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Abstract

The finite element (FEM) and the boundary element methods (BEM) are well known powerful numerical techniques for
solving a wide range of problems in applied science and engineering. Each method has its own advantages and disadvan-
tages, so that it is desirable to develop a combined finite element/boundary element method approach, which makes use of
their advantages and reduces their disadvantages. Several coupling techniques are proposed in the literature, but until now
the incompatibility of the basic variables remains a problem to be solved. To overcome this problem, a special super-ele-
ment using boundary elements based on the usual finite element technique of total potential energy minimization has been
developed in this paper. The application of the most commonly used approaches in finite element method namely quarter-
point elements and J-integrals techniques were examined using the proposed coupling FEM–BEM. The accuracy and effi-
ciency of the proposed approach have been assessed for the evaluation of stress intensity factors (SIF). It was found that
the FEM–BEM coupling technique gives more accurate values of the stress intensity factors with fewer degrees of freedom.
� 2007 Published by Elsevier Ltd.
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1. Introduction

The general technique of FEM–BEM coupling was developed in a classical paper by Zienkiewicz et al.
(1977). An extensive literature survey on this topic can be found in Li et al. (1986). The development and anal-
ysis of new techniques for coupling FEM–BEM have been the subject of growing interest in recent years.
It has been investigated extensively and applied to areas such as fluid and solid mechanics, geomechanics,
electromagnetics, acoustics, etc. (Beer, 1986; Wearing and Sheikh, 1988; Grannell, 1988; Coda et al., 1997;
Schnack and Turke, 1997). Existing coupling approaches can be classified roughly into three main groups:
FEM hosted, BEM hosted, and those not belonging to either of these two categories.
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The first type essentially treats the subdomain BEM as a macro-finite element (super-element). The dis-
placement–traction equations governing the boundary element subdomain are transformed into displace-
ment–force equations and assembled with those of the finite element method (Wearing and Sheikh, 1988;
Ganguly et al., 2000; Aour, 1997; Aour et al., 2005). Conversely, the BEM approach treats the FE subdomain

Nomenclature

{b} body force intensity vector
BE superscript indicating boundary element subdomain
cij a tensor dependent on the location of the field point xf

e superscript indicating elemental matrices
Fx, Fy nodal force components in the x- and y-directions, respectively
{F} nodal force vector
FE superscript indicating finite element subdomain
Gij, Hij Kelvin’s solutions
[G], [H] matrices containing fundamental solution parameters
IB superscript indicating interface boundary element subdomain
IF superscript indicating interface finite element subdomain
J Rice’s integral
[K] stiffness matrix
KI stress intensity factor for mode I
N number of boundary elements
Ni(n) shape functions
ni unit direction normal
r distance between the field point and the source point
R distance from the crack-tip
S integration contour for evaluation of J-integral
{tn} vector containing the nodal tractions
tx, ty traction components in the x- and y-directions, respectively
T superscript indicating transpose of a matrix
{un} vector containing the nodal displacements
U strain energy density
u, v displacement components in the x- and y-directions, respectively
ui(xf), ui(xs) displacements at field and source points, respectively
W work done by external loads
x, y Cartesian coordinates
xe

i ; u
e
i ; t

e
i vector of coordinates of node i on element e, similarly, u and t describe displacements and trac-

tions
xf, xs field and source points, respectively
a polar angle
C boundary of the domain X
{r} stress vector
X two-dimensional domain
d prefix indicating a finite increment
dij Kronecker symbol
m Poisson’s ratio
l Lamé constant
n local coordinate
P total potential energy of the whole domain
{e} strain vector
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as an equivalent BE subregion by converting the stiffness equations of the FEM to BEM-like equations and
coupled with those of the BEM while satisfying continuity and equilibrium along the interface (Zienkiewicz
et al., 1977; Brebbia and Georgiou, 1979). Approaches not categorized within either of these two groups
include direct coupling. These approaches are difficult and inefficient due to the large number of unknowns
(Ganguly et al., 2000). One of these approaches is that of boundary coupling (Hsiao, 1988), in which the gov-
erning equations of one subdomain are treated as the boundary conditions for the other. In the same principle,
an alternative method named as iterative domain decomposition coupling is developed by Chia-Ching et al.
(1996) and improved by Elleithy et al. (2001); in which the original problem is solved by continuously adjust-
ing the unbalanced forces or displacements from the subdomains to the artificial interface until continuity and
equilibrium are satisfied. The disadvantage of this group of technique is that at each iteration step the bound-
ary problems in BEM and FEM subregions should be solved. As the convergence of the process can be slow,
this may lead to long CPU times.

