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Abstract

We study obstructions to existence of non-commutative crepant resolutions, in the sense of Van den
Bergh, over local complete intersections.
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1. Introduction

Let R be a Gorenstein local normal domain. The following striking definition is due to Van
den Bergh (see [18], 4.1, 4.2):

Definition 1.1. Suppose that there exist a reflexive module M satisfying:

(1) A = HomR(M,M) is maximal Cohen–Macaulay R-module.
(2) A has finite global dimension.

Then A is called a non-commutative crepant resolution (henceforth NCCR) of R.
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It has been shown that for dimension 3 isolated, terminal singularities, the existence of projec-
tive and non-commutative crepant resolutions are equivalent [18]. A projective crepant resolution
is a desingularization f :Y → X = Spec(R) such that f ∗ωX = ωY .

In this note we observe that the existence of non-commutative crepant resolutions is rather
restrictive over complete intersections with small singular locus. In particular, they do not exist
for equicharacteristic, isolated hypersurface singularities of dimension 3 which are Q-factorial,
or of even dimension at least 4, even though commutative crepant resolutions are known to exist
in such situation (albeit rarely). This is in contrast with known results in dimension 2 or 3. Our
results also provide a new perspective on NCCR in the known cases and suggest how to build the
module M in the definition of NCCR. We employ only homological methods over commutative
rings, and they typically work over any field, even in some mixed characteristic cases.

We now describe the results of the paper. In Section 2 we give relevant definitions and prelim-
inary results. We observe a connection between NCCR and a module-theoretic condition known
as Tor-rigidity (see Definition 2.1).

Section 3 deals with hypersurface singularity. Our main result is:

Theorem 1.2. Let R be a local hypersurface satisfying condition (R2). Assume R̂ ∼= S/(f ) where
S is an equicharacteristic or unramified regular local ring and f ∈ S is a regular element.

(1) If dimR = 3 and the class group of R is torsion (i.e. R is Q-factorial), then R admits no
NCCR.

(2) If R has isolated singularity and dimR is an even number greater than 3, then R admits no
NCCR.

(3) Let N be the set of isomorphism classes of indecomposable maximal Cohen–Macaulay mod-
ules over R which are not Tor-rigid. Assume that N is not empty. Let M a module such that
R|M and N ⊂ pen(M) (see Definition 2.2) for some n. If A = HomR(M,M) is (S3), then
it has finite global dimension at most dimR + n. In particular, if A is MCM, then it is an
NCCR over R.

We use this theorem to analyze NCCRs of simple singularities in dimension 3 in 3.6.
Section 4 deals with complete intersection singularities. Here we show that if R is regular in

codimension 3 and M satisfies Serre’s condition (S3), then HomR(M,M) cannot be an NCCR.
We also study general conditions for NCCR to deform. Finally, we observe how our ideas can
be applied to the characteristic p situation, where they help explain why the non-commutative
analogue of F -blowups often fail to be crepant.

We would like to deeply thank Graham Leuschke for patiently explaining his paper to us and
pointing our some errors on an early draft. Special thanks also go to Craig Huneke and Tommaso
de Fernex for very helpful conversations.

2. Tor-rigidity and NCCR

In this section we point out some connections between NCCR and Tor-rigidity, a technical
condition well known in commutative algebra. We begin with relevant definitions and notations:

Let R be a local ring and M,N finite R-modules. Let M∗ := Hom(M,R) be the dual of M .
The module M is called reflexive provided the natural map M → M∗∗ is an isomorphism. The
module M is called maximal Cohen–Macaulay (henceforth MCM) if depthR M = dimR. The
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ring R is said to satisfy condition (Rn) if Rp is regular for any p ∈ Spec(R) of codimension at
most n. For a ring A, we will denote by gl.dimA the global dimension of A.

For a non-negative integer n, M is said to satisfy Serre’s condition (Sn) if:

depthRp
Mp � min

{
n,dim(Rp)

} ∀p ∈ Spec(R)

Definition 2.1. A pair of R-modules (M,N) is called Tor-rigid if for any integer i � 0,
TorRi (M,N) = 0 implies TorRj (M,N) = 0 for all j � i. Moreover, M is Tor-rigid if for all N ,
the pair (M,N) is Tor-rigid.

