), and hence, by Takesaki’s theorem

[36, vol. II; Theorem 1.2 in Chapter VIII, §1] we get

�
�◦EN

D ◦
−1◦EM

(N)

t = ��◦�−1◦E
t

∣∣
M
, t ∈R (6)

since��◦�−1◦E
t (M) = M for every t ∈R thanks to Lemma3.1.

Definition 3.1 (Reduced HNN Extensions). We call the pair
(
M,EM


(N)

)
constructed

so far the reduced HNN extension (or HNN extension, in short) ofN by � with
respect toEN

D and theEN
�(D)

’s, and denote it by

(
M,EM


(N)

)
=
(
N,EN

D

)


D

(
�,
{
EN

�(D)

}
�∈�

)
.

When no confusion occurs, we will writeM = N 

D

� for short. The given von Neu-

mann algebraN is called the base algebra, and eachu(�) the stable unitary of�∈�.

Definition 3.2 (Reduced Words). An element (inM)

w = u
(
�0
)ε0 
 (n1) u

(
�1
)ε1 
 (n2) · · ·
 (n�) u

(
��
)ε�

with n1, n2, . . . , n� ∈N , �0, �1, . . . , �� ∈�, ε0, ε1, . . . , ε� ∈ {1,−1} (possibly withw =
u
(
�0
)ε0) is called a reduced word (or said to be of reduced form) if�j−1 = �j and

εj−1 �= εj imply that
• nj ∈N◦� := KerEN

�(D)
with � := �j−1 = �j , when εj−1 = 1, εj = −1;

• nj ∈N◦ := KerEN
D , when εj−1 = −1, εj = 1.

We should point out that our definition of reduced words agrees with so-called
Britton’s lemma in combinatorial group theory (see[16, p. 181]), where a reduced
word is named as a normal form, and the sets of representatives of right cosets of
distinguished subgroups should be regarded as the counterparts ofN◦ and theN◦� ’s in
our consideration.

Remark 3.2. It is plain to see thatu
(
�1
)ε1 · · · u (��)ε� is of reduced form in the above

sense if and only if so is�ε1
1 · · · �ε�� in the free groupF (�) over the generating set�.
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Definition 3.3. We introduce the following two conditions:
(A) u(�)


(
� (d)

)
u(�)∗ = 
 (d) for every d ∈D, �∈�.

(M) For every reduced wordw, one hasEM

(N) (w) = 0.

Theorem 3.3. The pair
(
M,EM


(N)

)
constructed above satisfies conditions(A) and (M).

On the other hand, conditions(A) and (M) characterize the pair
(
M,EM


(N)

)
completely

under the assumption that
(N) and theu(�)’s generate M as von Neumann algebra.
Strictly speaking, the conditional expectation of the pair in question is completely
determined by those conditions.

Proof. Let us denote the first/second free components ofN by N�, N1, respectively,
for short, i.e., N� := ��

(
N ⊗ B

(
�2 (�1)

))
, N1 := �1

(
N ⊗ B

(
�2 (�1)

))
, and set

N ◦� := N� ∩ Ker E = �� (KerE�) and N ◦1 := N1 ∩ Ker E = �1 (KerE1) as usual.
Condition (A) was already verified, see Eq. (2), and thus it suffices to check condition

(M) for the first half of the assertions. Let us choose a word

w = u
(
�0
)ε0 
 (n1) u

(
�1
)ε1 
 (n2) · · ·
 (n�) u

(
��
)ε�

and then we have

w= (�1
(
e1�0

)
��

(
e�01

))ε0 �� (n1⊗ e11)
(
�1
(
e1�1

)
��

(
e�11

))ε1

· · · �� (n� ⊗ e11)
(
�1
(
e1��

)
��

(
e��1

))ε0 .

Here, we briefly explain how to manipulate this word in a typical case: Ifεj−1 = −1,
εj = 1, then

(
�1

(
e1�j−1

)
��

(
e�j−11

))εj−1
��

(
nj ⊗ e11

) (
�1

(
e1�j

)
��

(
e�j1

))εj
= ��

(
e1�j−1

)
�1

(
EN
D

(
nj
)⊗ e�j−1�j

)
��

(
e�j1

)
+ ��

(
e1�j−1

)
�1

(
e�j−11

)
��

(
n◦j ⊗ e11

)
�1

(
e1�j

)
��

(
e�j1

)
with n◦j = nj − EN

D

(
nj
)
. If nj ∈N◦, then this belongs toN ◦�N ◦1 N ◦�N ◦1 N ◦� since the

first term disappears in this case. On the other hand, ifnj is arbitrary but�j−1 �= �j ,
then it belongs toN ◦�N ◦1 N ◦�+N ◦�N ◦1 N ◦�N ◦1 N ◦�. In this way, one can easily observes
that, if the wordw is of reduced form, then it belongs to the linear span of alternating
words in N ◦� and N ◦1 of length greater than 2. Therefore, we haveE� (w) = 0, which
asserts condition (M).



Y. Ueda / Journal of Functional Analysis 225 (2005) 383–426 393

Next, we will show the latter half of the assertions. To do so, it is enough to explain
how one can compute the moment-value:

EM

(N)

(
u
(
�0
)0 
 (x1) u

(
�1
)1 
 (x2) · · ·
 (xm) u

(
�m
)m)

of any givenx1, x2, . . . , xm ∈N , �0, �1, . . . , �m ∈�, 0, 1, . . . , m ∈Z \ {0}, by using
only conditions (A) and (M). In fact, if the resulting value could be expressed uniquely
in terms of only the data of

(
�0, 0

)
, x1,

(
�1, 1

)
, . . . , xm,

(
�m, m

)
together withEN

D

and theEN
�(D)

’s, then the desired assertion would follow. Our technique is the essen-
tially same as in the case of free products with amalgamations. Namely, we use the
decompositions:

n = EN
D (n)+ n◦ or EN

�(D)
(n)+ [n]◦� n∈N,

where we define[n]◦� := n − EN
�(D)

(n). By the repeated use of the decompositions
together with condition (A), we can make the moment-value in question a (finite) sum
of the form: ∑

w: reduced word or 1

 (n(w))EM


(N)(w)

with coefficientsn(w) being words inD and�(D) (in N), and all the coefficientsn(w)
and all the wordsw (the moment-valueEM


(N)(w) takes 0 ifw is of reduced form or
otherwise,w = 1) appeared in the above expression are uniquely determined from the
given data

(
�0, 0

)
, x1,

(
�1, 1

)
, . . ., xm,

(
�m, m

)
together withEN

D and theEN
�(D)

’s.
Therefore, our desired assertion follows.�

Let u (g), g ∈F (�), be the natural group isomorphism from the free groupF (�)

into the unitary groupU (M) given by the correspondence�∈� �−→ u(�)∈U (M).
Let us denote by�( · ) the usual word length function with respect to the generating
set �. The computation given in the above proof implies the following corollary:

Corollary 3.4. Let w = u
(
�0
)ε0 
 (n1) u

(
�1
)ε1 
 (n2) · · ·
 (n�) u

(
��
)ε� be a word in

M, and setg := �ε0
0 �ε1

1 · · · �ε�� , a word in F (�) (obtained by replacing allnj ’s by the
identity 1). Then we have

� (g) �= 0�⇒ EM

(N) (w) = 0.

In particular, the unitariesu(�)’s form a free family of Haar unitaries, so that they
generate the free group factorL (F (�)).

The following corollary is also straightforward from Theorem3.3:
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Corollary 3.5. Let G ∗H � = 〈G, t : t�(h)t−1 = h, h∈H 〉 be an HNN extension
of base group G with stable letter t by group isomorphism� from H into G. Then,
the group von Neumann algebraL

(
G ∗H �

)
can be identified with the reduced HNN

extension of the base algebraL (G) with the stable unitary� (t), where all the necessary
conditional expectations are chosen as the canonical tracial state preserving ones.

We then discuss what phenomenon occurs whenD and the�(D)’s are assumed to
be all mutually inner conjugate. Let

(
M,EM

N

)
be as above with identifyingn = 
(n),

n∈N . We here suppose that every�∈� has a unitaryw� ∈N with the following
properties: (i) Adw� ◦ �∈Aut(D); and (ii) EN

�(D)
= Ad w∗� ◦ EN

D ◦ Ad w�. Define the
action� of F(�) on D in such a way that�� = Ad w�◦�, and consider the free product
with amalgamation:(

L,FL
D

)
:=
(
N,EN

D

)


D

(
D��F(�), E

D��F(�)

D

)
,

whereE
D��F(�)

D is the canonical conditional expectation. The faithful normal condi-
tional expectation fromL onto the first free componentN that preservesFL

D is denoted
by FL

N . Then, we have the following simple corollary:

Corollary 3.6. In the above setting, the correspondence:

n∈M �→ n∈L, n∈N,

u(�)∈M �→ ��(�)∗w� ∈L, �∈�

gives a ∗-isomorphism between M and L that intertwinesEM
N and FL

N . Here, �� :
F(�)→D��F(�) (⊆ L) denotes the canonical unitary representation.

Proof. It is plain to verify that the pair
(
L ⊇ N,FL

N

)
with the unitaries�� (�)∗w�,

�∈�, satisfies conditions (A) and (M) with respect to� and EN
D ,

{
EN

�(D)

}
�∈�

.

In fact, condition (A) follows from the above (i), while the (M) from the fact that
x ∈N◦� = KerEN

�(D)
if and only if w�xw

∗
� ∈N◦ = KerEN

D thanks to the above
(ii). �

Remarks 3.7. (1) [HNNextensions arising from inner conjugateCartan subalgebras]
Assume thatN is a non-type I factor with separable predual (or more generally, a
von Neumann algebra with separable predual having no type I direct summand) and
further thatD and the�(D)’s are all Cartan subalgebras inN (see [8] for the notion of
Cartan subalgebras). By the uniqueness of normal conditional expectations onto those
Cartan subalgebras, if those Cartan subalgebras are all mutually inner conjugate, then
Corollary 3.6 enables us to apply our previous results [38–40] to the HNN extension
M = N 
D � without any change. However, we have no general result without this
inner conjugacy assumption among Cartan subalgebras in question.
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(2) A special case of Corollary3.6 was one of the starting points of the present
work. In fact, in the setting of Corollary 3.6, the group theoretic construction based
on shift automorphisms on infinite amalgamated free products is valid when all the
w� = 1 (so that�� = �). Concerning this, we point out that the amalgamated free
product appeared in Corollary 3.6 has the crossed-product decomposition:

M = N (�)�F (�)

by the free Bernoulli shift on

N (�) := 
D
g ∈F(�)

(
N,EN

D : �g
)
.

(See e.g.[12, §3], where only the case ofD = C1 was treated, but the argument
works even in this case.) More on this will be discussed in the next section with full
generality.

