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Abstract

Peroxisomes are unique among the organelles of the endomembrane system. Unlike other organelles that derive
most if not all of their proteins from theER (endoplasmic reticulum), peroxisomes contain dedicatedmachineries for
import of matrix proteins and insertion of membrane proteins. However, peroxisomes are also able to import a
subset of their membrane proteins from the ER. One aspect of peroxisome biology that has remained ill defined is
the role the various import pathways play in peroxisome maintenance. In this review, we discuss the available
data on matrix and membrane protein import into peroxisomes.

© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
Introduction

Peroxisomes are organelles found in almost all
eukaryotic cells. They are bounded by a single
membrane and are usually spherical. Peroxisomes
are involved in a variety ofmetabolic pathways that vary
between species, cell types and environmental condi-
tions. All peroxisomes contain enzymes that catalyze
oxidation reactions, including a fatty acid oxidation
system, as well as enzymes that protect cells from
oxidative damage, such as catalase. It is not surprising
that peroxisomes are essential for human metabolism
and development, and this is illustrated by severe
inherited diseases caused by impairments in one or
more peroxisomal functions [1,2].
Peroxisomes are unique among single-mem-

brane organelles in that peroxisomes are capable
of importing both their matrix and membrane
proteins directly from the cytosol. Peroxisomal matrix
proteins are nuclear encoded and are synthesized
on free polyribosomes [3]. As is the case for other
targeting and translocation systems, peroxisomal
matrix proteins contain specific targeting signals
that are recognized by receptors that deliver them
to the membrane translocation site. Translocation is
Authors. Published by Elsevier Ltd. T
rg/licenses/by/4.0/).
dependent on consumption of energy in the form of
ATP.Several aspects of peroxisomal protein transport
distinguish it from other translocation systems. For
example, peroxisomal proteins can fold, acquire
cofactors and assemble into oligomers in the cytosol
prior to import; another difference relates to the
targeting receptors, which bind cargo in the cytosol
but imbed into or cross the membrane as part of their
targeting cycle.
Peroxisomal membrane proteins (PMPs) are also

nuclear encoded. However, the mechanism of their
import into peroxisomes is less understood. What is
known is that PMPs and matrix proteins use different
machineries for import. Most peroxisome biogenesis
mutants contain membrane structures that are devoid
of content, reflecting the large number of proteins
required for import of matrix proteins (Table 1). The
proteins required for peroxisome biogenesis are called
peroxins (PEX) [4].Only twoPEXmutants in yeast (and
three in mammals) are devoid of peroxisomal mem-
brane structures.
Below, we review the targeting and import of matrix

proteins separately from that of membrane proteins.
We will discuss some of the discrepancies in the
literature and the outstanding questions in the field. For
his is an open access article under the CC BY license
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Table 1. Peroxins required for peroxisomal matrix protein import in S. cerevisiae and their human orthologues

S. cerevisiae Homo sapiens Process Complex

Pex1 Pex1 Export of receptors AAA+ complex
Pex2 Pex2 Ubiquitination of receptors RING ubiquitin ligase complex
Pex4 UbcH5a/UbcH5b/UbcH5c Receptor ubiquitination Ubiquitin conjugation complex
Pex5 Pex5S/Pex5L Targeting, translocation PTS1 receptor, import pore
Pex6 Pex6 Export of receptors AAA+ complex
Pex7 Pex7 Targeting PTS2 receptor
Pex8 Translocation/cargo release Intraperoxisomal peroxin
Pex10 Pex10 Receptor ubiquitination RING ubiquitin ligase complex
Pex12 Pex12 Receptor ubiquitination RING ubiquitin ligase complex
Pex13 Pex13 Docking Docking complex
Pex14 Pex14 Docking, translocation Docking complex, import pore
Pex15 Pex26 Export of receptors AAA+ complex
Pex17 Docking Docking complex
Pex18/Pex21 Pex5L Targeting PTS2 coreceptor
Pex22 Receptor ubiquitination Ubiquitin conjugation complex
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detailed discussions on peroxisome multiplication, we
refer to recent reviews [5–9].
Matrix Protein Import

Import of peroxisomal enzymes can be divided in
multiple steps: (1) recognition in the cytosol by
receptors, (2) docking of receptor–cargo complex at
the peroxisomal membrane, (3) cargo translocation
and (4) recycling of receptors (see Fig. 1).
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As mentioned above, matrix protein import into
peroxisomes differs from import into other organelles
in that peroxisomes can import folded proteins and
even protein complexes.
Folding Prior to Import