Definition 2.2. Let X , Y be subcategories of modR. Let add X denotes the set of all direct
summands of some direct sum of modules in X . We define peR(X , Y ), or pe(X , Y ) to be the
subcategory of modR consisting of all modules C such that there are exact sequence of either of
the forms:

0 → A → C → B → 0

0 → A → B → C → 0

with A ∈ X and B ∈ Y . For any integer n � 0 we define the subcategories penX inductively as
follows: pe0X = add X , pen+1 X = add(pe(add X ,penX )). We let pe∞X = ⋃

n�0 penX .

We first record a useful:

Lemma 2.3. Let R be a Cohen–Macaulay local ring, M,N are finitely generated R-modules
and n > 1 an integer. Consider the two conditions:

(1) Hom(M,N) is (Sn+1).
(2) ExtiR(M,N) = 0 for 1 � i � n − 1.

If M is locally free in codimension n and N satisfies (Sn), then (1) implies (2). If N satisfies
(Sn+1), then (2) implies (1).

Proof. The first claim is obvious if dimR � n, as then M is free by assumptions. By localizing
at the primes on the punctured spectrum of R and using induction on dimension, we can assume
that all the modules ExtiR(M,N), 1 � i � n − 1 have finite length. Take a free resolution of P

of M and look at the first n terms of Hom(P,N). As all the cohomologies of this complex are
Ext-modules, the claim now follows from the Acyclicity Lemma (see [4], Exercise 1.4.23).

For the second claim, one again takes a free resolution of P of M and look at Hom(P,N).
The vanishing of the Ext modules gives the long exact sequence:

0 → HomR(M,N) → Nb0 → ·· · → Nbn−1 → B → 0

Counting depth shows that depth HomR(M,N)p � min{n + 1,depth(Np)} for any p ∈
Spec(R), which is what we want. �

The following result was first proved by Jothilingam ([12], Main Theorem and the discussion
of the last proposition). For a more modern presentation, see [11].
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Theorem 2.4 (Jothilingam). Let R be a local ring and M,N are finite R-modules such that
N is Tor-rigid. If Ext1R(M,N) = 0 then M∗ ⊗R N ∼= HomR(M,N) via the canonical map. In
particular, Ext1R(N,N) = 0 if and only if N is free.

Corollary 2.5. Let R be a local ring satisfying condition (R2) and (S3). Suppose that M is a
reflexive R-module giving an NCCR for R. Then any non-free module in add(M) is not Tor-
rigid.

Proof. Suppose there is a non-free summand N of M which is Tor-rigid. Then N is reflexive,
so it is (S2) and also free in codimension 2 as R is (R2). Moreover, HomR(N,N) is (S3) as it
is a summand of HomR(M,M). Lemma 2.3 and Theorem 2.4 combine to imply that N is free,
contradiction. �

In the next section, we shall prove a partial converse to this corollary for hypersurfaces.

Remark 2.6. Suppose that R is a local ring which is (R2) and (S3). Then a reflexive ideal I

representing a non-trivial element in the class group of R must not be Tor-rigid. Indeed, we have
HomR(I, I ) ∼= R satisfies (S3).

In general, it is a very delicate problem to decide whether a module (or a pair) is Tor-rigid.
In the hypersurface case, however, there has been recent progress. We summarize the relevant
results in:

Theorem 2.7. Let R be a local hypersurface with isolated singularity. Assume R̂ ∼= S/(f ) where
S is an equicharacteristic or unramified regular local ring and f ∈ S is a regular element. Let
M be a finite R-module.

(1) If [M] = 0 in G(R)Q, the reduced Grothendieck group of finite R-modules with rational
coefficients, then M is Tor-rigid.

(2) If dimR = 3 and the class group of R is torsion (i.e. R is Q-factorial), then M is Tor-rigid.
(3) Assume dimR is an even number greater than 3 and M is reflexive. Then HomR(M,M) is

(S3) if and only if M is free.
(4) In this part we do not assume isolated singularity. Assume R is a local hypersurface of

dimension at least 3. Suppose that M is reflexive and locally free on the punctured spectrum
of R. Assume that [M] = 0 or [M∗] = 0 in G(R)Q. Then HomR(M,M) is (S3) if and only
if M is free.