4. Modular theory

Let (
M,EM


(N)

)
=
(
N,EN

D

)


D

(
�,
{
EN

�(D)

}
�∈�

)
be the HNN extension of base von Neumann algebraN with stable unitariesu(�),
�∈�. Here, we will use the construction and the notations of HNN extensions given
in the previous section; however, in what follows, we will identifyn = 
 (n), n∈N , so

 will be omitted. The next theorem is immediately derived from Lemma3.1 with the
aid of Connes’ cocycle Radon–Nikodym theorem (see [36, vol. II; Chapter VIII, §3]).

Theorem 4.1. For a faithful normal semifinite weight� on D, we have

�
�◦EN

D ◦EM
N

t

(
u(�)

) = u(�)
[
D� ◦ �−1 ◦ EN

�(D)
: D� ◦ EN

D

]
t
, t ∈R.

This theorem implies the following criterion for the existence of traces on HNN
extensions:

Corollary 4.2. If N has a faithful normal semifinite trace� and if the givenEN
D and

the EN
�(D)

’s satisfy the relation:

� = (�∣∣
D

) ◦ EN
D =

(
�
∣∣
D

) ◦ �−1 ◦ EN
�(D)

, �∈�,
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then so does M, and more precisely� ◦ EM
N becomes a trace. In particular, if N

is semifinite with a faithful normal semifinite trace� and if the given conditional
expectations are�-preserving and�|�(D) = (�|D) ◦ � holds, then � ◦ EM

N is a trace.

A crossed-product decomposition fact for HNN extensions was given in Remarks
3.7,(2) under a very special assumption. Here, we give such a fact with full generality.

Corollary 4.3. Let us denote byN (�) the von Neumann subalgebra generated by all
the u (g)Nu (g)∗, g ∈F (�). Then we have the crossed-product decomposition of M:

M = N (�)�Ad uF (�)

with the natural adjoint actionAd u : g ∈F (�) �→ Ad u (g) ∈Aut (N (�)).

Proof. First of all, we should remark that Theorem4.1 shows that there is a unique
faithful normal conditional expectation fromM onto N (�) that preservesEM

N . Thus,
the desired assertion is derived from Corollary 3.4 together with the well-known char-
acterization of discrete crossed-products in terms of conditional expectations.�

Remark 4.4. Theorem 4.1 says that each subalgebrau (g)Nu (g)∗, g ∈F (�) with
g �= e (e denotes the identity), is not necessary to be globally invariant under the
modular automorphism associated with� ◦ EM

N .

Theorem 4.1 enables us to show that the continuous core of the HNN extensionM
in question becomes again an HNN extension. For a better description, it is convenient
to use a recent formulation of continuous cores due to Yamagami [45]. (See also [7],
and the reader may consult [36, vol. II; Chapter XII, §6] for more detailed account.)
Following the formulation, the continuous corẽP of a givenP can be understood as
an abstract von Neumann algebra generated by two kinds of symbolsx ∈P and �it

with a faithful normal semi-finite weight� on P, which satisfy the relations:

�it x�−it = ��
t (x) , �it�is = �i(t+s), �it�−it = [D� : D�

]
t

for faithful normal semi-finite weights�, � on P. It is known that such a von Neumann
algebra P̃ can be realized as the crossed-productP���R, where �it denotes the

canonical unitary implementation��
(t) of R inside the crossed-product, and�it =[

D� : D�
]
t
�it = [D� : D�

]
t
��

(t) in general.
In our setting, the inclusion relationsM ⊇ N ⊇ D, M ⊇ N ⊇ �(D), �∈�, with the

faithful normal conditional expectationsEM
N : M→N , EN

D : →D, EN
�(D)
: N→ �(D)

give us the following natural embeddings and mapping:

D̃ ↪→ Ñ by

{
d ∈D identify↔ d ∈D ⊆ N ⊆ Ñ,

�it ∈ D̃ identify↔ (
� ◦ EN

D

)it ∈ Ñ,
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�̃ : D̃→ Ñ by

{
d ∈D �→ � (d) ∈ �(D) ⊆ N ⊆ Ñ,

�it ∈ D̃ �→
(
� ◦ �−1 ◦ EN

�(D)

)it ∈ Ñ,

Ñ ↪→ M̃ by

{
n∈N identify↔ n∈M ⊆ M̃,

�it ∈ Ñ identify↔ (
� ◦ EM

N

)it ∈ M̃
and the conditional expectations

ÊN
D : Ñ→ D̃, ̂EN

�(D)
: Ñ→ �̃(D) = �̃

(
D̃
)
, ÊM

N : M̃→ Ñ

constructed in such a way that

ÊN
D

∣∣
N
= EN

D, ÊN
D

((
� ◦ EN

D

)it) = (� ◦ EN
D

)it
,

̂EN
�(D)

∣∣
N
= EN

�(D)
, ̂EN

�(D)

((
� ◦ �−1 ◦ EN

�(D)

)it) = (� ◦ �−1 ◦ EN
�(D)

)it
,

ÊM
N

∣∣
M
= EM

N , ÊM
N

((
� ◦ EM

N

)it) = (� ◦ EM
N

)it
for faithful normal positive linear functionals�∈D∗, �∈N∗, where one should remind
the following formula:

�̃
((

� ◦ EN
D

)it)( = �̃
(
�it
) )
=
(
� ◦ �−1 ◦ EN

�(D)

)it
.

For a faithful normal state� on D, we have, in the continuous corẽM,(
� ◦ EN

D ◦ EM
N

)it
u(�) = u(�)

(
� ◦ �−1 ◦ EN

�(D)
◦ EM

N

)it
, t ∈R, (7)

thanks to Theorem4.1. The general assertion given below is a simple application of
formula (7) and Theorem 3.3, i.e., the characterization of HNN extensions.

Theorem 4.5. The pair
(
M̃, ÊM

N

)
is again the HNN extension of the base algebraÑ

by the family�̃ :=
{̃
� : �∈�

}
with the stable unitariesu(�), �∈�, with respect to

the conditional expectationŝEN
D and ̂EN

�(D)
, �∈�, that is,(

M̃, ÊM
N

)
=
(
Ñ, ÊN

D

)


D̃

(
�̃,

{
̂EN

�(D)

}
�∈�

)
.

We will often denote this identification bỹM = Ñ 

D̃

�̃ for short.
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Proof. Condition (A) follows from formula (7). Indeed, for eachd ∈D, t ∈R, formula
(7) enables us to compute

u(�)̃�
(
d
(
� ◦ EN

D

)it)
u(�)∗ = d

(
� ◦ EN

D ◦ EM
N

)it = d
(
� ◦ EN

D

)it
.

Hence, it suffices to verify condition (M). The argument to do so is similar to that in
[38, Theorem 5.1]. Let̃w be a word inM̃, i.e.,

w̃ = u
(
�0
)ε0 ñ1u

(
�1
)ε1 · · · ñ�u

(
��
)ε�

with ñ1, . . . , ñ� ∈ Ñ . Then, Kaplansky’s density theorem enables us to reduce our con-
sideration to the case that each̃nj is in a (not necessary common) suitable dense
∗-subalgebra of̃N . Such a dense∗-subalgebra is chosen as the∗-algebra generated by

N and the
(
� ◦ EN

D

)it
, t ∈R, or by N and the

(
� ◦ �−1 ◦ EN

�(D)

)it
, t ∈R, and we can

assume that each̃nj is of the form: n
(
� ◦ EN

D

)it
or n

(
� ◦ �−1 ◦ EN

�(D)

)it
thanks to

[38, Lemma 5.2]. Ifw̃ is of reduced form, then the repeated use of formula (7) enables
us to makew̃ a word of the form:

(a reduced word inM)×
(
� ◦ EN

D ◦ EM
N

)it
or

(a reduced word inM)×
(
� ◦ �−1 ◦ EN

�(D)
◦ EM

N

)it
and the desired assertion follows from that the originalM satisfies condition (M). �

5. Factoriality and central sequences

Let us begin by fixing our setting and notations throughout this section. LetN be
a �-finite von Neumann algebra, and� : D→N be a normal∗-isomorphism from a
von Neumann subalgebraD of N into N. Suppose further that there are faithful normal
conditional expectationsEN

D : N→D and EN
�(D)

: N→ �(D). Let us consider the
HNN extension: (

M,EM

(N)

)
=
(
N,EN

D

)


D

(
�, EN

�(D)

)
,

and write M = N 

D

� for short, when no confusion arises. The discussions in what

follows heavily depend upon the construction of HNN extensions given in §3, and thus
we should briefly recall the procedure to fix notations. We first begin by constructing
the free product with amalgamation:

(N , E) = (N ⊗M2 (C) , E� : ��) 

D⊗C2

(N ⊗M2 (C) , E1 : �1) ,
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where

E� :=
[
EN
D

EN
�(D)

]
, E1 :=

[
EN
D

EN
D

]
,

�� :=
[

IdD

�

]
, �1 :=

[
IdD

IdD

]
.

Here, we denote the canonical embedding maps ofN ⊗M2 (C) onto the first/second
free components by��, �1, respectively, and the embedding map ofD ⊗ C2 into N
by �. Note that� = �� ◦ �� = �1 ◦ �1. As before, we will writeN� := �� (N ⊗M2 (C)),
N1 := �1 (N ⊗M2 (C)) and N ◦� := N� ∩ Ker E = �� (KerE�), N ◦1 := N1 ∩ Ker E =
�1 (KerE1), and moreover denoteD := �

(
D ⊗ C2

)
. Setp := � (1⊗ e11) ∈ �

(
D ⊗ C2

)
( ⊆ N ). Then, the HNN extensionM = N 


D
� is obtained asM := 〈
 (N) , u(�)〉′′ ⊆

pNp with


 (n) := �� (n⊗ e11) = p�� (n⊗ 1) p, n∈N,

u(�) := �1 (1⊗ e12) �� (1⊗ e21) .

Let E� :M→N� be the conditional expectation onto the first free component, condi-
tioned byE , i.e., E ◦ E� = E . The conditional expectationEM


(N) : M→
(N) is given
as the restriction ofE� to M. In this section, any embedding map appearing in the
above construction will be not omitted to avoid any confusion as long as when we
will treat the amalgamated free productN = N� 


D
N1 to get any result on the HNN

extensionM = N 

D

�.

