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SUMMARY

Transcriptional activation of the IFN-b gene by virus
infection requires the cooperative assembly of an en-
hanceosome. We report that the stochastic and
monoallelic expression of the IFN-b gene depends
on interchromosomal associations with three identi-
fied distinct genetic loci that could mediate binding
of the limiting transcription factor NF-kB to the IFN-b

enhancer, thus triggering enhanceosome assembly
and activation of transcription from this allele. The
probability of a cell to express IFN-b is dramatically
increased when the cell is transfected with any of
these loci. The secreted IFN-b protein induces
high-level expression of the enhanceosome factor
IRF-7, which in turn promotes enhanceosome as-
sembly and IFN-b transcription from the remaining
alleles and in other initially nonexpressing cells.
Thus, the IFN-b enhancer functions in a nonlinear
fashion by working as a signal amplifier.

INTRODUCTION

The human antiviral response is triggered by the transcriptional

activation of type I interferon genes (20 IFN-a, 5 IFN-u, and 1

IFN-b) (Paun and Pitha, 2007; Taniguchi and Takaoka, 2002).

This leads to the production and secretion of IFN proteins that

bind to type I IFN receptors on the surface of both infected

and uninfected cells, leading to the expression of a large number

of antiviral genes (Stetson and Medzhitov, 2006). Transcriptional

activation of the human IFN-b gene requires an enhancer ele-

ment located immediately upstream of the core promoter. The

IFN-b enhancer is recognized by three distinct sets of transcrip-

tion factors (NF-kB, IRFs, and ATF-2/cJun) and by the architec-

tural protein HMGI(Y). Virus infection leads to the coordinate

activation of all three types of transcription factors, which as-

semble on the IFN enhancer to form a multiprotein complex

known as the IFN-b enhanceosome (Thanos and Maniatis,

1995). Enhanceosome assembly occurs only after viral infection

and not in response to other signals that can separately activate

each of the transcription factors (Thanos and Maniatis, 1995;
Lomvardas and Thanos, 2002). This combinatorial mechanism

is based on the fact that virus infection is the only known signal

that can activate all of the IFN-b transcriptional activators simul-

taneously (Maniatis et al., 1998; Munshi et al., 1999). Following

its assembly on the nucleosome-free enhancer, the enhanceo-

some instructs the ordered recruitment of chromatin modifiers

and basal transcription factors to the nearby promoter (Agalioti

et al., 2000). This recruitment program culminates with sliding

of a nucleosome masking the core promoter, thus allowing the

binding of RNA polymerase II and the initiation of transcription

(Lomvardas and Thanos, 2001).

The cooperative assembly of the enhanceosome and the orga-

nization of nucleosomes in the enhancer/promoter region ensure

a high degree of specificity in the transcriptional response. Thus,

aberrant transcription from individual transcription factors that

are each activated by a variety of other signals (TNF-a, IFNs,

stress, etc.) is prevented (Lomvardas and Thanos, 2002). Previ-

ous biochemical and structure determination experiments re-

vealed an unexpected complexity in the mechanisms driving

enhanceosome assembly. Chromatin immunoprecipitation ex-

periments revealed a stepwise assembly of the enhanceosome

(Munshi et al., 2001; Lomvardas and Thanos, 2002). More specif-

ically, NF-kB is initially detected at the IFN-b enhancer at 2 hr

after virus infection together with IRF-1, whereas ATF-2 is re-

cruited to the enhancer an hour later followed by the arrival of

IRF-3 and c-Jun. IRF-7 is incorporated into the enhanceosome

just before initiation of transcription (5–6 hr post-infection). The

enhanceosome remains intact for 6 additional hours, and this

correlates with the peak of transcriptional activation.

The three-dimensional structure of the intact enhanceosome,

as deduced from the assembly of separate structures of pairs

of transcription factors bound to their sites, revealed that cooper-

ative assembly derives from binding-induced changes in DNA

conformation and to a lesser extent from protein-protein interac-

tions (Escalante et al., 2007; Panne et al., 2007). This observation

is in agreement with the stepwise assembly of the enhanceosome

in vivo (Munshi et al., 2001), during which the sequential arrival of

transcription factors onto the enhancer alters the DNA structure,

thus allowing the subsequent binding of the nearby factors.

A striking feature of IFN-b expression (Zawatzky et al., 1985;

Enoch et al., 1986; Senger et al., 2000; Hu et al., 2007), as well

as of many other cytokine genes, including IL-2 (Holländer

et al., 1998), IL-4 (Riviere et al., 1998), IL-5 (Kelly and Locksley,
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2000), IL-13 (Kelly et Locksley, 2000; Guo et al., 2005), and IL-10

(Calado et al., 2006), is that, even under optimal conditions, only

a fraction of the cells in the population expresses the cytokine

gene at any given moment. This heterogeneity is not due

to mixed populations of producing and nonproducing cells but

rather is a stochastic phenomenon, as revealed by cell cloning

experiments (Zawatzky et al., 1985). An additional characteristic

of cytokine gene expression is that gene activation is predomi-

nantly monoallelic, thus further underscoring the stochastic

mode of gene regulation. A recent study applying single cell

RT-PCR analysis and stochastic model simulation provided

initial evidence for allelic imbalance of virus-induced IFN-b

gene transcription (Hu et al., 2007). However, the mechanisms

of stochastic IFN-b gene expression and allelic imbalance

remain elusive.

What transcription mechanism can assure the random choice

of cells expressing IFN-b after virus infection? One attractive

model invokes the transcription process itself and therefore is

likely associated with the inherent complexity of enhanceosome

assembly on the IFN-b enhancer/promoter. Since enhanceo-

some assembly is a cooperative process, we asked whether lim-

iting concentrations of one or some of the IFN-b activators

accounts for the stochastic assembly of enhanceosomes thus

leading to binary transcriptional switches. We present evidence

for a model in which virus infection induces the stochastic

expression of the IFN-b gene from a single allele in a small pop-

ulation of cells. The choice of the allele to be expressed depends

on interchromosomal associations with three identified distinct

genetic loci that could mediate binding of the limiting transcrip-

tion factor NF-kB to the IFN-b enhancer promoting enhanceo-

some assembly and activation of transcription from this allele.

