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Abstract

We review the construction of a generalization of the Weil pairing, which is non-degenerate
and bilinear, and use it to construct a reduction from the discrete logarithm problem on elliptic
curves to the discrete logarithm problem in 1nite 1elds. We show that the new pairing can be
computed e2ciently for curves with trace of Frobenius congruent to 2 modulo the order of the
base point. This leads to an e2cient reduction for this class of curves. The reduction is as simple
to construct as that of Menezes et al. (IEEE Trans. Inform. Theory, 39, 1993), and is provably
equivalent to that of Frey and R7uck (Math. Comput. 62 (206) (1994) 865).
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Since the seminal paper of Di2e and Hellman [11], the discrete logarithm prob-
lem (DLP) has become a central problem in algorithmic number theory, with direct
implications in cryptography. For arbitrary 1nite groups the problem is de1ned as fol-
lows: Given a 1nite group G, a base point g∈G and a point y∈ 〈g〉 1nd the smallest
non-negative integer ‘ such that y = g‘.

In their paper, Di2e and Hellman proposed a method for key agreement, whose
security required that DLP be hard for the group (Z=p)∗ of integers modulo a prime
p. This is the multiplicative group of the 1nite 1eld Fp. Considering an arbitrary
1nite 1eld Fq instead, the method can almost trivially be extended to work in the
multiplicative group of Fq, where q is a prime power. The security of the protocol
now requires DLP to be hard in this group.
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The result of the eHorts of a number of researchers was the development of the index
calculus method [1,3,7,15,19,22] and later the number 1eld sieve and the function 1eld
sieve [2,4,10,16]. The methods are designed to compute discrete logarithms in any
1nite 1eld, and are particularly e2cient for 1nite 1elds of the form Fq with q=p a
prime, or q=pn with p a small prime and n large. In both these cases, the above
methods run in subexponential time: the index calculus method in time exp((c1 +
o(1))(log q)1=2(log log q)1=2), and the number 1eld and function 1eld sieves in time
exp((c2 + o(1))(log q)1=3(log log q)2=3), where c1 and c2 are small constants.

The above developments, led Miller [21] and Koblitz [18] to consider alternative
groups, where the group operation can be e2ciently computed, but the DLP is hard.
Their proposal was the group of points of an elliptic curve E over a 1nite 1eld Fq,
denoted E(Fq). Traditionally, the group operation here is denoted additively. Thus the
elliptic curve discrete logarithm problem (ECDLP) is de1ned as follows: Given an
elliptic curve E=Fq, a base point P ∈E(Fq) and a point Q∈ 〈P〉 1nd the smallest non-
negative integer ‘ such that Q = ‘ · P.

ECDLP in general remains of exponential time complexity to this day. However, it
was the work of Menezes et al. [20] that showed that not all elliptic curves oHer the
same level of security. The authors used the well-known Weil pairing, em, to translate
the ECDLP from E(Fq) to the DLP in an extension 1eld F∗qk , which can subsequently
be solved using one of the subexponential methods discussed earlier (MOV reduction).
A necessary condition for it to be e2cient is the existence a small integer k such that

(1) E[m] ⊆ E(Fqk ); where m = #〈P〉,
(2) m | qk − 1.

The authors were able to prove that for supersingular curves both conditions hold for
k66. Subsequently, Frey and R7uck [13] proposed another reduction, based on the Tate
pairing �m. The advantage of this method is that �m(P; S) is an mth root of unity for an
easily computable point S (in most interesting cases S =P). Then the only requirement
for the reduction to go through is that m | qk − 1 for a small k. Clearly, this is a less
restrictive condition. In fact, one cannot avoid this condition, as any isomorphism from
〈P〉 to a subgroup of Fqk implies that #〈P〉=m|qk − 1.