Studies in the 1980s revealed that mRNAs encoding
peroxisomal enzymes are associated with free polyri-
bosomes [3]. Further evidence for posttranslational
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import is based on various experiments: (1) radioactive
pulse-chase analyses show that newly synthesized
β-oxidation enzymes are released in the cytosol before
associating with peroxisomes [3], (2) in vitro synthe-
sized peroxisomal matrix proteins are imported
into purified peroxisomes (e.g., see Refs. [10–12])
and (3) import of purified peroxisomal proteins occurs
in semi-permeabilized fibroblasts and after microin-
jection into the cytoplasm [13–15]. Indeed, the
presence of a carboxy-terminal targeting signal in
most peroxisomal matrix proteins is compatible only
with a posttranslational targeting mechanism.
Whereas proteins targeted posttranslationally to

mitochondria, chloroplasts and ER (endoplasmic
reticulum) are kept in a partially unfolded confor-
mation by chaperones and targeting factors,
peroxisomal matrix proteins can fold and assemble
into their active, cofactor-containing conformation
in the cytosol before targeting (for a review, see
Ref. [16]). For example, catalase is a haem-con-
taining tetrameric protein. In fibroblasts from
patients with a peroxisome biogenesis defect,
catalase is mislocalized to the cytosol. Fusion of
peroxisome-deficient cells belonging to different
complementation groups (i.e., having defects in
different genes) results in import of the existing
cytosolic pool of catalase [17]. Several studies
have shown import of proteins that were folded
prior to import [14,15,18]. Subunits of a homodimer
or homooligomers artificially lacking a peroxisomal
targeting signal (PTS) are co-imported with sub-
units containing a PTS [19–23]. Large structures
(including gold particles or chemically cross-linked
albumin) are imported into peroxisomes when
coated with peptides containing a PTS after
microinjection into the cytosol of fibroblasts [24].
However, folding is not a prerequisite for import

[25], and not all peroxisomal proteins are multi-
mers. Although tetrameric catalase can be
imported in vivo [17,23], an in vitro study reported
that catalase monomers preferentially bind the
import receptor that inhibits oligomerization. This
would suggest that catalase is imported mainly as a
monomer if the concentration of the receptor is high
enough to bind newly synthesized catalase [26].
Likewise, pumpkin isocitrate lyase monomers are
imported preferentially over tetramers in vitro [27].
Other oligomeric proteins that assemble into their
quaternary structures inside peroxisomes include
Hansenula polymorpha alcohol oxidase (an octa-
mer of 600 kDa) [28,29] and porcine heart perox-
isomal carbonyl reductase (a tetramer). The latter
protein cannot be imported as a tetramer as the
PTSs are no longer accessible for recognition by
the PTS receptor [30].
Therefore, although peroxisomes are capable of

importing fully assembled oligomeric proteins, this
may not reflect the way these proteins are imported
under physiological conditions.
Recognition by Targeting Receptors

The carboxy-terminal PTS1 was identified first in
firefly luciferase and has since been found in most
matrix proteins. The C-terminal tripeptide SKL was
found to be both necessary and sufficient to target a
protein to peroxisomes [31]. Variations of this signal
have been described, resulting in the consensus
-(SAC)-(KRH)-(LM) that is evolutionarily conserved
[32–35]. Some PTS1s do not conform to the
consensus, and amino acid residues immediately
preceding the tripeptide appear to contribute to
targeting in those cases [36–38]. The PTS1 is
recognized by the receptor Pex5, which is a modular
protein containing a C-terminal tetratricopeptide
repeat domain: it is the tetratricopeptide repeat
domain that interacts with the PTS1 [39,40].
A second evolutionarily conserved PTS is found

close to the amino-terminus of a subset of peroxi-
somal matrix proteins. This PTS2 was first described
as a nonapeptide present in the amino-terminal
cleavable presequence of rat peroxisomal thiolase
[41–43]. Most PTS2s fit the following consensus
-R-(LIVQ)-X-X-(LIVQH)-(LSGA)-X-(HQ)-(LA)- [43].
The PTS2 is recognized by the receptor Pex7. The
PTS2-dependent targeting route is absent in Caenor-
habditis elegans, Drosophila melanogaster and dia-
toms [44–46].
Whereas Pex5 is sufficient for targeting PTS1-con-

taining proteins to the peroxisomal membrane, many
fungi require the coreceptor Pex20 for PTS2 targeting
via Pex7 [47–49] or the Pex20-like paralogues Pex18
and Pex21 in Saccharomyces cerevisiae [50]. These
coreceptors are absent from mammals and plants,
where PTS2 import requires both Pex7 and Pex5.
Human cells express at least two isoforms of Pex5:
Pex5S and Pex5L. The latter has an additional exon
that is required for binding of Pex7 to Pex5. This
binding site is conserved in the Pex20-like proteins and
plant Pex5 and is required for PTS2 import [47,51–53].
Besides the Pex7 binding sites, the carboxy-terminal
domain of the Pex20-like proteins shows additional
sequence similarities to the N-terminus of Pex5.
Therefore, Pex5L is considered a Pex7 coreceptor.
Not all peroxisomal matrix proteins are targeted to

peroxisomes under all conditions. For instance, the
activity of the PTS2 of S. cerevisiae GPD1 depends
on phosphorylation [54].
Non-Classical Import Mechanisms

