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On the Distributions of a Class of
Statistics in Multivariate Analysis

K. C. S. PiLLar! AND B. N. NAGARSENKER?

Department of Statistics, Purdue University, Lafayette, Indiana 47907

The noncentral distributions of ¥ = [I}_, 8,%(1 — 8,)° are obtained, where
a and b are known real numbers and 8,’s stand for latent roots of a matrix arising
in each of three situations in multivariate normal theory, namely, test of equality
of two covariance matrices, MANOVA, and canonical correlation. The study is
extended to the complex case as well. The distributions are derived in terms of
H-functions as a result of inverse Mellin transforms. Further, asymptotic
expansions of the distribution of Y have been obtained in the case of two
covariance matrices for selected values of (a, b).

1. INTRODUCTION

The noncentral distributions of statistics of the form Y = [T;., 6;%(1 — 6,)?,
where a and b are real numbers have been obtained in the following cases:
(1) test of ;, = E,, where, Z, and Z, are the covariance matrices of two p-variate
normal populations, (2) Manova, and (3) Canonical correlation, where 8;’s stand
for latent roots of a matrix arising in each of the situations. The complex analog
of the distributions also are treated. Among special cases of this statistic are
(i) Wilks’ 4 = [T7., (1 — 8,), (i) Wilks—Lawley statistic, U = [T;., 6, , (iii)
the modified likelihood ratio criterion for test of (1) given by A = [];_, 67/
(1 — 6,)"/% (See Section 3), (iv) W = [T;; (1 — 6,)-1, and others. The density
functions are given in terms of H-functions [2] as a result of employing inverse
Mellin transforms. In sections 5-7, we give the asymptotic expansion of the
distribution of Y in some special cases in connection with (1). The asymptotic
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expansion of the non-null distribution of a special case of ¥ was considered by

Sugiura and Fujikoshi [8] for cases (2) and (3).

2. NONCENTRAL DISTRIBUTIONS OF Y IN THE REAL CasE

Let us first consider test (1).

(a) Equality of two covariance matrices.

Let X;: p X ny and Xyt p X ny, p << #; (i = 1, 2) be independent matrix
variates with the columns of X, independently distributed as N(O, Z))
and those of X, independently distributed as N(O, &,). Thus S, = X, X/
and S, = X,X,' are independently distributed as Wishart (n ,p, £;)i =1, 2.
Let 0 <f, <f, <+ <f, < be the characteristic roots of S,S;? and
0 <A <A < - <A, < 00 be those of Z,Z;1. Here we proceed to obtain
the distribution of

Y = fIOi“(l — 6,)%, 2.1
where
= f,/(1 + f,), 1=1,2,..,p 2.2)

The density of 6, , 0, ,..., 8, is given by (Khatri [5])
fOy, 65 ,..., 0,) = C(p, n, A)[n?* 2|, (p/2)] | 0 | M > V72
|1, — 0" PV, — 6,) ,Fy(n/2, M, 8), (2.3)

i>j

where
6 = diag(9,, b6, ,..., 0,), M=1,— A,
(2.4
A = diag(A, Ay ..y Ap), n=mn +mn,,
and l
C(p, n, A) = I y(n2)[Ty(m/2) Ty(ny2)] * | A [T (25)

Now using the density (2.3), we get

E(Y*) = C(Lp, #, A) mo—1)/4 Z y _(”/Z)K C (M)
k=0 « (2 6)
iy P[n1/2 + ah + ki~ (i = 1)/2] [T8q Tna2 + bk - G- 1)/2]
2, M2 + (a + b + k; — (1 — 1)/2]

683/2/1-7
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Making use of the inverse Mellin transform, we have the density of ¥ as

f¥Y)=C(p,n, A) 7P(P- 1)/4ZZM_y1

[T Im/2 + ah + k; — (i — 1)/2]
. _l_f y-h ].—.[1—1 F[n2/2 -+ bh — (l 1)/2] dh
2mi J o P T2 + (@ + bk + k; — (G — 1)2]

2.7
Noting that the integral on the R.H.S. of (2.7) is in the form of the H-function,
the noncentral density of Y for test (1) can be put in a single general form for
different sets of values of @ and b as follows:

AY) = C(py m, Ao ;OZ—(”’Z) OCM) y1 yrs (v] EZ::SI):: 11’ : ’)
(2.8)

where C(p, n, A) is as in (2.5) and the constants are as given in Table 1.

