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Abstract

The basic contracts traded on energy exchanges are swaps involving the delivery of electricity for fixed-
rate payments over a certain period of time. The main objective of this article is to solve the quadratic
hedging problem for European options on these swaps, known as electricity swaptions. We consider a
general class of Hilbert space valued exponential jump-diffusion models. Since the forward curve is an
infinite-dimensional object, but only a finite set of traded contracts are available for hedging, the market
is inherently incomplete. We derive the optimization problem for the quadratic hedging problem under the
risk neutral measure and state a representation of its solution, which is the starting point for numerical
algorithms.
c⃝ 2011 Elsevier B.V. All rights reserved.
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1. Introduction

During the last two decades, energy markets all over the world have been liberalized.
Electricity is now traded liquidly on exchanges like the Scandinavian Nordpool and the German
Energy Exchange (EEX). These relatively young markets are open to producers, consumers,
and speculating investors. Traded products include spot, futures, forwards and options on these.
In order to price these contracts and develop corresponding hedging strategies, mathematical
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models are called for. A compendium of methods for electricity markets can be found in [6].
There are substantial differences between stock and electricity markets. The electricity spot price
exhibits several unique stylized features, including seasonality, large jumps (many times higher
than the average price), and mean reversion. In addition, while stocks are sold at a single point
in time, electricity contracts always imply delivery over a certain period of time. Therefore,
electricity forwards and derivatives are written on a delivery period (a week, a month, or even
a year). The following part describes the contracts and mathematical objects occurring in this
context, which will be the basis for our model.

1.1. Electricity swaps and swaptions

The most liquidly traded products on energy exchanges like EEX or Nordpool are contracts
of futures type. These are agreements traded at time t ≥ 0 for a constant delivery of 1 MW of
electricity over a certain future period of time [T1, T2], while in return a fixed rate F(t; T1, T2)

is paid during this delivery period. Since a payment of a fixed rate is made in exchange for the
(unknown) future spot price, these contracts are also known as electricity swaps. The relation of
spot and forward prices is not clearly defined for electricity because of its non-storability [2,5].
This difficulty can be avoided by directly modeling the forward curve under a risk neutral (with
respect to swap rates) measure [1,3,18]. For every maturity u ∈ [T1, T2], let

f (t, u) := lim
v→u

F(t; u, v)

be the corresponding value of the forward curve at time t ≤ u. Due to no-arbitrage considera-
tions, the following equality must hold for every t ≤ T1:∫ T2

T1

e−r(u−t)F(t; T1, T2) du =

∫ T2

T1

e−r(u−t) f (t, u) du,

where r is the constant risk free interest rate. Thus, the swap rate F can be written as the weighted
integral

F(t; T1, T2) =

∫ T2

T1

ω(u; T1, T2) f (t, u) du,

with the non-negative discounting factor

ω(u; T1, T2) :=
e−ru T2

T1
e−rv dv

. (1)

Since no initial payment is needed to enter a swap contract, the swap rate F(t; T1, T2) is a mar-
tingale under the risk neutral measure.

Fig. 1 illustrates the different prices and concepts from the energy market and their relation.
One year’s worth of daily spot prices are taken from actual EEX data. The seasonality function
is a truncated Fourier series fitted to the spot. Each traded swap contract is represented by a
single horizontal line; these are market data, too. The longest lines correspond to contracts with
a delivery period of one year, whereas shorter lines represent quarterly and monthly products.
Finally, the forward curve is obtained by smooth interpolation of the swap data, also taking the
seasonality into account. For an overview of the fitting methods see, e.g., [4,19].

Consider now a European call option with maturity T and strike rate K , with the underlying
being a swap. The value of such a swaption at time t ≤ T is given by
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Fig. 1. EEX spot price data, fitted seasonality, traded swaps, and interpolated forward curve.

E

∫ T2

T1

e−r(u−t)F(T ; T1, T2) du −

∫ T2

T1

e−r(u−t)K du

+
Ft


= κ(t) E


F(T ; T1, T2) − K

+
Ft


,

where

κ(t) := κ(t; T1, T2) :=

∫ T2

T1

e−r(u−t) du. (2)

1.2. The objective and outline of the article

We use a Hilbert space valued, time-inhomogeneous exponential jump-diffusion process to
model the forward curve. This enables us to reproduce a large variety of stylized features
observed in electricity prices, e.g. the Samuelson effect of increasing volatilities close to maturity.
The model is a generalization of, but not limited to, the models presented in [3,18]. In Section 2,
we discuss the driving stochastic process in detail. In particular, we define the exponential of the
jump-diffusion process and show that its values are elements of the Hilbert space themselves. We
also examine how the drift has to be chosen in order to make the exponential a martingale.

It has been shown in [15] that, using this model, European swaptions can be priced with
an efficient numerical algorithm based on partial integro-differential equations (PIDEs) and
dimension reduction methods. The main goal of this article is to solve the corresponding hedging
problem for European options. The challenge here is to hedge an option depending on an infinite-
dimensional object (the forward curve) with a small set of traded contracts (swaps with various
delivery periods). We may, e.g., want to hedge a monthly swaption with several weekly swaps
and one monthly swap. It is inherent to the problem that no perfect hedge is possible, even in a
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pure diffusion setting. There is a so called basis risk, which cannot be avoided or hedged with
the given underlyings. Quadratic hedging therefore seems to be a reasonable approach. For an
introduction to quadratic hedging in the Brownian case see, e.g., [12,21,28]. Hedging with more
general driving processes is discussed in [7,25]. It is worth mentioning that, despite the fact
that we are modeling forward curves, hedging methods for interest rate markets are not directly
applicable here due to the special characteristics of electricity contracts.

In Section 3, we present our main results. We derive a representation of the (not necessarily
unique) optimal hedging strategy as the solution of a linear equation system. This is in fact
a generalization of the hedging formulas in one-dimensional jump-diffusion models. In order
to improve readability, some of the more technical proofs needed for these results are postponed
until Section 4. There, we discuss the properties of swap rates in detail. We show differentiability
and calculate their stochastic dynamics. Moreover, the partial integro-differential equation
(PIDE) satisfied by the swaption price is derived.

Similarly to a classical delta hedge, the optimal hedging strategy depends on partial derivatives
of the option price. These derivatives can be approximated numerically by a dimension reduction
approach, which is the topic of a separate, closely related paper [16]. To the best of our
knowledge, the present article presents the first solution to the hedging problem for swaptions
using traded swaps with various delivery periods.

2. The Hilbert space valued forward curve model

In this section we state the Hilbert space valued model which we will use throughout this
article. We introduce the exponential additive process describing the forward curve and discuss
moments and martingale conditions.