In general, each type of coupling approach has its merits and limitations. In this paper a new method based
on the FE approach is developed for coupling the FEM and the BEM. A technique has therefore been devel-
oped which modifies the direct BEM using the usual finite element technique of minimization of total potential
energy to produce a final system of equations, which are compatible with those of the FEM. The equations for
the boundary element region are then used by a standard finite element program as a super-element. The
advantage of this approach is that it is easily implemented in a finite element program without major modi-
fications and does not require iterative calculations, which weighs down the convergence solution.

In what follows we shall first introduce the basic formulation of the boundary element method. Then, the
procedure for coupling both methods and its implementation in a computer code are discussed in detail. The
accuracy and efficiency of the proposed approach have been assessed by the evaluation of stress intensity
factors (SIF) using two examples of fracture mechanics.

2. BEM formulation

The main objective of this section is to give an overview of the direct boundary element adaptation to the
FEM–BEM coupling for stress analysis. As it is well known there are many engineering topics where bound-
ary element methods (BEM) have been applied, see for instance some recent works (Alvarez-Rubio et al.,
2005; Popov and Power, 2001; Brebbia, 1981; Banerjee and Butterfield, 1981). The term BEM (for Boundary
Element Method) was first introduced in the 1970s by Brebbia and has been used extensively since then. The
method is based on the discretization of the classical Somigliana’s identity, which stems from the reciprocity
work theorem. This equation is given in terms of the Green’s function, which is the full-space harmonic
steady-state fundamental solution. For more details see Brebbia (1981) or Banerjee and Butterfield (1981).
For a body of domain X with a boundary C and in the absence of the body forces, the displacement boundary
integral equations for elasticity can be written as

cijðxfÞuiðxfÞ þ
Z

C
H ijðxf ; xsÞujðxsÞdC ¼

Z
C

Gijðxf ; xsÞtjðxsÞdC ð1Þ

where the term cij is a function of the geometry at the boundary location xf. Providing xf is a smooth boundary
point, that is, the outward normal vector to the boundary is continuous at xf, and then it can be shown that
cij = +1/2 dij. The kernels Hij(xf,xs) and Gij(xf,xs) are Kelvin’s solutions, see Brebbia (1981) or Banerjee and
Butterfield (1981). They are known as the fundamental solutions of the elasticity problem and for 2 dimen-
sional plane strain problems are given as

Gijðxf ; xsÞ ¼
1

8plð1� mÞ ð1� 4mÞdij ln
1

r
þ r;ir;j

� �
ð2Þ

Hijðxf ; xsÞ ¼
�1

4pð1� mÞr
or
on
ð1� 2mÞdij þ 2r;ir;j
� �

þ ð1� 2mÞðnir;j � njr;iÞ
� �

ð3Þ

where r ¼ ffiffiffiffiffiffiffi
riri
p

, ri = yi � xi, r,i = or/oyi = ri/r and or/on = r,ini. The physical explanation of Gij(xf,xs) and
Tij(xf,xs) is that they represent the displacements and tractions in the j direction at the field point xf due to
a concentrated unit load in the i direction acting at the loading or source point xs (Fig. 1).
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The solution of Eq. (1) is achieved by discretizing the boundary C of the domain X into N boundary ele-
ments. The numerical procedure requires the use of interpolation functions, by which the shape of the element
and the distribution of displacement and traction components over each boundary element is approximated in
terms of their values at the nodes, i.e.

xðnÞ ¼
X3

i¼1

NiðnÞxe
i ð4aÞ

uðnÞ ¼
X3

i¼1

N iðnÞue
i ð4bÞ

tðnÞ ¼
X3

i¼1

N iðnÞte
i ð4cÞ

where Ni(n) are the shape functions of an isoparametric quadratic boundary element. The discretized form of
Eq. (1) for a nodal point P on the boundary can now be written as

cP uP þ
XN

e¼1

X3

i¼1

Z
Ce

H ijðxf ; xsÞNiðnÞdC

� �
ue

i ¼
XN

e¼1

X3

i¼1

Z
Ce

Gijðxf ; xsÞN iðnÞdC

� �
te
i ð5Þ

where the summation is for N elements and i element nodes.
By taking the field point successively to all the nodal points on the boundary and by assembling the equa-

tions into a block matrix, we obtain

½H �fung ¼ ½G�ftng ð6Þ

where [H] and [G] denote the influence coefficient matrices which are obtained by integration over the bound-
ary elements using the fundamental solutions, {un} and {tn} are the vectors containing the nodal displacements
and tractions, respectively.