(b) Manova

Let 8, ,..., 8, be the characteristic roots of S,(S; + S,)~* where S;isap X p
matrix distributed as noncentral Wishart with », d.f., 2 is a matrix of noncen-
trality parameters and S, has the Wishart distribution with n, d f., the covariance
matrix in each case being Z. The distribution of 8, ,..., 8,, is given by Constantine
[3, Eq. (41)] using which E(Y*) can be obtained in the same manner as before
and is given by

» (1/2) CAR) I'y(m/2 + ah, k) I'y(ny/2 + bh)
E(Y") = Cy(p,n, ) ). 3, (n,/2), ! T2 + (a + b)h, «] )

= (2.9)

where Cy(p, n, Q) = Iy(n[2) [[y(m[2) Tp(ny/2)]* & T
Noting that (2.9) can be obtained from (2.6) by making the following substitution

(A5 M, (1/2)) — (€77, @, (1/2),(m/2).), (2.10)

we can write the density of Y for this model in the general form

1Y) = Cipm @ 3, 3 LDy (v

k=0 x

(ai ) O‘i) 1= l,..., t
(b;,B) i = 1,.., u)’
(2.11)

where the constants «, 8, 7, 5, 2, %, (@, , o;) and (b, , B;) are as in Table .
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(c) Canonical correlation

X . . .
Let the colhumns of (x) be mc.lependent normal (p + ¢) variate (p < g,
P + g < n, nis the sample size) with zero means and covariance matrix

s (zu Z:12)‘
Z, Iy

Let R? = diag(r,3,..., 7,%) where r,2 are the char roots of
| XX, (XX, ) XXy — 72X X, | =0
and P? = diag(p%,..., p,2) where p,? are the char. roots of
| EpE Efp — p"Eyy | = 0.

Using the density of r,%,..., r,2 given by Constantine [3], we obtain E(Y*) in the
form (noting thatr2 = 0,,7 = 1,..., p)

E(Y") = Cyp, n, g, P?) i y 02 “((;/22)1 “k!C“(Pz)

k=0 «

2.12)
 T'(g/2 + ah, k) T'y(ny/2 + bh)
I',[n/2 + (a + bk, «] ’

where Cy( p, n, ¢, P?) = I'y(n/2)[1',(q/2) I;[(n — 2)2]17 |1, — P? [*and m, —
n — ¢. Noting that (2.12) can be obtained from (2.9) by making the following
substitution,

[Ci(p, 7, R), 1/(m)2), R, m] —[Co P, 1, ¢, P2), (n/2)/(q/2).c, P2 q]  (2.13)

we can write the density of Y = [T;_, (r,2)* (1 — 7,2)? for this case in the general
form
¢ 5 [1/2). (n/2), 8C(P?)
Y)=2C » I 4, p2

=0 «

(2.14)
(a;,0) i = 1., t)’

Hy (v (bis )i = 1 u

where the constants «, 3, 7, 5, ¢, %, (4; , o;) and (b, , B;) are as in Table I in which »;
is to be replaced by ¢ throughout.
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3. SpecIAL CAaSes

(i) Wilks’ A criterion. Taking a = 0 and b = 1 in (2.8) and using the relation
between the H-function and the G-function, we find that the noncentral density
of Wilks’ 4 — [T}, (1 — 8;) is as obtained by Pillai, Al-Ani, Jouris in the three
cases [6].