2.1. The Hilbert space valued exponential

Several authors propose exponential additive processes (also known as exponential time-
inhomogeneous Lévy processes) of diffusion or jump-diffusion type to model the forward curve
under the risk neutral measure [6,18]. Generalizing this approach, we now state the Hilbert space
valued model used throughout this article. For a definition of stochastic processes and integration
in Hilbert spaces with respect to Brownian motion see, e.g., [10,20]. An overview of Poisson
random measures in Hilbert spaces can be found in [14]; the case of Lévy processes is treated
in [24]. Infinite-dimensional stochastic analysis and its applications to interest rate theory are
presented in [8].

We consider forward curves defined on the delivery period D := [T1, T2] which are elements
of a separable Hilbert space

H ⊆ L2([T1, T2]; µD),

with µD denoting the Lebesgue measure on D. For every h ∈ H we denote the corresponding
norm by

‖h‖H :=

∫ T2

T1


h(u)

2
µD(du).

The basic driving stochastic process for our model is the H -valued additive process

X t :=

∫ t

0
γs ds +

∫ t

0
σs dW (s) +

∫ t

0

∫
E

ηs(y) M(dy, ds), t ≥ 0. (3)
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The diffusion part is driven by a U -valued Wiener process W , where (U, ‖ · ‖U ) is a separable
Hilbert space. The covariance of W is a symmetric non-negative definite trace class operator Q.
The mark space (E, ‖ · ‖E ) of the Poisson part of the process is a Banach space. The jumps
are characterized by M , the compensated random measure of an E-valued compound Poisson
process

Jt =

Nt−
i=1

Yi , t ≥ 0,

which is independent of W . Here, N denotes a Poisson process with intensity λ and Yi ∼ PY

(i = 1, 2, . . .) are iid on E (and independent of N ). The corresponding Lévy measure is denoted
by ν = λPY . We denote by L(U, H) and L(E, H) the spaces of all bounded linear operators
mapping U and E to H , respectively. We assume the drift γ : [0, T ] → H , the volatility
σ : [0, T ] → L(U, H) and the jump dampening factor η : [0, T ] → L(E, H) to be deterministic
functions. For an introduction to time dependent Bochner spaces, such as L2(0, T ; H), see
[13, Ch. 5.9]. The following hypothesis is assumed to hold.

Assumption 2.1. We assume that the second exponential moment of the jump distribution Y
exists:

E[e2‖Y‖E ] =

∫
E

e2‖y‖E PY (dy) < ∞.

We assume further that ‖ηt‖L(E,H) ≤ 1 for a.e. t ∈ [0, T ],

γ ∈ L2(0, T ; H), and σ ∈ L2(0, T ; L(U, H)).

By Assumption 2.1, (X t )t≥0 is an additive process with finite activity jump part and finite
expectation.

In the spirit of a LIBOR model, we would now like to model the forward curve ft ∈ H as
the exponential of the driving process X in some sense. To this end, we could take the pointwise
exponential ft (u) = f0(u) exp


X t (u)


, u ∈ D = [T1, T2]. While this would be possible, several

technical assumptions would then have to be made to ensure that ft is again square integrable
(and thus an element of the Hilbert space H ). Since we are interested in swap rates, and not
in pointwise evaluations of forward curves, a more natural way to define the exponential is the
following: choose an orthonormal basis {ek}k∈N of H and set

ft :=

−
k∈N

⟨ f0, ek⟩H e⟨X t ,ek ⟩H ek (4)

for t ≥ 0, with f0 ∈ H .
Note that the choice of the basis {ek}k∈N is part of the modeling process, like the choice of

jump distributions and correlation structures. This allows us to solve the hedging problem for
various modeling paradigms with the same, unified theoretical framework. One may use, e.g.,
eigenfunctions obtained from principal component analysis of the market data. In this case, (4) is
nothing more than a factor model describing the dynamics of each component. Since electricity
is usually traded on an hourly basis, another reasonable approach is to use piecewise constant
indicator functions on hourly intervals. The Hilbert space actually considered then is a subspace
of H of high but finite dimension. This is also the idea presented in [16]. Thus, (4) describes a
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family of models corresponding to different ways of modeling the forward curves. For a finite-
dimensional Hilbert space, definition (4) is equivalent to the pointwise exponential if {ek} are
canonical unit vectors. This is, in particular, the setting for a multivariate stock market, where we
have

fi (t) = fi (0) eX i (t), i = 1, . . . , dim H.

Remark 2.2. The forward curve in the general model (4) is not necessarily positive. Considering
the fact that negative electricity prices have indeed been observed in the past, this may or may
not be a disadvantage. Note that for the finite-dimensional space of piecewise hourly constant
forward curves (choosing {ek} as normalized indicator functions of each hour) we do obtain
positivity. Using different sets of basis vectors, the scores ⟨ ft , ek⟩H remain positive, but the
value of the forward curve may become negative. In a reasonably calibrated model, however, the
probability of negative values should be negligible.

2.2. Properties of the model

The way that we have defined the exponential in (4) makes it easy to show the existence of
moments and to derive sufficient conditions for f to be an H -valued martingale. We start with a
proposition concerning the properties of the additive process X defined in (3).

Proposition 2.3. The process (X t )t≥0 is square integrable and

sup
0≤t≤T

E‖X t‖
2
H < ∞.

Let σ ∗
s ∈ L(H, U ) be the adjoint operator of σs = σ(s). The characteristic function of X t is

given by

E

ei⟨X t ,h⟩H


= exp

[
i

∫ t

0
γs ds, h


H

−
1
2

[∫ t

0
σs Qσ ∗

s ds

]
(h), h


H

+

∫ t

0

∫
E


ei⟨ηs (y),h⟩H − 1 − i⟨ηs(y), h⟩H


ν(dy)ds

]
for every h ∈ H.

Proof. For a proof, see [15, Ths. 2.2,2.3]. �

Due to the existence of second moments, the bounded linear covariance operator

C X (T ):


H → H ′ ∼= H
h → E


⟨XT − E[XT ], h⟩H ⟨XT − E[XT ], ·⟩H


is well-defined. By [15, Th. 2.4], it is a symmetric non-negative definite trace class operator (and
thus compact).

Moreover, we can show the existence of certain Laplace transforms of X t . This is similar to
the properties of additive processes in the finite-dimensional case presented, e.g., in [27].

