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On the Distributions of a Class of 
Statistics in Multivariate Analysis 

K. C. S. PILLAI~ AND B. N. NAGARSENKER~ 

Department of Statistics, Purdue University, Lafayette, Indiana 47907 

The noncentral distributions of Y = HZ, Bi’(l - BJb are obtained, where 
a and b are known real numbers and ~9~‘s stand for latent roots of a matrix arising 
in each of three situations in multivariate normal theory, namely, test of equality 
of two covariance matrices, MANOVA, and canonical correlation. The study is 
extended to the complex case as well. The distributions are derived in terms of 
H-functions as a result of inverse Mellin transforms. Further, asymptotic 
expansions of the distribution of Y have been obtained in the case of two 
covariance matrices for selected values of (a, b). 

1. INTRODUCTION 

The noncentral distributions of statistics of the form Y = I& Oia(l - 8$, 
where a and b are real numbers have been obtained in the following cases: 
(1) test of X, = C, , where, Z, and Z, are the covariance matrices of two p-variate 
normal populations, (2) Manova, and (3) Canonical correlation, where Bi’s stand 
for latent roots of a matrix arising in each of the situations. The complex analog 
of the distributions also are treated. Among special cases of this statistic are 
(i) Wilks’ n = I-I:‘, (1 - O,), (ii) Wilks-Lawley statistic, U = HL, Oi , (iii) 
the modified likelihood ratio criterion for test of (1) given by h = IJf=, OFI2 
(1 - Oi)ne12 (See Section 3), (iv) W = I-IF=, 8,(1 - B&l, and others. The density 
functions are given in terms of H-functions [2] as a result of employing inverse 
Mellin transforms. In sections 5-7, we give the asymptotic expansion of the 
distribution of Y in some special cases in connection with (1). The asymptotic 
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expansion of the non-null distribution of a special case of Y was considered by 
Sugiura and Fujikoshi [8] for cases (2) and (3). 

2. NONCENTRAL DISTRIBUTIONS OF Y IN THE REAL CASE 

Let us first consider test (1). 

(a) Equality of two covariance matrices. 

Let X,: p x n, and X,: p x ns , p < ni (i = 1, 2) be independent matrix 
variates with the columns of X, independently distributed as N(0, Z,) 
and those of X, independently distributed as N(0, C,). Thus S, = X1X1’ 
and S, = Xix,’ are independently distributed as Wishart (n, , p, Ci) i = 1,2. 
Let 0 <fi <fa < ... <f, < co be the characteristic roots of S,SL~ and 
0 <A, <A, < *** < A, < co be those of C&. Here we proceed to obtain 
the distribution of 

Y = fi &a(1 - &)b, (2-l) 
i=l 

where 

4 = Ml t-h>9 i = 1, 2 ,...) p. (2.2) 

The density of 0, , 0s ,..., Be is given by (Khatri [5]) 

f(4 ,e2 ,“‘, 4J = C(P, 12, 4[7&2/r,(p/2)] / 8 l(ml-P-l)‘z 

. / I, _ fJ 1 h-P-1)/2 ; (4 - 4 P&P9 MT 9 (2.3) 

where 
8 = diag(8, , e2 ,..., e,), M = I, - A-l, 

(2.4) 

and 

A = diag(h, , A, ,..., A,), n = n1 + n2 , 
I 

c(P, n, A) = J’,(n/2)[I’,(M) I’D(n2/2)l ’ I A l-n1’2. 

Now using the density (2.3), we get 

(2.5) 

E( Y”) = C(p, n, A) TP(P-~)/~ WL CN (M) 
jjo; k! 

. I-I%, qn,/2 + ah + ki - (i - 1)/21 l-K1 qna/2 + Ml - (i - 1)/2] 
I-Qzl +/2 + (a + b)h + 4 - (i - I)/21 ’ 

(2.6) 
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Making use of the inverse Mellin transform, we have the density of Y as 

f(Y) = C( p, 71, A) 74~-1)/4 i. F (my) y-1 

” _ 
(2.7) 

Noting that the integral on the R.H.S. of (2.7) 1s in the form of the H-function, 
the noncentral density of Y for test (1) can be put in a single general form for 
different sets of values of a and b as follows: 

where C(p, 71, A) is as in (2.5) and the constants are as given in Table I. 