Noting that, to follow the matrix algebra it is useful to consider the matrix sizes. In the presence of the
corners the matrix [H] related to displacements remains always square of order (2M · 2M) if M is the total
number of the geometrical nodes. This property is due to the unicity of displacements at the corners. On
the other hand the matrix [G] becomes a rectangular matrix of order 2M · (2M + 2m) if m is the number
of corners appearing on the geometry.

3. Coupling procedure

The finite element and boundary element methods have dissimilar final sets of equations. The finite element
method results in a force–displacement equations system. However, the boundary element method produces a
system of simultaneous equations relating the nodal displacements and nodal tractions. This makes it possible

rField
point (xf)

Source
point (xs)

Domain Ω

Boundary Γ

1

2

Fig. 1. Source and field point relationship.
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to create a link between the two methods (Oysu and Fenner, 2006). It is more appropriate to use the FE
approach for the coupling since the finite element is well established in the industrial environment. The equa-
tions of the subdomain previously discretized using boundary elements, can be easily solved by finite elements
codes. In what follows, we consider a subdomain XFE with boundary CFE discretized by finite elements and a
subdomain XBEof boundary CBE discretized by boundary elements (Fig. 2).

The final set of finite element and boundary element equations for the two subdomains, which are
connected at a common interface, can be respectively written in matrix form as

½K�FEfugFE ¼ fF gFE ð7Þ
½H �BEfugBE ¼ ½G�BEftgBE ð8Þ

where [K]FE is the stiffness matrix for the finite element subdomain, {u}FE and {F}FE are the nodal displace-
ment and force vectors respectively, [H]BE and [G]BE are the influence coefficient matrices, and {u}BE and {t}BE

are the displacement and traction vectors of the boundary element subdomain.
It is understood that the governing equations in the FE subdomain involve nodal displacements and forces;

whereas, the primary unknowns in the BE subdomain are displacements and tractions. To facilitate the FEM–
BEM coupling, we need to determine the nodal forces and the equivalent stiffness matrix of the boundary
element subdomain.

3.1. Determination of the nodal forces

The virtual work principle ensures that along the interface, the work done by the nodal point force Fe and
the interface traction te on an arbitrary virtual displacement due are equal. So, for the boundary element ‘‘e’’
(Fig. 3), this leads to

Fig. 2. Discretization of two-dimensional body with FEM–BEM.

Nodal
tractions

Equivalent
nodal forces 

x

y

Fig. 3. Loaded boundary element.
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dW e ¼ ðdueÞTF e ð9Þ
The work done by the applied tractions during virtual displacements du in the x-direction and dv in the y-
direction can be expressed as follows:

dW e ¼
Z

C
ðtxduþ tydvÞdC ð10Þ

Writing tx, ty, du and dv in terms of their nodal values, i.e.

duðnÞ ¼
X3

i¼1

N iðnÞ � due
i ; dvðnÞ ¼

X3

i¼1

NiðnÞ � dve
i ð11Þ

txðnÞ ¼
X3

j¼1

N jðnÞ � ðte
xÞj; tyðnÞ ¼

X3

j¼1

N jðnÞ � ðte
yÞj ð12Þ

then Eq. (10) can be rewritten as follows:

dW ¼
X3

i¼1

dui

X3

j¼1

ðtxÞi
Z

C
N iðnÞNjðnÞdC

� �
þ
X3

j¼1

ðtyÞi
Z

C
N iðnÞNjðnÞdC

� �
dvi

" #
ð13Þ

The corresponding work done by the equivalent nodal force vector is

dW ¼
X3

i¼1

½ðF xÞidui þ ðF yÞidvi� ð14Þ

Comparing Eq. (10) with Eq. (13), it can be deduced that

ðF xÞi ¼
X3

j¼1

ðtxÞi
Z

C
N iðnÞN jðnÞdC ð15Þ

ðF yÞi ¼
X3

j¼1

ðtyÞi
Z

C
NiðnÞNjðnÞdC ð16Þ

The integration is performed using Gaussian quadrature. Therefore, an element nodal force vector Fe may be
expressed in terms of an element nodal traction vector te as follows:

F e ¼ Mete ð17Þ
where Me is the converting matrix, which depends on the interpolation functions as follows:

Me ¼

Rþ1

�1
N 1N 1J dn 0

Rþ1

�1
N 1N 2J dn 0

Rþ1

�1
N 1N 3J dn 0

0
Rþ1

�1
N 1N 1J dn 0

Rþ1

�1
N 1N 2J dn 0

Rþ1

�1
N 1N 3J dnRþ1

�1 N 2N 1J dn 0
Rþ1

�1 N 2N 2J dn 0
Rþ1

�1 N 2N 3J dn 0

0
Rþ1

�1
N 2N 1J dn 0

Rþ1

�1
N 2N 2J dn 0

Rþ1

�1
N 2N 3J dnRþ1

�1
N 3N 1J dn 0

Rþ1

�1
N 3N 2J dn 0

Rþ1

�1
N 3N 3J dn 0

0
Rþ1

�1
N 3N 1J dn 0

Rþ1

�1
N 3N 2J dn 0

Rþ1

�1
N 3N 3J dn

2
6666666666664

3
7777777777775
ð17aÞ

F eT ¼ ðF xÞ1 ðF yÞ1 ðF xÞ2 ðF yÞ2 ðF xÞ3 ðF yÞ3f g ð17bÞ

teT ¼ ðtxÞ1 ðtyÞ1 ðtxÞ2 ðtyÞ2 ðtxÞ3 ðtyÞ3f g ð17cÞ

The consequence of Eq. (17) is that the boundary element region can be treated as a ‘‘super-element’’ and its
stiffness matrix and load vector can be assembled with the finite element matrices in the usual way.
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3.2. Determination of the global stiffness matrix

3.2.1. Principle of total potential energy minimization

To determine the equivalent stiffness matrix of the super-element, we use the principle of total potential
energy minimization and the direct boundary element method presented in the previous section. The total
potential energy of the whole domain X with a contour C (Fig. 2) is given as

P ¼ 1

2

Z
X
½r�TfegdX�

Z
X
fugTfbgdX�

Z
C
fugTfpgdC ð18Þ

where the first term is a volume integral of the strain energy density and the last two integrals are the external
work terms. [r] and {e} are stress and strain vectors respectively, {b} is the body forces vector and {p} is the
external boundary loads vector. Integrations are taken over the domain X of the structure and the loaded con-
tour C.

For the two subdomains the above expression can be rewritten as follows:

P ¼ 1

2

Z
XFE
½r�TfegdX�

Z
XFE
fugTfbgdX�

Z
CFF

fugTfpgdCþ 1

2

Z
XBE
½r�TfegdX

�
Z

XBE

fugTfbgdX�
Z

CBB

fugTfpgdC ð19Þ

where XFE, XBE represent finite element, boundary element subdomains and CFF, CBB denote the contours of
finite element, boundary element subdomains without interface, such as X = XFE + XBE and C = CFF + CBB.

At the interface, the compatibility and equilibrium conditions should be satisfied, i.e.

uIF ¼ uIB on CI ð20Þ
tIF þ tIB ¼ 0 on CI ð21Þ

From these two conditions, one can write

�
Z

CIF

fuIFgTftIFgdC�
Z

CIB

fuIBgTftIBgdC ¼ 0 ð22Þ

Combining this with Eq. (19) allows the potential energy of the whole region to be split into the sum of ener-
gies for the two subdomains

P ¼ PFE þPBE ð23Þ
where PFE and PBE are respectively the total potential energy for the FEM and BEM subdomains.

For the finite element subdomain, we obtain immediately the expression (7) by minimizing PFE. But for the
boundary element subdomain, to determine the equivalent stiffness matrix, some mathematical transforma-
tions are required.