Proposition 2.4. There are constants C1, C2 > 0 such that for every h ∈ H with ‖h‖H ≤ 2 and
a.e. t ∈ [0, T ], we have

E

e⟨X t ,h⟩H


= exp

[∫ t

0
γs ds, h


H

+
1
2

[∫ t

0
σs Qσ ∗

s ds

]
(h), h


H
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+

∫ t

0

∫
E


e⟨ηs (y),h⟩H − 1 − ⟨ηs(y), h⟩H


ν(dy)ds

]
≤ C1 eC2T . (5)

Proof. Using Assumption 2.1 and the Cauchy–Schwarz inequality, we obtain∫
E

e⟨ηt (y),h⟩H ν(dy) ≤

∫
E

e‖y‖E ‖h‖H ν(dy) ≤ λ

∫
E

e2‖y‖E PY (dy) < ∞.

By [24, Th. 4.30], this is sufficient for the equality in (5). A theorem for interchanging linear
operators and Bochner integrals [13, App. E, Th. 8] yields∫ t

0
γs ds, h


H

=

∫ t

0
⟨γs, h⟩H ds,[∫ t

0
σs Qσ ∗

s ds

]
(h), h


H

=

∫ t

0


σs Qσ ∗

s


(h), h


H ds.

Hence, we have the estimate

exp
[∫ t

0
γs ds, h


H

+
1
2

[∫ t

0
σs Qσ ∗

s ds

]
(h), h


H

+

∫ t

0

∫
E


e⟨ηs (y),h⟩H − 1 − ⟨ηs(y), h⟩H


ν(dy) ds

]
≤ exp

[
2
∫ T

0
‖γs‖H ds +

4
2

∫ T

0
‖Q‖ ‖σs‖

2
L(U,H) ds

+ T λ

∫
E

e2‖y‖E PY (dy) + 1 + 2
∫

E
‖y‖E PY (dy)

]
≤ exp

[
2C‖γ ‖L2(o,T ;H) + 2‖Q‖ ‖σ‖

2
L2(o,T ;l(U,H))

+T λ

∫
E

e2‖y‖E PY (dy) + 1 + 2
∫

E
‖y‖E PY (dy)

]
.

This implies the statement of the proposition, again by Assumption 2.1. �

The next important step is to show that the forward curve ft = f (t) is indeed an element of
the Hilbert space H .

Proposition 2.5. The process


ft


0≤t≤T , which is defined as an exponential of X t by (4), satisfies
‖ ft‖H < ∞ almost surely. Moreover, there are constants C1, C2 > 0 such that

E

‖ ft‖

2
H


≤ C1 eC2T

‖ f0‖
2
H for a.e. t ∈ [0, T ]. (6)

Proof. It is enough to show (6), since this implies ‖ ft‖H < ∞ almost surely. To this end, we
use monotone convergence and calculate

E

⟨ ft ft ⟩H


= E

[−
k∈N

⟨ f0, ek⟩
2
H e2⟨X t ,ek ⟩H

]
=

−
k∈N

⟨ f0, ek⟩
2
H E


e⟨X t ,2ek ⟩H


.

Applying Proposition 2.4 with h = 2ek yields (6). �
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Finally, we can calculate the unique drift γ ∈ L2(0, T ; H) which makes all swap rates
martingales. We define Hilbert space martingales in the sense of Kunita [20], i.e., f is considered
a Hilbert space valued martingale if and only if

⟨ ft , h⟩H


t≥0.

is a real-valued martingale for every h ∈ H .

Proposition 2.6. The process


ft


0≤t≤T is an H-martingale in the sense of Kunita, if and only
if

γt =

−
k∈N

[
−

1
2


σt Qσ ∗

t


(ek), ek


H −

∫
E


e⟨ηt (y),ek ⟩H − 1 − ⟨ηt (y), ek⟩H


ν(dy)

]
ek (7)

for a.e. t ∈ [0, T ].

Proof. By definition, f is an H -martingale if and only if


⟨ ft , h⟩H


t≥0 =

−
k∈N

⟨ f0, ek⟩H e⟨X t ,ek ⟩H ⟨h, ek⟩H


t≥0

is a martingale for every h ∈ H . By Proposition 2.4 and the Cauchy–Schwarz inequality, we
obtain

E

−
k∈N

|⟨ f0, ek⟩H | e⟨X t ,ek ⟩H |⟨h, ek⟩H |


≤ C1 eC2T

‖ f0‖H ‖h‖H .

Hence, we may use dominated convergence to calculate

E

⟨ ft , h⟩H


=

−
k∈N

⟨ f0, ek⟩H ⟨h, ek⟩H E

e⟨X t ,ek ⟩H


=

−
k∈N

⟨ f0, ek⟩H ⟨h, ek⟩H exp
[∫ t

0
⟨γs, ek⟩H ds +

1
2

∫ t

0


σs Qσ ∗

s


(ek), ek


H ds

+

∫ t

0

∫
E


e⟨ηs (y),ek ⟩H −1−⟨ηs (y),ek ⟩H


ν(dy)ds

]
.

Consequently, the drift γ given by (7) makes f an H -martingale, since−
k∈N

⟨ f0, ek⟩H ⟨h, ek⟩H = ⟨ f0, h⟩H .

On the other hand, setting h = ek (k ∈ N) in the calculation above shows that this is indeed the
only possible choice for γ . �

Since swap rates are martingales under the risk neutral measure, we will subsequently assume
that γ is defined by (7).

3. Hedging electricity swaptions

In this section, we present the main results of this article. We solve the quadratic hedging
problem for European electricity swaptions. We do the hedging under the risk neutral measure.
Since the interest rate is assumed to be constant, this coincides with the forward measure. For
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a discussion of the advantages of hedging under the pricing measure compared to the physical
measure, see, e.g., [9,22].

The basic challenge here is to hedge an infinite-dimensional object with a small, finite set of
assets. The portfolio may only contain contracts which are available for trading, namely swaps
with various delivery periods. Thus, it is inherent to the problem that we will not obtain a perfect
hedge, even in a pure diffusion model. We first discuss the stochastic dynamics of the swaps in
our portfolio and state the partial integro-differential equation (PIDE) satisfied by the swaption
price. These results are then used to derive a representation of an optimal hedging strategy.
Finally, we show that our solution can be interpreted as a generalization of the optimal hedge
in a one-dimensional jump-diffusion model.