The secreted IFN-b protein induces high-level expression of the

enhanceosome factor IRF-7, which in turn promotes enhanceo-

some assembly and IFN-b transcription from the remaining

alleles and in other initially nonexpressing cells. Thus, the

IFN-b enhancer functions in a nonlinear fashion and works as

a signal amplifier.

RESULTS

Limiting Amounts of NF-kB and IRF Proteins Contribute
to the Stochastic Expression of the IFN-b Gene
To investigate whether individual enhanceosome components

are present in cells at suboptimal concentrations, we transfected

HeLa cells with expression vectors producing each of the IFN-b

activators, followed by virus infection for 6 hr and hybridization

with an antisense IFN-b digoxigenin-labeled RNA probe. Control

experiments using GFP reporters have indicated that under our

conditions approximately 90% of HeLa cells can be transfected

(data not shown). Figures 1A and 1B show that only 20% of the

cells in the population transcribe the IFN-b gene in response to

virus infection, a result consistent with previous studies (Za-

watzky et al., 1985; Enoch et al., 1986; Senger et al., 2000; Hu

et al., 2007). Remarkably, the percentage of IFN-b-producing

cells after virus infection increases to 75%, when the cells

were transfected with an expression vector producing the p65

subunit of NF-kB and to 55% after IRF-7 expression. Smaller in-

creases were observed when either ATF-2/cJun, IRF-1, or IRF-3
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were expressed, whereas increasing the concentration of

HMGI(Y) did not affect the number of cells expressing IFN-b (Fig-

ures 1A and 1B). In control experiments we showed that hybrid-

ization with a sense IFN-b RNA probe did not produce a signal

(data not shown). The increase in the number of IFN-b-producing

cells is also reflected in the amount of total IFN-b mRNA

produced, as seen by the RT-PCR experiment shown in

Figure 1C. These experiments suggest that NF-kB, IRF-7, IRF-3,

and to a lesser extent ATF-2/cJun and IRF-1 exist at suboptimal

concentrations within the cells and the failure of some cells to

express IFN-b can be bypassed by increasing the cellular con-

centration of these proteins. The increase of IFN-b-expressing

cells is not observed in uninfected cells (not shown), indicating

that overexpression of these factors did not bypass the require-

ment for enhanceosome assembly after virus infection. To test

whether NF-kB overexpression increases not only the percent-

age of IFN-b-expressing cells but also the amount of IFN-b

mRNA produced per cell, we carried out the experiment shown

in Figure 1D. HeLa cells were transfected with the NF-kB expres-

sion vector along with a GFP vector and the cells were either

mock or virus infected. GFP-positive cells were isolated by cell

sorting, and the amount of IFN-b mRNA was determined by

real-time RT-PCR. As seen in the figure, the increase in IFN-b

mRNA production (4.1-fold) is similar to the increase of the

number of cells (3.5-fold) producing IFN-b expression following

NF-kB overexpression (Figure 1B). Thus, the IFN-b expression

levels per cell are not significantly affected by NF-kB overex-

pression.

Virus Infection Induces Colocalization of the IFN-b Gene
with Three Distant NF-kB Bound Genomic Loci
The low concentration of NF-kB within cells (approximately

50.000 molecules, Hottiger et al., 1998; Lipniacki et al., 2006;

and our unpublished data) when taken together with the fact

that it is the first factor that binds to the IFN-b promoter (Munshi

et al., 2001) poses a major question regarding the mechanism by

which NF-kB locates the IFN-b gene and nucleates enhanceo-

some assembly in the context of the human genome. We hypoth-

esized that there exist ‘‘specialized’’ NF-kB sites that might be

capable of interacting with NF-kB immediately and preferentially

after its entry into the nucleus. Next, NF-kB could associate with

the promoters of target genes via inter- and/or intrachromoso-

mal interactions, thus ‘‘delivering’’ the factor to the correct site.

Since interchromosomal interactions are stochastic in nature

(de Laat and Grosveld, 2007; Misteli 2007), such a model could

explain some of the features of IFN-b expression discussed

above. To test this idea we employed circular chromosome con-

formation capture (4C) (Ling et al., 2006; Zhao et al., 2006) cou-

pled with chromatin immunoprecipitation (Figure 2A). The 4C

method is based on the proximity ligation principle, in which

DNA-protein complexes existing in trans will generate circular

DNA molecules (3C) (Dekker et al., 2002). Sequences interacting

with a known gene (IFN-b) can be cloned by inverse PCR using

gene-specific primers without any prior knowledge of their iden-

tities. HeLa cells were mock or virus infected for 4 hr, followed by

formaldehyde crosslinking. The crosslinked chromatin was di-

gested with EcoRI (flanking the IFN-b gene), followed by chro-

matin immunoprecipitation using a p65-specific antibody. The



precipitated and digested chromatin was diluted and DNA ligase

was added to covalently link DNA sequences that colocalize in

the nucleus independent of their location. After removing the

protein, nested PCR primers were used to detect interacting se-

quences. Using a pair of nested PCR primers (Figure 2A) we de-

tected sequences from a wide range of sizes in the crosslinked

chromatin (Figure 2B, lane 4) derived from virus-infected cells

but not in any of the controls, including genomic DNA

(Figure 2B, lane 1), EcoRI-cleaved but not ligated chromatin

DNA (lane 2) derived from virus-infected cells, or EcoRI-cleaved

and -ligated chromatin DNA derived from uninfected cells (lane

3). Subsequent sequence analysis of the 4C samples from vi-

rus-infected cells identified three unique sequences that appear

to interact with IFN-b (Figures 2C and S1 available online). Re-

markably, all three clones possess specialized Alu repeats,

known as AluSX and AluY (Polak and Domany, 2006), which con-

tain the putative NF-kB binding site GGGTTTCACC deviating

from the consensus GGGRNYYCC in two nucleotides (under-

Figure 1. NF-kB Is the Most Limiting Factor

Required for IFN-b Enhanceosome Assem-

bly In Vivo

(A) HeLa cells were transfected with empty or

expression vectors encoding each of the IFN-b

gene activators. Six hours post-infection the cells

were fixed and IFN-b expression in individual cells

was detected by in situ hybridization using

an antisense RNA IFN-b probe labeled with digoxy-

genin ribonucleotides followed by incubation with

ananti-DIG antibody conjugated with alkalinephos-

phatase. The top left panel shows uninfected cells.