First, by applying the divergence theorem and using the stresses equilibrium equations, in the absence of the
body forces, we can write

1

2

Z
XBE
½r�TfegdX ¼ 1

2

Z
CBE

fugTftgdC ð24Þ

where {t} are tractions due to displacements.
Substituting Eq. (24) in the expression of PBE, we obtain

PBE ¼ 1

2

Z
CBE

fugTftgdC�
Z

XBE
fugTfbgdX�

Z
CBE

fugTfpgdC ð25Þ

By expressing the displacements and tractions vectors in terms of their nodal values, Eq. (25) in the absence of
the body forces becomes

PBE ¼ 1

2
fungT

Z
CBE

½N �T½N �dC

	 

ftng � fungT

Z
CBE

½N �TfpgdC

	 

ð26Þ
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3.2.2. Solution strategy on interface and corners

Considering now the direct boundary element method presented in Section 2; in the case of smooth con-
tours (Fig. 4(a)), the matrix G always remains a square and invertible matrix. So the calculation of the equiv-
alent stiffness matrix for the BEM subregion can be directly achieved. In contrast, when the domain exhibits
geometric corners (Fig. 4(b)), an additional difficulty appears because the outward normal at the node located
at the corner is undefined. Corner problems within the scope of BEM have been approached in literature.
Brebbia (1981) proposed the use of non-conforming elements, which avoids placing a boundary node exactly
at the corner. This node is replaced by two non-coincident nodes near the corner allowing to remove the dis-
continuity. Consequently, this method fails to determine the stresses at the corner. Chan and Chandra (1991)
developed a method for a BEM solution of steady-state heat conduction that places only one node at the cor-
ner. More recently, Guven and Madenci (2003) then extended this method to thermoelastic stress analysis for
a specific class of boundary conditions.

The approach proposed in this work is based on the same double node concept in which two boundary
nodes are placed at the corner with exactly the same coordinates. After this, we preserve only the node com-
patible with the loading and deformations conditions of this material point. At this stage special care has to be
taken for the corner nodes of interface and boundary element subregion:

Case 1: Corner nodes at interface

Consider FEM and BEM nodes on the interface corner elements as shown in Fig. 5. In this case we consider
only the contributions of the elements interfacing the FEM region. For instance, for the boundary elements (a)
and (b), we consider only the contributions of element (b), i.e. tc

i � tb
i and ta

i ¼ 0, where tc
i denote the nodal

value of traction preserved at the corner node, ta
i and tb

i are the nodal values of tractions close to the corner
of element (a) and (b), respectively.

Fig. 4. Boundary point positions: (a) smooth contour; (b) sharp contour.

Boundary
element region 

Finite element
region

element (a)

el
em

en
t (

b)

Corner node of 
 element (b)

node of element (a)

node of element (b)

Fig. 5. Selection of the corner nodes on interface.

2530 B. Aour et al. / International Journal of Solids and Structures 44 (2007) 2523–2539



If the displacement boundary conditions are described on the element (a), this time element (a) will contrib-
ute to corner node for traction calculations outside the interface.

Case 2: Corner nodes of BEM region without interface

If the surface tractions are prescribed as shown in Fig. 6(a), we preserve only the contributions of the ele-
ment (b). If the displacement boundary conditions are fixed on the element (a) (Fig. 6(b)), then the contribu-
tions of element (a) will be taken into consideration. In the case when the tractions are specified before and
after the corner (Fig. 6(c)), we preserve either and the tractions contribution is the average of both. Finally,
the case, when only the displacements are specified at the corner (Fig. 6(d)), is not treated in this paper and an
alternative approach is given by Schnack and Turke (1997).

3.2.3. Equivalent stiffness matrix for the super-element and assembly of matrices

By using the previous approach, only common corner node is used and the matrix [G] becomes a square and
invertible matrix. Consequently, we can write the system of boundary element Eq. (7), as follows:

½G��1½H �fung ¼ ftng ð27Þ

where the inverse of the matrix [G] is calculated by Gaussian elimination (Adey and Brebbia, 1983), which has
been proved and commonly used by several authors in continuum mechanics. Noting that, an investigation of
other methods for which an inverse is safe, could prove extremely beneficial.

Substituting the expression (27) in (26) when the external loads {p} correspond to a surface traction {t}, we
obtain

PBE ¼ 1

2
fungBET

½M �½G��1½H �fungBE � fungBET
Z

CBE

½N �T½N �ftngdC

	 

ð28Þ

or more compactly

PBE ¼ 1

2
fungBET

½K�BEfungBE � fungBET

fF gBE ð29Þ

Fig. 6. Selection of the corner nodes out interface.
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with