3.1. Stochastic dynamics of swap rates and swaption prices

We consider a portfolio of n swap contracts available for trading, whose delivery periods
are given by Di := [T i

1 , T i
2 ], i = 1, . . . , n. (We may for example want to hedge a quarterly

swaption by trading in the quarterly swap itself as well as three monthly swaps.) The swap rates
corresponding to the swaps in our portfolio are given by

F(t; T i
1 , T i

2 ) =

∫ T i
2

T i
1

ωi (u) f (t, u) du,

where

ωi (u) := ω(u; T i
1 , T i

2 ) =
e−ru T i

2

T i
1

e−ru du

is the discounting factor defined in (1). We consider a European option with maturity T written on
the swap with delivery period D = [T1, T2]. Since we cannot hedge with swaps whose delivery
periods start before maturity of the option, we will assume T ≤ T i

1 for every i = 1, . . . , n.
For the computation of an optimal hedging strategy, the stochastic dynamics of the swap

rates F(t; T i
1 , T i

2 ), i = 1, . . . , n, play a central role. Each rate F(t; T i
1 , T i

2 ) is a real-valued,
deterministic function of the forward curve f . More precisely,

F(t; T i
1 , T i

2 )


0≤t≤T =

⟨ωi , ft ⟩H


0≤t≤T

is a real-valued martingale, since f is an H -martingale by Proposition 2.6. By (4), the forward
curve is in turn a deterministic function of the driving jump-diffusion X defined in (3). We may
thus introduce

Fi :


H → R

x →


ωi ,

−
k∈N

⟨ f0, ek⟩H exp

⟨x, ek⟩H


ek


H

(8)

and obtain

Fi (X t ) = F(t; T i
1 , T i

2 ), t ∈ [0, T ].

We denote the Fréchet derivative of Fi at x ∈ H by Dx Fi (x) ∈ L(H, R). The stochastic
dynamics of the swap rates is obtained by applying a Hilbert space valued version of Itô’s
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formula. We postpone the rather technical proof to Section 4, along with results concerning the
differentiability of Fi .

Proposition 3.1. The functions Fi : H → R, i = 1, . . . , n, defined in (8), satisfy

dFi (X t ) = Dx Fi (X t−) σt dWt +

∫
E


Fi (X t− + ηt (y)) − Fi (X t−)

 M(dy, dt).

We now consider the price process of a swaption. To this end, it is useful to introduce a cen-
tered version of X , which we denote by

Z t := X t − E[X t ] = X t −

∫ t

0
γs ds =

∫ t

0
σs dWs +

∫ t

0

∫
E

ηs(y) M(dy, ds).

Defining the swaption price in terms of Z instead of X simplifies the PIDE for the price, which
we will derive below. It avoids the occurrence of an additional convection term in the PIDE.
Moreover, it is also convenient for numerical approximations, which rely on projections of the
centered process Z . We denote the price of the swaption at time t ≤ T discounted to time 0 by

V (t, z) := e−rT E

G(ZT )

Z t = z

, (9)

where G is the payoff function of the option in terms of ZT . We make the following assumption
concerning the payoff.

Assumption 3.2. Suppose that the payoff function G is Lipschitz continuous on H with
Lipschitz constant KG .

Remark 3.3. Assumption 3.2 is not necessarily satisfied for payoffs depending on the exponen-
tial of ZT , e.g. a plain call option depending on fT . However, this can be easily remedied. In
the specific case of a call, we can apply a put–call parity. More generally, every payoff can be
truncated to a bounded domain (e.g. by multiplying with a smooth cutoff function). A payoff
has finite expectation by definition; hence the error introduced by truncation is arbitrarily small.
Since we have to localize the computational domain for any numerical calculation anyway (for
details see [16]), Assumption 3.2 is no substantial restriction.

In addition, we will generalize two assumptions to the Hilbert space valued setting, which
are usually made when pricing with PIDEs. The first one implies non-vanishing diffusion. Let
E0(C X (T )) be the eigenspace of the covariance operator C X (T ) corresponding to eigenvalue 0 (the
kernel), a subspace which is with probability 1 never reached by X . Its orthogonal complement
is E0(C X (T ))

⊥. As before, let Q be the covariance operator of W .

Assumption 3.4. Assume that for every t ∈ [0, T ], the restriction of the operator σt Qσ ∗
t to the

subspace E0(C X )⊥ ⊂ H is positive definite, i.e.,

⟨σt Qσ ∗
t h, h⟩H > 0 for every h ∈ E0(C X (T ))

⊥
\ {0}.

The second assumption deals with the regularity of the price process. It is common to assume
that V is twice continuously differentiable; see, e.g., [9,17,23]. For finite-dimensional spaces,
this is indeed a direct consequence of Assumptions 3.2 and 3.4, as shown in [15, Th. 3.6]. We
denote by L H S(H, H) ⊂ L(H, H) the space of Hilbert–Schmidt operators defined on H .
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Assumption 3.5. Suppose that V ∈ C1,2((0, T ) × H, R) ∩ C([0, T ] × H, R), i.e. V is
continuously differentiable with respect to t and twice continuously Fréchet differentiable with
respect to z. Moreover, assume that the second derivative satisfies D2

z
V (t, z) ∈ L H S(H, H) for

every (t, z) ∈ [0, T ] × H and the mapping D2
z
V : (t, z) → L H S(H, H) is uniformly continuous

on bounded subsets.

The stochastic dynamics for V are very similar to those of Fi . The proof relies on Itô’s formula
on Hilbert spaces and is once again postponed until Section 4. We denote the trace of a nuclear
operator A by tr(A).

Theorem 3.6. For every t ∈ [0, T ], the discounted price V defined in (9) satisfies

dV (t, Z t ) = DzV (t, Z t−)σt dWt +

∫
E

V (t, Z t− + ηt (y)) − V (t, Z t−)
 M(dy, dt).

Moreover, it is a classical solution of the PIDE

−∂tV (t, z) =
1
2

tr

D2

z
V (t, z)σt Qσ ∗

t


+

∫
E

V (t, z + ηt (y)) − V (t, z) − DzV (t, z) ηt (y)

ν(dy),

with terminal conditionV (T, z) = e−rT G(z),

for every t ∈ (0, T ), z ∈ E0(C X (T ))
⊥.

It is possible to price the swaption with a PIDE, which relies on a Lévy model (with the same
terminal distribution as the time-inhomogeneous model) and therefore uses constant coefficients.
The PIDE needed for hedging, however, has time dependent coefficients. The stochastic dynam-
ics of both the swap rate and the swaption price will be needed for the construction of an optimal
hedging portfolio.

3.2. Optimal hedging strategies

In this section, we derive the optimal hedging strategy for quadratic hedging with a portfolio of
swaps. Before we can compute the hedge, we need to discuss the set of admissible strategies and
the corresponding value of the portfolio. A trading strategy is given by


θ0(t), θ(t)


, 0 ≤ t ≤ T ,

where θ0 ∈ R is the risk free investment and θ(t) =

θ1(t), . . . , θn(t)


∈ Rn describes the

investment in each swap at time t . The value of the portfolio at time t is denoted by V θ (t). The
value S0 of the risk free asset solves the differential equation

dS0(t) = r S0(t)dt.