(b) Munova 

Let tJ1 ,..., 8, be the characteristic roots of S,(S, + S&l where S, is a p x p 
matrix distributed as noncentral Wishart with n, d.f., Q is a matrix of noncen- 
trality parameters and Sa has the Wishart distribution with ns d.f., the covariance 
matrix in each case being C. The distribution of 0, ,..., 02, is given by Constantine 
[3, Eq. (41)] using which E(Yh) can be obtained in the same manner as before 
and is given by 

where C&J, n, Q) = r&/2) [F,(n,/2) rD(n,/2)]-l ewTrn. 
Noting that (2.9) can be obtained from (2.6) by making the following substitution 

(1 A p2, M, (n/2)J - (eeTm, 9, (n/2)Ki(%/2)K)V (2.10) 

we can write the density of Y for this model in the general form 

(2.11) 
where the constants or, 8, r, s, t, U, (a, , CQ) and (bi , ,&) are as in Table I. 



100 PILLAI AND NAGARSENKER 

(c) Canonical correlation 

Let the columns of (2) be independent normal (p $- q) variate ( p :< q, 
p + q < n, n is the sample size) with zero means and covariance matrix 

Let R2 = diag(rr2,..., r,“) where ri2 are the char roots of 

1 x,x,‘(x,x,‘)-1 X,X,’ - 9X,X, I = 0 

and Ps = diag(pr2,..., pp2) where pi2 are the char. roots of 

/ x,,c,-,1c;, - p2c1, / = 0. 

Using the density of rr2,..., yg2 given by Constantine [3], we obtain E(Y*) in the 
form (noting that ri2 = Bi, i = I ,..., p) 

E(Yh) = C,(p, n, q, P”) f  C (n’2)K(o~~(p2) 
k=O K K . 

(2.12) 

where C,( p, n, q, P2) = T,(n/2)[TP(q/2) T,[(n - 2)/211-l / I, - P2 Ini2 and n2 = 
n - q. Noting that (2.12) can be obtained from (2.9) by making the following 
substitution, 

G( 14 n, 9, l/(G% T Q2, 4 - [C2( P, n, f7, W b@Mk/2)K , P2,41 (2.13) 

we can write the density of Y = nf=, (ri2)a (1 - ri2)b for this case in the general 
form 

f(Y) = C,( p, 12, q, P2), !. F (V’2)x ~~~~1”““’ 

(ai , CQ) i = I,..., t 
(b, , &) i = l,..., u 1 ’ 

(2.14) 

where the constants OL, 6, r, S, t, u, (ai , ai) and (bi , pi) are as in Table I in which n1 
is to be replaced by q throughout. 
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3. SPECIAL CASES 

(i) Wilks’ A criterion. Taking a = 0 and b = 1 in (2.8) and using the relation 
between the H-function and the G-function, we find that the noncentral density 
of Wilks’ n = J-Jr=, (1 - et) is as obtained by Pillai, Al-Am, Jouris in the three 
cases [6]. 

(ii) Wiks-Lawley U-criterion. If a = 1 and b = 0 in (2.8), we obtain the 
non-central density of Wilks-Lawley U-statistic, U = JJb, Bi for test (l), in the 
form 

f(u) = C(p, ?a, A) f c (n’2)iF(M) ~&‘2/2> 
k=O K 

. y-lHz;; ( y j @i 9 “i) i = ls”‘p p 
(b, , pi) i = l,...,p ’ (3.1) 

where C( p, n, A) is as in (2.4), (ui , mi) = (n/2 + ki - (i - 1)/2, I), and 
(bi , /Ii) = (n,/2 + ki - (i - 1)/2, 1) i = l,..., p. Equation (3.1) can also be 
expressed in terms of the G-function. The density of 7-J for the Manova and 
Canonical correlation cases can be written down using the substitution (2.10) 
and (2.13) respectively. 

(iii) Taking a = n,/2 and b = n,/2 in (2.8) we obtain the noncentral density 
of the modified likelihood ratio criterion for testing Z, = C, , i.e., of the statistic 

h = fi fp’“(l - 4)%‘2 = 1 fjl p 1 s 7’2 1 s, p/2 
i=l 

where S = Sr + S, , in the form 

where 

(Ui , ai) = (n/2 + ki - (i - 1)/2, n/2), 

and 

(bi , A) = ((nJ2 + ki - (i - 1)/Z 4), (42 - (i - 1)/2,42)>, i = l,..., P. 