Proof. Parts (1) and (2) are contained in Theorem 4.1 in [7]. Part (3) is Corollary 4.4 in [8].
Part (4) is Theorem 3.4 in [8]. �

Next we shall discuss how to construct projective resolution over an endomorphism ring. It
was explained to us by Craig Huneke. The idea follows [2], as explained in [14], however we
need a bit more details for our purpose. For finite R-modules M,N we shall write N |M if N is
a direct summand of M .

Construction 2.8. Let M be a finite R-module and A = HomR(M,M). It is well known that
there is an equivalence between the categories of modules in add(M) and projective modules
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over A via HomR(M,−) (see for example Lemma 4.12 in [5] or [14]). It follows that any finite
A-module N fits into an exact sequence

0 → HomR(M,N1) → HomR(M,P1) → HomR(M,P0) → N → 0

The above discussion shows that when investigating projective resolutions of A-modules if
suffices to consider modules of the form HomR(M,N). If R|M , one could build a resolution
in a particularly nice way. First pick a minimal set of generators f1, . . . , fn of HomR(M,N)

which includes a minimal set of generators of HomR(R,N). Let φ be the map Mn → N which
takes (m1, . . . ,mn) to f1(m1)+· · ·+fn(mn). Clearly φ is surjective and HomR(M,φ) : A⊕n →
HomR(M,N) is also surjective. In other words, one has the short exact sequences:

0 → N1 → M⊕n → N → 0

and

0 → HomR(M,N1) → A⊕n → HomR(M,N) → 0

Continuing in this fashion one can build an exact complex:

F : · · · → Mni+1 → Mni → ·· · → Mn0 → N → 0

such that HomR(M, F ) is an A-projective resolution of HomR(M,N).

Corollary 2.9.

gl.dim(A) � sup
{
pdA HomR(M,N)

∣∣ N ∈ mod(R)
} + 2

Proof. As in 2.8, any A-module has a second syzygy of the form HomR(M,N). �
Corollary 2.10. Let R be a local ring and M be an R-module such that R|M and
gl.dim HomR(M,M) is finite. Then add(M) generate the Grothendieck group of mod(R).

Remark 2.11. The above construction shows, as proved by Leuschke (Theorem 6, [14]), that if
the ring R has finite CM type, and one takes M to be the direct sum of all the representatives of
the indecomposable MCM modules, then A = HomR(M,M) will have finite global dimension.
Thus, if A is MCM itself, it will be an NCCR over R. In dimension 2, A would be automatically
MCM, so this process works very well. However, in dimension 3 or higher, A is rarely MCM, and
indeed 2.5 indicates that we have to pick the non-Tor-rigid modules among the indecomposable
MCMs. We will push this idea further in the next section.

Finally, we discuss some sufficient conditions for an endomorphism ring to have finite global
dimension. Our key condition is similar to the concept of cluster tilting (see, for example, [6]).

Proposition 2.12. Let R be a local Cohen–Macaulay ring of dimension d and M an MCM R-
module which is locally free in codimension 2 and assume that R|M . Let X (M) = {N ∈ MCMR |
Ext1R(M,N) = 0}. If M ∈ X (M) and X (M) ⊆ pen(M) for some n then A = HomR(M,M) has
finite global dimension at most n + d + 2.
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Proof. First, we shall prove via induction on n that for any module C ∈ pen(M),
pdA HomR(M,C) � n. The case n = 0 is obvious. Suppose we proved our claim for n = l.
Pick C ∈ pel+1(M) and we may assume C fits into one of the two sequences:

0 → A → C → B → 0

0 → A → B → C → 0

with A ∈ add(M) and B ∈ pel (M). But by assumption Ext1R(M,A) = 0, so either sequence
remains exact after applying Hom(M,−). By induction hypotheses we are done.

It suffices to prove that for any R-module N , HomR(M,N) has finite projective dimension
at most n + d over A, see Remark 2.9. By Lemma 2.3 we know that A is (S3). From Construc-
tion 2.8 one can build an exact sequence:

F : 0 → Nd → Mnd−1 → ·· · → Mn0 → N → 0

which remains exact when applying HomR(M,−). It follows that Nd is MCM and
HomR(M,Nd) is (S3). Lemma 2.3 tells us that Ext1R(M,Nd) = 0, so Nd ∈ X . By the claim,
pdA HomR(M,Nd) � n, so we are done. �
Remark 2.13. If R is Gorenstein and A is MCM, then we only need to assume X ⊆ pe∞(M) to
conclude that the global dimension of A is exactly d , by [18], proof of Lemma 4.2.