The red and blue arrows indicate representative

nonexpressing and expressing cells, respectively.

(B) Diagrammatic representation of the percent-

age (mean ± standard deviation [SD]) of cells

expressing IFN-b from three independent in situ

hybridization experiments performed as in (A).

All cells for each category were scored blindly,

and at least 300 cells were counted in each

case. * denotes p < 0.05, ** denotes p < 0.01,

and *** denotes p < 0.001.

(C) RT-PCR analysis illustrating IFN-b expression

in HeLa cells transfected with the indicated IFN-b

transcriptional regulators. The bottom part of the

figure shows the induction index derived by quan-

titating three independent experiments.

(D) HeLa cells were transfected with the p65 ex-

pression vector along with a GFP-expressing

plasmid followed by mock or virus infection.

GFP-positive cells were isolated by cell sorting

and the abundance of IFN-b mRNA was deter-

mined by real-time RT-PCR analysis (shown are

mean values ± SD).

lined). Clones #14 and #9 contain two

copies of the specialized NF-kB motif

(Figure S1). Clone #21 resides on chro-

mosome 4, #14 on chromosome 9, and

#9 on chromosome 18. Of note, the IFN-b

gene resides on chromosome 9 (9p21).

Thus, #14 and IFN-b reside near the two ends of chromosome

9 in humans.

To examine whether the three identified loci interact with the

IFN-b locus, we performed 3C assays using primers specific

for IFN-b and for each of the clones. Figure 2D (lanes 1, 7, and

13) shows that in uninfected cells there is no detectable PCR

product generated using primer pairs either from #21, or #14,

or #9 and IFN-b. However, PCR products were detected when

the chromatin DNA used was prepared from virus-infected cells

(Figure 2D, lanes 2–4, 8–10, and 14–16). The products were de-

tected as early as 2 hr after virus infection, peaked at 4 hr, and

were decreased at 6 hr post-infection, indicating that these inter-

actions occur primarily during enhanceosome assembly at the

IFN-b locus. In each instance, the size of the PCR products

was that predicted for the ligation of IFN-b with each of the

clones and the identity of the products was confirmed by DNA

sequence analysis (data not shown). Furthermore, the specificity

of the interactions between the IFN-b locus and at least one of
Cell 134, 85–96, July 11, 2008 ª2008 Elsevier Inc. 87



the clones (#21) was verified in 4C-ChIP experiments using in-

verse PCR-nested primers from the genomic locus of #21. In

this experiment we cloned the IFN-b locus three times, under-

scoring the strength and the specificity of these interactions

(data not shown).

To further validate the 4C data and to demonstrate the physi-

cal colocalization of IFN-b with clones #21, #9, and #14, we per-

formed three-dimensional DNA fluorescence in situ hybridization

(FISH) analysis using HeLa cells that were either mock or virus

infected for 4 hr. Figure 3A shows that the IFN-b probe detects

six or seven IFN-b genes, whereas probes for #21, #9, and #14

detect three, three, and six or seven loci in HeLa cells, respec-

tively. This is due to the fact that HeLa cells are polyploid. In

mock-infected cells we detected no evidence of colocalization

between IFN-b and any of the clones (Figure 3A, left column).

Remarkably, in some virus-infected cells, one allele of IFN-b is

specifically colocalized with one allele of #21, or #14, or #9

(Figure 3, right column). FISH experiments using a BAC clone

containing different AluSX repeats fail to detect colocalization

Figure 2. Identification of IFN-b Locus-In-

teracting Genomic Regions using 4C-ChIP

(A) Schematic representation of the 4C-ChIP as-

say. The EcoRI fragment bearing the IFN-b pro-

moter is shown in green whereas EcoRI fragments

bearing putative interacting loci are shown in red.

The transcription factor NF-kB is shown bound

on the IFN-b enhancer. The red arrows indicate

nested primers designed near the EcoRI sites

flanking the IFN-b locus.

(B) Shown is an agarose gel depicting nested in-

verse polymerase chain reactions of 4C-ChIP

samples. After amplification only crosslinked, di-

gested, and ligated chromatin DNA derived from

virus-infected cells generated amplified se-

quences of different sizes.

(C) Short description of 4C-ChIP clones.

(D) Agarose gel electrophoresis of the PCR prod-

ucts using nested primers specific to the IFN-b lo-

cus together with primers specific for the 4C-ChIP

clones #14, #21, and #9. PCR was performed on

EcoRI-digested chromatin derived from HeLa

cells mock- or virus-infected for 2, 4, and 6 hr. Ge-

nomic DNA and crosslinked digested but not li-

gated chromatin derived from 4 hr infected cells

were used as controls. Size markers were loaded

between lanes 6 and 7, 12 and 13.

with the IFN-b locus before or after virus

infection (not shown). These FISH exper-

iments confirmed our results obtained

using the 3C technique (Figure 2). FISH

experiments performed on nuclei from

virus-infected cells for different amounts

of time indicated that these interactions

are transient since they appear 2 hr post-

infection, peak at 4 hr, and decline signif-

icantly at 8 hr post-infection (Figure 3B),

a result consistent with the 3C analysis

of Figure 2D. Thus, interchromosomal as-

sociationsbetweenthe IFN-b locusand these locioccur at maximal

frequencies before initiation of transcription and during enhanceo-

some assembly (2–6 hr), and they are significantly reduced at

the time of initiation and propagation of transcription (6–8 hr).