The densities in the other two cases can be written down using (2.10) and (2.13). 
(iv) Taking a = 1 and b = -1 in (2.8) we obtain the noncentral density of the 

683/2./I-7* 
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statistic W = J-J:=, Bi(l - B&l = 1 S,S;’ 1 for test (1) in the form 

f(Y) = C(p, 71, A) 79---1)/2 
(3.2) 

WV, C,(M) y-lHm (ai 3 1) i = I>...,P 
k!r,(n/2, K) ‘D’p (b, , 1) i = l,...,p ’ 

where a, = 1 - 42 + (i - I)/2 and b, = n,/2 + Ri - (i - 1)/2. The density in 
(3.2) can be easily written down in terms of the G-function. The noncentral 
densities of W for the Manova and Canoncial correlation cases can be written 
down using (2.10) and (2.13). 

4. NONCENTRAL DISTRIBUTION OF Y IN THE COMPLEX C.&E 

The noncentral density of Y in the complex case can be obtained in a similar 
manner and is noted below. 

(a’) The general form of the density of Y for test (1) can be written down 
from (2.8) by making the following substitutions. 

where pD(*), pP(*, K), r?,(a) and [.lK are as defined in James [4]. 

(b’) For the Manova case the general form of the density of Y is obtained from 
(2.11) by making the substitutions as in (4.1). 

(c’) In the case of Canonical correlation also, the general form of the density 
of Y can be written down from (2.14) using (4.1). 

5. ASYMPTOTIC EXPANSION OF THE DISTRIBUTION OF Y, a = q/2 AND ZI = n,/2 

First we give some preliminaries. 

(a) Preliminaries. For this case, putting a = q/2 and b = n,/2 in (2.6) 
we have, 

r%@/2> 
E(yh) = rJn,/2) T,(n,/2) 

(?$?)K r, ( %(’ 2+ ‘) , K) 

. r,{n2(l + WI C,@W (5-l) 
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This can be easily written in the form 

-wh) = V&/2> ~,[%(l + WI 
. r,cn,u + ww~,[~u + WI r&,/2) ~&2/W (5.4 
. 1 A I-nl’2 * &(n/2, n,(l + h)/2; n(1 + h)/2, M). 

We shall assume that 

ni = Tin, (i = 1,2), where T~+T~ = 1. (5.3) 

The asymptotic expansion of the distribution of Y will be derived in terms of n 
increasing and also in terms of m = pn increasing where 0 < p < 1 and is 
defined later, with 7r and ~a fixed. (See Anderson [l, p. 2541). The h-th moment of 

is given by 

Jj,? = [,(1/2)pn/~/2)pnk~/2)pns]. y 
(5.4) 

qp) = n(1/2)onhn;(1/2),nlhnp(112).noh 

. {r&P) Gh(l + WW&(l + W21 ~zlh/2>I 
* UXn2(l + 4/WUn2/2)~ 

1 A I--n112 . zF&@, n,(l + 5% 41 + 4/Z Ml. (5.5) 

We shall obtain the asymptotic expansion for (i) - 2 log W in terms of n 
increasing and assuming M to be of the form M = (2/n) P where P is a fixed 
matrix, and (ii) - 2p log W in terms of m = pn increasing instead of n and 
assuming M = (2/m) P where P is a fixed matrix and the correction factor p is 
given by (see Anderson [l, p. 2551) 

m=pn=n-22cz where a = (~;l + ~2~ - 1)(2p2 + 3p - 1)/12(p + 1). 
(5.6) 

We will need the following lemmas proved in [8]. 

LEMMA 5.1. Let Cx(Z) be a zonal polynomial corresponding to the partition 
K = {k, 9 A, ,..., k,} with k, + k, + *.. +k,=kandkl>k2>,k,***>k,>0. 
Putting 

%(K) = i ki(ki -i), a2(x) = f  ki(4ki2 - 6iki + 3i2). (5.7) 
i-l i=l 
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Then the following equalities hold: 

f  c x”C,(Z) q(~)/k! = (x2 Tr Zz) e’rr(sZ), 
k=O K 

(5.8) 

t c x”C,(Z) a,(~)/(h - l)! = (2x2 Tr Z2 + x3 Tr Z2 Tr Z) eTrfzZ), 
k=l K 

(5.9) 

= (ti(Tr p)a + 4x3 Tr Z3 + x2 Tr Z2 + X2(Tr Z)'> eTr(zZ), (5 lo) 

= {4x3 Tr Z3 + 3x2 Tr Z2 + 3x2(Tr Z)2 + x Tr Z} eTrczZ), (5.11) 

and 

il T G(Z)I(~ - l)! = (Tr Z) eTrZ, (5.12) 

f  c C,(Z)/(k - 2)! = (Tr Z)2 eTrZ. 
k=2 K 

(5.13) 

LEMMA 5.2. With the notations of the lemma 5.1, for large n, 

(n/% = (n/2)” [l i- n-%(K) -I- (1164 {h - U,(K) + ~(u,(K))~} + O(n-3)], (5.14) 

(n/2 + a), = (n/2)” [l + (1/2n) (4ak + MU,} + (1/24n2) {4k + 48a%(k - 1) 

+ 48+ - l)+) - 4U,(K) + 12(CZ,(K))2} + o(tZ-")I. (5.15) 

(b) Derivation of Asymptotic Expansions. We consider below asymptotic 
expansions of the distributions of (i) and (ii) above. 