Interestingly, not allmatrix proteins contain aPTS1or
a PTS2 [20]. Cu/Zn superoxide dismutase 1 is found
mainly in mitochondria and cytosol but is also localized
to peroxisomes. This non-PTS1/PTS2-containing pro-
tein is piggy back imported into peroxisomes through
its direct interaction with the PTS1-containing copper
chaperone for superoxide dismutase [22].
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Others, however, are not imported via the
classical PTS1, PTS2 or even by a piggy-back
pathway. Instead, proteins such as acyl-CoA
oxidase (Pox1) in S. cerevisiae are recognized
via the N-terminal domain of Pex5 rather than via its
PTS1 binding domain [55] (for review, see Ref.
[56]).
The Recycling Receptor Concept

Early analysis of human Pex5 revealed it to be
localized mainly to the cytosol, with a small fraction
associated with peroxisomes. Localization to per-
oxisomal membranes is increased in the skin
fibroblasts from peroxisome biogenesis disorder
patients with a mutation in Pex2, Pex10 or Pex12
and in wild-type cells upon ATP depletion and
incubation at low temperature. On restoring trans-
location conditions, Pex5 returned to the cytosol,
after which it could be trapped again on peroxi-
somes by depleting ATP and incubating at low
temperature. These experiments show clearly that
Pex5 is a cycling receptor and that this cycle is
modulated by factors required for peroxisomal
protein import [57].
Different models have been proposed for Pex5

shuttling between cytosol and peroxisomal mem-
brane, including a model whereby it dips into the
membrane and releases its cargo at the luminal
side of the membrane (shuttle model) [58] and
another model whereby Pex5 enters the peroxi-
somal lumen before being exported back to the
cytosol (extended shuttle model) [59]. Pex7 also
behaves similar to a cycling receptor and was
proposed to follow the extended shuttle model [60].
It is clear from these studies that Pex5 and Pex7
are exposed to the lumen of the peroxisome, but
whether they are released into the lumen is not
clear.
Docking of Cargo–Receptor Complexes

The docking complex consists of Pex13 and
Pex14 (and Pex17 in yeasts) and is required for
bothPTS1andPTS2 import [61]. The docking complex
proteins interact with the PTS receptors and each other
(for detailed reviews, see Refs. [62–64]). The exact
roles of Pex13 andPex14 in docking are unclear. Both
proteins have been shown to interact with cargo-
loaded PTS1 and PTS2 receptors [65–67]. In mam-
mals, cargo-loaded PTS1 receptor associates first
with Pex14 before being translocated to a high-
molecular-weight complex containing Pex13 [68].
The cargo-loaded PTS2 receptor complex also
docks initially onto Pex14 via its coreceptor Pex5L
[65,69]. Subsequently, the Pex7-cargo-loaded com-
plex binds to Pex13 independently of Pex5L [65,67].
In S. cerevisiae, the PTS2 receptor complex appears
to dock first onto Pex13 [66].
Cargo Translocation and Release

After docking of the cargo-loaded receptors, the
cargo must be translocated across the membrane and
released inside the peroxisome. These processes are
poorly understood. In vitro import studies using Pex5
are starting to give new insights into the translocation
mechanism, which needs to allow for translocation of
oligomeric proteins without disturbance of the internal
milieu of the peroxisome. Several observations are
compatible with a model whereby translocation occurs
through a dynamic transient pore that disassembles
after translocation. This pore is proposed to be
composed of the targeting receptors plus components
of the docking complex [70]. Indeed, Pex5 behaves as
a soluble protein in the cytosol, as well as a
carbonate-extraction-resistant and partially protease
protected protein when in its cargo-loaded form at the
peroxisomal membrane: as a receptor–cargo complex,
Pex5 becomes an integral part of the translocation pore
and behaves as an integral membrane protein. The
C-terminal domain containing the PTS1 binding site is
then exposed to the lumen of the peroxisome [71–73].
Pex5 has been reported to form homooligomers and to
insert spontaneously into membranes [74,75].
Pex5 together with Pex14 are the only peroxins

required for import of Pex8 into peroxisomes, and they
therefore constitute theminimal translocon [76]. In vitro,
the S. cerevisiae Pex5–Pex14 complex can form an
ion-conducting channel with a variable pore size of up
to 9 nm [77], with the size of the pore depending on the
size of the cargo. Leishmania Pex14 has also been
shown to have pore-forming activity [78]. The actual
architecture of the pore is unknown, and many
questions remain, such as the driving force for
translocation, whether PTS2 proteins are transported
via the same or a separate pore and whether the Pex7
coreceptors will form part of the pore.
The mechanism of release of cargo from receptors

has remained elusive. Recent in vitro studies suggest
that Pex14 in mammals and Pex8 in Pichia pastoris
may be involved [26,79]. In plants, Pex14 has been
suggested to be required for release of PTS2 cargo
[80]. Furthermore, binding/release of cargo toPex5 has
been suggested to be redox dependent [79]. The
development of an in vitro import system that follows
the import of a specific cargo rather than that of the
targeting receptors [81] is an important step that will
likely resolve some of the mysteries.
Export of Receptors