Next, we briefly summarize some of the basics on ultraproducts of von Neumann
algebras needed in this section. We refer to[21, Chapter 5] for the topic. (Also see [39],
§2.2] as a brief summary fitting into our treatment.) Fix a free ultrafilter�∈�(N)\N.
For a given�-finite von Neumann algebraP, let us denote byIP

� the set of bounded
sequences(xn)n∈N in P satisfying�-s∗- limn→� xn = 0. With letting M (IP

�
) := the

multiplier algebra ofIP
� inside the algebra�∞ (N, P ) = P ⊗ �∞ (N) of all bounded

sequences inP, the ultraproductP� is defined as the quotientC∗-algebraM (IP
�
)
/IP

�
with quotient map
P�. In what follows, we will need the following standard facts: (1)
Every constant sequence inP belongs to the multiplier algebraM (IP

�
)
. In particular,

this implies thatP can be embedded intoP� via 
P�. (2) If Q is a von Neumann
subalgebra ofP that is the range of a faithful normal conditional expectationE, then
the ultraproductQ� is naturally embedded into the bigger oneP� and E is lifted to
a faithful normal conditional expectationE� : P�→Q� in the natural way. (3) For
a projectionp ∈P , the reduced von Neumann algebrap

(
P�)p (with p ∈P ↪→ P�)

is naturally identified with(pPp)�. Although it sounds trivial, one needs to care
with (only) the case of infinite von Neumann algebras because of the definition of
ultraproducts.
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Proposition 5.1 (cf. Popa[27, Lemma 2.1]and Ueda[39, Proposition 5]). Let N =
N� 


D
N1 be as above. Suppose that there are faithful normal states�, �� on D and

unitaries v ∈ N�◦EN
D

, v� ∈ N��◦�−1◦EN
�(D)

such that

EN
D

(
vn
) = EN

�(D)

(
vn
) = 0, EN

�(D)

(
vn�

) = 0

as long asn �= 0. Define the state� on D ⊗ C2 and the unitaryV ∈ N�◦�−1◦E by

� (diag[d11, d22]) := 1

2

(
� (d11)+ �� (d22)

)
,

V := ��

([
v

v�

])
∈ ��

(
(N ⊗M2 (C))�◦�−1

� ◦E�

)
⊆ N�◦�−1◦E ,

respectively. Then, we have, for everyX ∈ 〈V 〉′ ∩N�,∥∥u(�) (X − E�
� (X)

)∥∥
L2(N �)

�
∥∥[u(�),X]∥∥

L2(N �)
,

where the canonical injection�(
�◦�−1◦E

)� : N�→L2
(N�) with respect tothe canon-

ical lifting of state
(
�◦ �−1 ◦ E

)�
is omitted.

The idea of the proof given below is essentially the same as that of [39, Proposition
5], but not exactly the same becauseu(�) is not in a single free component and
indeed is inN ◦1 N ◦� , a set of reduced words of length 2. Here is a good place to
mention the following: In the statement of [39, Proposition 5], it is commented that
“uDu∗ = D = wDw∗”, one of the assumptions there, is automatic from the other one
given there. This is a wrong comment, but we would like to emphasize that all the
cases treated in [39] satisfy the condition, and moreover that the condition is never
used in the proof there.

Proof. Let us begin by introducing the following decomposition:

N ◦� = N�
� +N�

� ,

where

N�
� := ��

([
0 �(D)

0 0

])
, N�

� := ��

([
KerEN

D KerEN
�(D)

N KerEN
�(D)

])
.

Note that for each pair

X� =
[

0 �(x)
0 0

]
∈
[

0 �(D)

0 0

]
, Y� =

[
y11 y12
y21 y22

]
∈
[

KerEN
D KerEN

�(D)

N KerEN
�(D)

]
,
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we have

E�
(
X�∗Y�) = E�

([
0 0

�(x)∗y11 �(x)∗y12

])
=
[

0 0
0 �(x)∗EN

�(D)
(y12)

]
= 0. (8)

This decomposition is essential in what follows.
In the standard Hilbert spaceL2 (N ), we introduce the following five subspaces:

X1 := the closed subspace generated by��◦�−1◦E
(N ◦� · · ·N ◦1 ) ,

X2 := the closed subspace generated by��◦�−1◦E
(N ◦1 · · ·N ◦� ) ,

X3 := the closed subspace generated by��◦�−1◦E
(N ◦1 · · ·N ◦1 ) ,

X4 := the closed subspace generated by��◦�−1◦E
(N�

� N ◦1 · · ·N ◦�
)
,

X5 := the closed subspace generated by��◦�−1◦E
(N�

� N ◦1 · · ·N ◦�
)
,

where ��◦�−1◦E denotes the canonical injection ofN into L2 (N ) with respect to

� ◦ �−1 ◦ E . Then, we have

L2 (N ) = [X1⊕ X2⊕ X3⊕ X4] ⊕ X5⊕ L2 (N�) , L2 (N�)
identify= ��◦�−1◦E (N�).

Note here thatX4 and X5 are orthogonal, which follows from (8). We will treat the
subspacesX1, X2, X3, X4 in common, while will doX5 carefully by looking atu(�).

We introduce the operatorTV n , n∈Z, on L2 (N ) defined by

TV n��◦�−1◦E (X) := ��◦�−1◦E
(
V nXV −n

)
, X ∈N .

SinceV is in the centralizer of�◦�−1◦E due to Proposition2.3, one can easily verify:
TV n is a unitary; andT n

V = TV n , T n
V PXi

= PT n
V Xi

T n
V for everyn∈Z. Here,PY denotes

the projection onto a closed subspaceY.

Claim. For i = 1,2,3,4 (�= 5), we haveT n
V Xi ⊥ T m

V Xi as long asn �= m.

Proof. The first three subspacesX1, X2, X3 are treated exactly in the same way as in
the proof of [39, Proposition 5]. But we would like to explain below the case ofX1
because it is somewhat non-trivial, and then the case ofX4.

Let us choose two alternating words inN ◦� , N ◦1 starting atN ◦� and ending atN ◦1 :

W(1) = X(1)1Y (1)1 · · ·Y (1)�1, W(2) = X(2)1Y (2)1 · · ·Y (2)�2

with X(k)j ∈N ◦� and Y (k)j ∈N ◦1 . Since
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X ∈N� �⇒ X − E(X)∈N ◦� , Y ∈N1 �⇒ Y − E(Y )∈N ◦1

(thanks toE |N� = �� ◦ E� ◦ �−1
� and E |N1 = �1 ◦ E� ◦ �−1

1 ), we have(
T n
V ��◦�−1◦E ((W(1))

∣∣T m
V ��◦�−1◦E ((W(2))

)
L2(N )

= � ◦ �−1 ◦ E (Y (2)∗�2
· · ·Y (2)∗1X(2)∗1V n−mX(1)1Y (1)1 · · ·Y (1)�1V

m−n)
= � ◦ �−1 ◦ E (Y (2)∗�2

· · ·Y (2)∗1E
(
X(2)∗1V n−mX(1)1

)
Y (1)1 · · ·Y (1)�1V

m−n) ,
by using the freeness. Iterating this procedure we finally see that(

T n
V ��◦�−1◦E ((W(1))

∣∣T m
V ��◦�−1◦E ((W(2))

)
L2(N )

= 0

if �1 �= �2; or otherwise (i.e., when�1 = �2
denote=: �), we have(

T n
V ��◦�−1◦E ((W(1))

∣∣T m
V ��◦�−1◦E ((W(2))

)
L2(N )

= � ◦ �−1 (E (Y (2)∗�E (· · · E (Y (2)∗1E (X(2)∗1V n−mX(1)1
)
Y (1)1

) · · ·)
Y (1)�) E

(
Vm−n))

and this becomes 0 as long asVm−n ∈ N ◦� , i.e., m �= n. Hence we are done in the
case ofX1.

To treat the case ofX4, it suffices to note the following simple fact: For each pair

X(1) = ��

([
0 � (x(1))
0 0

])
, X(2) = ��

([
0 � (x(2))
0 0

])
in N�

� , we have

X(2)∗V kX(1)= ��

([
0 0

� (x(2))∗ 0

] [
vk 0
0 vk�

] [
0 � (x(1))
0 0

])

= ��

([
0 0
0 � (x(2))∗ vk� (x(1))

])
∈N ◦�

as long ask �= 0. Hence, for each pair of alternating words

W(1) = X(1)1Y (1)1 · · ·Y (1)�1X(1)�1, W(2) = X(2)1Y (2)1 · · ·Y (2)�2X(2)�2,

with X(k)j ∈N ◦� , Y (k)j ∈ N ◦1 (2�j��1 or �2) andX(1)1, X(2)1∈N�
� , we have(

T n
V ��◦�−1◦E ((W(1))

∣∣T m
V ��◦�−1◦E ((W(2))

)
L2(N )

= 0
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sinceX(2)∗1V n−mX(1)1 ∈ N ◦� as long asn �= m. �

Let us choose an elementX = 
N
�
(
(Xk)k∈N

)
satisfyingX = VXV ∗ with identifying

V = 
N
� ((V , V, . . .)). Set

X := X1⊕ X2⊕ X3⊕ X4,

and, in the same way as in[39, Proposition 5] based on the above Claim, we see
that, for eachε > 0, there is a neighborhoodWε at � (in the w∗-topology on the
Stone-̌Cech compactification� (N)) such that

∥∥∥PX ��◦�−1◦E (Xk)

∥∥∥
L2(N )

< ε

as long ask ∈Wε ∩ N. For the sake of completeness, we will repeat the detailed
argument. In what follows, we will denote� := ��◦�−1◦E , �� := �(

�◦�−1◦E
)� for

simplicity. For each fixedn∈Z, we have

lim
k→�

‖� (Xk − V nXkV
−n) ‖L2(N ) = ‖�� (X − V nXV −n

) ‖L2(N �) = 0

and hence, for each > 0 and for eachn0 ∈ N, there is a neighborhoodW at � such
that

‖� (Xk − V nXkV
−n) ‖L2(N ) < 

for every k ∈W ∩N and n∈Z with |n|�n0, and thus for eachi �= 5,

∥∥PXi
� (Xk)

∥∥2
L2(N )

= ∥∥TV nPXi
� (Xk)

∥∥2
L2(N )

= ∥∥TV nPXi
� (Xk)− PTVnXi

� (Xk)+ PTVnXi
� (Xk)

∥∥2
L2(N )

� 2
{∥∥PTVnXi

�
(
V nXkV

−n −Xk

)∥∥2
L2(N )

+ ∥∥PTVnXi
� (Xk)

∥∥2
L2(N )

}
< 2

{
2+ ∥∥PTVnXi

� (Xk)
∥∥2
L2(N )

}
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and hence

(2n0 + 1)
∥∥PXi

� (Xk)
∥∥2
L2(N )

< 2

(2n0 + 1) 2+
∑
|n|�n0

∥∥PTVnXi
� (Xk)

∥∥2
L2(N )


� 2

{
(2n0 + 1) 2+ ∥∥� (Xk)

∥∥2
L2(N )

}
by the previous Claim. Thus, we have

∥∥PXi
� (Xk)

∥∥2
L2(N )

�2

{
2+ 1

2n0 + 1
‖Xk‖2∞

}
as long ask ∈W ∩ N. Therefore, we get the desired assertion sinceX is the direct
sum X1⊕ X2⊕ X3⊕ X4.

For a while, the rightu(�) in the quantityu(�)X−Xu(�) (= [u(�),X]) is replaced

by an analytic elementy ∈N ◦1 N ◦� under the modular action��◦�−1◦E
t . (Note that the

restriction of��◦�−1◦E
t to N ◦1 N ◦� is nothing but the “product��◦�1◦E1

t ( · )��◦��◦E�
t ( · )”.)