3. NCCR over hypersurfaces

In the case of hypersurfaces, one can say a lot more about NCCRs due to recent results on
Tor-rigidity. Throughout this section we assume that R is an abstract hypersurface, i.e. that R̂ ∼=
S/(f ) where S is a regular local ring and f ∈ S is a regular element.

Theorem 3.1. Let R be a local hypersurface satisfying condition (R2). Assume that R̂ ∼= S/(f )

where S is an equicharacteristic or unramified regular local ring and f ∈ S is a regular element.

(1) If dimR = 3 and the class group of R is finite (i.e., R is Q-factorial), then R admits no
NCCR.

(2) If R has isolated singularity and dimR is an even number greater than 3, then R admits no
NCCR.

(3) Let N be the set of isomorphism classes of indecomposable maximal Cohen–Macaulay
(MCM) modules over R which are not Tor-rigid. Assume that N is not empty. Let M a
module such that R|M and N ⊂ pen(M) for some n. If A = HomR(M,M) is (S3), then it
has finite global dimension at most dimR+n. In particular, if A is MCM, then it is an NCCR
over R.

Proof. Parts (1) and (2) follow from Theorems 2.4 and 2.7. It is left to prove part (3). We may
assume d = dimR � 3. By Lemma 2.3 and Proposition 2.12, we just need to show that any
non-free, indecomposable module in X (M) also belongs to N . Pick such K in X (M). We have
Ext1R(M,K) = 0 and HomR(M,K) is (S3). By Theorem 2.4, M∗ ⊗R K is (S3). But one can
embed M∗ into a free module: 0 → M∗ → G → L → 0 such that L is torsion. Tensoring
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with K and using the fact that M∗ ⊗R K is (S3) forces TorR1 (L,K) = 0. As K is Tor-rigid,
TorRi (M∗,K) = 0 for all i > 0. Since R is a hypersurface and M is not free, it now follows that
K is free (see [10]), a contradiction. �
Remark 3.2. In the situation of part (1), being Q-factorial and factorial are actually the same
for R. This is known for the equicharacteristic case. We will prove the unramified case in a
forthcoming paper.

Remark 3.3. The conclusion of part (1), if we further assume that R has terminal singularity
and the ground field is the complex numbers, can be explained using Van den Bergh results and
standard facts of birational geometry. Namely, by Theorem 6.6.3 of [18], R has a projective
crepant resolution Y → Spec(R), which has to be a small resolution (i.e. the fiber of the closed
point has dimension at most 1). Then the pushforward of the hyperplane section on Y cannot be
Q-Cartier, so the class group of R cannot be torsion. We thank Tommaso de Fernex for explaining
this fact to us.

Remark 3.4. Part (2) can be proved directly using Theorem 2.4 if one knows that over such
hypersurface, any module is Tor-rigid. We conjecture this to be true in [7]. Recently, a proof of
our conjecture in the graded, equicharacteristic 0 case using complex-analytic method by Walker,
Moore, Piepmeyer and Spiroff has been announced, see [17].

Example 3.5. There are examples of isolated hypersurface singularities in all dimensions which
admits projective crepant resolutions: let k be an algebraically closed field of characteristic 0 and
R = k[[x0, x1, . . . , xn]]/(f ) with f = (xl

0 + xn
1 + · · · + xn

n) and l > n an integer such that l ≡
1 modn (see [16], Theorem A.4). Thus, our result shows that extra conditions will be needed for
the equivalence of the existence of two definitions of crepant resolutions, in higher dimensions.

Example 3.6. Let k be an algebraically closed field of characteristic 0. We now apply Theo-
rem 3.1 to analyze some simple singularities of dimension 3 over k. They are well known to
be hypersurfaces of type An,Dn,E6,E7 or E8. But the types A2l ,E6,E8 are factorial (in fact
G(R)Q = 0), so they admit no NCCR. We now study the case A2l+1 = k[[x, y,u, v]]/(xy +
u2 − v2l+2). There are exactly l + 3 indecomposable MCM modules up to isomorphism: R,
I = (x,u + vl), I ∗ and l modules M1, . . . ,Ml of ranks 2.