Later, Harasawa et al. [17] attempted to generalize the method of Menezes, Okamoto,
and Vanstone to apply to a larger class of elliptic curves. Their generalization appeared
to be very limited. The main reason is that no e2cient method is known to 1nd a point
S ∈E[m] such that em(P; S) is a primitive mth root of unity, if E is non-supersingular.

The purpose of this paper is to bridge the gap between the MOV reduction and the
Frey–R7uck reduction. We start from a well-known generalization of the Weil pairing,
e (see [6, p. 45, 23, p. 107]). The construction of the pairing is as simple as that
of the Weil pairing, but has the nice property of the (more involved) Tate pairing,
namely e (P; P) is a suitable primitive root of unity. We show how to construct a
group isomorphism between 〈P〉 and �r , where r = #〈P〉 is a prime, and �r is the
group of rth roots of unity. Our construction applies to elliptic curves E=Fq such that
r|q−1, i.e., aq ≡ 2 (mod r). For the cases of interest in cryptography, the order r of P is
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very close to the order of E(Fq) (and certainly greater than 2
√
q). Then, the condition

r|q − 1 is equivalent to aq = 2. We note that our construction can be generalized to
work for r|qk−1 for any k¿1. If the degree of the extension k is reasonably small, the
resulting reduction is e2cient. We want to stress that the reduction presented in this
work is not a new attack to elliptic curve cryptosystems. It is an alternative, elementary
construction of the reduction of Frey and R7uck.

The paper is structured as follows. In Section 2, we review the construction of the
generalized Weil pairing e parameterized by an isogeny  , and state the properties
that will be used later. In Section 3, we specialize the isogeny  to 1−�, where � is
the Frobenius endomorphism. In Section 4, we consider curves with trace of Frobenius
aq = 2, and show how to 1nd a point P′, such that e (P; P′) is a primitive rth root
of unity. In Section 5, we give an algorithm to compute the pairing in the case of
interest. It turns out that for Q∈ 〈P〉, the value e (Q; P) is the multiplicative inverse
of the value �r(Q; P) of the Tate pairing used by Frey and R7uck. Finally, in Section
6 we show how to obtain a reduction in the more general case aq ≡ 2 (mod r).

2. The pairing

In this section, we review a generalization of the Weil pairing. As for the rest of
the paper, p is prime, and q=pk .

Let E be an elliptic curve over Fq. Also let  :E→E be a non-zero endomorphism
of E, and denote its dual by  ̂ . Let T ∈ ker( ̂ )—such a point exists, since  ̂ is onto.
We denote by m the degree of  . Then, the divisor D =m(T )−m(O) is principal. Let
fT ∈ OFq(E) be a function such that

div(fT ) = m(T ) − m(O):

We consider now the divisor of fT ◦  .

div(fT ◦  ) = div( ∗fT ) =  ∗ div(fT)

= m( ∗(T ) −  ∗(O));

the last equality being true by the de1nition of  ∗ (Z-linearity). We note that

 ∗(T ) −  ∗(O) =
∑

 P=T
e (P)(P) − ∑

 R=O
e (R)(R)

= degi  

( ∑
 R=O

(T ′ + R) − (R)

)
;

where  T ′ =T . Here we used the fact that  is an isogeny, and therefore e (P) does
not depend on P, and equals to degi( ). The last line of the derivation shows that the
divisor is principal, since it has degree zero, and it sums to

[degi  ]
∑

 R=O
T ′ = [deg  ]T ′ =  ̂ ◦  (T ′) =  ̂ T = O:
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So it must be the divisor of some function gT ∈ OFq(E). Thus,

(fT ◦  ) = m div(gT ) = div(gm
T );

which implies that

gm
T = fT ◦  : (1)

gT is de1ned up to a multiplicative constant of course. Let now S ∈ ker( ), and X any
point of E( OFq).

gT (X + S)m = fT ( X +  S) = fT ( X ) = fT ◦  X = gT (X )m:

We de1ne the pairing

e : ker( ) × ker( ̂ ) → �m

as

e (S; T ) =
gT (X + S)

gT (X )
: (2)