Since a swap has no inherent value (you can enter the contract without paying anything), we have

V θ (t) = θ0(t)S0(t).

Nevertheless, changes of the swap rates affect the wealth of the investor. In order to be self-
financing, the discounted value of the portfolio must satisfy the following equation:

dV θ (t) =

n−
i=1

θi (t)e
−r tκi (t) dFi (t),
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where

κi (t) := κ(t; T i
1 , T i

2 ) =

∫ T i
2

T i
1

e−r(u−t) du.

The discounting factor κ has already been introduced in (2). A strategy

θ0(t), θ(t)


is admissi-

ble, if it is predictable, càglàd, and satisfies

E


∫ T

0

n−
i=1

θi (t)e
−r tκi (t) dFi (t)


2

< ∞.

Quadratic hedging consists in minimizing the expected global quadratic hedging error

J (θ) := E |V θ (T ) − V (T )|2. (10)

In order to simplify and shorten notation, we define abbreviations for the jumps of swap rates
and option price:

δFi (t, y) := Fi

X t− + ηt (y)


− Fi (X t−), i = 1, . . . , n,

δV (t, y) := V t, Z t− + ηt (y)

− V (t, Z t−), for y ∈ E .

Moreover, we will omit some of the more obvious function arguments and write e.g. Dx Fi for
Dx Fi (X t−) and DzV for DzV (t, Z t−). The following matrix valued process M is essential for
all our further computations. It describes the sensitivity of the traded swaps to changes of the
driving stochastic processes.

mi j (t) := e−2r tκi (t)κ j (t)


Dx Fi σt Qσ ∗

t Dx F j +

∫
E

δFiδF j ν(dy)


,

i, j = 1, . . . , n, (11)

M(t) := (mi j (t))
n
i, j=1 ∈ Rn×n .

Note that M is symmetric positive semi-definite by construction. Notice that we do not assume
M to be strictly positive definite. Consequently, we allow for swaps in the portfolio, which
are redundant or irrelevant to the hedging strategy. In particular, we cannot expect a unique
optimal strategy under these weak assumptions. In practice, we could then introduce a second
optimization criterion, e.g. minimizing the norm of θ .

The following proposition states a representation of the hedging error.

Theorem 3.7. Let M(t) ∈ Rn×n be the matrix valued process defined in (11). Define further

bi (t) := e−r tκi (t)


Dx Fi σt Qσ ∗

t DzV +

∫
E

δFi δV ν(dy)


, i = 1, . . . , n,

and

c(t) := DzV σt Qσ ∗
t DzV +

∫
E
(δV )2 ν(dy).

Then the quadratic hedging error with strategy θ can be written as

J (θ) = E
∫ T

0


θ(t)T M(t)θ(t) − 2b(t)T θ(t) + c(t)


dt. (12)
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Proof. Inserting the dynamics of Fi and V , calculated in Proposition 3.1 and Theorem 3.6, into
the definition (10) of J yields

J (θ) = E

[∫ T

0

n−
i=1

θi (t)e
−r tκi (t) Dx Fiσt dWt

+

∫ T

0

n−
i=1

θi (t)e
−r tκi (t)

∫
E

δFi (t, y) M(dy, dt)

−

∫ T

0
DzV σt dWt −

∫ T

0

∫
E

δV (t, y) M(dy, dt)

]2


.

By independence of M and W we hence have

J (θ) = E

∫ T

0

n−
i=1

θi (t)e
−r tκi (t) Dx Fiσt dWt −

∫ T

0
DzV σt dWt

2

+ E

∫ T

0

n−
i=1

θi (t)e
−r tκi (t)

∫
E

δFi (t, y) M(dy, dt)

−

∫ T

0

∫
E

δV (t, y) M(dy, dt)

2

=: J1 + J2. (13)

We apply [10, Cor. 4.14] to the Brownian term J1 and obtain

J1 = E
∫ T

0
tr


e−r t

n−
i=1

θi (t)κi (t) Dx Fi − DzV σt Qσ ∗
t

×

[
e−r t

n−
j=1

θ j (t)κ j (t) Dx F j − DzV]∗


dt.

Note that the argument of the trace operator in this equation is a function mapping R to R.
Consequently, its “trace” is in fact the application of this function to 1. Moreover, the operators
Dx Fi and DzV are elements of L(H, R), which we can identify with elements of H . Hence, we
have

[Dx F]
∗(1) = Dx F and [DzV ]

∗(1) = DzV .

Combining, we obtain

J1 = E
∫ T

0


e−2r t

n−
i=1

n−
j=1

θi (t)θ j (t)κi (t)κ j (t) Dx Fi σt Qσ ∗
t Dx F j

− 2e−r t
n−

i=1

θi (t)κi (t) Dx Fi σt Qσ ∗
t DzV + DzV σt Qσ ∗

t DzV dt.
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We use Theorem [24, Th. 23] to deal with the jump term J2 in (13). This yields

J2 = E
∫ T

0

∫
E


e−r t

n−
i=1

θi (t)κi (t)δFi (t, y) − δV (t, y)

2

ν(dy)dt.

Adding the expressions for J1 and J2, we obtain (12) by definition of M , b and c. �

The expression (12) for the hedging error from the previous theorem involves a quadratic
form with respect to θ . The following lemma states an important property of this quadratic form,
which we will use to show the existence of an optimal hedging strategy.

Lemma 3.8. For every t ∈ [0, T ], the vector b(t) defined in Theorem 3.7 is an element of the
range of M(t).

Proof. The vector b(t) is an element of the range of M(t) if and only if

∀y ∈ Rn : (yT M(t) = 0 ⇒ yT b(t) = 0)

holds. Let y ∈ Rn be such that yT M(t) = 0. By definition of M , we have

0 = yT M(t)y = e−2r t


n−

i=1

yiκi (t)Dx Fi


σt Qσ ∗

t


n−

j=1

y jκ j (t)Dx F j



+

∫
E


n−

i=1

yiκi (t)δFi


n−

j=1

y jκ j (t)δF j


ν(dy)


.

Due to the positive semi-definiteness of Q, this yields
n−

i=1

yiκi (t)Dx Fi


σt Qσ ∗

t


n−

i=1

yiκi (t)Dx Fi


= 0

and ∫
E


n−

i=1

yiκi (t)δFi

2

ν(dy) = 0.