We claim that all the modules Mi are Tor-rigid. By Theorem 2.7, it is enough to show that
each [Mi] is 0 in G(R)Q. By Knörrer periodicity result (see [13] and [20], Chapter 12), one could
prove that fact by looking at dimension 1, that is R = k[[u,v]]/(u2 − v2l+2). In this case, Mi

is the first syzygy of the ideal Li = (u, vi). As R/Li has finite length, [R/Li] = 0 in G(R)Q,
and so is the class of its second syzygy Mi . Remark 2.6 now shows that I and I ∗ are the only
non-free indecomposable MCM modules which are not Tor-rigid. But I is the first syzygy of I ∗,
so I ∗ ∈ pe1(M), where M = R ⊕ I . Since A = HomR(M,M) = R2 ⊕ I ⊕ I ∗ is MCM, it gives
an NCCR by part (3) of Theorem 3.1. Obviously one can also take M = R ⊕ I ∗.

One could also prove that A is NCCR as follows. Every Mi fits into an exact sequence 0 →
I → Mi → I ∗ → 0 (it can be shown by computing the length of Ext1R(I ∗, I )). Since I is the first
syzygy of I ∗, it follows that every MCM module is in pe2(M). Then we again apply part (3) of
Theorem 3.1.
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Remark 3.7. The NCCRs over simple singularities have been completely analyzed in [6] via
different techniques. We will use the methods described here to study rigid and cluster tilting
objects, in the sense of [6], in a separate paper.

4. Obstructions to non-commutative crepant resolutions over complete intersections

In this section we shall extend some results of the last section to the case of complete inter-
sections, that is, rings whose completion are isomorphic to S/(f1, . . . , fn) with S a regular local
ring and the (f1, . . . , fn) from a regular sequence in S. Typically we would need to assume some
mildly good depth conditions on the module M which gives rise to an NCCR. That is because
Tor-rigidity has not been very well understood in this generality.

The following observation partly generalizes Grothendieck well-known theorem that the class
group of a complete intersection which is (R3) is trivial. It also places some serious restrictions
on NCCRs of complete intersections whose singular locus have codimension at least 4.

Proposition 4.1. Let R be an excellent local complete intersection satisfying regularity condition
(R3). Suppose that M satisfies (S3). Then Hom(M,M) is (S4) if and only if M is free.

Proof. Since R is excellent we can complete without affecting the issues. So we may assume
R is S modulo a regular sequence, where S is a complete regular local ring. By Lemma 2.3
Ext1R(M,M) = Ext2R(M,M) = 0. The desired result follows from Proposition 2.5 of [11]. We
give a quick explanation for completeness. Since R is now complete, we can lift M to a module
N over S (see [1]). Since over a regular local ring every module is Tor-rigid [15], we know that
so is M as R-module. Theorem 2.4 finishes the proof. �
Corollary 4.2. Let R be an excellent local complete intersection satisfying condition (R3). Sup-
pose that M is a reflexive R-module such that A = HomR(M,M) is an NCCR. Then M cannot
satisfy (S3).

Remark 4.3. In all known examples of NCCR, the module M is actually MCM. The above corol-
lary shows that this cannot happen when R is an excellent local complete intersection satisfying
condition (R3).

Inspired by the above result, we shall study the issue of deforming NCCR. We first prove a
few lemmas, which should be known, but we cannot find a convenient reference:

Lemma 4.4. Let (S,m) be an excellent local ring and M a finite S-module satisfying (Sn). Then
the local cohomology module Hn

m(N) has finite length.

Proof. We may complete and assume that S is the homomorphic image of a regular local ring
(T ,m). Let d = dimT . Local duality over T says that Hn

m(M) = Hn
m(M) has finite length if and

only if Extd−n
T (M,T ) has finite length. Localize at any non-maximal q ∈ Spec(T ) ∩ Supp(M).