(ii) Wilks—Lawley U-criterion. If a = 1 and b = 0 in (2.8), we obtain the
non-central density of Wilks-Lawley U-statistic, U = [;., 0; for test (1), in the
form

1) = Clpym 1) Y 3 -CDEED 1)

k=0 «

v (]G s T ) &)

where C(p,n, A) is as in (2.4), (a;, ;) = (12 4+ k; — (@ — 1)/2,1), and
(bs) B:) = (/2 + k; — (1 — 1)/2, 1) i = 1,..., p. Equation (3.1) can also be
expressed in terms of the G-function. The density of U for the Manova and

Canonical correlation cases can be written down using the substitution (2.10)
and (2.13) respectively.

(i) Taking @ = my/2 and b = n,/2 in (2.8) we obtain the noncentral density
of the modified likelihood ratio criterion for testing &, = 2, , L., of the statistic

2
A = H 0‘?1/2(1 _ ei)ng/z — I Sl l'n1/2 I S I—n/2 l 52 lnglz
i=1
where S = S; + S, , in the form

f()‘) — C(P’ n, A) 7,-1’(”—1)/4 f ("/2)xk|Cx(M) A—lHia,uz,g ()\ (ai ’ O‘i)i = 1»-"’ P),
k=0 :

(bz ) ﬁz) i = L“UP

where

(@5 ) = (]2 + k; — (i — 1)[2, n/2),

and

(Bs, Be) = {(m)2 + by — (G —1)/2, m[2), (ng)2 — (i — 1)[2, ng/2)}, i = 1,..., p.

The densities in the other two cases can be written down using (2.10) and (2.13).
(iv) Taking @ = 1 and b = —1 in (2.8) we obtain the noncentral density of the

683/2/1-7*
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statistic W = [T, 61 — 8,)* = | 8,87 | for test (1) in the form
f(Y) = C(p, n, A) aP(p-1)/2
(3.2)
vy W2 CM) s (v (@ )i =1 p
k{:o; kI (n)2, «) YIH®? (Y‘ (0;,1)i = 1,-.-,1))’

wherea; =1 — ny/2 + (i — 1)/2and b; = n,/2 + k; — (f — 1)/2. The density in
(3.2) can be easily written down in terms of the G-function. The noncentral
densities of W for the Manova and Canoncial correlation cases can be written
down using (2.10) and (2.13).

4. NONCENTRAL DISTRIBUTION OF Y IN THE ComPLEX CASE

The noncentral density of Y in the complex case can be obtained in a similar
manner and is noted below.

(a") The general form of the density of Y for test (1) can be written down
from (2.8) by making the following substitutions.

(7%, m[2, mgf2, mf2, (i — 1)[2, Ty(*), T("5 <), C(*); () (4.1)
= (@, my myym, (= 1), (), Tyl ), €L, 110
where (), F (-, k), C.(-) and [], are as defined in James [4].

(¢') For the Manova case the general form of the density of Y is obtained from
(2.11) by making the substitutions as in (4.1).

(¢} In the case of Canonical correlation also, the general form of the density
of Y can be written down from (2.14) using (4.1).

5. AsymPTOTIC EXPANSION OF THE DISTRIBUTION OF Y, @ = n,/2 AND b = n,[2

First we give some preliminaries.

(a) Preliminaries. For this case, putting a = 7,/2 and b = n,/2 in (2.6)
we have,

(1 +4)
. w (2T, (2
E(Yh) - —17"(&_.__ A I—n1/2 z Z ( 2 )
Ty(ny/2) T'(my/2) =0 % RAT ( n(l + h) K)
TP 2 )

" Lp{ny(l + k)/2} C(M). (5.1)
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This can be easily written in the form

E(Y?) = {L'y(n2) I'y[my(1 + B)[2]
“ Ty[ny(1 + B2} Tp[n(1 + 1)[2] I'y(m/2) T'y(mef2)} (5.2)
S| AR o Fy(m)2, my(1 + R)[25 m(1 + R)[2, M).