The Hilbert spaceL2
(N�) can be isometrically embedded into the ultraproduct

Hilbert spaceL2 (N )� (see e.g.[39, §2.2]), and the embedding is given by the cor-
respondence�� (
N

�
(
(xn)n∈N

)) ∈L2
(N�) �→ [(

� (xn)
)
n∈N

]
L2(N )�

∈L2 (N )�, the

quotient class of the given bounded sequence
(
� (xn)

)
n∈N
∈ �∞

(
N, L2 (N )

)
. Hence,

we will regardL2
(N�) as a closed subspace ofL2 (N )� via the embedding.

We have∥∥∥�� (u(�) (X − E�
� (X)

))− [(u(�)PX5� (Xk)
)
k∈N

]
L2(N )�

∥∥∥2

L2(N )�

� sup
k ∈Wε∩N

∥∥u(�) (1L2(N ) − PL2(N�)
− PX5

)
� (Xk)

∥∥2
L2(N )

� sup
k ∈Wε∩N

‖PX (Xk)‖2
L2(N )

�ε

and hence

�� (u(�) (X − E�
� (X)

)) = [(u(�)PX5� (Xk)
)
k∈N

]
L2(N )�

insideL2 (N )� sinceε is arbitrary. With the notations�t := ��◦�−1◦E
t , J := J�◦�−1◦E ,

we compute∥∥∥∥∥�� ((X − E�
� (X)

)
y
)− [(J�−

√−1
2

(
y∗
)
JPX5� (Xk)

)
k∈N

]
L2(N )�

∥∥∥∥∥
2

L2(N )�
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� sup
k ∈Wε∩N

∥∥∥∥J�−
√−1

2

(
y∗
)
J� (Xk − E� (Xk))− J�−

√−1
2

(
y∗
)
JPX5� (Xk)

∥∥∥∥2

L2(N )

�
∥∥∥∥�−√−1

2

(
y∗
)∥∥∥∥∞ · ε.

Sinceε is arbitrary, we get

�� ((X − E�
� (X)

)
y
) = [(J�−

√−1
2

(
y∗
)
JPX5� (Xk)

)
k∈N

]
L2(N )�

insideL2 (N )�. We also have

�� (u(�) (X − E�
� (X)

)
y
) = [(� (u(�)E� (Xk)− E� (Xk) y

))
k∈N

]
L2(N )�

insideL2 (N )�. Therefore, it suffices to show that

u(�)
(N�

� N ◦1 · · ·N ◦�
)
,

(N�
� N ◦1 · · ·N ◦�

) (N ◦1 N ◦�
)
, u(�)N� +N�

(N ◦1 N ◦�
)

are mutually orthogonal with respect to� ◦ �−1 ◦ E . Indeed, if this assertion was true,
then it would follow that

u(�)PX5� (Xk) , J�−
√−1

2

(
y∗
)
JPX5� (Xk) , �

(
u(�)E� (Xk)− E� (Xk) y

)
are mutually orthogonal inL2 (N ) for every k, and so are

�� (u(�) (X − E�
� (X)

))
, �� ((E�

� (X)−X
)
u(�)

)
,

�� (u(�)E�
� (X)− E�

� (X) u(�)
)

in L2
(N�) (or more precisely, insideL (N )�) since one can find a bounded net of

analytic elements inN ◦1 N ◦� that converges tou(�) in the �-strong∗ topology.
Let us now show the desired orthogonal relation among the words in question. For

an alternating word

W = X1Y2 · · ·X� ∈N�
� N ◦1 · · ·N ◦�

with

X1 = ��

([
x11 x12
x21 x22

])
∈N�

� =
[

KerEN
D KerEN

�(D)

N KerEN
�(D)

]
,
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we have

u(�)W = �1

([
0 1
0 0

])
��

([
0 0
1 0

])
��

([
x11 x12
x21 x22

])
Y2 · · ·

= �1

([
0 1
0 0

])
��

([
0 0
x11 x12

])
Y2 · · · ∈N ◦1 N ◦� N ◦1 · · ·

and hence

u(�)
(N�

� N ◦1 · · ·N ◦�︸ ︷︷ ︸
length �1

) ⊆ N ◦1 N ◦� N ◦1 · · ·N ◦� is of length�1+ 1�4.

Since (N�
� N ◦1 · · ·N ◦�︸ ︷︷ ︸
length �2

) (N ◦1 N ◦�
)

is of length�2+ 2�5,

we see that the first two sets of words in question are orthogonal. Notice here that the
length of every reduced word living in the set

u(�)N� +N�
(N ◦1 N ◦�

) ⊆ N ◦1 +N ◦1 N ◦� +N ◦� N ◦1 N ◦� (9)

is less than 3, and hence the left-hand side of (9) is easily seen (by looking at the
lengths of words) to be orthogonal to the other two sets of words in question. Hence
we are done. �

Here, we should give simple facts concerning ultraproducts: (a) It is easy to see that

 : N→M and� : D→N can be lifted to the normal∗-isomorphisms
� : N�→M�

and �� : D�→N� in the obvious manner (note that
(N) and �(D) are the ranges
of faithful normal conditional expectations), and it follows from their construction that

� (N�) = 
(N)� (inside M�) and �� (D�) = �(D)� (inside N�). (b) We have

�|N = 
 via the embeddingsM ↪→ M� andN ↪→ N�. We will use these facts with
no explicit explanation in what follows.

Theorem 5.2. Suppose that there are faithful normal states�, �� on D and unitaries
v ∈ N�◦EN

D
, v� ∈ N��◦�−1◦EN

�(D)
such that

EN
D

(
vn
) = EN

�(D)

(
vn
) = 0, EN

�(D)

(
vn�

) = 0

as long asn �= 0. Then we have

〈
 (v) , u(�)〉′ ∩M� ⊆ 
 (N)� = 
� (N�)�N� (via 
�).
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The same relative commutant property still holds when replacingM� and 
(N)� by
M and 
(N), respectively. Namely, we have

〈
 (v) , u(�)〉′ ∩M ⊆ 
 (N)�N (via 
).

Proof. Notice that
 (N) = pN�p ⊆ M ⊆ pNp, i.e., 
 (N)� = (pN�p)
� = pN�

� p ⊆
M� ⊆ (pNp)� = pN�p and that
 (v) = pV = Vp = pVp. Hence, the first assertion
follows from Proposition5.1. In fact, we have

〈
 (v) , u(�)〉′ ∩M� ⊆ 〈V, u(�)〉′ ∩ pN�p ⊆ pN�p = 
 (N)�

sinceu(�)∗u(�) = u(�)u(�)∗ = p.
Let us choosex ∈M ∩ 
(N)� insideM�, and then we get

x =
(
EM


(N)

)�
(x) =

[(
EM


(N)(x), E
M

(N)(x), . . .

)]
= EM


(N)(x)∈
(N)
(
insideM�) ,

Hence, the last assertion follows.�

Corollary 5.3. Under the same assumption as in Theorem5.2, we have

Z (M) = 〈u(�)〉′ ∩ 
 (Z (N))�
{
x ∈D ∩ �(D) ∩N ′ : �(x) = x

}
(via 
),

M ′ ∩M� = M ′ ∩ 
(N)��
{
x ∈D� ∩ �� (D�) ∩N ′ : ��(x) = x

}
(via 
�).

Therefore, if N is further assumed to be a factor, then so is the HNN extension M.
Moreover, the same is true for the continuous core, that is,

Z (
M̃
) = 〈u(�)〉′ ∩ 
̃

(Z (
Ñ
))

�
{
x ∈ D̃ ∩ �̃

(
D̃
) ∩ Ñ ′ : �̃(x) = x

}
(via 
̃),

whereM̃ ⊇ Ñ ⊇ D̃, �̃ : D̃→ Ñ , etc., are as in§4. Thus, the flow of weights of M is
a factor flow of that of N.

Proof. Thanks to Theorem5.2, it suffices to show the following:
(i) 〈u(�)〉′ ∩ 
 (Z (N))�

{
x ∈ D ∩ �(D) ∩N ′ : �(x) = x

}
via 
.

(ii)
〈
u(�)

〉′ ∩ 
(N)′ ∩ 
� (N�)� {
x ∈D� ∩ �� (D�) ∩N ′ : ��(x) = x

}
via 
�.

(iii) One can construct faithful normal states̃�, �̃� on D̃ in such a way thatv and v�

are in the centralizers of̃� ◦ ÊN
D and �̃� ◦ �̃

−1 ◦̂EN
�(D)

, respectively.

Note here that the continuous corẽM can be written again the HNN extension of the

base algebrãN by �̃ : D̃→ Ñ with respect toÊN
D and ̂EN

�(D)
thanks to Theorem4.5
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and also that̂EN
D (vn) =̂EN

�(D)
(vn) =̂EN

�(D)

(
vn�

) = 0 as long asn �= 0 sinceÊN
D

∣∣
N
=

EN
D and̂EN

�(D)

∣∣
N
= EN

�(D)
. Thus, the above (iii) is indeed enough to complete the proof

of the assertion on the continuous corẽM.
Let us choosex ∈Z (N) with u(�)
(x)u(�)∗ = 
(x) (and henceu(�)∗
(x)u(�) =


(x)). Then, the characterization of HNN extensions, i.e., Theorem3.3 (especially,
condition (M)), enables us to compute


(x)=EM

(N)

(
u(�)
(x)u(�)∗

)
=EM


(N)

(
u(�)


(
x − EN

�(D)
(x)
)
u(�)∗

)
+ EM


(N)

(


(
�−1

(
EN

�(D)
(x)
)))

= 

(
�−1

(
EN

�(D)
(x)
))
∈
(D)

and similarly
(x) = EM

(N)

(
u(�)∗
(x)u(�)

) = 

(
�
(
EN
D(x)

)) ∈ 

(
�(D)

)
. These imply

the desired assertion (i).
Assertion (ii) is shown in the same manner, but the reader should notice the fol-

lowing two simple facts: (a)u(�)
� (��(x)
)
u(�)∗ = 
� (x) for every x ∈D�. (b)

The restriction of
(
EM


(N)

)�
to ∗-Alg

〈

� (N�) , u(�)〉 satisfies condition (M), where

∗-Alg
〈

� (N�) , u(�)〉 denotes the∗-algebra algebraically generated by
� (N�) and

u(�). (Concerning (ii), we do not know whether or notM��N� 

D�

�� since it is

highly non-trivial whether or notM� is generated by
� (N�) and u(�) as von Neu-
mann algebra. Probably, “No!”.)