The above de1nition does not depend on the choice of X . Indeed, if �S denotes the
translation by S map

�S :E → E

X → X + S

then we can write e (S; T ) as

e (S; T ) =
gT ◦ �S

gT
(X );

and the function gT ◦ �S=gT is constant. To see that, we need to note that  =  ◦ �S
because S ∈ ker( ). Then,

div(gT ◦ �S) = �∗S div(gT )

= �∗S ◦  ∗((T ) − (O))

= ( ◦ �S)∗((T ) − (O))

=  ∗((T ) − (O))

= div(gT ):

Therefore e is well-de1ned. Furthermore, it is an easy exercise to show that the
generalized Weil pairing is bilinear and non-degenerate. The proofs are essentially the
same as in the case of the Weil pairing.

Theorem 2.1. Let p be a prime, and q=pk . Let E=Fq be an elliptic curve,  : E→E
be an endomorphism of E of degree m prime to p, and  ̂ its dual. Then there exist
a pairing

e : ker( ) × ker( ̂ ) → �m
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with the following properties:

(1) Bilinear:

e (S1 + S2; T ) = e (S1; T )e (S2; T );

e (S; T1 + T2) = e (S; T1)e (S; T2):

(2) Non-degenerate:

If e (S; T ) = 1 for all T ∈ ker( ); then T = O:

Remark. The pairing in Theorem 2.1 is de1ned for any endomorphism  with the
property p A deg( ). If we specialize  to be the multiplication by n map, and p A n,
then we recover the Weil paring. This justi1es the name “generalized Weil pairing”.

3. A special pairing

In this section, we use the generalized Weil pairing to construct an isomorphism
between a subgroup of E(Fq) and a suitable group of roots of unity in OFq. Our goal
is to reduce the DLP on certain elliptic curves to the DLP in the multiplicative group
of 1nite 1elds. The notation throughout the paper is as follows: A point P ∈E(Fq) is
given, of prime order r. We wish to solve the DLP in 〈P〉 by constructing an e2ciently
computable isomorphism 〈P〉→ �r .

Most of the ingredients for the proposed isomorphism are present. In particular, e 
maps pairs of points to roots of unity, which form a group. We need to specialize the
isogeny  , so that ker( ) is related to the group E(Fq). Let  = 1 − �, where � is
the qth power Frobenius automorphism. Then we have ker( ) =E(Fq), and  ̂ = 1− �̂.
Also

#ker( ̂ ) | deg( ̂ ) = deg( ) = #E(Fq) = N;

where the divisibility comes from the fact that

ker( ̂ ) = degs( ̂ ) and deg( ̂ ) = degs( ̂ )degi( ̂ ):

Assuming that p does not divide N , we have a bilinear, non-degenerate pairing

e :E(Fq) × ker( ̂ ) → �N :

We stress that this pairing exists and is bilinear and non-degenerate for any elliptic
curve E and any 1nite 1eld Fq.

The group of rth roots of unity, �r , is contained in the smallest extension of Fq, say
in Fqk such that r|qk − 1. We will mainly be concerned with the case r|q − 1, i.e.,
when all the rth roots of unity are contained in Fq. Then, the condition reads r|q− 1,
or equivalently

aq ≡ 2 (mod r): (3)
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In cryptography, the point P is chosen to have very large order r, close to the order of
the whole group E(Fq). Thus r is of order q, which implies that Eq. (3) is equivalent
(for such a choice of P) to aq = 2. This will be the main case in our investigation.