We shall assume that

n,=7m (@ =12), where 7 -+ 71, = 1. (5.3)

The asymptotic expansion of the distribution of Y will be derived in terms of #
increasing and also in terms of m = pn increasing where 0 < p << 1 and is
defined later, with 7, and 7, fixed. (See Anderson [1, p. 254]). The A-th moment of

W — [n(llz)pn/ﬂllz)pnlnéllz)pn,]‘ g (54)
is given by
E(W") = n(1/2)pnhn-l—(llz)pnlhn;(llz)xm,h

AT(1[2) Dymy(1 + B)J2)/Ty[n(1 + £)[2] T'y(my/2)}
Aol 4 R)2]/Ty(ma/2)}

| A - Fynf2, m(1 + h)2; (1 + R)[2, M) G:5)

We shall obtain the asymptotic expansion for (i) — 2 log W in terms of n
increasing and assuming M to be of the form M = (2/n) P where P is a fixed
matrix, and (i) — 2p log W in terms of m = pn increasing instead of n and
assuming M = (2/m) P where P is a fixed matrix and the correction factor p is
given by (see Anderson [1, p. 255])

m=pn=mn—20 where o= (r{'+ 73" — 1)(2p* + 3p — 1)/12(p + 1).
(5.6)

We will need the following lemmas proved in [8].

Lemma 5.1, Let C(2Z) be a zonal polynomial corresponding to the partition
k={ky, Ry, Ry} withky +ky+ -+ k, =kandk, = ky = ky - > k, > 0.
Putting

a() = Y kki—i),  ae) = 3 kdkE — 6ik, + 3. (57)

F=1 i=1
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Then the following equalities hold:
Y. Y &FC(Z) ay(x)k! = (x2 Tr Z2) Tr2), (5.8)

k=0 «

>

k=1

Y 24C(Z) ay()/(k — 1) = (242 Tr Z* + 2% Tr 22 Tr Z,) eTre2)
E (5.9)

2. 2 #M(ay(k))? CZ)/A!
k=0 «
{x4(Tr 22)2 + 4x3 Tr Z3 + x2 Tr y A + x2(Tr Z)2} eTr(‘vZ)r (5 10)

ZZM(Z%WH
(5.11)

k=0 «
{453 Tr Z8 + 3x2 Tt Z% + 3x*(Tr Z)? + &« Tt Z} £TreD)
(5.12)

z K(Z)/(k — 1)' = (Tr Z) eTIZ,

Ms

1

=
Il

and
(5.13)

Z C(Z)/(k — 2)! = (Tr Z)? e™Z,

uMs

Lemma 5.2,  With the notations of the lemma 5.1, for large n
(n/2)¢ [1 + mtay(x) + (1/6n%) {k — ay(x) + 3(ay(x))*} + O(%)], (5.14)

(n/2), =
and
(n/2)% [1 4 (1/2n) {4ak + 2ay(x)} + (1/24n?) {4k + 48a2k(k — 1)
. (5.15)

(n]2 + @), = ([2)"
+ 48a(k — 1) a,(x) — 4ay(x) + 12(ay(k))?} + O(n?)]
We consider below asymptotic

() Derivation of Asymptotic Expansions
expansions of the distributions of (i) and (ii) above
(i) Asymptotic expansion of the distribution of —2 log W. Let ¢(t) be the

characteristic function of —2 log W. Then from (5.2) we have
$(t) = E(e ™) = E(W™") = Cy(t) o) Cy(1) | A |2, (5.16)
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where
C]_(t) —_ n—z‘tpnnitpnln;tpnz’ (517)
Cy(t) = I'y(n[2) Ty 8/2) T(ng/2) [I'(ng|2) T'p(my/2) I'(my/2)] (5-18)
and
g = (1 — 2it), Cy(t) = oFu(n/2, n, g[2; ng/2, M). (5.19)

We shall use the following asymptotic formula for the gamma function as in
Anderson [1, p. 204]

log I'(x + k)
=logV2r+(x+h—3%)logx —x — y (—1) B,a(h)

Y i+ O,

(5.20)

which holds for large | x| and fixed 4. The Bernoulli polynomial B,(k) of degree r
is given by (te*)/(e! — 1) = T ot7r!) B,(h). Some of these which we shall
need in the sequel, are listed below.