½K�BE ¼ ½M �½G��1½H � and fF gBE ¼
Z

CBE

½N �T½N �ftngdC ð30Þ

Minimizing the functional PBE with respect to nodal displacements, gives

½K�BEfungBE ¼ fF gBE ð31Þ

where [K]BE is the equivalent rigidity matrix of the super-element BE and {F}BE its equivalent nodal forces.
[K]BE is generally asymmetric due to the approximation involved in the discretization process and the choice
of the assumed solution. Although this matrix is sometimes symmetrized by simply taking an average of the
off-diagonal terms (i.e. assuming it can be written as 1

2
ð½K�BE þ ½K�BET

Þ) this is not recommended as it produces
inaccurate results in many practical applications (Brebbia and Dominguez, 1992; Hunter, 2001). Obtaining
symmetric boundary element stiffness matrices may involve double integration of the type used in Galerkin’s
boundary element formulation, which are beyond the scope of this paper.

The matrices of Eq. (31) can now be assembled with matrices corresponding to FE subregion to form the
global stiffness matrix. Considering the two subregions described in Fig. 1, Eqs. (7) and (31) can be further
partitioned into those associated to the interface, and those disassociated from the interface as

KFF KFI

KIF KII

" #
uF

uI

� �
¼ F F

F IF

( )
ð32Þ

KBB KBI

KIB KII

" #
uB

uI

� �
¼ F B

F IB

( )
ð33Þ

where superscripts F, B and I represent finite element, boundary element and interface, respectively.
Consequently, the coupled equation system of the whole domain is obtained by using the standard assem-

bly of the two partial systems as follows:

KBB KBI 0

KIB KI KFI

0 KIF KFF

2
64

3
75

uB

uI

uF

8><
>:

9>=
>; ¼

F B

F IB þ F IF

F F

8><
>:

9>=
>; ð34Þ

By solving the system (34), we can obtain all the unknown displacements and nodal forces of the problem dis-
cretized by FEM–BEM.

4. Application to fracture mechanics

The existence of crack-like flaws cannot be excluded in pressured vessels and pipes. Therefore, the interdis-
ciplinary related to pressurized components is of considerable importance in many branches of industry, such
as energy, petrochemicals, process plants, transport and space communications. In order to provide a safe
service condition, it is important to perform a fracture mechanics assessment.

Among the fracture Modes (I, II and III), Mode-I, also called the opening mode, and its associated param-
eter KI, is the most important. KI characterizes the stress field in the neighbourhood of a crack-tip when the
crack is under tension. Knowledge of KI is essential to establish if an existing crack, under given loading con-
ditions, is stable or not (Bezerra et al., 2001). For simple crack configurations, analytical expressions for KI are
available in the literature and in some handbooks. However, for cracks with more complex geometric config-
uration no handbook method exists for the determination of the stress intensity factor. For complex geome-
tries, the stress intensity factor (SIF) may be obtained by experiments; however, such procedure is expensive
when compared to numerical approaches. The use of numerical methods for the determination of KI seems to
be an economic tool.

Over the past decade or so a great deal of work has been carried out to develop special techniques for deter-
mining accurate values of the stress intensity factor using the finite element method, such as the quarter-point
elements (Barsoum, 1976), J-integral (Rice, 1974), strain energy release rate (Griffiths, 1921), virtual crack
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extension (Hellen, 1975). Among other numerical methods, the use of coupled FEM–BEM for the computa-
tion of KI appears advantageous since most of the domain is modelled by boundary elements and only a very
limited zone in the vicinity of the crack is discretized by finite elements. The finite elements are used near the
crack because (a) the fracture parameters can be calculated very easily and accurately by FEM even when non-
linear mechanical behaviour is considered and (b) the BE formulation is well established for linear behaviour
and allows a reduction of the system equations size.

4.1. Evaluation techniques of stress intensity factors

In this paper we focus on the application of most commonly used approaches in finite element method,
namely quarter-point elements and J-integrals. Crack-tip singularity modelling can be based on special
crack-tip elements, which directly model the 1=

ffiffiffi
R
p

tip singularity, where R is the distance from the crack-
tip. Following Barsoum (1976), this singularity is most conveniently introduced into a quadratic isoparametric
element by shifting the mid-side node to quarter-point position in the direction of the crack-tip. The stress
intensity factor is calculated by equating the displacement field on the crack face approximated by the quar-
ter-point element with the first term of near-tip displacement field to give (Owen and Fawkes, 1983)

KI

ð2j� 1Þ cos a
2
� cos 3a

2

ð2jþ 1Þ sin a
2
� sin 3a

2

( )
¼ 4l

ffiffiffiffiffiffi
2p
R

r
u

v

� �
ð35Þ

in which, j = (3 � m)/(1 + m) for plane stress, j = 3 � 4m for plane strain, l is the shear modulus, a is the polar
angle, R is the distance from the crack-tip, u and v are the components of displacements.