4. Curves with trace equal to 2

In this section, we consider elliptic curves with trace of Frobenius aq = 2. Let � be
the qth power Frobenius map. Let Q∈ #E(Fq). We wish to 1nd the point �̂(Q). For
that we consider the following:

(1 − �) ◦ (1 − �̂) = 1 − �− �̂ + [q]:

From the above observation, we have that

(1 − �) ◦ (1 − �̂)Q = O:

Therefore,

Q − �(Q) − �̂(Q) + [q]Q = O;

which implies �̂(Q) = [q]Q. We know that q + 1 − aq = #E(Fq), therefore [q]Q =
[aq − 1]Q. Thus, �̂(Q) = [aq − 1]Q:

Suppose now that the curve has aq = 2. Then, for every point Q∈E(Fq) we have
(1 − �̂)Q =O, i.e., E(Fq)⊆ ker(1 − �̂):

Furthermore,

#ker(1 − �̂) = degs(1 − �̂) 6 deg(1 − �̂) = deg(1 − �) = #E(Fq):

This implies that

ker(1 − �̂) = E(Fq):

To summarize, for a curve E with trace of Frobenius aq = 2, we have a pairing

e : E(Fq) × E(Fq) → �N ;

where N = #E(Fq). Note that N = q− 1, and p (the characteristic) does not divide N .
Therefore from Theorem 2.1 it must be bilinear and non-degenerate.

4.1. A structure theorem

We need to introduce some more notation for this section. The group E(Fq) is iso-
morphic to Z=n1Z⊕Z=n2Z, with n2|n1, and n2|q−1. This means that #E(Fq) =N = n1n2.
We denote by (T1; T2) a pair of generators of E(Fq). We recall that P is a point in
E(Fq) of prime order r. For the remainder of this paper, we assume that n1 = lrk , r A l
and that n2|l, i.e., r does not divide n2. This is usually the case in cryptography, as
the point P is chosen to have very large order. Then 〈P〉 is contained in 〈T1〉. Our
goal is to show that e (P; P) is a primitive rth root of unity.



T. Garefalakis / Theoretical Computer Science 321 (2004) 59–72 65

Lemma 4.1. There exist points T; S ∈E(Fq) such that e (T; S) is a primitive n1st root
of unity.

Proof. The image of e (T; S) as T and S range over E(Fq) is a subgroup of �N , say
equal to �d. Then it follows that for all (T; S)∈E(Fq)×E(Fq).

1 = e (T; S)d = e ([d]T; S):

The non-degeneracy of the e pairing implies that [d]T =O for all T ∈E(Fq). In
particular, if T =T1 then it must be d= n1.

Lemma 4.2. The order of e (T1; T1) is divisible by rk .

Proof. Let T = [x1]T1 + [x2]T2 and S = [y1]T1 + [y2]T2 be one pair of points such that
e (T; S) is a primitive n1st root of unity, which exists by Lemma 4.1. Suppose now to
the contrary, that rk does not divide e (T1; T1). Then

e (T; S) = e (T1; T1)x1y1e (T1; T2)x1y2e (T2; T1)x2y1e (T2; T2)x2y2 :

Note now that the order of e (T1; T1) divides n1 = lrk , but by assumption rk does not
divide it. Therefore, the order of e (T1; T1) divides lrk−1. Obviously, the orders of
e (T1; T2), e (T2; T1), and e (T2; T2) divide l. Thus we have,

e (T1; T1)lr
k−1

= e (T1; T2)lr
k−1

= e (T2; T1)lr
k−1

= e (T2; T2)lr
k−1

= 1:

Therefore,

e (T; S)lr
k−1

= 1;

which is a contradiction, since lrk−1¡n1.

Theorem 4.3. Let P′ ∈E(Fq), be a point of order rd. Then, e (P; P′) is a primitive
rth root of unity if and only if k¡d + 1.