By(h) = h —1/2,  By(h) = k> —k +1/6, (5.21)
By(h) = h® —3h%2 +- k2 and  Byh) = K* — 2k + B* — 1/30.
Applying the formula (5.20) to each gamma function in Cy(t), we have
log Cy(2) = it pn log(n[2) — it pn, log(ny/2) — it pn, log(n,[2)
—flog(£)2 + (r/n)( g™ — 1) + (s/n*)1 — g7%) + O(=~%), (5.22)
where
F=pp+1)2, r=p2+3p—1)" +7"—1)24 (523)
and
s=p(p+ 12 —p* —p)n" + 7" — /4.
It therefore follows that
Cy(2) Cyft) = g7 %exp[(r/n)(g7* — 1) + (s/n*)(1 — g~*) + O(n~®)]
= g+ (gt — 1)+ (L — g7 + (g — 1
+ O(r%)]. (5.24)
Let M = [I — A™1] = (2/n) P where P is a fixed matrix.
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Then
2 Tn/2
|A ™2 | 1-Zp (5.25)
Now using the expansion
log |1 — %P | = —(2/n) Tt P — (2/n?) Tr (P)? — (8/37%) Tr (P3)
1 O(n), (5.26)
we obtain
2 /2 2
’I—;P — exp [(-rln/2)logll—;P|]
— e(nn/z)[—(2/nnr—(z/n’)Tr(P’)-—(s/an“m(ra)+o(n“)]
= e[ — 74, — n 24, + O(n7?)], (5.27)
where

Ay =7 Te(P%) and A, = (4/3) 7, Tr(P?) — 7% (Tr P2)%2. (5.28)

Applying asymptotic formula (5.14) to (n/2)«, (n,g/2)x and (ng/2)«x we have
after some algebraic simplication,

(n2)c (ny 8/2) x[(mg[2)
= (mm/2)* [1 4 n71ay()B() + (1/6n%) {((k — ay(x) + 3(ay(x))*)

At) — g7k — ax() — 3(@y(<))*) — D)@ (<))} + O@)],  (5.29)

where
AW =1+ (ng)> B@) =1+ — g (5.30)
and
D(t) = 6[g™" + (1" — (1g)7'].
Using (5.29) and Lemma 5.1, we have on simplification,
- _ (@2, (mg2), C. (CP)

Gt) = L X Germm

= e"T[1 + (K/n) B(t) + (1/6n*}{LA(t) — Mg~* — ND(t)} + O(n~3)],
(5.31)
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where
K =72TtP? L = 8r3TrP®+ 3n,4Tr P23 (5:32)
M = =3 (TrP2p — 167® Tr P? — 672{Tr P% 4 (Tr P)3}, '

and
N = 1 (TrP?)? + 472 Tr P? 4 72 {Tr P? + (Tr P)3.
From (5.16), (5.24), (5.27) and (5.31), we have
$(t) = g7 + nHoy + g7} + mHoy + gl + 7%} + O], (5.33)
where the coefficients «,’s are given by
ag=K—A, —r, o=Ke*—=1)+r,

oy =L[6 — A4, — KA, + s + %2 — Kr 4 Ay,
(5.34)
L =K —A) = (N — K — 4K),
an

oy = (Lr1® — M)|6 — Nii* — s + %2 + rK(7* — 1).