The stress intensity factor is also related to path-independent integrals, known as J-integrals. For a contour,
which encloses the crack-tip and has initial and end points on opposite surfaces of the crack, the Rice’s J-inte-
gral is defined as (Rice, 1974):

J ¼
Z

C
U dy � ti

oui

oxi
dS

	 

ð36Þ

where U denotes the strain energy density, ui represents the displacement vector and ti represents the traction
vector along the elementary arc dS of the integration contour S. The J-integral is directly related to the stress
intensity factor by the relation (Owen and Fawkes, 1983):

KI ¼
8lJ

1þ j

	 
1=2

ð37Þ

4.2. Numerical examples

Before carrying out the implementation and the checking of the coupling technique, we started by imple-
menting and checking the super-element method (SBEM). Consequently, the technique of the super-element
has been programmed and tested with several examples before being coupled with the FEM (Aour et al.,
2005). To show the efficiency of the proposed method, two techniques allowing the determination of the
SIF are implemented in the coupling FEM–BEM program: the displacement extrapolation technique
(DET) and the J-integral Technique (JIT). Two different configurations are treated: the first corresponding
to a panel with a central crack under uniform traction (Fig. 7(a)) and the second is the same plate but con-
taining two symmetrical cracks emanating from a central circular hole subjected to a uniform traction too.
The geometries of the plates and the cracks, the modulus of elasticity and the Poisson’s ratio are given in
Fig. 7. Due to symmetry conditions, only a quarter of the rectangular plate was discretized with a combined
finite elements-boundary elements.

4.2.1. Panel with central crack

In order to test the convergence of the coupling technique for the evaluation of stress intensity factors, three
meshes were used as shown in Fig. 8. The first mesh (A) is composed of 12FE coupled with a super-element of
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8BE, the second mesh (B) consists of 24FE combined with a super-element of 16BE and the third mesh (C) is
composed of 36FE coupled with a super-element of 24BE. The finite element analysis was carried out on these
three meshes with 16, 40 and 70 quadratic elements respectively, as shown in Fig. 8 (fine lines), in such away,
we can make a comparison in the same mesh design. To estimate the performance of the proposed method, a
comparison of the stress distribution ahead of the crack-tip in the crack line direction between the FEM–BEM
technique and the closed-form solutions (Fleming et al., 1997) is depicted in Fig. 9. It can be seen that the
numerical results are in a good agreement with the analytical solutions.
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Fig. 8. Various meshes of the central cracked panel.
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E=10000
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Fig. 7. Crack problems analysed: (a) centre cracked plate, (b) cracks emanating from a circular hole.
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The results obtained by using the two techniques DET and JIT are presented in Table 1, and the errors
obtained in the calculation of the SIF are plotted in Fig. 10. It can be seen that the best result was achieved
with the J-integral technique (JIT). The displacement extrapolation technique with quarter-point elements
results appears relatively instable especially for FEM compared to the coupled FEM–BEM. Then, considering
the meshing (C) the stress intensity factor KI corresponding to different relative crack lengths a/W has been
computed via the J-integral, using both FEM and FEM–BEM methods.
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Fig. 9. Opening stresses distributions near the crack-tip (h = 0 and R > 0).

Table 1
KI values in the case of a central cracked panel (a/W = 0.5)

KI evaluation Mesh A Mesh B Mesh C

FEM–BEM (DET) 463.69 463.88 462.71
FEM (DET) 464.04 463.22 462.01
FEM–BEM (JIT) 462.99 464.12 465.11
FEM (JIT) 461.52 463.69 464.87

Analytical solution 469.14
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As shown in Fig. 11, the results highlight a very good agreement between FEM and the coupled FEM–
BEM for all values of a/W. It can also be seen that both methods are in reasonable agreement with the ana-
lytical solution given by Tada et al. (1973).

4.2.2. Cracks emanating from a circular hole

To examine again the DET and JIT techniques for the evaluation of KI using FEM–BEM approach, three
meshes were used, to test the convergence. The first mesh (A) is composed of 11FE coupled with a super-
element of 8BE, the second mesh (B) is composed of 25FE combined with a super-element of 16BE and
the third mesh (C) is composed of 29FE coupled with a super-element of 22BE. The finite element analysis
was carried out on these three meshes with 15, 41 and 58 quadratic elements respectively, as shown in Fig. 12.