Using the Cauchy–Schwarz inequality, we obtain the estimate

|yT b(t)| =

e−r t
n−

i=1

yiκi (t)


Dx Fi σt Qσ ∗

t DzV +

∫
E

δFi δV ν(dy)


≤ e−r t


n−

i=1

yiκi (t)Dx Fi


σt Qσ ∗

t


n−

i=1

yiκi (t)Dx Fi

 1
2 

DzV σt Qσ ∗
t DzV  1

2

+ e−r t

∫
E


n−

i=1

yiκi (t)δFi

2

ν(dy)

 1
2 [∫

E
(δV )2ν(dy)

] 1
2

= 0. �

We are now able to derive the main result of this article, a representation of the optimal hedg-
ing strategy for portfolios containing an arbitrary number of swaps.
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Theorem 3.9. An investment strategy θ minimizes the hedging error if and only if it solves

M(t)θ(t) = b(t) for a.e. t ∈ [0, T ]. (14)

There is at least one solution to this equation. It is unique if and only if M(t) is strictly positive
definite.

Proof. The minimal hedging error is achieved when the integrand

h:


Rn
→ R

θ(t) → θ(t)T M(t)θ(t) − 2b(t)T θ(t) + c(t)

in (12) is minimized pointwise for a.e. t ∈ [0, T ]. The matrix M(t) is non-negative definite
by construction. Consequently, h is a convex function (though not strictly convex). For convex
functions, the necessary optimality condition of first order is already sufficient for a global mini-
mum. Thus, every solution θ(t) of (14) is an optimal hedging strategy. It is a direct consequence
of Lemma 3.8 that b(t) is an element of the range of M(t). Hence, there is at least one such
solution. The uniqueness property is then obvious. �

Comparison to one-dimensional hedging. The hedging portfolio computed in Theorem 3.9 is in
fact a generalization of the optimal hedge in a one-dimensional jump-diffusion model. For the
special case of a portfolio containing only a single swap (n = 1), with the same delivery period
D = [T1, T2] as the hedged swap itself, we obtain the following strategy.

Corollary 3.10. The optimal investment for quadratic hedging with a single swap is given by

θ(t) :=
Dx F σt Qσ ∗

t DzV +


E δF(t, y)δV (t, y) ν(dy)

e−r tκ(t)


Dx F σt Qσ ∗
t Dx F +


E


δF(t, y)

2
ν(dy)

 . (15)

We will now briefly show how this result relates to the hedging strategy for a stock market. To
this end, we set all the Hilbert and Banach spaces in our model to H = U = E = R. Since W is
then a one-dimensional Brownian motion, we set Q = Id|R, η ≡ Id|R and κ ≡ 1. Furthermore,
in this case the stock price is modeled by

St = F(t, X t ) = S0 exp
∫ t

0
γ (s)ds + Z t


∈ R,

with an appropriate drift term γ . The option price can be written as a function of St−:V (t, St−) := er tV (t, Z t−).

Hence, the following holds for the derivative of the price with respect to S:

DzV (t, Z t−) = e−r t DSV (t, St−) St−.

Finally, we calculate

Dx F(t, X t−) = F(t, X t−) = St−, δF(t, y) = (ey
− 1)St ,

and

δV (t, y) = V (t, Z t− + y) − V (t, Z t−) = e−r t V (t, St−ey) − V (t, St−)

.
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Putting everything together, we can make a change of variable in (15) and obtain

θ(t) =

σ 2
t DSV (t, St−) +

1
St−


R(ey

− 1)
V (t, St−ey) − V (t, St−)


ν(dy)

σ 2
t +


R(ey − 1)2 ν(dy)

.

Note that this is exactly the formula for the optimal quadratic hedge in a stock market, calculated
e.g. in [9, Rem. 10.3].

4. Deriving the swap dynamics

This section is concerned with the technical details of deriving the stochastic swap rate and
swaption price dynamics. In particular, we will prove Proposition 3.1 and Theorem 3.6, using an
Itô formula for Hilbert space valued processes. Before we can do so, however, we need to show
certain differentiability properties for the swap rates Fi , i = 1, . . . , n, defined in (8).

Swap rate derivatives. Since all subsequent results hold for every i = 1, . . . , n, we choose i
arbitrary but fixed, omit the index, and write F instead of Fi . Let us first recall the definition
of derivatives on a Hilbert space (see, e.g., [11, Ch. VIII]). We denote the first and second
Fréchet derivative of F at x ∈ H by Dx F(x) ∈ L(H, R) and D2

x F(x) ∈ L(H, H) respectively.
These are continuous linear operators such that

F(x + ξ) = F(x) + Dx F(x) ξ +
1
2
⟨D2

x F(x) ξ, ξ ⟩H + o(‖ξ‖
2
H )

for every ξ ∈ H . It is often convenient to identify D2
x F(x) with a bilinear form on H × H , setting

D2
x F(x) (ξ1, ξ2) := ⟨D2

x F(x) ξ1, ξ2⟩H .

If F is Fréchet differentiable, then the Gâteaux derivatives

∂ξ F(x) :=
∂

∂ξ
F(x) := lim

ε→0

F(x + εξ) − F(x)

ε

are also well-defined for every ξ ∈ H . They satisfy

∂ξ F(x) = Dx F(x) ξ.

If on the other hand F has linear and continuous Gâteaux derivatives, and the mapping x →

∂·F(x) ∈ L(H, R) is continuous, then F(x) is continuously Fréchet differentiable (i.e. F is of
class C1). The following theorem shows that the swap rate F is indeed twice differentiable.

Theorem 4.1. The swap rate function F defined in (8) is of class C2, i.e. it is twice continuously
Fréchet differentiable. For every x ∈ H and arbitrary ξ, ξ1, ξ2 ∈ H, the derivatives satisfy

Dx F(x) ξ =

−
k∈N

⟨ω, ek⟩H ⟨ f0, ek⟩H e⟨x,ek ⟩H ⟨ξ, ek⟩H and

D2
x F(x) (ξ1, ξ2) =

−
k∈N

⟨ω, ek⟩H ⟨ f0, ek⟩H e⟨x,ek ⟩H ⟨ξ1, ek⟩H ⟨ξ2, ek⟩H .
(16)

Proof. We start by computing Gâteaux derivatives of F . By definition, we have

F(x + εξ) =

−
k∈N

⟨ω, ek⟩H ⟨ f0, ek⟩H e⟨x+εξ,ek ⟩H . (17)
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We define ck := ⟨ω, ek⟩H ⟨ f0, ek⟩H and note that−
k∈N

|ck | ≤ ‖ω‖H ‖ f0‖H < ∞.

Using the chain rule [11, Th. 8.2.1], we obtain

∂

∂ε


cke⟨x+εξ,ek ⟩H


= cke⟨x+εξ,ek ⟩H ⟨ξ, ek⟩H .