In control experiments, FISH was performed with the IL-8 gene

(a known NF-kB target virus-inducible gene) and clones #21,

#14, and #9 in mock- or virus-infected cells. No specific colocal-

ization was detected between these loci and the IL-8 gene, nor

between the IFN-b and IL-8 genes (data not shown). By contrast,

the 4C clone #21 (#14 and #9 not shown) was colocalized with

the IkBa gene (another NF-kB target) (Figure S2). The interaction

between IkBa and our 4C clones prompted us to examine

whether the IFN-b and IkBa genes are colocalized after virus in-

fection. As seen in Figure S2, 11% of virus-infected cells show

colocalization between the IFN-b and IkBa genes. Thus, the

IFN-b and IkBa genes, which are activated by NF-kB, colocalize

after virus infection. These colocalizations appear to be gene

specific since not all NF-kB-regulated genes colocalize either

with the 4C clones or between them.
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Figure 3. DNA FISH Reveals the Colocalization of the IFN-b Locus and the 4C-ChIP Clones following Virus Infection

(A) A digoxygenin-labeled DNA probe was used to detect the IFN-b locus and was visualized with FITC-conjugated anti-DIG antibody (green). A biotin-labeled

DNA probe was used to detect the 4C-ChIP clones, as indicated in the figure, and was visualized with Alexa 568-conjugated streptavidin (red). The circle includes

the colocalized alleles observed only in virus-infected cells. A magnification of the area of colocalization is shown at the top right.

(B) Diagrammatic representation of the percentage (mean ± SD) of cells with colocalization between IFN-b and each of the 4C-ChIP clones during the time course

of virus infection. All cells were scored blindly and slides were prepared from three different experiments. Scores were derived from 250 to 486 cells for each

category. * denotes p < 0.05, ** denotes p < 0.01, and *** denotes p < 0.001.

(C) Diagrammatic representation of DNA FISH experiments showing the percentage (mean ± SD) of cells with colocalized signals of #21 and #14 in the time course

of virus infection. Of note, relatively high frequency of colocalization is observed in uninfected cells.

(D) Triple DNA FISH experiment revealed the simultaneous colocalization of IFN-b with #21 and #14 upon virus infection. The IFN-b locus was detected with far

red (yellow).

(E) Diagrammatic representation of triple DNA FISH experiments showing the percentage (mean ± SD) of cells with colocalized signals of each combination of the

indicated genomic loci.
To test whether the 4C isolated genomic loci colocalize before

or after virus infection, we carried out FISH experiments using

probes for each 4C clone. The results showed a markedly high

frequency of colocalization between 4C clones #14 and #21

even before virus infection (Figure 3C). These interactions are

specific since the IFN-b gene located on the same chromosome

as #14 does not colocalize with any of these clones before virus

infection. The interchromosomal interactions are further in-

creased upon virus infection (Figure 3C). Remarkably, triple

FISH experiments revealed the simultaneous interaction of

IFN-b with these 4C loci, albeit in a lower percentage of cells

(Figures 3D and 3E). These results showed that the widely sepa-
rated 4C clones colocalize before virus infection and interact

together with the IFN-b gene after virus infection.

4C Clones Colocalize with Monoallelically Expressed
IFN-b RNA
We have shown that one IFN-b allele interacts with one allele

from each of the 4C clones only in response to virus infection

(Figure 3). At the peak of interaction (Figure 3B), the total per-

centage of IFN-b interacting alleles in the cell population is

27%, a number that is similar to the percentage of cells express-

ing IFN-b following virus infection (Figure 1). Therefore, we asked

whether these interchromosomal interactions correlate with
Cell 134, 85–96, July 11, 2008 ª2008 Elsevier Inc. 89



IFN-b RNA production. We combined DNA FISH with RNA FISH to

determine whether the 4C clones colocalize with the transcribed

IFN-b gene following virus infection. Figure 4A shows that only

one IFN-b allele is transcribed at 6 hr following virus infection.

Remarkably, this allele colocalizes with a single allele from the

4C clones (Figures 4B–4D) with frequencies similar to those de-

scribed in Figure 3B for the 6 hr time point. The triple RNA/DNA

FISH experiment of Figure 4E shows that the single IFN-b allele

interacting with the 4C clone #21 is the one expressing IFN-b

mRNA. As a control we showed that the IFN-b RNA is not de-

tected in uninfected cells and that the IFN-b RNA signal is lost

when virus-infected cells are treated with RNase A (data not

shown). Taken together, these results suggest that interchromo-

somal associations occurring between single alleles from the 4C

clones and IFN-b in a cell population correlate with monoallelic

IFN-b transcription. The total percentage of cells showing max-

imal monoallelic interchromosomal interactions at 4 hr post-in-

fection (27.1%, Figure 4F) correlates to the total percentage of

cells expressing the IFN-b gene from a single allele at 6 hr

(22%, Figure 4A). These experiments suggest that the IFN-b

RNA is transcribed from a single IFN-b allele interacting with

a single allele from any of the 4C isolated loci.

Since the experiments described above have been carried out

in HeLa cells that are polyploid, we repeated the DNA, DNA-RNA

FISH, and the triple FISH experiments in diploid human epithelial

cells (HCT-116) and obtained qualitatively similar results

(Figure S3), thus indicating the biological significance of our

observations.

IFN-b Gene Transcription Switches from Monoallelic
to Multiallelic in Response to IFN-b Cytokine Signaling
The experiments of Figure 4 were performed using cells infected

with virus for 6 hr. This is the time point at which IFN-b transcrip-

tion begins. However, at this time point there is a decreased

interaction between IFN-b and the 4C clones, and this interaction

is lost at the peak of IFN-b transcription (Figure 3). Since there

are no interchromosomal interactions at later time points (not

shown) we can’t further correlate IFN-b RNA expression with in-

teraction with the 4C clones. However, when we repeated the

DNA-RNA FISH using IFN-b probes and cells infected with

Figure 4. RNA and DNA FISH on Virus-In-

fected Cells Reveal Colocalization of the

4C-ChIP Clones with the Transcriptionally

Active IFN-b Allele

(A) Combined RNA and DNA FISH on nuclei from

mock- and virus-infected for 6 hr HeLa cells.

DIG-labeled nick-translated IFN-b probe was

used for the detection of the IFN-b nuclear tran-

scripts. The signal was visualized with FITC-conju-

gated anti-DIG antibody (green). A biotin-labeled

DNA probe was used for the detection of the

IFN-b locus and was visualized with Alexa 568-

conjugated streptavidin (red). The nuclei were

counterstained with DAPI (blue). RNA FISH de-

tects the virus-inducible single transcriptionally

active IFN-b allele, whereas DNA FISH detects all

6 IFN-b alleles in HeLa cells. The percentage of

expressing cells is shown on the right.