Proof. It is clear that e (P; P′) is either a primitive rth root of unity or 1. This is
because

e (P; P′)r = e ([r]P; P′) = e (O; P′) = 1:

We recall that 〈P〉, and 〈P′〉 are subgroups of 〈T1〉. It follows that P = [lrk−1]T1 and
P′ = [lrk−d]T1. Then we have

e (P; P′) = e ([lrk−1]T1; [lrk−d]T1)

= e (T1; T1)l
2r2k−d−1

:

Then Lemma 4.2 implies,

e (P; P′) = 1 ⇔ 2k − d− 1 ¿ k ⇔ k ¿ d + 1:
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We note, that if rd is the exact power of r dividing N , then the point P′ of the
previous theorem can be computed e2ciently using the probabilistic method described
by Frey et al. [12]. More importantly, in cryptography the point P is chosen to have
very large order r (practically on the same order as q). For that reason, we state the
following corollary.

Corollary 4.4. Let P ∈E(Fq) be a point of order r, such that r2 does not divide
#E(Fq). Then e (P; P) is a primitive rth root of unity.

We want to emphasize that Corollary 4.4 is in sharp contrast with the properties
of the Weil pairing. For the Weil pairing, er(P; P) for every P ∈E[N ]. In our case,
when k = 1 the value e (P; P) is not trivial, and in fact is a primitive rth root of unity.
This eliminates a major obstacle of the Weil pairing approach: The point that makes
e (P; ·) a primitive rth root of unity is de1ned over Fq (in the case of the Weil pairing
it exists in a very large extension, unless the curve is supersingular). Furthermore, it
is known in advance. We have the following theorem.

Theorem 4.5. Let P be a point in E(Fq) of prime order r, such that rd does not
divide N. Then there is an e7ciently computable point P′ such that the map

V : 〈P〉 → �r; Q → e (Q; P′)

is a group isomorphism. In particular, if d= 2, then P′ =P.

5. Computing the pairing

We turn now to the computation of the generalized Weil pairing. A computation
using the de1nition directly would result in an exponential time algorithm. Thus, we
need some other formula suitable for the computation. Such a formula can be found
using Galois cohomology. This formula, not surprisingly, also provides the connection
between our construction and the Frey–R7uck construction that uses the Tate pairing.
Although part of the material of this section is well known, we choose to include it,
in order to keep the paper as self-contained as possible.

Let E=Fq be an elliptic curve, and let  :E→E be an isogeny. We start from the
following exact sequence:

0 → ker( ) → E( OFq)
 →E( OFq) → 0: (4)

Taking Gal( OFq= OFq) cohomology, we obtain the following long sequence:

0 → E(Fq) ∩ ker( ) → E(Fq)
 → E(Fq)

+→ H 1(G; ker( )) → H 1(G; E( OFq))
 → H 1(G; E( OFq));
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where G = Gal( OFq=Fq). We can extract now the short exact sequence, sometimes called
the Kummer sequence for E=Fq,

0 → E(Fq)
 E(Fq)

+→ H 1(G; ker( )) → H 1(G; E( OFq))[ ] → 0; (5)

where H 1(G; E( OFq))[ ] denotes the subgroup of H 1(G; E( OFq)) that is sent to the
zero cocycle class by  . The connecting homomorphism + is de1ned as follows. Let
P ∈E(Fq), and let Q∈E( OFq) such that  (Q) =P. Then a 1-cocycle representing +(P)
is given by

G → ker( );

- → Q- − Q;

that is

+(P)(-) =Q- − Q:

From this point on, we specialize  = 1 − �, the case of interest here. Then we know
that ker( ) =E(Fq), so the action of G on ker( ) becomes trivial, and therefore

H 1(G; ker( )) = Hom(G; ker( )):

Furthermore, Hilbert’s Theorem 90 provides the isomorphism

F∗q
(F∗q)r

∼= H 1(G; �r):

Assume further, that aq ≡ 2 (mod r), for a prime r. Then we know that q−1≡ 0 (mod r),
and therefore, Fq contains all the rth roots of unity. Denote by �r the group of rth
roots of unity in Fq. Then G acts trivially on �r , so

H 1(G; �r) = Hom(G; �r);

and we have the isomorphism

+K : F∗q =(F∗q)r →Hom(G; �r)

b · (F∗q)r → (- → 0-=0);

where b∈ F∗q , 0∈ OF∗q , and 0r = b. In other words, for some b∈ F∗q , +K (b) is a homo-
morphism from G to �r , and