By inverting the characteristic function in (5.33), using the fact that (g)-//2
is the characteristic function of y,2, a chi square variable with f degrees of free-
dom, we obtain the following asymptotic expansion for the distribution of
—2log W.

P(—2log W < 2) = P(xf? < 2) + n7ooP(x* < 2) (5.35)
+ 0P(ia < )} F 1P (xS < 2) 4 pP(ifie < 3)
+ o,P (X§+4 < 2} -+ O(”_a)’

where «;; are defined in (5.33).

(i) Asymptotic expansion of the distribution of —2p log W. Here we shall
derive the asymptotic expansion for —2p log W here p is given by (5.6). Put
m = pn and let m tend to infinity instead of n. From (5.2), the characteristic
function f(z) of —2p log W can be written as

f(t) = E(e 18 %) — Cy(t) C2), (5-36)
where Cy(t) and Cjy(t) are given by
rm2)T, [ ny(1 ; 2pit) ] r, [ ny(1 ; 2itp) ]

r, [ZL2200 ] 1) 1y (yf2)

p—Pnite

Cyt) = P e

(5.37)
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and

m m m

_2"'—’_0‘)%’{‘0‘71;7‘?—*—0"1\’[)’
(5.38)

g and o being as defined in (5.19) and (5.6), respectively. Now the first factor

Cy(t) in (5.36) can be expanded asymptotically (See Anderson [1, p. 255]) as

follows:

C5(t) = | A |—(‘rl/2)(m+2u) 2F1 (

Co(t) = g1 + (A/m*)(g7* — 1) + O(m~9)], (539)
where
f=pp+12  A=[p(p+148I(p —1)p + 2)" + 72" —1) (;223
and .

y = (it 7 — 12+ 3p — 1)36(p + 1) = 4o,
Now as stated before, let
I— A7 = (2/m)P,
where P is a fixed matrix. We then have

(r1/2) (m+2a)

2
2F1 (T + &, m‘;’lg + a7y 5 Z'nzi +(x’ Zp).
(5.41)

2
cs(t)=|1—;p

Using the asymptotic expansion (5.15) to (m/2 + q),, (mr g/2 + ory), and
(mg[2 + &), , we have
(m]2 4 o)« (mry g]2 4 ot )x[(mg[2 + o)k
= (mry 2 [1 + m~1 {2ak + 8,4,(x)} + m~2{k3, - k23, + 8,a,(x)

+ Bgkay(rc) + S¢s(x) + Sx(ay(x))?} + O(m7)], (542)
where
=14+ =Dgh &= -20"+[1+E"—1g76,
8y = 2%, (5.43)

8 = —2a + 20731 — 71Y), 8 = 20 + 2ot — 1) g 7Y,

8 ={(1—m"g* —1}/6 and & ={1+4 (1" —1g }2.
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From (5.42) and Lemma 5.1., it then easily follows that,

2
2F1(”‘12"l—+°‘,%l&+“71;—";—g‘+06,7—n-1))
= P[] 4 m(2ax - b3,) (5.44)

- m¥(ady + ala + 1) 8 + B, + cby + d5, + eby) + O],
where the constants &, b, ¢, d and e are given by
a=rTrP,b=12TrP% ¢ =2r2TrP* ++2Tr P2 TrP,
d=4r2TrP? 4 3r2TrP? + 3+ (Tr PP 4+, Tt P (5.45)
and e = 1 TrP?)? + 473 Tr P? + r,2[Tr P? 4 (Tr P)3].
Also

(rym/2)+ary Tym/2 L2

[1-%P

=P—%P

‘1—3p
m

(5.46)

and using (5.26) and (5.27) to the factor on the right hand side of (5.46), it can be
easily checked that