After release of their cargo, the receptors are
exported back to the cytosol in an ATP-dependent
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process [68,72,82]. The export of receptors has been
reviewed recently in Ref. [83] and will be discussed
only briefly below.
PTS1 import requires monoubiquitination of a

conserved cysteine in Pex5 [84–86]. Monoubiquitina-
tion occurs after insertion of Pex5 into the membrane
and cargo release [87] and is essential for recycling of
Pex5 and therefore for PTS1 import [85,86,88].
Monoubiquitination is catalyzed by the dedicated
ubiquitin-conjugating enzyme Pex4 that is localized
to the cytosolic side of the peroxisomal membrane
[86,88,89]. In mammals, Pex4 is absent, and Pex5
monoubiquitination depends on a family of related
ubiquitin-conjugating proteins (Ubc5a–Ubc5c) [90].
Pex5 monoubiquitination also depends on an integral
membrane protein complex containing the RING
ubiquitin ligases Pex2, Pex10 and Pex12 [91–94].
In vitro export assays revealed that monoubiquiti-

nated Pex5 is exported by the AAA-type ATPases
Pex1 and Pex6 [68,72,95]. The hexameric AAA+
complex consists of three subunits each of Pex1 and
Pex6 [96]. The complex associates at the cytosolic side
of the peroxisomal membrane via the tail-anchored
(TA) protein Pex15 in yeast, Pex26 in mammals and
APEM9 in Arabidopsis thaliana [97–99].
The mechanism by which monoubiquitinated Pex5

is recognized by Pex1/Pex6 is unknown. However, a
novel binding partner for Pex6 comprises the ubiqui-
tin-binding adaptor protein AWP1 [100], and it is
tempting to speculate that this proteinmay be involved
in recognition of monoubiquitinated Pex5. This sug-
gests that Pex5 export is mediated by being pulled/
extracted from the cytosolic side of the peroxisomal
membrane. Therefore, at later stages of the import
process, Pex5 is exposed to the cytosol where it is
monoubiquitinated prior to its export. After release,
Pex5 is deubiquitinated by the ubiquitin hydrolase
Ubp15 in yeast and USP9X in mammals [101,102],
and it is ready for another round of cargo targeting and
import. Import of proteins across membranes always
requires energy. The only steps requiring energy are
themonoubiquitination of Pex5 and its extraction from
the membrane by Pex1 and Pex6 AAA+ proteins.
This led to the export-driven import model proposing
that Pex1 and Pex6 function as motor proteins that
couple ATP-dependent removal of Pex5 with cargo
translocation into the organelle [103].
Analogous to the recycling of Pex5, the PTS2

coreceptor proteins have been shown to recycle by a
mechanism requiring ubiquitination [49,93]: they are
monoubiquitinated on a cysteine residue near the
amino-terminus, and this is dependent onPex4and the
RING complex [93,104,105]. In mammals, Pex7
association with peroxisomes is dependent on Pex5L
and cargo. The protection of Pex7 from protease
digestion suggests its insertion deep in the membrane
or its release into the lumen. ATP is required late in the
cycle, after Pex7 and cargo become protease pro-
tected. Export of Pex7 requires Pex5L, but differences
in the kinetics of export of Pex5L compared to Pex7
suggest that they may leave separately [106].
Membrane Protein Targeting

The machinery required for PMP import is distinct
from that required for matrix protein import. In almost
all patients with peroxisome biogenesis disorders,
matrix proteins are mislocalized to the cytosol, while
PMPs are present in membrane structures called
peroxisomal membrane ghosts [17,107,108]. The
exceptions to this are two mutants in yeasts (pex3
and pex19) and three mutants in mammals (pex3,
pex16 and pex19) that lack peroxisomal membrane
ghosts: PMPs no longer colocalize with each other
and are either rapidly degraded or localized to the
cytosol or to membranes including mitochondria or
putative pre-peroxisomal structures [109–119]. For
this reason, Pex3, Pex16 and Pex19 are thought to
be involved in the formation of peroxisomal mem-
branes and/or insertion of PMPs into peroxisomal
membranes.
Biochemical and microscopy studies of pex3,

pex16 and pex19 mutants suggest that at least two
routes exist by which PMPs can reach peroxisomes:
one direct route and one via the ER. Below, we
discuss the various routes and machineries involved
in PMP insertion and provide examples to illustrate
that a PMP may not be confined to a single route.
Direct Targeting Pathway

Most PMPs are synthesized on free polyribo-
somes and imported posttranslationally from the
cytosol [120–126]. Many of these PMPs possess a
membrane PTS (mPTS) that consists of a cluster of
positively charged residues or a mixture of positively
charged and hydrophobic residues flanked by one or
two transmembrane segments that are recognized
and bound by Pex19 [127–137]. However, there is
another group of PMPs that does not bind Pex19
(Jones et al., 2004). Thus, PMP membrane targeting
signals have been classified by their ability to be
recognized and targeted to peroxisomes by Pex19.
Those that are targeted by Pex19 are called class 1
or mPTS1, and those that are not targeted by Pex19
are called class 2 or mPTS2 [129].