+K (b)(-) =
0-

0
: (6)

Then it can be shown (see [23, Section X.1] or [6, Section V.2]), that there exists a
pairing

B:
E(Fq)
 E(Fq)

× ker( ) → F∗q
(F∗q)r

;
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such that

e (+(S); T ) = +K (B(S; T )):

We note that +(S) is not a point in ker( ), and +K (B(S; T )) is not an rth root of unity.
The above relation is to be interpreted as follows.

For any - ∈ G; e (+(S)(-); T ) = +K (B(S; T ))(-): (7)

The crucial thing is that the bilinear pairing B can be computed e2ciently, at least in
the case of interest. In fact, if T ∈ ker( ) is a point of order r, and S �=T , then

B(S; T ) ≡ fT (S) (mod (F∗q)r);

where fT is a function with divisor

div(fT ) = r(T ) − r(O):

If T = S, then we can use bilinearity to obtain

B(T; T ) = fT (−T )−1:

More generally, for any point X �=T we have

B(S; T ) = B(S + X − X; T ) = B(S + X; T )B(−X; T )

= B(S + X; T )B(X; T )−1 =
fT (S + X )

fT (X )
:

We recall that now that our problem is the following: Given points P;Q∈E(Fq), with
#〈P〉= r, we want to compute e (Q; P). We deal with elliptic curves with aq ≡ 2 (mod r).
From Eq. (7) we have

e (+(S)(-); P) = +K (B(S; P))(-); (8)

where +(S)(-) =R- − R for some point R such that  (R) = S.
If we choose - to be the q-power Frobenius automorphism in G = Gal( OFq=Fq), and

S =−Q, then we have

�(R) = R- for any R ∈ E: (9)

Also,

 (R) = S ⇒
R− �(R) = S ⇒
�(R) − R = −S ⇒
R- − R = −S ⇒
+(S)(-) = Q:
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Thus, Eq. (8) has become

e (Q; P) = +K (B(−Q; P))(-); (10)

where - is now 1xed (and equal to the Frobenius automorphism).
It remains to compute +K (B(−Q; P))(-). We recall from Eq. (6) that

+K (B(−Q; P))(-) =
0-

0
;

where

0r = B(−Q; P) = B(Q; P)−1 ≡ fP(Q)−1 (mod (F∗q)r):

We have,

0-

0
=

0q

0
= 0q−1:

Therefore, +K (B(−Q; P))(-) can be computed as

+K (B(−Q; P))(-) =
(

fP(X )
fP(X + Q)

)(q−1)=r

for any point X ∈E( OFq), X �=P. Putting everything together, we have

e (Q; P) =
(

fP(X )
fP(X + Q)

)(q−1)=r

: (11)

Eq. (11) can now be used to compute the value e (Q; P). One 1rst computes fP(X +Q)
and fP(X ) using repeated doubling. The point X has to be chosen suitably, so that
the points X and X +Q do not appear in the support of the divisors of the functions
that appear in the computation. Those functions have divisors with support contained
in 〈P〉, so one wants to avoid X ∈ 〈P〉. Thus one may choose X ∈E(Fq), which in the
case q−1¿r yields a useful point with probability at least 1

2 , or one may even choose
X ∈E(Fq2 ), which yields a useful point with probability at least 1−1=q. The algorithm
for computing the classical Weil pairing was 1rst given by Miller. An elegant presen-
tation of the same algorithm is contained in [12]. The value (fP(X )=fP(X +Q))(q−1)=r

is computed using repeated squaring in Fq.
Finally, it is interesting to note that for elliptic curves with aq ≡ 2 (mod r), and if P

is a point of order r, then

e (Q; P) = �r(Q; P)−1;

where �r is the Tate pairing, used by Frey et al. [12].
We note that what is important for the e2cient computation of both the Tate pairing

and e1−� is the fact that we are able to express its values in terms of values of the
rational function fP , whose divisor has very few points, all de1ned over the base
1eld (a small extension would also do). The repeated doubling procedure mentioned
above is the simplest way to use formula (11) to compute e1−�. Indeed, there are
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more e2cient ways to evaluate the Tate pairing (and thus e1−�). Such methods are
described for instance in [5,14].