The module Extd−n
T (M,T )q ∼= Extd−n

Tq
(Mq,Tq) is dual to H

dimTq−d+n

qTq
(Mq) which is 0 since M

is (Sn). �
Lemma 4.5. Let (S,m) be an excellent local ring and N be an S-module. Suppose f ∈ m is a
regular element on S and N . Let R = S/(f ) and M = N/(f ). Let n be an integer.
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(1) If M is free in codimension n, then so is N .
(2) If M satisfies (Sn), then so does N .
(3) If K is an S-module such that f is K-regular and Ext1R(M,K/(f )) = 0 then Ext1S(N,K) =

0 and HomR(M,K/(f )) ∼= HomS(N,K)/(f ).

Proof. Let p ∈ Spec(S) of codimension n. If f ∈ p, then Mp is free, and (1) follows by Nakaya-
ma’s Lemma. If f /∈ p, one can choose a minimal prime q of (f,p). Then q has codimension n

in R, so Mq and thus Nq is free. Since p ⊂ q , Np is free as well.
For (2), let V (f ) = {p ∈ Spec(S) | f ∈ p} and U = {p ∈ Spec(S) | depthRp

Mp �
min{n,dim(Rp)}}. It is standard that U is open in Spec(S) (for example, see [9], 3.3.9). Since S

is local, it is enough to show that V (f ) ⊂ U . We now proceed by induction on n. Suppose n = 1,
we first prove that depthN � 1. The long exact sequence of local cohomology coming from

0 → N
f−→ N → M → 0

and Nakayama shows that H0
m(N) = 0. Our argument localizes, so V (f ) ⊂ U , as desired. Sup-

pose we already know that N is (Sn−1) and M is (Sn). Again, it suffices to prove depthN � n.
By Lemma 4.4 we know that Hn−1

m (N) has finite length. But using the fact that depthM � n and
the long exact sequence of local cohomology one gets:

· · · → Hn−1
m (N)

f−→ Hn−1
m (N) → 0

which forces Hn
m(N) = 0, which gives what we want.

We now prove (3). Apply HomS(N,−) to the short exact sequence

0 → K
f−→ K → K/(f ) → 0

we get:

0 → HomS(N,K)
f−→ HomS(N,K) → HomS

(
N,K/(f )

) → Ext1S(N,K)
f−→ Ext1S(N,K) → 0

Nakayama’s Lemma provides the desired conclusions. �
Theorem 4.6. Let S be an excellent local ring and N be an S-module. Suppose f is a regular
element on S and N . Let R = S/(f ) and M = N/(f ). Assume M is (S3) and free in codimen-
sion 2 as an R-module. If A = HomR(M,M) is (S3) and has finite global dimension, then so is
B = HomS(N,N).

Proof. We first note that Ext1R(M,M) = 0 by 2.3. Now Lemma 4.5 shows that B is (S3).
As in the proof of 3.1 it is enough to prove that pdB HomS(N,K) is finite for any MCM S-
module K such that HomS(N,K) is (S3). But then Ext1S(N,K) = 0 and HomS(N,K/(f )) ∼=
HomR(M,K/(f )) ∼= HomS(N,K)/(f ). Now it is enough, by Nakayama, to show that
pdB HomS(N,K/(f )) is finite. But by assumption HomS(N,K/(f )) has a finite resolution
by projective A-modules. Since each projective A-module has finite projective dimension over
B (in fact pdBA = 1), we are done. �
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Corollary 4.7. Let S be a complete local ring and f is a regular element on S. Let R = S/(f ).
Suppose that R admits an NCCR A = HomR(M,M) such that M is (S4) and free in codimen-
sion 3. Then there is a lifting N of M to S such that B = HomS(N,N) is an NCCR over S.

Remark 4.8. The above corollary gives another proof of 4.2.

Finally, we mention that one could use the ideas in this paper to explain failure of certain non-
commutative resolutions to be crepant in the positive characteristic case. Let R be a local ring of
characteristic p. Let eR denotes R as a module over itself via the e-th power of the Frobenius
homomorphism. Recently, the module A = HomR(eR, eR) has been shown to have finite global
dimension (so it is a non-commutative resolution) in some cases ([19]). It is known that over
complete intersections, eR is Tor-rigid (see [3]). Hence the following result is straightforward
application of Corollary 2.5 (compare with Section 6 in [19]):

Corollary 4.9. Let R be a local complete intersection of characteristic p such that R is (R2) and
e any integer. Then A = HomR(eR, eR) is not an NCCR (it will not be “crepant”).
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