We will finally prove the desired assertion (iii). Let us consider the faithful normal
conditional expectations

�̂ : D̃ (⊆ Ñ
) →L� (R) :=

〈(
� ◦ EN

D

)it
(t ∈R)

〉′′
�L (R) ,

�̂� : D̃
(⊆ Ñ

) →L��
(R) :=

〈(
�� ◦ EN

D

)it
(t ∈R)

〉′′
�L (R)

constructed in such a way that

�̂
(∫ ∞
−∞

x(t)
(
� ◦ EN

D

)it
dt

)
=
∫ ∞
−∞

� (x(t))
(
� ◦ EN

D

)it
dt,

�̂�

(∫ ∞
−∞

y(t)
(
�� ◦ EN

D

)it
dt

)
=
∫ ∞
−∞

�� (y(t))
(
�� ◦ EN

D

)it
dt

for “smooth” functionsx(t), y(t) : R→D. We then construct two faithful normal states
�̃ := � ◦ �̂, �̃� := �� ◦ �̂� on D̃ with faithful normal states� and �� on L� (R)
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andL��
(R), respectively. These are the desired ones. In fact, we have

�̃� ◦ �̃
−1 ◦̂EN

�(D)

(
v�

(∫ ∞
−∞

x(t)
(
�� ◦ �−1 ◦ EN

�(D)

)it
dt

))
= �̃� ◦ �̃

−1 ◦̂EN
�(D)

((∫ ∞
−∞

x(t)
(
�� ◦ �−1 ◦ EN

�(D)

)it
dt

)
v�

)
.

This follows from the assumption thatv� is in the centralizer of�� ◦ �−1 ◦ EN
�(D)

.

Hence,v� is in the centralizer of̃�� ◦ �̃
−1 ◦̂EN

�(D)
too. The other case is quite similar

and easier to show, and thus left to the reader. Hence, the desired assertion (iii) is
verified. �

Remark 5.4 (Analog of Higman, Neumann and Neumann’s theorem). Following
Higman, Neumann and Neumann[13] (see also [16, Theorem 3.1 in p. 188]), we can
show the following:Each finite von Neumann algebra P with separable predual has a
full type II 1 factor P̃ generated by two Haar unitaries, into which P can be embedded.
What is new is that the generators of̃P are chosen to be Haar unitaries. In fact, for
a givenP, there are several ways based on known results to construct such a bigger
type II1 factor with two unitary generators, and moreover it can be made to be full
or to have the Property�. However, the construction given below remains to work
even in theC∗-algebra setting. We should also point out that Connes’ approximate
embedding problem (see [2, lines 13–9 from the bottom in p. 105]) can be read, from
the viewpoint here, as whether or not any possible set of “relations” between two Haar
unitaries can be realized in the ultraproductR� of the AFD type II1 factor.

Proof of the assertion in Remark 5.4.SinceP has the separable predual, it has an at
most countable generating set of unitaries, say{un}n∈Z with u0 = 1. We choose two
copiesS, T of the free group factorL (F2) with ∗-free Haar unitary generatorsa, b
and c, d, respectively. Choose a faithful normal tracial state�P on P, and let�S and
�T be the unique tracial states onS andT, respectively. We first embedP into the free
product with amalgamation:

N := (P 
 S) 

L(F∞)

T

with respect to�P , �S and �T (or more precisely, the conditional expectations de-
termined by them), where the amalgamation is taken by the identificationP 
 S %
un (b

nab∗n) ↔ dncd∗n ∈ T . In fact, it is known that thebnab∗n’s and thedncd∗n’s
form ∗-free families of Haar unitaries inS andT, respectively, and furthermore it can
be easily verified that theunbnab∗n’s also form a∗-free family of Haar unitaries in
P 
 S since theun’s and thebnab∗n’s are chosen from different free components of
P 
 S. Thus, theunbnab∗n’s and thedncd∗n’s generate two copiesQ1 andQ2 of the
free group factorL (F∞) insideP 
 S andT, respectively. Therefore, the above amal-
gamation procedure is justified and agrees with the tracial states�P 
 �S and �T , and



410 Y. Ueda / Journal of Functional Analysis 225 (2005) 383–426

hence the free product state�N := (�P 
 �S) 
 �T becomes a trace (see[28, §3]). Since
u0 = 1, one hasa = c and un = (dncd∗n) (bna∗b∗n) = dncd∗nbnc∗b∗n ∈ 〈b, c, d〉′′ so
that N is generated by three Haar unitariesb, c, d. By using the normal∗-isomorphism
� from S = 〈b, c = a〉′′ onto T = 〈c, d〉′′ given by b �→ c and c �→ d, we finally
embedP (↪→ N ) into the HNN extension

P̃ := N 

L(F2)

� = 〈N, u(�)〉′′

with respect to the�N -preserving conditional expectations. Sincec = u(�)du(�)∗ and
b = u(�)2du(�)∗2, we see that̃P = 〈d, u(�)〉′′. It remains only to show that̃P is a
full type II1 factor.

SinceSandT are isomorphic type II1 factors, we get�S = �T ◦�, and hence Corollary
4.2 says that�N is extended to a tracial state oñP by the canonical conditional
expectation fromP̃ onto N since�N agrees with�S , �T . Set v := bd, a unitary inN.
It is not hard to verify thatbn (n �= 0) is orthogonal toQ1 with respect to the tracial
state�P 
 �S . It is also known that the canonical unitary generator ofZ in the crossed-
product descriptionT = Q2�Z is given byd (see [25, Proposition 4.1 and Corollary
4.2]). These two facts show thatv = bd is in

(
(P 
 S)�Q1

) (
T�Q2

)
, a set of reduced

word of length 2 in the free product with amalgamationN = (P 
 S ⊇ Q1) 
 (T ⊇ Q2).
Therefore,EN

S (vn) = EN
T (vn) = 0 as long asn �= 0. Hence, Corollary 5.3 implies

that P̃ is a type II1 factor and
(
P̃
)′ ∩ (P̃ )� ⊆ N ′ ∩ N�. The above-mentioned two

facts onb, d also say that the unitariesb, d satisfy the necessary conditions to apply
[39, Proposition 5] toN = (P 
 S ⊇ Q1) 
 (T ⊇ Q2) (n.b., the regularity conditions
bQ1b

∗ = Q1, dQ2d
∗ = Q2 are not needed, see the comment given just below the

statement of Proposition 5.1), and thereforeN ′ ∩N� ⊆ L (F∞)′ ∩L (F∞)� = C1 since
Q1 = Q2 = L (F∞). �

6. Several concrete settings

To illustrate how the results obtained in §5 can be applied, we will investigate HNN
extensions of von Neumann algebras in three kinds of concrete settings.

6.1. The HNN extensions associated with non-commutative tori

6.1.1. Setting
Let �∈ [0,1) be an irrational number, and the non-commutative torusC(T2

�) is the

universalC∗-algebra generated by two unitariesu�, v� with u�v� = e2

√−1�v�u�. It

is known that there is a unique tracial state�� on C(T2
�) determined by��

(
un�v

m
�
) =

n0 m0, and its GNS representation gives the AFD type II1 factor R, i.e., R = C(T2
�)
′′

(in the representation) with the unique tracial state�R, which is the natural extension
of �� to R. Notice that the generating unitariesu� and v� generate, respectively, two
distinguished Cartan subalgebrasD� := 〈u�〉′′ and C� := 〈v�〉′′ in R, which are both
isomorphic toL∞(T). Then, let us define the normal∗-isomorphism�� : D�→C� ⊆ R
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in such a way that�� (u�) = v�. There are two unique normal conditional expectations
ER
D�

, ER
��(D�)

= ER
C�

from R onto D� and �� (D�) = C�, respectively, both of which
preserve the trace�R, and we then construct the HNN extension(

M�, E
M�
R

)
=
(
R,ER

D�

)


D�

(
��, E

R
��(D�)

)
with stable unitaryu(�) := u

(
��
)
, where the canonical embedding map ofR into M

is omitted.

6.1.2. Trace
It is plain to see that

�R =
(
�R
∣∣
D�

)
◦ ER

D�
=
(
�R
∣∣
D�

)
◦ �−1

� ◦ ER
��(D�)

. (10)

Thus, by Corollary4.2, �M� := �R ◦ EM�
R becomes a tracial state.

6.1.3. Factoriality and fullness
With letting v := u�v� = e2


√−1�v�u�, it is plain to see thatER
D�

(vn) = ER
��(D�)

(vn)

= 0 for everyn �= 0. Thus, thanks to the trace property (10), Corollary 5.3 shows that
M ′� ∩M�

� ⊆ D�
� ∩ C�

� . Here, we need two simple lemmas (which will be used not
only here but also later too), and the former has been probably known in the context
of orthogonal pairs due to Popa [26]. The proofs are both straightforward so that the
details are left to the reader.

Lemma 6.1. Let N be a von Neumann algebra, and let A and B be its von Neu-
mann subalgebras. Suppose that there are faithful normal conditional expectationsEA :
N→A, EB : N→B and EA∩B : N→A ∩ B satisfying the condition:

EA ◦ EB = EA∩B. (11)

Then, we haveA� ∩ B� = (A ∩ B)� insideN�.

Lemma 6.2. Let � : G→Aut(P ) be an action of a discrete group G on a�-finite
von Neumann algebra P, and assume that� is a faithful normal invariant state on P
under the action�. Let N := P��G be the crossed-product with the canonical unitary
representation�� : G→N and the canonical conditional expectationEN

P : N→P .
Let A be a von Neumann subalgebra of P, which is the range of a faithful normal
conditional expectationEP

A : P→A. Let us also choose a von Neumann subalgebra

B of ��(G)′′, and denote byE��(G)′′
B : ��(G)′′ →B the conditional expectation that

preserves the canonical tracial state�G on ��(G)′′. Then, we have the following:
(i) The Fubini map� ⊗ IdB(�2(G)) gives a conditional expectationEN

��(G)′′ : N→
��(G)′′ as the restriction to N.
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(ii) The faithful normal conditional expectations

EA := EP
A ◦ EN

P : N→A, EB := E
��(G)′′
B ◦ EN

��(G)′′ : N→B

satisfy condition(11) with A ∩ B = C1 so thatA� ∩ B� = C1 insideN� due to
Lemma6.1.

It is known thatR = C (T�)
′′ can be identified with the crossed-productL∞ (T)���

Z

by the correspondenceu� ↔ 
��
(id), v� ↔ ���(1), where�� is the action induced from

the group rotation�∈T �→ e2

√−1�� ∈ T and “id” denotes the function id(�) := �,

�∈T. Thus, Lemma 6.2 implies thatD�
� ∩ C�

� = C1, and henceM ′� ∩ M�
� = C1.

Summarizing the discussions so far we conclude

Theorem 6.3. The HNN extensionM� obtained from the non-commutative torusC(T2
�)

with irrational �∈ [0,1) in the above manner always becomes a full typeII 1 factor
generated by two Haar unitaries.

6.1.4. Remark and question
A similarity (in some sense) between free entropy dimensions (see[43]) and costs of

equivalence relations (see [9]) gives us the question whether or not the (modified) free
entropy dimension ofu� (or v�) andu(�) is 1. Moreover, we do not know whether or
not M� depends on the choice of�.