(rym /2)+ary

l I— %P — —n’l‘l‘P[l _ m—lss + m"289 -+ O(m—g)], (547)

where
8y = {TrP? 4 2« Tr P},
and
8y = 832 — {4 TrP3/3 + 2o Tr P2},
We therefore have
Cy(t) = [1 + m(2ac 4 b8; — &) + m~ad, -+ a(a + 1) 83 + b8, + €3
4 dBg + €8, + 8, — 2a0dy — b8,8,) + O(m=3)] (5.48)

and finally from (5.36), (5.39) and (5.48) we have

J@) =71 +m oy + g7} +m2{By + Brg7 + Bog % + O(m~®)], (5.49)
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where
op = 2a0 + b — 8, o = b(rit — 1),

By = —A + 202a + (@ — d)J6 — 20(b — ¢ + adg) + ¢/2 + 8, — bdg,
(5.50)
B = (71" — 1)(2ca + & — b3s)

and
By = A + (712 — 1)@ — d)/6 + 2ba(l — 77") + (7" — 1)}/2.

Inverting the characteristic function in (5.49), we have the asymptotic expansion
of the distribution of —2p log W in the form,

P(—2plog W < 2)
= Pyxs* < 2) + mHooP(xs* < 2)
+ 4 P(xte < 2)} +mHBP (S < 2) + BiP(x7ie < %)
+ BoP(Xi+4 < 2)} + O(m™) (5.51)

6. AsymproTIC EXPANSION OF THE DISTRIBUTION OF Y,a =1 AND b =0

For this case putting @ = 1 and & = 0 in (2.6) we can easily see that

_Tm2) Ty(m/2 +h) o o2 )
EO) = Fap w0 Iy | A1 a2 mf2 + Bnf2 h M)('G_l)

We assume (5.3) and obtain the asymptotic expansion of L, where
L, = V/nlog(Y/r,?) 6.2)

in terms of # increasing with r, and 7, fixed assuming that M = [T — A™Y] =
(2/n) P where P is a fixed matrix. Let y() be the characteristic function of Z, .
Then

x(t) = E(e™1) = C(t) (1), (6.3)
where

Colt) = (s V™ T'y(nf2) Tyl |2 + it Va)[Tynf2 + it v/n) Tyfmy[2)]~
(6.4)
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and
Ct) = | A", Fy(n[2, m[2 + it V/n; n[2 + it /n, M). (6.5)

Using the formula (5.18) to each gamma function on the right hand side of (6.4),
we have

Colt) = ™M1 — m P{fTy(it) -+ 2pToit)3} + n (/T2 + FATR2)6)
+20(Ts + fILTL)(i)')3 + 2p*To2(i2)%/9} + O(n=22)], (6.6)

Ty=(t—1), Ty,=rt—1 Ty=x"—1 and f=p(p+1)2.
6.7)

Now using Lemma 5.2 to (n/2)x, (#/2 -+ it V/n)x and (n,/2 + it v/n)x we have

(12)my)2 + it Vn) (]2 + it v/n),
= (m/2)[1 + n Y22t kT, + n?
il a(e) + 262 (R T2 — kTy)) + O(n2/%). (6.8)

As before let M = (2/n)P where P is a fixed matrix. Then from (6.8) and Lemma

5.1, we have after a little simplification,
oFy(n/2, m)2 + it Vny nf2 + it V/n, (2/n) P)

= T — o V3(it) Ay + ) Ay + @) + OB, (69)

where
4, = 2T, Tr(,P), ¢ =, TrP?
and
Ay = 2{T?[(Tr 7,P)? + Tr(r,P)] — To(r, Tr P)}. (6.10)
Also from (5.27) we have
} A I-—miz _ ] I— %P !qnlz — e—n'l‘rP[l . n—lq + O(n~3/z)] (6.11)
and thus