Moreover, the partial sums of these derivatives converge uniformly in ε for |ε| < 1, since ∞−
k=m

cke⟨x+εξ,ek ⟩H ⟨ξ, ek⟩H

 ≤ e‖x‖H e‖ξ‖H ‖ξ‖H

∞−
k=m

|ck | → 0 for m → ∞.

Thus, we may differentiate (17) term by term. This yields

∂

∂ξ
F(x) =

∂

∂ε
F(x + εξ)


ε=0

=

−
k∈N

cke⟨x,ek ⟩H ⟨ξ, ek⟩H .

These derivatives are obviously continuous in x , since |e⟨x+εξ,ek ⟩H − e⟨x,ek ⟩H | → 0 for
ε → 0 uniformly in k. Since the Gâteaux derivatives of F are continuous, F is continuously
Fréchet differentiable and

Dx F(x) ξ =
∂

∂ξ
F(x) =

−
k∈N

cke⟨x,ek ⟩H ⟨ξ, ek⟩H .

Due to the isometric isomorphism L(H, R) ∼= H , we may identify Dx F(x) with an element
in H and write

Dx F(x) =

−
k∈N

cke⟨x,ek ⟩H ek .

By the very same arguments as for the first derivative, we obtain

∂

∂ξ
Dx F(x) =

−
k∈N

cke⟨x,ek ⟩H ⟨ξ, ek⟩H ek .

This implies the second equation in (16). �

In order to apply an Itô formula to F , one additional property for its derivatives is needed,
which is stated in the following theorem.

Theorem 4.2. The values of the second Fréchet derivative of the function F : H → R defined
in (8) are Hilbert–Schmidt operators. The mapping

D2
x F :


H → L L H S(H, H)

x → D2
x F(x)

is uniformly continuous on bounded subsets.

Proof. The Hilbert–Schmidt norm of D2
x F(x) is given by

‖D2
x F(x)‖2

L H S(H,H) =

−
k∈N

⟨D2
x F(x) ek, D2

x F(x) ek⟩H

=

−
k∈N

⟨ f0, ek⟩
2
H ⟨ω, ek⟩

2
H e2⟨x,ek ⟩H

≤ ‖ f0‖
2
H ‖ω‖

2
H e2‖x‖H .
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A similar calculation shows

‖D2
x F(x1) − D2

x F(x2)‖
2
L H S(H,H) =

−
k∈N

⟨ f0, ek⟩
2
H ⟨ω, ek⟩

2
H


e⟨x1,ek ⟩H − e⟨x2,ek ⟩H

2

≤ ‖ f0‖
2
H ‖ω‖

2
H emax{‖x1‖H ,‖x2‖H }

‖x1 − x2‖
2
H

for every x1, x2 ∈ H . This implies the uniform continuity on bounded subsets. �

The statement of the following lemma is a prerequisite for applying [24, Th. 8.23]. This will
be useful for splitting the result of Itô ’s formula into a martingale and a finite variation part.

Lemma 4.3. The integrals∫ T

0

∫
E

E |F(X t− + ηt (y)) − F(X t−)|2 ν(dy)dt

and ∫ T

0

∫
E

E |Dx F(X t−)ηt (y)|2 ν(dy)dt

are both finite.

Proof. For the first integral, we apply Young’s inequality to obtain

|F(X t− + ηt (y)) − F(X t−)|2 ≤ 2|F(X t− + ηt (y))|2 + 2|F(X t−)|2.

We deal with the two terms separately. Using the definition of F we calculate∫ T

0

∫
E

E |F(X t−)|2 ν(dy)dt = λ

∫ T

0
E |⟨ω ft−⟩H |

2 dt

≤ λ‖ω‖
2
H

∫ T

0
E‖ ft−‖

2
H dt.

This expression is finite by Proposition 2.5. Similarly,∫ T

0

∫
E

E |F(X t− + ηt (y))|2 ν(dy)dt

=

∫ T

0

∫
E

E

−
k∈N

⟨ω, ek⟩H ⟨ ft−, ek⟩H e⟨ηt (y),ek ⟩H


2

ν(dy)dt

≤ ‖ω‖
2
H

∫ T

0
E‖ ft−‖

2
H dt

∫
E

e2‖y‖E ν(dy).

This is finite by Proposition 2.5 and Assumption 2.1.
In order to show that the second integral in the statement of the lemma is finite, we plug in the

derivative of F calculated in Theorem 4.1. This yields∫ T

0

∫
E

E |Dx F(X t−)ηt (y)|2 ν(dy)dt

=

∫ T

0

∫
E

E

−
k∈N

⟨ω, ek⟩H ⟨ ft−, ek⟩H ⟨η(y), ek⟩H


2

ν(dy)dt
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≤ ‖ω‖
2
H

∫ T

0
E‖ ft−‖

2
H dt

∫
E

‖y‖
2
E ν(dy).

We proceed with Proposition 2.5 and Assumption 2.1 as above and the proof is finished. �

Applying Itô ’s formula. We are now able to apply a Hilbert space valued version of Itô ’s formula
to derive the stochastic dynamics of F .

Lemma 4.4. The function F : H → R defined in (8) satisfies

dF(X t ) =
1
2

tr


D2
x F(X t−)σt−Qσ ∗

t−


dt

+

∫
E


F(X t− + ηt (y)) − F(X t−) − Dx F(X t−) ηt (y)


ν(dy) dt

+ Dx F(X t−) γt dt + Dx F(X t−) σt dWt

+

∫
E


F(X t− + ηt (y)) − F(X t−)

 M(dy, dt). (18)

Proof. By Theorems 4.1 and 4.2, the assumptions of [24, Th. D.2] (Itô ’s formula) are satisfied.
The theorem yields

F(X t ) = F(X0) +

∫ t

0
Dx F(Xs−) dXs +

1
2

∫ t

0
D2

x F(Xs−) d[X, X ]
c
s

+

−
0≤s≤t


F(Xs) − F(Xs−) − Dx F(Xs−) (Xs − Xs−)


, (19)

where [X, X ]
c denotes the continuous part of the predictable quadratic covariation as defined

in [24]. By definition, we have

[X, X ]
c
t =

−
i, j∈N

ei ⊗ e j


[X i , X j ]

c
t


,

where ei ⊗ e j denotes the tensor product of the two basis elements and X i (t) := ⟨X (t)ei ⟩H for
i ∈ N. Let Pi denote the projection onto the space spanned by the basis element ei (i ∈ N), and

P ∗

i be its adjoint operator:

Pi :


H → R
h → ⟨hei ⟩H

and P ∗

i :


R → H
a → a · ei .