(B) RNA FISH to detect IFN-b nuclear RNA (green)

combined with DNA FISH detecting the #21 locus

(red). The transcriptionally active IFN-b allele

colocalizes with a single #21 allele at a frequency

indicated at the right.

(C) RNA FISH to detect IFN-b nuclear RNA (green)

combined with DNA FISH detecting the #9 locus

(red). The transcriptionally active IFN-b allele

colocalizes with a single #9 allele at a frequency

indicated at the right.

(D) RNA FISH to detect IFN-b nuclear RNA (green)

combined with DNA FISH detecting the #14 locus

(red). The transcriptionally active IFN-b allele

colocalizes with a single #14 allele at a frequency

indicated at the right.

(E) Triple RNA/DNA FISH experiment revealed the

simultaneous colocalization of the IFN-b gene

(green) with #21 (red) and IFN-b mRNA (yellow)

upon virus infection.

(F) Frequency of colocalization of IFN-b with the

4C clones and its correlation with monoallelic sto-

chastic IFN-b expression.
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Figure 5. IFN-b Gene Transcription Switch from Monoallelic to Multiallelic during the Time Course of Virus Infection Requires IRF-7

(A) Combined RNA and DNA FISH on nuclei from mock- and virus-infected HeLa cells for 6, 8, and 10 hr. Biotin-labeled nick-translated IFN-b probe was used for

the detection of the IFN-b nuclear transcripts. The signal was visualized with Alexa 568-conjugated streptavidin (red). A DIG-labeled DNA probe was used for the

detection of the IFN-b locus and was visualized with FITC-conjugated anti-DIG antibody (green). The nuclei were counterstained with DAPI (blue). RNA FISH

detects a single transcriptionally active IFN-b allele at 6 hr post-infection and additional IFN-b-expressing alleles at later time points.

(B) Diagrammatic representation of the percentage (mean ± SD) of cells expressing IFN-b from three independent in situ hybridization experiments performed as in

Figure 1 except that the cells were infected with virus for 6, 8, or 10 hr. All cells for each category were scored blindly and at least 220 cells were counted in each case.

(C) HeLa cells were mock- or virus-infected for 6, 8, or 10 hr in the presence of IFN-b neutralizing antibodies or IgG1 as a control (lanes 1–8). RNA was isolated

and the abundance of the IFN-b transcripts was determined by RT-PCR analysis. In the bottom panel (lanes 9–16) the cells were treated with scrambled siRNA or

siRNA specific for IRF-7 for 62 hr before virus infection and RT-PCR analysis. The efficiency of the siRNA knockdown was tested by western blot (shown on the

right of the figure) using extracts prepared from virus-infected cells.

(D) Diagrammatic representation of the percentage of cells and the number of IFN-b-expressing alleles per cell from two independent RNA/DNA FISH exper-

iments performed as in Figure 4 except that the cells were treated as in (C). All cells for each category were scored blindly and at least 130 cells were counted in

each case. In each column the relative percentage of cells expressing 1, 2, or more IFN-b alleles is indicated with different colors.
Sendai virus for longer times we found that gradually the remain-

ing IFN-b alleles begin to express IFN-b RNA (Figure 5A), a result

consistent with the gradual decrease of intrinsic noise of IFN-b

expression reported recently (Hu et al., 2007). The in situ hybrid-

ization experiment of Figure 5B shows that the percentage of

cells expressing IFN-b is nearly doubled at 10 hr post virus infec-

tion as opposed to the percentage of expressing cells at 6 hr

post-infection. In summary, IFN-b transcription begins from

a single allele interacting with the 4C clones in 20% of the cells

but at later time points the remaining IFN-b alleles, not interacting

with the 4C clones, begin to express IFN-b in the same and in

other cells.
To test whether the IFN-b protein produced early in virus infec-

tion from a single allele is critical for the subsequent multiallelic

expression (positive feedback) of the same and other cells we

added neutralizing IFN-b antibodies in the culture. Figure 5C

shows that the neutralizing antibodies dramatically decreased

IFN-b expression at 8 and 10 hr post-infection, but they did not

affect the early monoallelic activation of the gene (compare lanes

1–4 with 5–8). To determine whether the effect of the IFN-b pro-

tein on IFN-b gene expression is mediated through IRF-7, which

is an IFN-b-inducible factor (Sato et al., 2000), we treated the

cells with an IRF-7-specific siRNA. As seen in Figure 5C (lanes

9–16), IRF-7 is critical for maximal IFN-b transcription especially
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at the later time points, and it has a small effect at the early phase

of induction, a result consistent with the late arrival of IRF-7 on

the IFN-b enhancer (Munshi et al., 2001).

To correlate the IFN-b protein effect on IFN-b gene transcrip-

tion with the switch from mono- to multiallelic expression we car-

ried out DNA and RNA FISH experiments to determine the num-

ber of IFN-b alleles expressing the IFN-b gene. Figure 5D shows

that 22% of the cells infected with Sendai virus for 6 hr express

IFN-b, and of these the majority (19% of total cells) transcribe the

IFN-b gene from a single allele. However, at 8 hr post-infection

there is a parallel decrease of monoallelic expressing cells and

an increase of cells expressing IFN-b from two or more alleles.

This switch is more dramatic at 10 hr post-infection when the

majority of the expressing cells transcribe the IFN-b gene from

two or more alleles. Treatment of the cell culture with neutralizing

IFN-b antibodies affected monoallelic expression only slightly,

but it dramatically reduced both the total number of cells ex-

pressing IFN-b at later time points and the switch from mono

to multiallelic IFN-b expression. A similar result was obtained

when the cells were treated with the IRF-7-specific siRNA

(Figure 5D). These experiments demonstrate that the IFN-b pro-

tein secreted early on at virus infection is produced from cells

transcribing a single IFN-b gene allele and acts on the same

and on other cells to induce IFN-b gene transcription on all al-

leles. A prediction from these experiments is that treatment of

the cells with IFN-b before virus infection (IFN-b priming) would

increase the number of expressing cells and the number of ex-

pressing alleles. Indeed, Figure 5D shows that IFN-b priming

doubles the number of expressing cells and increases the num-

ber of alleles expressing the IFN-b gene, without affecting the

frequency of interchromosomal interactions (data not shown).