A model for direct targeting to peroxisomes

The current model for direct posttranslational
targeting of PMPs to peroxisomes proposes that
Pex19 acts as a soluble recycling receptor/chaper-
one that picks up newly synthesized PMPs in the
cytosol and subsequently docks on Pex3 in the
peroxisomal membrane (Fig. 2a–c) [113,138,139]. In
line with this model, Pex19 binds to newly
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synthesized PMPs to keep them soluble and stable
in the cytosol. This is based on in vitro studies where
Pex19 was found to bind newly synthesized PMPs
and keeps them soluble [125,126,140–142]. In
line with this, peroxisome-less cells (Pex3-deficient
fibroblasts) overexpressing Pex19 stabilize PMPs in
the cytosol and prevent them from being degraded
[113,143]. Furthermore, Pex19 not only binds PMPs
but also transports them to different subcellular
locations. For instance, the overexpression of Pex19
tagged with a nuclear localization signal resulted in
the accumulation of PMPs in the nucleus [143].
Pex19 cannot insert, on its own, PMPs into the
membrane; for this, the PMP membrane receptor
protein Pex3 is also required. Together with the
cargo, Pex19 binds to Pex3 on the peroxisomal
membrane to form a trimeric complex of Pex3,
Pex19 and cargo [125]. The importance of the Pex3–
Pex19 interaction for PMP targeting is illustrated by
mutations that prevent Pex3–Pex19 interaction that
also prevents PMP insertion into peroxisomes
[126,144,145].
Pex3 is anchored in the peroxisomal membrane

by its N-terminal transmembrane domain, with the
remainder of the protein forming an α-helical bundle
that protrudes into the cytosol [144,146]. This domain
contains a hydrophobic surface located near the base
of the protein close to the lipid bilayer. It is thought to
mediate binding to liposomes in vitro [147] and has
been suggested to locally deform the peroxisomal
membrane [142]. Mutagenesis studies of this hydro-
phobic patch revealed the importance of its hydro-
phobicity and its shape for PMP insertion [145] but not
Pex19 binding [142]. At the apex of the bundle lies a
hydrophobic groove that mediates binding of an
N-terminal amphipathic helix of Pex19 [144,146].
The region on Pex19 that binds mPTSs is located in
its C-terminal domain [138,139,148]. An additional
amphipathic helix in Pex19 is thought to facilitate the
handover of transmembrane domains to Pex3.
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Subsequent transmembrane insertion occurs where
the Pex3 hydrophobic surface deforms the peroxi-
somal membrane [142].
PMPswithmultiple transmembrane segments have

multiple Pex19 binding domains: these PMPs may
bind multiple Pex19s simultaneously and dock onto
the same Pex3 sequentially or to multiple Pex3s
(Fig. 2a) to allow their insertion into the bilayer.
Indirect Targeting Pathway (via the ER)

The ER-to-peroxisome pathway was first described
in Yarrowia lipolytica [149,150]. One of the key
observations was that Pex2 and Pex16 are core-gly-
cosylated PMPs. This result suggested that these
PMPs travel via the ER to peroxisomes bypassing the
Golgi complex. No other endogenous PMPs have
been shown to be glycosylated in any other model
system, which is unfortunate as this would provide a
useful tool to study ER to peroxisome transport. Since
then, several PMPs have been described to travel to
peroxisomes via the ER in a number of different
systems, including ascorbate peroxidase and Pex16
in plants and Pex3 and Pex16 inmammals, as well as
Pex3, Pex15 and Pex22 in S. cerevisiae [117,151–
155]. Of these PMPs, transport of Pex3 has been
studied the most intensively.
Pex3, the protein that mediates direct insertion of

PMPs into the peroxisomal membrane together with
Pex19, is itself a PMP. This leads to an apparent
conundrum of how Pex3 is itself inserted into the
peroxisomal membrane. It has been known for some
time that Pex3 targeting to peroxisomes differs from
that of other PMPs as it contains anmPTS2 instead of
an mPTS1 such as most PMPs [143]. This targeting
quagmire was resolved by a number of groups who
simultaneously described the transport of Pex3 via
the ER to peroxisomes in S. cerevisiae [156–158]. In
Pex3-deficient cells, conditional expression of
Pex3-GFP allowed for the visualization of de novo
peroxisome formation from the ER. Pex3 was seen
first in the ER and associated puncta, after which the
puncta lost their ER association and matured into
peroxisomes [156]. Also, whenPex3 is forced to insert
cotranslationally into the ER by addition of the
invertase signal peptide, not only it complemented
pex3 cells but also, more importantly, the signal
peptide was cleaved and the processed Pex3 was
shown to end up in newly formed peroxisomes [157],
thus showing that Pex3 traveled to peroxisomes via
ER.
More recent studies suggest that Pex3 import into

the ER in S. cerevisiae involves the ER posttrans-
lational Sec61/Sec62/Sec63 translocon (Fig. 2d)
[159]. The mPTS2 of Pex3 of S. cerevisiae, which
was previously shown to be required for its perox-
isomal localization [158], was dissected further into
signals that direct Pex3 (1) into the ER, (2) sort it
from there to a punctate ER subdomain (pER) and
(3) sort it from the pER onto peroxisomes [159,160].
Interestingly, Pex3 appears not to be the only PMP

to be imported into the ER by the posttranslational
translocon. For instance, partial depletion of the ER
translocon subunits Sec62 and Sec63 inS. cerevisiae
showed a partial mislocalization of Pex13-GFP to the
cytosol [161]. Additionally, Pex13 and Pex14 fail to
associate with membranes in pex3 mutants depleted
for Sec62/Sec63 as revealed by differential centrifu-
gation [162]. Together, these observations make a
strong case for a requirement of the Sec61 translocon
for peroxisome biogenesis andmembrane insertion of
some PMPs in S. cerevisiae.
Targeting of TA PMPs in S. cerevisiae:
A Tale of Two Pathways