By the properties of quadratic variations for real-valued processes and [10, Cor. 4.14], we obtain

[X i , X j ]
c
t = [X c

i , X c
j ]t =

[∫
·

0
σs dWs, ei


H

,

∫
·

0
σs dWs, e j


H

]
t

=

∫ t

0
Pi σs Qσ ∗

s P ∗

j ds =

∫ t

0
⟨σs Qσ ∗

s e j , ei ⟩H ds.

Thus, we have∫ t

0
D2

x F(Xs−)d[X, X ]
c
s =

∫ t

0

−
i, j∈N

D2
x F(Xs−) (ei , e j ) ⟨σs Qσ ∗

s e j , ei ⟩H ds
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=

∫ t

0

−
j∈N

D2
x F(Xs−)


σs Qσ ∗

s e j , e j


ds

=

∫ t

0
tr


D2
x F(Xs−) σs Qσ ∗

s


ds. (20)

It remains to reorganize the jump terms in (19). By Lemma 4.3 and the fact that F(t) has finite
expectation, the following holds:∫ t

0
Dx F(Xs−)

∫
E

ηs(y) M(dy, ds)

=

−
0≤s≤t

Dx F(Xs−) (Xs − Xs−) −

∫ t

0

∫
E

Dx F(Xs−) ηs(y) ν(dy)ds.

Moreover, we have−
0≤s≤t


F(Xs) − F(Xs−)


=

∫ t

0

∫
E


F(Xs− + ηs(y)) − F(Xs−)

 M(dy, ds)

+

∫ t

0

∫
E


F(Xs− + ηs(y)) − F(Xs−)


ν(dy) ds.

Combined with (19) and (20), this implies (18). �

As a direct consequence of this lemma, we can state the proof of Proposition 3.1.

Proof of Proposition 3.1. By construction, F(X) is a real-valued martingale. This is also true
for the last two integrals in (18) by definition of the stochastic integral [24, Ths. 8.7,8.23]. Since
continuous martingales of finite variation are a.s. constant [26, Th. 27], the sum of the remaining
integral terms in (18) must equal 0. �

Swaption price dynamics. The remainder of the section is concerned with the proof of
Theorem 3.6. We need a technical lemma similar to Lemma 4.3 in order to be able to rearrange
the jump terms in the dynamics of V .

Lemma 4.5. The integrals∫ T

0

∫
E

E |V (t, Z t− + ηt (y)) − V (t, Z t−)|2 ν(dy) dt

and ∫ T

0

∫
E

E |DzV (t, Z t−) ηt (y)|2 ν(dy)dt

are both finite.

Proof. By the definition of V and the Lipschitz continuity of the payoff (Assumption 3.2) we
obtain

|V (t, Z t− + z) − V (t, Z t−)| ≤ e−rT E

|G(ZT + z) − G(ZT )|

Ft


≤ e−rT KG‖z‖H (21)
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for every z ∈ H . Hence, the first integral satisfies∫ T

0

∫
E

E |V (t, Z t− + ηt (y)) − V (t, Z t−)|2 ν(dy) dt ≤ e−2rT K 2
G T

∫
E

‖y‖
2
Eν(dy) < ∞.

For the second integral, note that by (21) we have

‖DzV (t, Z t−)‖L(H,R) ≤ e−r t KG .

This implies∫ T

0

∫
E

E |DzV (t, Z t−) ηt (y)|2 ν(dy)dt ≤ e−2rT K 2
G

∫ T

0

∫
E

‖ηt (y)‖2
H ν(dy)dt < ∞. �

The assumptions made for V are almost identical to the results shown in Theorems 4.1 and 4.2
for the swap rate F . Hence, it is not surprising that we can derive very similar stochastic dynamics
for V , using once again Itô’s formula on Hilbert spaces. As before, we denote by E0(C X (T )) the
kernel of the covariance operator C X (T ) and by E0(C X (T ))

⊥ its orthogonal complement. Note
that C X (T ) is also the covariance operator of the centered process Z .

Proof of Theorem 3.6. By Assumption 3.5, we may apply Itô ’s formula [24, Th. D.2] to obtain

V (t, Z t ) = V (0, Z0) +

∫ t

0
∂tV (s, Zs−) ds +

∫ t

0
DzV (s, Zs−) dZs

+
1
2

∫ t

0
D2

z
V (s, Zs−) d[Z , Z ]

c
s

+

−
0≤s≤t

V (s, Zs) − V (s, Zs−) − DzV (s, Zs−) (Zs − Zs−)

.

Since Z and X differ only with respect to a deterministic drift of finite variation, we have
[Z , Z ]

c
s = [X, X ]

c
s . Consequently, the computations from the proof of Lemma 4.4 yield

dV (t, Z t ) = ∂tV (t, Z t−) dt +
1
2

tr


D2
z
V (t, Z t−) σt−Qσ ∗

t−


dt

+

∫
E

V (t, Z t− + ηt (y)) − V (t, Z t−) − DzV (t, Z t−) ηt (y)


ν(dy) dt

+ DzV (t, Z t−) σt dWt +

∫
E

V (t, Z t− + ηt (y)) − V (t, Z t−)
 M(dy, dt).

Using the same arguments as in the proof of Proposition 3.1, this yields the stochastic dynamics
(and the PIDE) for V along almost every trajectory of Z . It remains to show that the PIDE does
indeed hold for every (t, z) ∈ (0, T ) × E0(C X (T ))

⊥.
Fix an arbitrary t ∈ (0, T ) and z ∈ E0(C X (T ))

⊥. We denote by Bε(z) the ball with
radius ε around z. Because of the non-vanishing diffusion (Assumption 3.4), the probability for
Z t− ∈ Bε(z) is non-zero for every ε > 0. Thus, for every ε > 0, we can find a zε ∈ Bε(z) such
that the PIDE holds in (t, zε). Due to the regularity of V (Assumption 3.5), we can conclude that
the PIDE holds for every (t, z) ∈ (0, T ) × E0(C X (T ))

⊥. �

5. Conclusion

In this article, quadratic hedging strategies for European electricity swaptions are discussed.
The basic problem when hedging electricity is to hedge an infinite-dimensional object with a
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finite set of traded assets (swaps with various delivery periods). We directly model the forward
curve with an exponential time-inhomogeneous jump-diffusion process. We examine the moment
and martingale properties of this model in detail. Stochastic dynamics and the corresponding
PIDE for the swaption price are derived. We show that the optimal hedging strategy at each point
in time is the solution of a linear equation system. Similarly to a classical delta hedge, the strategy
depends on partial derivatives of the option price, which can be obtained from the PIDE.

The representation of the optimal hedging strategies given in this article is the starting point
for efficient numerical approximation methods. The related paper [16] is concerned with the
numerical computation of hedging strategies, using a dimension reduction technique.
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