Thus, the IFN-b signaling-dependent effect is mediated by the

IRF-7 transcription factor.

4C Isolated Loci Increase the Probability
for IFN-b Expression
If the early monoallelic expression of the IFN-b gene in a small

cell population depends on the stochastic nature of the inter-

chromosomal interactions between the IFN-b gene and the 4C

isolated loci, then increasing the copy number of any of the 4C

clones might increase the number of the cells expressing IFN-

b predominantly from a single allele. To test this idea we trans-

fected HeLa cells with a bluescript vector harboring the #21,

#9, and #14 clones, followed by virus infection. Figure 6A shows

that transfection of any of the 4C plasmids increased the levels of

IFN-b and IkBa gene expression after virus infection from 3- to

5-fold. As a control, we showed that the levels of IL-8 expression

were not affected, a result consistent with the fact that the IL-8

gene does not interact with the 4C clones. Importantly, 3C ex-

periments confirmed that the transfected 4C plasmids interact

specifically with the endogenous IFN-b locus in a virus-infec-

tion-dependent manner (data not shown). Figure 6B shows

that at least part of the IFN-b RNA increase is due to an increase

in the number of cells expressing IFN-b RNA. Transfection of

a construct derived from #21 harboring just the AluSX repeat

also led to an increase in the number of cells expressing IFN-b

but to a lesser extent than the full-length #21. Remarkably, trans-

fection of a #21 construct harboring a precise deletion of the
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nonconsensus NF-kB site marginally only affected IFN-b

RNA levels or the number of cells expressing the gene (Figures

6A and 6B). Thus, the NF-kB site of the 4C clones plays a critical

role in determining the probability of IFN-b expression in each

cell. One possibility could be that NF-kB associates first with

the 4C clones and then is transferred to the IFN-b locus via inter-

chromosomal interactions. Indeed, chromatin immunoprecipita-

tion experiments revealed that NF-kB binds to the 4C clones

earlier after virus infection than it binds to the IFN-b promoter

(Figure 6C). More specifically, at 1 hr after virus infection

NF-kB associates with the 4C clones, whereas at the same

time binding at the IFN-b promoter is not detected (Figure 6C,

lane 2). Maximal NF-kB binding to DNA corresponding to the

4C clones (lane 5) correlates with the maximal frequency of inter-

chromosomal associations with the IFN-b locus (4 hr), and this

correlates also with maximal recruitment of NF-kB to the IFN-b

promoter.

To determine the ratio of mono- to multiallelic IFN-b gene ex-

pression after transfection of the 4C clones we carried out DNA-

RNA FISH experiments on virus-infected HeLa cells. Figure 6D

shows that transfection of the 4C clone #21 increased the prob-

ability of expression without affecting significantly the ratio of

mono to multiallelic expression at 6 hr post-infection. The spec-

ificity of this phenomenon was underscored by the inability of the

mutant 4C #21 (DNF-kB) to increase the number of expressing

cells. A qualitatively similar result was obtained when we trans-

fected NF-kB or IRF-7 expressing vectors (Figure 6D), an obser-

vation consistent with the fact that these factors are limiting in

the cells. However, when both factors were expressed at high

levels within the cells, IFN-b transcription began simultaneously

at many more cells and at more than one allele per cell and only in

virus-infected cells, further underscoring the requirement for

assembly of a complete enhanceosome.

DISCUSSION

In this study we present evidence for a model to explain how

virus infection induces the stochastic expression of the IFN-

b gene (Figure 7). According to this model, the choice of the allele

to be expressed depends on stochastic interchromosomal asso-

ciations between the IFN-b gene and at least one of the three

identified distinct genomic loci that could mediate binding of

the transcription factor NF-kB to the IFN-b enhancer. Then,

NF-kB nucleates enhanceosome assembly, a prerequisite for

chromatin remodeling, and activation of transcription from this

allele. The secreted IFN-b protein acts in a paracrine and auto-

crine manner to signal the presence of virus infection by inducing

the expression of hundreds of genes that together establish the

‘‘antiviral state’’ (Stetson and Medzhitov, 2006). One of the genes

activated by IFN-b is IRF-7, a transcription factor that associates

with the IFN-b enhanceosome late in infection. The increased

intracellular levels of IRF-7 trigger enhanceosome assembly in

additional cells and on multiple IFN-b alleles in each cell, thus

amplifying the production of IFN-b. This second phase of

IFN-b transcription occurs independently of interchromosomal

associations (Figure 7).

The precise organization of the IFN-b enhanceosome is re-

quired for optimal cooperative occupancy in response to viral



Figure 6. 4C-ChIP Clones Increase the

Probability of Stochastic IFN-b Gene

Expression

(A) HeLa cells were transfected with blue-

script�based constructs bearing the 4C-ChIP

clones #21, #9, and #14, a derivative of #21 con-

taining only the Alu SX (Alu21) repeat or, a mutant

of #21 lacking the NF-kB site (#21DNF-kB). The

cells were infected with virus for 6 hr and the iso-

lated RNA was used as a template for RT-PCR

analysis using primers specific for IFN-b, IkBa,

and IL-8 genes. The radioactive bands were quan-

titated using phosphorImager and the data from

four independent experiments were plotted and

are shown at the right panel of the figure (shown

are mean values ± SD).

(B) Diagrammatic representation of the percent-

age (mean ± SD) of cells expressing IFN-b from

three independent in situ hybridization experi-

ments performed as in Figure 1 except that the

cells were transfected with the indicated blue-

script-based constructs. All cells for each cate-

gory were scored blindly and at least 300 cells

were counted in each case. *** denotes p < 0.001.

(C) Crosslinked chromatin prepared from mock- or

virus-infected HeLa cells for the indicated amount

of time was immunoprecipitated with the p65-spe-

cific antibody. The precipitated IFN-b promoter

and #21, #14, and #9 loci were detected by PCR

using 32P-dCTP in the reaction.