TA proteins destined for the endomembrane
system insert into the ER membrane via a variety
of partially redundant machineries [163,164]. The
ATP-dependent insertion via the Get pathway is the
best studied of these mechanisms and appears to be
a major contributor to insertion of TA proteins with a
hydrophobic tail anchor region. The Get/TRC
machinery consists of a cytosolic ATPase (Get3/
TRC40) that binds the transmembrane segment of
newly synthesized TA proteins and delivers them to
the ER membrane [165,166]. Get1 and Get2 are
integral ER membrane proteins that function as
Get3–cargo complex receptors in yeast [166].
Overexpression of the peroxisomal TA protein

Pex15 results in its accumulation in the ER
[166,167]. In Get-deficient cells, a pulse of a
GFP-Pex15 fusion protein fails to label peroxisomes
and the ER but instead labels a cytosolic aggregate
initially, which is followed by mitochondrial localiza-
tion at later time points [166]. Pex15 appended with
an opsin tag that is a 23-amino-acid residue is
N-glycosylated and reaches peroxisomes [154].
Together, these observations indicate that Pex15 is
initially targeted to the ER by the Get complex before
being routed to peroxisomes. However, Pex15 can
also reach peroxisomes independent of the Get
machinery. In contrast to pex15 cells [167], get1/get2
and get3 cells have peroxisomes [162,166]. A short
pulse of YFP-Pex15 expression showed low levels
of YFP-Pex15 associated with peroxisomes in get3
cells [162]. As Get3 and Pex19 have been shown
to interact with the tail anchor region of Pex15
[166,168], it is tempting to speculate that the direct
pathway may also contribute to targeting S. cerevi-
siae Pex15 to peroxisomes.
In mammals and in Neurospora crassa, the Pex15

homologue, the TA PMP Pex26, is targeted and
inserted independently of the Get/TRC machinery.
Instead, it relies on the Pex19-dependent direct
targeting pathway [126,142]. Similarly, the TA
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protein Fis1 requires Pex19 and its Pex19 binding
sites for targeting to peroxisomes [169].
These studies of TA proteins clearly show that

this type of PMP can be targeted to peroxisomes
using different machineries and pathways. In yeast,
the predominant but not exclusive route appears
to be the indirect pathway via the ER, whereas in
mammalian cells and in N. crassa, the direct import
into peroxisomes appears to dominate.
Pex3 Targeting in Mammals

As observed in S. cerevisiae cells, human Pex3
fused to a signal peptide can complement Zellweger
syndrome fibroblasts deficient in Pex3. This implies
that, similar to yeast Pex3, human Pex3 can traffic to
peroxisomes via the ER [153,155]. However, using
an in vitro targeting assay in semi-permeabilized
cells, Fujiki's group has demonstrated that Pex3 can
insert directly into peroxisomes by a pathway similar
to that shown for other PMPs in that it requires the
PMP cytosolic receptor Pex19. Since Pex3 lacks an
mPTS1 but instead contains a targeting signal that
does not binds Pex19 [143], the role of Pex19 in this
transport is unclear, but may reflect its chaperone
function.
Pex3 targeting directly to peroxisomes also

requires Pex16, which is considered to function as
a peroxisomal receptor for newly synthesized Pex3
(Fig. 2e) (Matsuzaki, 2008). Pex16 has a dual
localization as it is also found in the ER membrane
[117]. In live cells, Pex3 was shown to target to the
ER when Pex16 was localized there even in cells
deficient in functional Pex19 (Fig. 2b) [117,145].
However, in the absence of Pex16, Pex3, like many
other PMPs, localized to mitochondria even in the
presence of Pex19 [117,143,153]. Furthermore, in
addition to Pex3, a number of other PMPs are
recruited to the ER by Pex16 [117,155]. These data
suggest a model whereby Pex3 and maybe some
additional PMPs are targeted directly to peroxi-
somes via a Pex16-dependent, Pex19-dependent
route, as well as to the ER by a Pex16-dependent,
Pex19-independent route. The steady-state distri-
bution of Pex16 and the availability of Pex19 binding
sites on cargo molecules may determine which
route is taken in mammalian cells.
How Pex16 itself is imported into a membrane is