6. Curves with trace congruent to 2

We can relax the requirement aq = 2 a little, and assume only that aq ≡ 2 (mod r).
This is equivalent to say r|q − 1. Then, it is not in general the case that ker(1 −
�̂) =E(Fq). However, if in the above derivation we take Q∈ 〈P〉. Then we conclude
that

�̂(Q) = [aq − 1]Q = Q;

because aq ≡ 2 (mod n) and [r]Q =O. Thus, we have

〈P〉 ⊆ ker(1 − �̂):

For simplicity, we will only consider the case that no higher power of r divides
N = #E(Fq)—which is the only interesting case in cryptography. Then we claim that
e (P; P) is again a primitive rth root of unity.

Lemma 6.1. There exist a point S ∈ ker(1 − �̂), such that e (P; S) is a primitive rth
root of unity.

Proof. It is clear that e (P; S) is an rth root of unity. Furthermore, as the point S
ranges over ker(1− �̂), the values e (P; S) are in a subgroup of �N , say �d. It follows
that for all S ∈ ker(1 − �̂), we have

1 = e (P; S)d = e ([d]P; S):

The non-degeneracy of e then implies that [d]P =O, i.e., r divides d. It follows that
the order of e (P; S) is exactly r for some point S.

As we pointed out in Section 3, we have N̂ = #ker(1 − �̂) |N . We also showed that
r|#ker(1 − �̂). We adopt the following notation: N = lr, and N̂ = l̂r, with l̂|l. Also,
ker(1 − �̂) is the product of at most two cyclic groups, one of which contains 〈P〉.
If (S1; S2) is a pair of generators for ker(1 − �̂), it follows that the order of e (P; S1)
divides r. If the order was 1, then it would violate the non-degeneracy of e (the
argument is virtually the same as in Lemma 4.2 followed by Theorem 4.3 for k = 1).
Then, since P ∈ 〈S1〉, it will be P = [l′]S1. Therefore,

1 = e (P; P)d = e (P; S1)l
′d

which implies that d has to be r (since r2 A N̂ ). Therefore, we have the theorem.

Theorem 6.2. Let E=Fq be an elliptic curve, P ∈E(Fq) a point of prime order r such
that r2 AN , and assume that aq ≡ 2 (mod r). Then e (P; P) is a primitive rth root of
unity.
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We also note that the proof given in Section 5 goes through in this more general
case word by word. Therefore, the algorithm of the previous section works in the case
aq ≡ 2 (mod r) as it is.

7. Conclusions

We have reviewed the construction of a well-known generalization of the Weil pair-
ing, which associates a bilinear and non-degenerate pairing e to every endomorphism
 of the elliptic curve. We focus at the special case  = 1−�, where � is the Frobenius
endomorphism, and show how e1−� can be used to obtain a reduction of the elliptic
curve discrete logarithm problem to the discrete logarithm problem in the underlying
1nite 1eld. The construction is e2cient if aq ≡ 2 (mod r), where aq is the trace of
Frobenius, and r is the order of the base point. An important step of the reduction is
the e2cient computation of the pairing. We prove a formula that can be used directly
for the computation of e1−�. As a side result of this formula we obtain a connection
between e1−� and the Tate pairing, used by Frey and R7uck for the same reduction.

Pairings on elliptic curves have recently found many positive applications in cryp-
tography (see for instance [8,9]). The e2ciency and generality of our construction
may, thus, be useful in the construction of cryptographic protocols such as the ones
mentioned above.
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