(D) Diagrammatic representation of the percent-

age of cells and the number of IFN-b-expressing

alleles per cell from two independent RNA/DNA

FISH experiments performed as in Figure 4 except

that the cells were transfected with the indicated

plasmids. All cells for each category were scored

blindly and at least 180 cells were counted in

each case. In each column the relative percentage

of cells expressing 1, 2, or more IFN-b alleles is

indicated with different colors.
infection in vivo, and it has been suggested that such an organi-

zation may reflect regulation by limiting concentrations of one or

more critical activators (Papatsenko and Levine, 2007). The low

concentration of NF-kB and IRF-7 explains the ordinary require-

ment for cooperativity in enhanceosome assembly and sets the

stage for combinatorial control of transcription. On the other

hand this poses a problem, that is, how to target a low abun-

dance factor like NF-kB to the correct gene for nucleating enhan-

ceosome assembly in a nucleus containing millions of putative

NF-kB binding sites.

We have identified three genomic loci that interact separately

or in combinations with a single allele of IFN-b (Figures 7A and

7B) in response to virus infection. Two of these loci map in differ-

ent chromosomes than the IFN-b gene, whereas the third is on

the same chromosome but on the other arm. We have been un-

able to clone additional loci interacting with IFN-b with the 4C-

ChIP approach, presumably due to the high false negative rate

of the approach. However, this does not exclude the possibility

that the IFN-b locus can interact with additional loci with lower
frequencies and affinities. The physical association of these dis-

tant DNA sequences with the IFN-b gene occurs during the time

of enhanceosome assembly and before initiation of transcrip-

tion. Thus, it is possible that these interchromosomal associa-

tions play a role in enhanceosome assembly by facilitating

(delivering) NF-kB binding to the IFN-b promoter. The following

observations are consistent with this model. First, chromatin im-

munoprecipitation experiments revealed that NF-kB binds to the

4C clones before binding to the IFN-b promoter. Second, the in-

terchromosomal interactions are NF-kB dependent as revealed

by transfecting the cells with a dominant-negative form of IkBa

(DN-IkBa), leading to a dramatic decrease of both virus-induc-

ible interchromosomal interactions and IFN-b expression (Fig-

ure S4). The third observation supporting a role of the 4C clones

in delivering NF-kB is the experiment shown in Figure S5. We

transfected p65 followed by virus infection and found a signifi-

cant decrease in the frequency of interchromosomal interac-

tions, thus suggesting that these associations take place

only when the concentration of NF-kB within the cells is at
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physiological low levels. Furthermore, the observation that these

loci are in physical proximity before the entrance of NF-kB into

the nucleus suggests that it is the IFN-b gene that is recruited

to this site to ‘‘receive’’ NF-kB. When the levels of NF-kB are

increased by transfection, the factor can bind to the IFN-b pro-

moter independently of interchromosomal associations. We

propose the existence of an NF-kB ‘‘receptor’’ center consisting

of the 4C loci that can immediately receive NF-kB and distribute

the factor to the promoters of selected genes via interchromo-

somal associations. We can imagine that the NF-kB receptor

center is localized in specialized nuclear regions to which the in-

coming NF-kB can have instant access. Support for such

a model comes from the fact that the affinity of NF-kB for these

sites is 2–3 times lower than that for the IFN-b gene (our unpub-

lished data), thus implying that its preference for the receptor

center could be due to a combination of factors such as the local

nuclear architecture, DNA-induced allostery, and/or other pro-

teins localized in this microenvironment. We do not know the

mechanisms assuring the specificity of these interchromosomal

associations since not all NF-kB-regulated genes (e.g., IL-8) are

recruited to the NF-kB center. It is possible that additional

factors bound to the 4C clones and/or to the promoters of the

recruited genes determine the specificity of the interactions by

exposing complementary surfaces. A prediction derived from

our model is that conversion of the low-affinity specialized

NF-kB site present in the 4C clones to a consensus high-affinity

site would preclude the delivery of NF-kB to the IFN-b enhancer,

resulting in a decrease in transcription. Figure S6 shows that the

4C clones bearing a consensus high-affinity NF-kB site taken

from the MHC class I are not only incapable of facilitating IFN-b

expression but also decrease IFN-b transcription, presumably by

serving as competitors. Additional support for our model is pro-

vided by the observation that all 4C clones contain specialized

Figure 7. A Model Depicting Stochastic Activation

of IFN-b Gene Transcription

(A) Virus infection induces the nuclear localization of NF-

kB, which binds first to a site in the nucleus where single

alleles of the 4C-ChIP loci are in physical proximity.

(B) Next, one allele of IFN-b interacts with the 4C-ChIP loci

and NF-kB is transferred to the IFN-b enhancer. This sto-

chastic reactions takes place in �20% of the cells and in-

volves a single IFN-b allele.

(C) NF-kB nucleates enhanceosome assembly on this al-

lele leading to monoallelic activation of transcription.

(D) The secreted IFN-b protein acts on the same and on

other not initially expressing cells to induce high-level tran-

scription of IRF-7. The IRF-7 protein accumulates at high

levels and binds to the IFN-b enhancer stimulating enhan-

ceosome assembly on more than one allele. This leads to

multiallelic expression and amplification of the virus infec-

tion-induced signal.

Alu repeats, and that the Alu NF-kB site is an

integral functional component of the repeats

required for the stochastic IFN-b expression.

Previous studies have shown that Alu repeats

are euchromatic and contain several functional

transcription factor-binding sites and may play

a role in regulation of biological processes (Polak and Domany,

2006). We can imagine that Alu repeats interspersed in the

genome may function as ‘‘marks’’ to properly align interacting

chromosomal domains during the execution of several nuclear

processes.