a point of contention. It has been reported that
Pex16 is imported by the Pex3/Pex19 direct
pathway [143], while another group suggests that
Pex16 is cotranslationally inserted into the ER
membrane before being routed to peroxisomes
[117]. The different conclusions may result from
differences in the Pex16 constructs used. The report
showing direct targeting of Pex16 to peroxisomes is
based largely on the ability of Pex19 to bind and
redirect the last third of the Pex16 polypeptide to the
nucleus and peroxisomes. However, the first half of
Pex16 has been shown to be necessary and sufficient
to target to peroxisomes in control cells [133]. In vitro
targeting experiments suggest that Pex16 is inserted
cotranslationally into the ER membrane [117], most
likely by the ER translocon. Neither Pex3 nor Pex19 is
required for its ER insertion. Furthermore, recent work
that quantified PMP import kinetics showed that the
import rate of Pex16 into peroxisomes was low
compared to that of Pex3 and PMP34. It is proposed
that direct import into peroxisomes is faster than
insertion into the ER membrane and subsequent
sorting to peroxisomes. Indeed, Pex16 transport
kinetics are similar to those of Pex3 fused to a signal
peptide, a construct that is first forced into the ER by
an ER targeting signal sequence before being routed
to peroxisomes [155]. It is also possible that mamma-
lian Pex16 has two independent targeting sequences,
one in the N-terminal part of the protein for cotransla-
tional insertion into the ER membrane and one in the
C-terminal part of the protein for direct insertion into
the peroxisomal membrane. Since the ER targeting
signal will emerge first from the ribosome, we propose
that most Pex16 is cotranslationally inserted into the
ER.
ER-to-peroxisome transport

Since it is clear that some PMPs travel via the ER to
peroxisomes, this raises the question as to how this
transport is mediated. Two models explain how
ER-inserted PMPs reach peroxisomes. In the first
model, ER-inserted PMPs are sorted away from the
secretory pathway and are delivered to peroxisomes,
probably by vesicular transport. In the second model,
peroxisomes form de novo from ER-derived vesicles
thereby forming a new peroxisome. The two process-
es may be combined into a single process where a
pre-peroxisomal vesicle either matures into a new
peroxisome or fuses with an existing peroxisomes.
Which process dominates may vary among growth
conditions, cell types or whether any peroxisomes are
present.
In mammalian cells, the first model is supported by

the finding that Pex16 is inserted into the ER
membrane and sorted from there to peroxisomes
[117,170]. This transport requires the secretory
factor Sec16b [170]. Similarly, Pex3 “forced” into
the ER by a signal sequence is transported to all
pre-existing peroxisomes in mammalian cells [155].
This suggests that the ER is constantly providing
lipids and proteins to pre-existing peroxisomes.
The rate of transport of ER-targeted Pex3 was
quite high, thus giving a possible explanation as to
why PMPs are not readily found in the ER in
wild-type cells. Further support for a model whereby
existing peroxisomes continue to receive membrane
material was provided by overexpression of a
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Pex11β-YFP fusion protein that inhibits peroxisome
fission. Newly synthesized matrix and membrane
proteins are imported into subdomains of these
elongated peroxisomal structures [171]. Additionally,
using Halo-tag approaches, the Fransen laboratory
showed that peroxisomes receive newly synthesized
PMPs, including Pex16 (Huybrechts et al., 2009).
In cells that are devoid of peroxisomes due to loss of

PMP import peroxins (Pex3 or Pex19), peroxisomes
can form de novo on introduction of the corresponding
gene. In S. cerevisiae, Pex19 is required for exit of
Pex3 from theER [156,158,172]. In vitro reconstitution
of the initial step of de novo formation revealed that
Pex19 is required for release of Pex3-containing
vesicles from the ER [154,173]. However, how Pex19
mediates PMP targeting and budding from the ER is
unclear. It is possible that Pex19mediates recruitment
to Pex3 at the ER of factors required for pre-perox-
isomal vesicle formation. This may not be mechanis-
tically different from the role of Pex19 in PMP
targeting. For instance, in S. cerevisiae, Pex25, a
member of the Pex11 family, has been reported to
workwith Pex3 to initiate formation of pre-peroxisomal
vesicles [174]. As Pex25 is an integral membrane
protein, Pex19 may play a role in delivering it to Pex3
at the ER. Pex19may also be involved in delivering to
the ER factors required for vesicle formation. In
general, vesicle budding from donor membranes
involves recruitment of peripheral membrane proteins
from the cytosol. Instead of handing the cargo over to
Pex3 for insertion, peripheral membrane proteinsmay
behandedover to other factors at the pre-peroxisomal
membrane. Indeed, Pex19 has been shown to recruit
the peripheral membrane proteins Vps1, Pex17 and
Myo2 to peroxisomes via a motif resembling the
mPTS1 [175–177].
Recently Tabak and colleagues proposed that, in