6.2. HNN extensions associated with tensor product algebras

6.2.1. General setting
For given
• �-finite von Neumann algebrasN1, N2, N3;
• two isomorphic von Neumann subalgebrasD1 (⊆ N1), D2 (⊆ N2) with a surjective

(i.e., automatically, normal)∗-isomorphism�21 : D1→D2;
• a von Neumann subalgebraD3 (⊆ N3) with an automorphism�3∈Aut (D3);
• faithful normal conditional expectationsEN1

D1
: N1→D1, E

N2
D2
: N2→D2, E

N3
D3
:

N3→D3,
we set

N := N1⊗N2⊗N3, D := D1⊗ C1⊗D3

and define the normal∗-isomorphism� : D→N by

� : d1⊗ 1⊗ d3∈D �→ 1⊗ �21 (d1)⊗ �3 (d3) ∈C1⊗D2⊗D3 ⊆ N

(i.e., the interchange between the first and second tensor components by the surjective
∗-isomorphism�21 : D1→D2 together with the∗-automorphism�3 on the third tensor
componentD3). Here, we mention that the third componentN3 allows a type III0
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example, see §6.2.6, Case 2. For given faithful normal states�1, �2 on D1, D2,
respectively, we define

EN
D := E

N1
D1
⊗
(
�2 ◦ EN2

D2

)
⊗ E

N3
D3
, EN

�(D)
:=
(
�1 ◦ EN1

D1

)
⊗ E

N2
D2
⊗ E

N3
D3
.

Let us construct and investigate the HNN extension:(
M,EM

N

)
=
(
N,EN

D

)


D

(
�, EN

�(D)

)
with stable unitaryu(�), where the embedding map ofN into M is omitted as before.

6.2.2. Assumption
In what follows, let us assume the condition: There are two unitariesv1∈ (N1)�1◦EN1

D1

,

v2∈ (N2)�2◦EN2
D2

satisfying

�1 ◦ EN1
D1

(
vn1
) = �2 ◦ EN2

D2

(
vn2
) = 0

as long asn �= 0.

6.2.3. Consequences from Corollary 5.3
With letting v := v1 ⊗ v2 ⊗ 1 it is plain to see thatEN

D (vn) = EN
�(D)

(vn) = 0 as
long asn �= 0. For a fixed faithful normal state�3 on D3, we define the two states
�, �� on D in such a way that

� (d1⊗ d3) := �1⊗ �3 (d1⊗ d3) , �� (d1⊗ d3) := �2⊗ �3
(
�21 (d1)⊗ �3 (d3)

)
for eachd1 ⊗ d3∈D1 ⊗D3�D1 ⊗ C1⊗D3 = D (with the identificationd1 ⊗ d3 ↔
d1⊗ 1⊗ d3), and hence

� ◦ EN
D =

(
�1 ◦ EN1

D1

)
⊗
(
�2 ◦ EN2

D2

)
⊗
(
�3 ◦ EN3

D3

)
= �� ◦ �−1 ◦ EN

�(D)
.

Thus the unitaryv belongs to both the centralizersN�◦EN
D
= N��◦�−1◦EN

�(D)
. Therefore,

Corollary 5.3 implies that

Z (M)= {x ∈D ∩ �(D) ∩N ′ : �(x) = x
}
, (12)

Z (
M̃
)= {x ∈ D̃ ∩ �̃

(
D̃
) ∩ Ñ ′ : �̃(x) = x

}
, (13)

M ′ ∩M� = {x ∈D� ∩ �(D)� ∩N ′ : ��(x) = x
}
. (14)

6.2.4. Factoriality and flow of weights
To investigate the factoriality and the flow of weights ofM, it suffices to determine

the right-hand sides of (12) and (13) explicitly. Thanks to [36, vol. I; Theorem 5.9,
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Corollary 5.10 in Chapter IV], we see that

D ∩ �(D) ∩N ′ = C1⊗ C1⊗ (D3 ∩N ′3
)

and hence, by the definition of� we get

{
x ∈D ∩ �(D) ∩N ′ : �(x) = x

}
�D

�3
3 ∩N ′3.

With letting �t := �
�◦EN

D
t = �

�1◦EN1
D1

t ⊗ �
�2◦EN2

D2
t ⊗ �

�3◦EN3
D3

t , the continuous cores̃N ⊇
D̃, �̃

(
D̃
) = �̃(D) are captured as the simultaneous fixed-point algebras:

Ñ = (N1⊗N2⊗N3)��R =
(
(N1⊗N2⊗N3)⊗ B

(
L2 (R)

))�t⊗Ad �−t
,

D̃ = (D1⊗ C1⊗D3)��R =
(
(D1⊗ C1⊗D3)⊗ B

(
L2 (R)

))�t⊗Ad �−t
,

�̃
(
D̃
)= (C1⊗D2⊗D3)��R =

(
(C1⊗D2⊗D3)⊗ B

(
L2 (R)

))�t⊗Ad �−t

by the Takesaki duality theorem (see[36, vol. II; Theorem 2.3 in Chapter X]). Thus,
we have

D̃ ∩ �̃
(
D̃
)=C1⊗ C1⊗

(
D3⊗ B

(
L2 (R)

))�
�3◦E

N3
D3

t ⊗Ad �−t

=C1⊗ C1⊗
(
D3�

�
�3◦E

N3
D3

R
)

and then{
x ∈ D̃ ∩ �̃

(
D̃
) ∩ Ñ ′ : �̃(x) = x

}
=
(
C1⊗ C1⊗

(
D3�

�
�3◦E

N3
D3

R
)�̃3

)
∩ Ñ ′

with the canonical extensioñ�3 of �3. Summing up what we have done, we conclude

Theorem 6.4. Under Assumption6.2.2,we have

Z (M)�D
�3
3 ∩N ′3 = D

�3
3 ∩ Z (N3)

and in particular, if N3 is a factor orD�3
3 is the trivial algebraC1, then so is M.

Moreover, we also have

Z (
M̃
) = (C1⊗ C1⊗

(
D̃3

�̃3 ∩ Z (
Ñ3
))) ∩ Z (

Ñ
)
,
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where Ñ3 ⊇ D̃3 is the inclusion of the continuous cores ofN3 ⊇ D3 determined by
E
N3
D3

and �̃3 is the canonical extension of�3.

6.2.5. Fullness
To determine whether or notM is full, we first have to determine the right-hand side

of (14). To do so, we will use Lemma 6.1. For everyx ∈N , we haveEN
D

(
EN

�(D)
(x)
)
=((

�1 ◦ EN1
D1

)
⊗
(
�2 ◦ EN2

D2

)
⊗ E

N3
D3

)
(x) ∈ C1⊗C1⊗D3. Note thatD ∩ �(D) = C1⊗

C1⊗D3 thanks to [36, vol. II; Corollary 5.10 in Chapter IV], and hence the condition
in Lemma 6.1 holds. Therefore we get:

Theorem 6.5. Under Assumption6.2.2,we have

M� ⊆ M ′ ∩M��
(
D�

3

)��
3 ∩N ′3.

In particular, if N3 is the trivial algebra, then M always becomes a full factor. Also,
if the right-hand side sit in the asymptotic centralizer(N3)�, then the first inclusion
relation would become the identity.

6.2.6. More concrete cases
We should first remark that there is a variety of concrete examples which satisfy

Assumption 6.2.2. In fact, if a given pair(L,�) of von Neumann algebra and faithful
normal state had the non-atomic centralizerL�, one would be able to find a Haar
unitary in L� with respect to�. Thus, in what follows, we may assume that the given

two quartets
(
N1 ⊇ D1, E

N1
D1
,�1

)
,
(
N2 ⊇ D2, E

N2
D2
,�2

)
satisfy Assumption 6.2.2.

Case 1: Assume thatN3 is the trivial algebra, that is, no presence of the triple
N3 ⊇ D3, �3∈Aut (D3) in our initial dataN ⊇ D, � : D→N . Then, Theorems6.4
and 6.5 say thatM is a full factor, and the center of its continuous core is computed
as follows:

Z (
M̃
) = (C��R) ∩ Z ((N1⊗N2)��R) (15)

with �t = �
�1◦EN1

D1
t ⊗ �

�2◦EN2
D2

t . The above (15), in particular, shows that the flow of
weights of M is a factor flow of the translation on the real lineR so thatM does
never become of type III0. To find the exact number “�” in the III �-classification, one
must determine the right-hand side of (15) in more concrete form or the T-setT (M)

very explicitly, both of which seem somewhat delicate tasks except for several simple
cases. We will next illustrate how the T-set can be determined in one of such simple
cases. Assume further that two states�1, �2 are chosen so that�2 ◦ �21 = �1. Then,

Theorem 4.1 implies that�
�◦EN

D ◦EM
N

t

(
u(�)

) = u(�), and hence by Theorem 5.2 we have(
M�◦EN

D ◦EM
N

)′ ∩M ⊆ 〈u(�)〉′ ∩N . Here, we do the same argument as in the first part
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of the proof of Corollary5.3 and get
(
M�◦EN

D ◦EM
N

)′ ∩M = C1 sinceD ∩ �(D) = C1.

This computation implies that

T (M) =
{
t ∈R : ��1◦EN1

D1
t = Id = �

�2◦EN2
D2

t

}
,

whose right-hand side is computable when all the initial data are given concretely.
Case2: Assume thatD3 is a non-trivial algebra, while�3∈Aut(D3) is assumed to

be ergodic orN3 to be a factor. Then, Theorem6.4 says thatM is a factor. We further
assume that both�1 ◦EN1

D1
and �2 ◦EN2

D2
are traces. In this case, it is plain to see, by

Theorem 6.4, that

Z (
M̃
)
�D̃3

�̃3 ∩ Z (
Ñ3
)

so that the type ofM is completely determined from the dataN3 ⊇ D3, �3 ∈ Aut (D3),
andM can be of type III0 in this case. Instead of assuming that�1◦EN1

D1
and�2◦EN2

D2
are traces, we will next impose the extra assumption that the states�1, �2 and �3
are chosen so that�2 ◦ �21 = �1 and �3 ◦ �3 = �3. Then, Theorem4.1 implies that

�
�◦EN

D ◦EM
N

t

(
u(�)

) = u(�), and hence by the same argument as in the final part of Case

1, we get
(
M�◦EN

D ◦EM
N

)′ ∩M = C1. Thus,M is not of type III0, and the T-setT (M)

is computed as

T (M) =
{
t ∈R : �

�1◦EN1
D1

t = �
�2◦EN2

D2
t = �

�3◦EN3
D3

t = Id

}
.

In all the cases treated in Case 2, it seems difficult to determine the asymptotic cen-
tralizer M� (or whetherM is full or not) except for the case thatD3 is a finite von
Neumann algebra because it is non-trivial in general whetherM� = M ′ ∩M� or not.