The model we propose stipulates that the stochastic activation

of only one allele is dependent on the limited concentration of

NF-kB, and it could explain the monoallelic and stochastic

expression of many other cytokines regulated by NF-kB. Fur-

thermore, the stochastic oscillation of NF-kB in individual cells

further underscores the requirement for a promoter-targeting

mechanism to ensure the proper activation of immune genes

(Nelson et al., 2004). The formation of a complex between IFN-b

and the 4C clones is a rapid signal-dependent process that

occurs within 2 hr of virus infection, thus differing from other

types of interchromosomal interactions described in olfactory re-

ceptor expression (Lomvardas et al., 2006), T cell differentiation

(Spilianakis et al., 2005), HoxB1-dependent ES differentiation

(Wurtele and Chartrand, 2006), imprinting (Ling et al., 2006;

Zhao et al., 2006), erythroid gene expression (Osborne et al.,

2004), X chromosome inactivation (Bacher et al., 2006; Xu

et al., 2006), etc., which are established during long-lasting cell

differentiation pathways. Furthermore, the interchromosomal

interactions described here occur between a known gene and

intergenic loci with previously unknown function.

The monoallelically produced and secreted IFN-b protein acti-

vates among others the IFN-b gene activator IRF-7. Before virus

infection, IRF-7 is expressed at very low amounts and has a very

short half-life, and, like IRF-3, virus infection induces serine

phosphorylation allowing IRF-7’s dimerization and nuclear trans-

location (Honda et al., 2006). This observation is consistent

with our siRNA experiments, which revealed a small contribution

of IRF-7 in the initial monoallelic expression of IFN-b but
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underscored its role in late multiallelic IFN-b transcription. We

believe that the high levels of IRF-7 production in response to

IFN-b signaling drive enhanceosome assembly in more cells

and in more than one allele per cell (Figure 7D). As predicted,

IRF-7 overexpression experiments and IFN priming increased

the number of expressing cells and alleles. In other words, the

‘‘pioneer’’ factor that nucleates enhaceosome assembly in the

second phase appears to be IRF-7 as opposed to NF-kB in

the first phase.

In summary, we present evidence that the limiting factor NF-

kB is delivered to a single IFN-b allele via stochastic interchro-

mosomal associations, and this nucleates enhanceosome as-

sembly by ‘‘recruiting’’ the remaining factors via DNA-induced

conformational changes and protein-protein interactions leading

to transcriptional activation. Next, the remaining IFN-b alleles are

activated through the IRF-7-driven assembly of enhanceosomes

and independently of interchromosomal associations (Figure 7).

Consistent with this idea is our observation that overexpression

of both p65 and IRF-7 leads to the simultaneous expression of

IFN-b from multiple alleles even at the early phase of expression.

Thus, our experiments provided a mechanistic model of how the

IFN-b enhancer integrates inputs received from virus infection

and signal amplification derived from the positive IFN feedback

loop.

EXPERIMENTAL PROCEDURES

Tissue Culture and Cell Transfection and In Situ Hybridization

HeLa CCL-2 (ATCC) and HCT-116 cells were cultured in DMEM supplemented

with 10% FBS and 1% PENSTREP at 37�C. All transfections were performed

with lipofectamine 2000 (Invitrogen) according to the manufacturer’s instruc-

tions. Cells transfected with siRNA for IRF-7 (sc-38011, SantaCruz Biotechnol-

ogy) were grown for 62 hr before virus infection. In situ hybridizations were

performed as described previously (Senger et al., 2000).

3C and 4C-ChIP

The 3C analysis was performed as described previously (Dekker et al., 2002).

The detailed procedure is described in the Supplemental Data. For the 4C-

ChIP, the cells were treated as in the 3C. After EcoRI restriction, the cleaved

chromatin was dialyzed in a buffer containing 5% glycerol, 10 mM Tris-HCl

(pH 8), 1 mM EDTA, and 0.5 mM EGTA overnight (O/N) at 4�C. Fifty micrograms

of the chromatin was used for immunoprecipitation with the anti-p65 antibody

as previously described (Agelopoulos and Thanos, 2006). After the final wash

with TE, a small sample of the beads was removed in order to check the ChIP

efficiency. The bead-bound fragments were ligated O/N, at 16�C with 100 U of

ligase in 1 ml final volume, followed by addition of ligase and ATP and incuba-

tion at room temperature (RT) for 3 hr. The immunoprecipitated and ligated

DNA was isolated and used as template for inverse-nested PCR (Figure S5).

The products were analyzed and isolated from a 1.5% agarose gel and cloned

in pGEM Teasy vector (Promega), and the positive clones were analyzed by

DNA sequencing.

DNA and DNA/RNA FISH

The DNA FISH analysis was performed as described in the Supplemental Data.

The BAC probes used were obtained from CHORI BACPAC libraries. Specifi-

cally we used the following: RPCI-11.113D19 for the IFN-b locus, RPCI-

11.447E20 for the IL-8 locus, RPCI-11.395I6 for #21, RPCI-11.81F13 for

IkBa, RPCI-11.418K9 for #9, RPCI-11.430N14 for #14, and CTB-BRI 64I22

for the AluSx control clone. For the DNA/RNA FISH, the cells were attached

on glass slides, were washed with ice-cold PBS, and incubated for 10 min in

cytoskeleton buffer containing 100 mM NaCl, 300 mM sucrose, 3 mM

MgCl2, 10 mM Pipes, 0.1% Triton X-100, and 20 mM vanadyl-ribonucleoside,

and were then fixed for 15 min at RT in a solution containing 4% PFA in PBS
with 5% acetic acid. The slides were then incubated overnight in 70% ethanol

at 4�C. The next day the permeabilized cells were incubated in 50% formam-

ide-23 SSC at 70�C for 3 min and dried in ethanol series. The probes after heat

denaturation were applied directly on the dried cells and incubated O/N at

37�C. The slides were washed two times for 10 min in a solution of 50% form-

amide in 23 SSC at 37�C. After 30 min of blocking at RT the signal was

detected with incubation of anti-DIG/ Fluorescein antibody or streptavidin/

Alexa 568 in a solution containing 0.1 M Tris-HCl (pH 8), 0.15 M NaCl, 13

blocking reagent (Roche), and 20 mM vanadyl-ribonoucleoside complex.

The antibody was crosslinked in 4% PFA in PBS for 10 min at RT. Then DNA

FISH was performed using the NaOH denaturation protocol described above.

SUPPLEMENTAL DATA

Supplemental Data include Supplemental Experimental Procedures and

seven figures and can be found with this article online at http://www.cell.

com/cgi/content/full/134/1/85/DC1/.
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