The results obtained for this example are presented in Tables 2 and 3 and plotted in Fig. 13. Once again, the
tables present the values obtained for the stress intensity factors while the figures illustrate the error obtained
in the calculation of KI using the both FEM and coupled FEM–BEM methods.

It can be seen that, the results of the displacement extrapolation technique with quarter-point elements
(Fig. 13(b)), is the least accurate solution among all the configurations tested. The accuracy seems better when
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Fig. 10. Error estimation in SIF calculations with (a) J-integral technique (JIT), and (b) displacement extrapolation technique (DET-QP)
for a/W = 0.5.
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considering the FEM–BEM technique. The lack of accuracy exhibited by the DET is due to the fact that the
quarter-point element solution is dependent on the size of the quarter-point element (Portela and Aliabadi,
1989). The reasons for this size dependence are related to the contradictory requirement of a simultaneous rep-
resentation of the singular and finite stress terms in a given problem, as it was explained by Harrop (1982). The
J-integral approach performance is better than quarter-point element as shown in Fig. 13(a). Table 3 shows a
comparison between the solutions obtained from the coupling FEM–BEM and FEM and the results presented
by Woo et al. (1989). It can be seen that for all the crack lengths the coupling method results are in good agree-
ment with the FEM and the reference solutions.
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Fig. 12. Various meshes of the panel with cracks emanating from circular hole.

Table 2
KI values in the case of cracks emanating from a circular hole (a/W = 0.5)

KI evaluation Mesh A Mesh B Mesh C

FEM–BEM (DET) 502.630 496.110 494.735
FEM (DET) 503.344 493.512 489.845
FEM–BEM (JIT) 495.346 502.580 504.210
FEM (JIT) 491.526 501.663 503.547

Woo et al. (1989) 509.406

Table 3
Stress intensity factors for different a/W

a/W

0.3 0.4 0.5 0.6 0.7 0.8 0.9

FEM–BEM 332.213 426.971 504.210 602.987 730.522 934.863 1357.372
Error �0.42 0.91 1.02 0.51 1.03 1.43 �2.19
FEM 332.673 427.256 503.547 601.966 730.963 934.185 1365.867
Error �0.56 0.85 1.15 0.68 0.97 1.51 �2.83

Woo et al. (1989) 330.821 430.919 509.406 606.088 738.123 948.508 1328.277
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5. Conclusions

FEM–BEM coupling was the subject of many investigations and several approaches were proposed in the
literature. The originality of this work stems from the development of a new method of boundary elements
easy to handle and allowing a fast and effective coupling with the finite element method. This new method
of super-element boundary elements is based upon the principle of total potential energy minimization and
on the direct boundary element method to determine the equivalent stiffness matrix and the contributions
of the nodal forces.

The major advantage of this procedure is that all finite element programs can adapt very easily with the
model of super-element BEM. This is due to the optimal properties offered by this model, such as: flexibility
of discretizations FEM and BEM, the use of the standard assembly technique, simplicity of implementation,
the continuity and the compatibility of the FEM and BEM elements.

The accuracy of the proposed method to solve linear elastic crack problems in fracture mechanics was
examined, by calculating the stress intensity factor KI. This paper used two different techniques implemented
in the FEM–BEM program developed. Configurations studied for the comparison are, two symmetrical
cracks emanating from a circular hole and a central crack, both in rectangular sheets subjected to tensile load-
ing. It is important to note, that the coupling FEM–BEM using J-integral technique gives very accurate results
when compared to the FEM and analytical solutions available in the literature. Furthermore, the J-integral
technique is numerically more stable than the displacement extrapolation technique using quarter-point ele-
ments. The accuracy of the latter seems to be relatively better when using the FEM–BEM coupling method
in comparison with the FE method.

The coupling method presented here can be easily implemented and is a versatile tool for the determination
of SIFs in fractured structures of varied shapes not commonly found in handbooks. Furthermore, such high
level of accuracy was easily achieved with no more than a few elements along the cracks. It can be seen that the
coupling method presented in this paper could be an extremely powerful method for analysing a wide range of
problems. The present study will be extended to nonlinear problems.
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