6.3. HNN extensions arising from pairs of regular and singular MASAs

6.3.1. General setting
Let Q be a�-finite von Neumann algebra with a faithful normal state�Q, andG be a

countably infinite discrete group. We then construct the infinite tensor product overG:(
P,�P

) :=⊗
g ∈G

(
Q,�Q

)
g
,

where the
(
Q,�Q

)
g

’s are copies of
(
Q,�Q

)
. The canonical embedding map ofQ

onto thegth tensor component inP is denoted by�g. By the construction, for distinct
elementsg1, . . . , gn ∈G and forx1, . . . , xn ∈Q, the operators�g1 (x1) , . . . , �gn (xn) mu-
tually commute and�P

(
�g1 (x1) · · · �gn (xn)

) = �Q (x1) · · ·�Q (xn). Let us denote by
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� the Bernoulli shift action ofG on P defined in such a way that�h
(
�g (x)

) := �hg (x)
(x ∈Q, h, g ∈G), and we will consider the crossed-productN := P��G with the
canonical unitary representation�� : G→N and the canonical conditional expecta-
tion EN

P : N→P . Since � is invariant under the product state�P , the Fubini map
�P ⊗ IdB(�2(G)) gives a faithful normal conditional expectation fromN onto ��(G)′′,
see Lemma6.2, and it is denoted byEN

��(G)′′ . Let us choose a subgroupH of G and a

von Neumann subalgebraD of P with the �P -preserving conditional expectationEP
D :

P→D in such a way that
(
D,�P |D

)
�
(
��(H)′′, �G|��(H)′′

)
in the state-preserving

way. Letting � := �P |D and �H := �G|��(H)′′ , we have a surjective∗-isomorphism
� : D→ ��(H)′′ with the property:

� = �H ◦ �. (16)

Let E��(G)′′
�(D)

: ��(G)′′ → �(D) = ��(H)′′ be the�G-preserving conditional expectation,
and set

EN
D := EP

D ◦ EN
P , EN

�(D)
:= E

��(G)′′
�(D)

◦ EN
��(G)′′ ,

conditional expectations fromN onto D and �(D) = ��(H)′′, respectively. Then we
construct the HNN extension(

M,EM
N

)
=
(
N,EN

D

)


D

(
�, EN

�(D)

)
with stable unitaryu(�), where the embedding map ofN into M is omitted as before.

6.3.2. Assumptions
In what follows, we will assume that (i) there is a unitaryu in the centralizerQ�Q

such that�Q(u) = 0; (ii) G has an elementg0∈G of infinite order.

6.3.3. Consequences from Corollary 5.3
Letting v := �e(u)�

�
(g0) ∈N , we have, for everyn∈N,

EN
D

(
vn
)=EP

D

((
�e (u) · · · �gn−1

0
(u)
)
EN
P

(
�� (gn0))) = 0,

EN
�(D)

(
vn
)=�P

(
�e (u) · · · �gn−1

0
(u)
)
E
L(G)

�(D)

(
�� (gn0)) = 0.

Note that

� ◦ EN
D = �P ◦ EN

P = �G ◦ EN
L(G) = �H ◦ EN

�(D)
(17)

and hence by (16)

� ◦ EN
D = �H ◦ EN

�(D)
= � ◦ �−1 ◦ EN

�(D)
. (18)
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By the above computation (17) we get�
�◦EN

D
t (v) = v so that the unitaryv is in the

centralizerN�◦EN
D
= N�◦�−1◦EN

�(D)
. Thus, Corollary 5.3 shows thatM� ⊆ M ′ ∩M� ⊆

D� ∩ �� (D�). Furthermore, Lemmas 6.1 and 6.2 show thatD� ∩ �� (D�) = C1.
Therefore, we conclude

Theorem 6.6. Under Assumptions6.3.2, the HNN extension M is a full factor.

6.3.4. Modular automorphisms and type classification
Thanks to the above (18) together with Theorem 4.1, we observe

�
�◦EN

D ◦EM
N

t

(
u(�)

) = u(�)
[
D� ◦ �−1 ◦ EN

�(D)
: D� ◦ EN

D

]
t
= u(�) (19)

and hence the type classification ofM is the same as that of the crossed-productN. In
fact, Theorem5.2 together with (19) implies that

(
M�◦EN

D ◦EM
N

)′ ∩M ⊆ 〈v, u(�)〉′ ∩M ⊆ N

so that
(
M�◦EN

D ◦EM
N

)′ ∩M ⊆ 〈u(�)〉′ ∩ N . Now, by the same argument as in the first

part of the proof of Corollary5.3, we see that the right-hand side of the above sits in
D ∩ �(D) being the trivial algebraC1 by Lemma 6.2. Therefore, we have the trivial

relative commutant property
(
M�◦EN

D ◦EM
N

)′ ∩M = C1. This says that the T-setT (M)

is enough to determine the type ofM and in particular thatM can never become of
type II∞ nor type III0 (see e.g. the discussions given in [38, pp. 377–388]). Moreover,
the relative commutant property implies that

T (M) =
{
t ∈R : �

�◦EN
D ◦EM

N
t = Id

}
=
{
t ∈ R : �

�◦EN
D

t = Id

}
.

Here, the second equality simply comes from (19). Since the product state�P is
invariant under the Bernoulli shift action�, we observe that

N�P ◦EN
P
= 〈P�P

, ��(G)
〉′′ = P�P

��G

(see e.g. the discussion on the free analog of Connes–Størmer’s Bernoulli shifts in
[12]), and this algebra is clearly a type II1 factor. Hence, by (17)

�
�◦EN

D
t = Id⇐⇒ ��P

t = Id⇐⇒ �
�Q

t = Id.

Therefore, we conclude
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Theorem 6.7. Under Assumptions6.3.2, the HNN extension M is of typeII 1 or III �
with � �= 0, and the type is completely determined by the T-set. The T-set is computed
as follows:

T (M) = T (N) =
{
t ∈R : �

�Q

t = Id
}
. (20)

6.3.5. Concrete cases: regular vs. singular MASAs
We will give type II1 and III� (0 < ��1) concrete examples of HNN extensions

M = N 

D

� such thatD is a regular MASA inN while �(D) a singular MASA inN

(so that� cannot be extended to any∗-automorphism ofN). In what follows, all von
Neumann algebras that we will deal with are assumed to have separable preduals. Let
D0 be a von Neumann subalgebra of the centralizerQ�Q

, and denote byD the von
Neumann subalgebra generated by the�g (D0)’s, that is, (D, �) is the infinite tensor
product of

(
D0,�Q|D0

)
over G. SinceD sits in the centralizerP�P

, the �P -preserving
conditional expectationEP

D : P→D exists.
The next lemma seems a folklore, and the main part of its proof is actually the same

as that of showing that non-commutative Bernoulli shifts are free actions. The details
are left to the reader.

Lemma 6.8. If D0 is a MASA in Q, then so is D in N. Furthermore, if D0 is regular
in Q, then so is D in N.

Let us give the pair
(
Q,�Q

)
more concretely.

Case 1: We discuss the case ofQ = D0, and treat the following two cases in
common: (1)Q = D0 is the abelian von Neumann algebra of finite dimension greater
than 2; (2) Q = D0 is a diffuse abelian von Neumann algebra. In case (2), we
will be able to treat an arbitrary faithful normal state because one can easily find
a Haar unitary with respect to the given state�Q, while in case (1), the given
state �Q should be constructed from the equal probability vector for the require-
ment of Assumptions 6.3.2. Assume further thatG=H =Z and g0=1∈Z. Then,(
D = P,�P

)
� (L∞[0,1],Lebesgue measure)�

(
��

(Z)′′ , �Z

)
, and hence a surjective

normal ∗-isomorphism� : D→ ��
(Z)′′ with property (16) exists. Thus, the given data

Q = D0 = Cn, �Q, u, G = H = Z, g0 = 1 can be treated in the framework that
we have worked out in this subsection. Hence, by Theorems 6.6 and 6.7,M is a full
factor of type II1. The von Neumann subalgebraD is clearly (from the setting here)
a regular MASA in the base algebraN, while it is known that�(D) = ��

(Z)′′ is a
singular MASA in N thanks to [20] (also see [19, Theorem 2.1] for a recent elegant
proof). It is clear thatM is generated byD and the stable unitary, and also thatD has
a Haar unitary generator. Hence,M is generated by two Haar unitaries.
Case2: Let us assume thatQ is a non-type I factor with separable predual and

D0 is a Cartan subalgebra (i.e., in particular, a regular MASA) inQ with the unique
conditional expectationEQ

D0
: Q→D0. Thanks to [38, Lemma 4.2], one can find a

faithful normal state� on D0 and a unitaryu ∈ Q�◦EQ
D0

satisfying thatEQ
D0

(un) = 0
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for every n �= 0. With letting �Q := � ◦ EQ
D0

, the triple
(
Q,�Q, u

)
satisfies condition

(i) in Assumptions 6.3.2. Note here that the subalgebraD0 sits in the centralizerQ�Q
.

As in Case 1, we assume thatG = H = Z and g0 = 1∈Z, and get a surjective
∗-isomorphism� : D→ ��

(Z)′′ with property (16). Hence, these given dataQ ⊇ D0,
�Q, u, G = H = Z, g0 = 1 can be treated in our framework. Hence, Theorems 6.6
and 6.7 say thatM is a full factor, not of type III0, and the T-set is computed as
(20). Note that the T-setT (M) does not coincide, in general, with the T-setT (Q) of
the initially given factorQ since the right-hand side of (20) does depend upon the
choice of the state� on D0. We would like to emphasize that this example of HNN
extension can be regarded as a type III� version of those given in Case 1 when the
triple

(
Q ⊇ D0,�Q

)
is suitably chosen. In fact, as in Case 1, Lemma 6.8 implies thatD

becomes a regular MASA not only inP but also even in the base algebraN = P��Z,
while �(D) = ��

(Z)′′ is a singular MASA inN by [19, Theorem 2.1 and its remark].
Finally, it is easy to give, in this setup, a concrete

(
Q,�Q

)
in such a way that of the

T-set T (M) is computable.

7. Reduced HNN extensions ofC∗-algebras

7.1. Preliminaries on reduced free products with amalgamations

Because of the same reason as in the von Neumann algebra case, we need to review
reduced amalgamated free products with special emphasis on the rôle of embedding
maps of common amalgamatedC∗-algebras.

Let C, As (s ∈ S, an index set) be unitalC∗-algebras, and we have a unital
∗-isomorphism �s : C→As for each s ∈ S. Suppose that theC∗-subalgebra�s(C)
of As is the range of a conditional expectationEs : As→ �s(C) for every s ∈ S. For
eachs ∈ S, let Xs be the separation and completion ofAs with respect to the pre-norm
a ∈As �→ ‖Es (a

∗a) ‖1/2 with the canonical map�s : As→Xs . The Banach space
Xs is equipped with theC-valued inner product〈 · | · 〉C and the right action ofAs

defined in such a way that
〈
�s(x)|�s(y)

〉
C
:= Es (x

∗y) and �s(x) · a := �s (xa) for
each x, y, a ∈As . One can also define the left action ofAs , as a∗-homomorphism
into the adjointable operatorsB (Xs) on the Hilbert rightAs-moduleXs , defined by
a ·�s(x) := �s(ax) for eacha, x ∈As . This left action ofAs is usually called the GNS
representation associated withEs . We can regardXs as aC–C bimodule (via �s) by
restricting both the left and right actions ofAs to the subalgebra�s(C). The restriction
of �s to �s(C) is clearly injective, and�s (�s(C)) becomes a complimented closed sub-
bimodule ofXs thanks to the decompositionAs = �s (C) + KerEs . Hence, we have
Xs��s(C)⊕X◦s�C ⊕X◦s as aC–C bimodule by the identification�s (�s(c)+ a◦)↔
�s(c)⊕ �s (a

◦)↔ c ⊕ �s (a
◦).