S. cerevisiae, all newly synthesized PMPs insert into
the ER membrane via the ER translocon or Get
complex. The PMPs then sort to distinct ER
subdomains that bud off and heterotypically fuse to
bring together a complete set of PMPs, after which
matrix protein import commences [161,162]. The
peroxins Pex1 and Pex6 are proposed to mediate
vesicle fusion. The import defect observed in pex1
and pex6 cells is proposed to result from a lack of
fusion. According to thismodel, existing peroxisomes
do not receive newly synthesized PMPs and there-
fore there is no need for a PMP insertionmachinery in
the peroxisomal membrane.
Although this model is attractive, it does not explain

the strong experimental evidence that existing perox-
isomes continue to receive newly synthesized PMPs
and that peroxisomes multiply by dynamin-related
protein fission [160,172,178–180]. Furthermore, since
manyS. cerevisiaePMPs contain Pex19 binding sites
that are required for their targeting [137] and since the
steady-state localization of Pex3 is at the peroxisomal
membrane, it is very likely that, by analogy to
mammalian cells, most PMPs are inserted directly
into peroxisomal membranes. Pex3 that travels via the
ER to peroxisomes may facilitate PMP insertion into
the ER and into subsequent transport intermediates
along the Pex3 trafficking pathway. The kinetics of ER
to peroxisome transport and the availability of Pex3 for
PMP import will determine whether newly synthesized
PMPs are imported directly into peroxisomes or
indirectly via the ER. This hypothesis is in line with a
recent observation by the van der Klei group. In
H. polymorpha cells lacking Pex3, non-ER membrane
structures containing the PMPs Pex13 and Pex14
but lacking other PMPs were detected [118]. Upon
reintroduction of Pex3, Pex3 accumulated in
these structures and subsequently import of other
PMPs commenced. Therefore, in this yeast, it is the
localization of Pex3 that appears to direct the site of
import.
The proposal that Pex1 and Pex6 are involved

in fusion of precursor peroxisomes [161] is difficult
to reconcile with previous studies. According to this
model, the matrix protein import defect observed in
pex1 and pex6 cells is a consequence of the docking
complex (Pex13/Pex14) being present in separate
vesicles from the exportomer complex (including
Pex2/Pex10/Pex12). Many independent studies in
various model systems have shown that Pex1 and
Pex6 are required for recycling of ubiquitinated PTS
receptors (see above). In pex1 and pex6 cells, PTS
receptors accumulate at a postdocking stage at the
peroxisomal membrane and are poly-ubiquitinated
by the transmembrane RING finger ubiquitin ligases
that are part of the exportomer complex, before their
degradation. These observations indicate that dock-
ing complex and exportomer are present in the same
membrane structures in pex1 and pex6 cells. On the
other hand, in support of Tabak's model, Y. lipolytica
Pex1 and Pex6 have been suggested to function in
membrane fusion events. Clearly, these observations
are not easily explained and further investigations will
be needed to resolve this apparent contradiction.
Concluding Remarks andConsiderations

Although our understanding of peroxisome biology
has been much advanced, there remain several
huge gaps in our knowledge and in some unex-
plained observations. One such gap is the mecha-
nism by which matrix proteins and membrane
proteins are translocated across/into the peroxisom-
al membrane. A translocon for matrix proteins has
been identified, but its transient and dynamic nature
has hampered detailed biochemical characterization.
Innovative approaches will be required to unravel the
mysteries of translocation into the peroxisomal matrix.
With respect to delivery of PMPs to peroxisomes,

there is evidence for two routes, one direct and one
indirect via the ER. A particular PMP may follow
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different routes to peroxisomes but the factors that
decide which route it will follow are not clear.
Mechanistic insights are limiting and it is entirely
unclear how PMPs with multiple membrane spans
are inserted into the peroxisomal membrane.
Other major gaps in our understanding include the

mechanisms that regulate peroxisomedynamics.What
determines whether peroxisomes multiply via growth
and division or via de novo formation from the ER, and
what are the signals for peroxisome degradation? Are
there new machineries to be discovered or are all the
peroxins known?Genetic approaches initially identified
peroxins as factors for matrix protein import or
membrane biogenesis. However, it is becoming clear
that many peroxins have multiple functions. For
instance, Pex3 has been implicated in peroxisome
segregation and pexophagy in various yeast species
[181–183]; Pex19 functions in peroxisome fission and
segregation [175,177], and Pex14 has been implicated
in pexophagy and peroxisome motility [184–186]. As
discussed above, the exportomer factors Pex1 and
Pex6 have been proposed to also mediate fusion
events during peroxisome formation in Y. lipolytica and
S. cerevisiae [161,187].
With many peroxins being involved in a variety of

aspects of peroxisome dynamics and with different
modes of peroxisomemultiplication and various routes
for PMP targeting that may display partial overlap, it is
not surprising that studies on peroxisomal membrane
biogenesis have resulted in controversies and unex-
plained observations. Careful dissection of the different
functions of peroxins under controlled growth condi-
tions is an important avenue to follow and may unravel
the mechanisms that coordinate various aspects of
peroxisome dynamics and resolve some of the
unexplained observations discussed above.
For the last 20 years, the research focused on

understanding peroxisome biogenesis has advanced
the field significantly. However, several studies clearly
demonstrate the need to understand the degradation
process, as it appears that the cell has an intricate
process of detecting and destroying misassembled
peroxisomes [118,188]. This indicates that caution
must be takenwhen interpretingdatausingperoxisome
biogenesis mutants, as increased turnover of peroxi-
somes and/or pre-peroxisomal structures can poten-
tially skew the results. Only by understanding both
processes may we be able to comprehend better the
mechanisms governing peroxisome dynamics.
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