Cift) = [1 — n~12(it) A, + nY(it)? 4, + O(n—372)]. (6.12)
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From (6.3), (6.6) and (6.12) we, obtain the following asymptotic expansion
for x(z).
X V2pTy) = e /[l — n=32D; + 17Dy + O(m=12)], (6.13)
where the coefficients D, and D, are given by
D, = QpT) 2 [(t) (A, + fTy) + BT Ty(it)*]
Dy = @pTo)? 4p*[0t)(fTe + P12 + fTidy + A) TP (6.14)
+ @) Ty(T5 + fT, T, + A,T5)/3 + ()¢ T,2/18).

and

By inverting the characteristic function (6.13) we have the following asymptotic
expansion for L;* = v/n/2pT, log(Y/7?) up to the order of n=%/2,
P(Ly* <) = 0(x) + (QpT) (T + A7) §e) + BT TP}
+ 12T (T2 + P12 + f ATy + A,) TiP0%(x)
+ T(Ts +f T Ty + A, Ty) PH(%)[3 + To2P%(x)/18} + O(n~>"),
(6.15)

where @7(x) denotes the 7-th derivative of the standard normal distribution @(x).

7. AsymMPTOTIC EXPANSION OF THE DISTRIBUTION OF Y, @ = 0 AND b =1

For this case, we have from (2.6)

e
E(Yh) _ I‘p(n/z) I‘a) (_2_ + h) I A I_”l/ngI (
T, (5 + ) Ty(ns/2)

n om

32

n
15+ M). (7.1)

We shall obtain the asymptotic expansion for L, where
L, = v/nlog(Y/r?) (7.2)

under the same condition as in Section 6. Let H(t) be the characteristic function
of L, . Then

H(t) = E(e"*1) = Cy(t) Cy(t), (7.3)
where

Cot) = (7 T, (w2) I, (G2 + it V), (5 + it V) r,(n2/2)]_: 4)
7.
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and
Cyt) = | A | ™2, F, (n/z, nl/Z;; T it v/, M). (7.5)

Using the formula (5.17) to each gamma function on the right-hand side of
(7.4) we get
Cylt) = €M1 — n A2 fRy(it) -+ 2pRo(it)*/3} + nH{(fR, + FARA[2)(it)
+ 2p(Rs + fRR,)(i2)"[3 + 2p°Ry¥(it)19} 4 O(n~*72)], (7.6)

where the coefficients R, , R, , R; and R, are given by

Ro=m'—1, R=r"—1 Ry=m"—1 and f=p(p+I1)2
a7

Using Lemma 5.1 and 5.2, we have, proceeding as in Section 6,
n . 2
.y (n/2, mj2; 5 -+ it v, ;p)
= ™[] — n-12(it) B, + n~YB, + (it)2 By} + O3], (7.8)

where B, = 2(Tr =,P), B, = v, Tr P2and B; = B,(4 + B))/2.
Using (7.8) and (6.11), we can write Cyt) as
Cy(t) = [1 — n=1/2 (i£)B, + n~1 (it)*Bs + O(n—72)] (1.9)

and thus we have the following asymptotic expansion for H(t).

H(t/V2R,p) = e /[ — n~'128) + n73B, + O(n=32)], (7.10)
where
By = 2p(2R, p)/2 [(it) Ry( fRy + By) + (i2)® Ry/3]
and
Br = 4p*(2R, p)~2 [(2)*R*(fRy + f2R{*(2 + fRyB, + By)
+ (i) Ry(R; + qRyR; + BiR,)[3 + R2(1)%/18].

By inverting the characteristic function we have the following asymptotic
expansion for L,* = L,/ V2pR, up to the order of n-3/2

P(Ly* < x) = @(x) + 7V 2(2pR,) 52 2p[ Ry( fRy + By) D) + (Ry/3) D3]]
+ 77 {2pRy) 2 4p[(fR; + fPR?|2 + By + fR,B,) R*P(x)
+ Ry(Rs + fRiR; + ByR,) P4(x)[3 + Ry*P5(x)/18] + O(n~*%),

(7.11)
where @7(x) is as defined earlier.
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The special case for ¢ =1, b = — 1 has been already considered by
Sugiura [7].
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