By the construction in [41, §5] together with the above-mentioned fact onC∗-
bimodules, we obtain a unitalC∗-algebraA, two kinds of∗-homomorphisms� : C→A,
�s : As→A, s ∈ S, and a conditional expectationE : A→ �(C) satisfying (i)A is gen-
erated by the�s (As)’s; (ii) �s◦�s = �, s ∈ S; (iii) E◦�s = �◦Es , s ∈ S; (iv) the �s (As)’s
are free with amalgamation with respect toE; (v) if x ∈A satisfiesE (a∗x∗xa) = 0 for
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all a ∈A, thenx = 0. These five conditions characterize the pair(A,E) together with
� and �s , s ∈ S, completely, see[41, §5.6] for details (also see §2 for more careful
explanation on the admissibility of embedding maps of amalgamated algebras). We
denote

(A,E) = 
C
s ∈ S

(As, Es : �s)

and call it the free product of theAs ’s with amalgamation overC via �s with respect
to theEs ’s.

7.2. Reduced HNN extensions ofC∗-algebras

Let B be a unitalC∗-algebra andC be a distinguished unitalC∗-subalgebra with
a conditional expectationEB

C : B→C. Let us suppose that we have a family� of
∗-isomorphisms� : C→B with conditional expectationsEB

�(C) : B→ � (C), �∈�. In
what follows, we will do the same construction as in the von Neumann algebra case.

Set �1 := {1 := IdD} � �, a disjoint union. Define the embedding map�� :
C ⊗ �∞ (�1) →B ⊗ B

(
�2 (�1)

)
by

�� (x ⊗ e��) :=
{
x ⊗ e11 if � = 1,
�(x)⊗ e�� if �∈�

for eachx ∈C, where thee�1�2’s denote the canonical matrix unit system inB
(
�2 (�1)

)
,

and the conditional expectationE� : B⊗B
(
�2 (�1)

) → �� (C ⊗ �∞ (�1)) is defined by

E� :=
 ∑

�∈�1

⊕
EB

�(C) ⊗ IdCe��

 ◦ (IdN ⊗ E�∞) ,

whereE�∞ is the unique conditional expectation fromB
(
�2 (�1)

)
onto �∞ (�1). Let

us denote the inclusion map ofC ⊗ �∞ (�1) into B ⊗ B
(
�2 (�1)

)
by �1, and define

the conditional expectationE1 : C ⊗ B
(
�2 (�1)

) →C ⊗ �∞ (�1) by

E1 :=
(
EB
C ⊗ Id�∞(�1)

)
◦ (IdB ⊗ E�∞) = EB

C ⊗ E�∞ .

We then construct the reduced free product with amalgamation:

(B, E) =
(
B ⊗ B

(
�2 (�1)

)
, E� : ��

)



C⊗�∞(�1)

(
B ⊗ B

(
�2 (�1)

)
, E1 : �1

)
,

and the embedding maps ofB⊗B
(
�2 (�1)

)
onto the first/second free components are

denoted by�� and �1, respectively, and the embedding map ofC ⊗ �∞ (�1) into B
by � as usual. As in the von Neumann algebra case, we define
• u(�) := �1 (e1�) �� (e�1) with identifying e�1�2 = 1⊗ e�1�2;
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• the projectionp := � (e11) = �� (e11) ∈B;
• the unital∗-homomorphism
 : B→pBp by 
(b) := �� (b ⊗ e11) for every b∈B.
The partial isometriesu(�), �∈�, can be thought of as unitaries in the cornerpBp,
and by the exactly same way as in the von Neumann algebra case we have the rela-
tion u(�)


(
� (c)

)
u(�)∗ = 
 (c) for eachc∈C, �∈�. Let us denote byA the unital

C∗-subalgebra ofpBp generated by
 (B) and all theu(�)’s. The restriction of the con-
ditional expectationE� : B→ ��

(
B ⊗ B

(
�2 (�1)

))
conditioned byE (i.e., E = E ◦E�

holds) toA gives rise to a conditional expectation fromA onto 
(B), i.e., EA

(B) =

E�
∣∣
A
: A→
(B), since 
(B) = p��

(
B ⊗ B

(
�2 (�1)

))
p. It is easily verified that

E |A = 
 ◦ EB
C ◦ 
−1 ◦ EA


(B).

Definition 7.1 (Reduced HNN extensions). We call the pair
(
A,EA


(B)

)
constructed so

far the reduced HNN extension ofB by � with respect toEB
C and theEB

�(C), � ∈ �,
and denote it by (

A,EA

(B)

)
=
(
B,EB

C

)


C

(
�,
{
EB

�(C)

}
�∈�

)
.

When no confusion occurs, we will writeA = B 

C

� for short.

Not only the notion of reduced words and conditions (A) and (M) are of course
valid even in thisC∗-algebra setting, but also so does the following characterization:

Proposition 7.1. The pair
(
A,EA


(B)

)
constructed above satisfies both conditions(A)

and (M). On the other hand, conditions(A) and (M) characterize the pair
(
A,EA


(B)

)
completely under the assumptions that(i) 
(B) and theu(�)’s generate A asC∗-algebra
and (ii) if x ∈A satisfiesEA


(B) (a
∗x∗xa) = 0 for all a ∈A, thenx = 0. More precisely,

conditions(A) and (M) determine the conditional expectationEA

(B) completely.

Remark 7.2. As in the von Neumann algebra case, the following holds: LetG∗H � =
〈G, t : t�(h)t−1 = h, h∈H 〉 be an HNN extension of groupG with stable lettert by
group isomorphism� from a subgroupH of G into G. The reduced groupC∗-algebra
C∗r
(
G ∗H �

)
is identified naturally with the reduced HNN extension ofC∗r (G) with

distinguished unitary� (t), where all the necessary conditional expectations are chosen
as canonical tracial state preserving ones.

Remark 7.3 (Universal HNN extensions). In the C∗-algebra setting, there is another
choice of HNN extensions, that is, the universal one. The universal (or full) HNN

extensionA = B
univ


C

� is defined as the universalC∗-algebra generated byB and

unitariesu(�), �∈� with only the relationu(�)�(c)u(�)∗ = c for every c∈C, �∈�.
Thus, there is a∗-homomorphism from this universalC∗-algebraA onto A sendingb
and u(�) to 
(b) and u(�), respectively. This means that our construction of reduced
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HNN extensions can be thought of as a procedure to construct a conditional expectation
from A onto B by using givenEB

C , EB
�(C), �∈� when
 is a faithful representation of

B (this is the case when the given conditional expectations are faithful). The existence
of such universal HNN extension can be shown in the same way as in the group case,
based on the universal amalgamated free product and the universal crossed-product
constructions.

7.3. Embedding of subsystems in the framework of reduced HNN extensions

Assume thatB0 ⊇ C0 sit in B ⊇ C with the unit-preserving way and that�(C0) ⊆
B0 for all �∈�. We further assume that the restrictions ofEB

C andEB
�(C) to B0 give

conditional expectationsEB0
C0

andEB0
�(C0)

from B0 onto C0 and �(C0), respectively. Let
us consider the following two reduced HNN extensions

(
A0, E

A0

(B0)

)
=
(
B0, E

B0
C0

)


C0

(
�|C0,

{
E
B0
�(C0)

}
�∈�

)
,(

A,EA

(B)

)
=
(
B,EB

C

)


C

(
�,
{
EB

�(C)

}
�∈�

)
with �|C0 :=

{
�|C0 : � ∈ �

}
. The reduced free products with amalgamations appeared

in the procedure of construction are denoted byB0 and B, respectively. In this setting,
it is natural to ask when the following natural embedding exists:

A0 ↪→ A by

{
b∈B0 �→ b∈B,
u
(
�|C0

) �→ u(�), �∈�.

To this question, we have a satisfactory answer as simple application of Blanchard and
Dykema’s work[1]. Namely, if all given conditional expectations have the faithful GNS
representations, then there is such an embedding in the amalgamated free product level,
B0 ↪→ B, and hence it is plain to see thatA0 is embedded intoA in the above-mentioned
way.

7.4. Exactness of reduced HNN extensions

Our construction has another advantage, which is a criterion for exactness. To explain
it, we should first remark that Dykema–Shlyakhtenko’s result [6, Proposition 4.1] is
still valid without any essential change even when the embedding maps�1, �2 are
imposed upon the construction of free products with amalgamations. In fact, when we
consider the free product of unitalC∗-algebrasA1, A2 with amalgamation over a unital
C∗-algebraC via unital embedding maps�1 : C→A1, �2 : C→A2 with respect to
conditional expectationsE1 : A1→ �1(C), E2 : A2→ �2(C), it suffices only to replace,
in their proof, theC∗-subalgebraD of theC∗-algebraA := A1⊕A2 and the completely
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positive map� : A→A by

D := �1(C)⊕ �2(C), � (a1, a2) :=
(
�1 ◦ �−1

2 ◦ E2 (a2) , �2 ◦ �−1
1 ◦ E1 (a1)

)
,

respectively.
Assume that a given unitalC∗-algebraB is exact and moreover that given conditional

expectationsEB
C : B→C, E�(C) : B→ �(C), �∈�, have the faithful GNS represen-

tations. If � is a finite set, then Dykema and Shlyakhtenko’s result[6, Corollary 4.2]
implies that the reduced free product with amalgamation

(B, E) =
(
B ⊗ B

(
�2 (�1)

)
, E� : ��

)



C⊗�∞(�1)

(
B ⊗ B

(
�2 (�1)

)
, E1 : �1

)

is exact sinceB ⊗ B
(
�2 (�1)

)
is clearly exact, and so is the reduced HNN extension

(
A,EA


(B)

)
=
(
B,EB

C

)


C

(
�,
{
EB

�(C)

}
�∈�

)
too thanks to[14, Proposition 7.1, (i)]. When� is an infinite set, the reduced HNN
extensionA = B 
C � is still exact sinceA = lim−→ B 
C � with finite subsets�↗ �

and [14, Proposition 7.1, (iv)]. On the other hand, ifA = B 

C

� is exact, then so should

be B. Hence, the exactness ofB is necessary and sufficient for that ofA = B 

C

�.

With Remark 7.2, this fact in particular says that if a given countable discrete group
G is C∗-exact, then so is every HNN extensionG ∗H � thanks to [15, Theorem 5.2].
This is indeed a fact mentioned in [10].
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