(i) Asymptotic expansion of the distribution of -2 log W. Let d(t) be the 
characteristic function of -2 log W. Then from (5.2) we have 

C(t) = qe-2it1ow ) = E(W-2”t) = Cl(t) C2(t) C3(t) / A I--n1’2, (5.16) 
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where 

cl(t) = n-itP,nn~mlnp%, 

C,(t) = r&/2) ~l@uP) r,(n,gP) [~&g/2) ~&I/2) Qml-l 

and 

(5.17) 

(5.18) 

g = (1 - W, C3(t) = d5(+‘, nl g/2; ng/2, M). (5.19) 

We shall use the following asymptotic formula for the gamma function as in 
Anderson [l, p. 2041 

log T(x + 4 
m (--1)‘&,(h) = log v% + (x + h - 4, 1% x - x - r;l r(l + 1) x’ + 00 x l-9, 

(5.20) 

which holds for large 1 x] and fixed h. The Bernoulli polynomial B,(h) of degree I 
is given by (te*t)/(et - 1) = CzO(tr/r!) B,(h). Some of these which we shall 
need in the sequel, are listed below. 

B,(h) = h - l/2, B,(h) = h2 - h + l/6, 
(5.21) 

B,(h) = h3 - 3h*/2 + h/2 and B,(h) = h4 - 2h3 + I22 - l/30. 

Applying the formula (5.20) to each gamma function in Ca(t), we have 

log C2(t) = itpn log(n/2) - itpn, log(n,/2) - it pn, log(n,/2) 

-f w  gw + w( g-1 - 1) + ww - g-2) + w-3), (5.22) 

where 

f = $0 + 1)/Z r = p(2p2 + 3~ - l)(~;l + $ - 1)/24 (5.23) 

and 

s = ~$9 + 1)(2 --pa -p)(~;” + ~~~ - 1)/48. 

It therefore follows that 

Cl(t) C2(t) = g-fl”exp[(r/n)( g-l - 1) + (s/n2)( 1 - g-“) + O(n3)] 

= g-f12[1 + (r/n)( g-l - 1) + n-2{s(l - g-“) + (r2/2)( g-l - 1)“) 

+ W.4. (5.24) 

Let M = [I - A-l] = (2/n) P where P is a fixed matrix. 
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Then 

j A I--‘2 = II-gpl”n’2. 

Now using the expansion 

log 1 I - i P / = -(2/n) Tr P - (2/n2) Tr (P)” - (8/3n3) Tr (P”) 

+ O(n-*>, 

(5.25) 

(5.26) 

we obtain 

lI-;p~‘2 = exp [(Trn/Z) log 1 I - f P I] 

= e-‘lTrp[l - n-lA, - ne2A2 + O(n+)], (5.27) 

where 

A, = or Tr(P2) and A, = (4/3) TV Tr(P3) - rr2(Tr P2)2/2. (5.28) 

Applying asymptotic formula (5.14) to (n/2)tc, (n,g/2)K and (ng/2)K we have 
after some algebraic simplication, 

Wb (n1 g/2) f#%m 

= (nT,/2)k [l + n-‘%(K)B(t) + (l/6n2) {((k - +) + 3(&))2) 

A(t) - g-2(k - +) - 3(&))2) - @t)(+))“> + O(n-S)], (5.29) 

where 

and 

44 = 1 + tw>-“, W) = 1 + tc - 1)/g, (5.30) 

o(t) = 6[g-1 + (Tlg”)-’ - (T&)-l]. 

Using (5.29) and Lemma 5.1, we have on simplification, 

= e’lT”[l + (K/n) B(t) + (1/6n2){LA(t) - Mg2 - ND(t)} + O(n4)], 
(5.31) 
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where 

K = ~~2 Tr Pa, L = 8~~~ Tr P3 + 3r14(Tr P2)2, 
M = -3r,4(Tr Ps)a - 16~: Tr P3 - 6r,2{Tr P2 + (Tr P)"}, 

(5.32) 

and 

N = r,4(Tr Pa)2 + 4r13 Tr P3 + 712 (Tr Pa + (Tr P)“}. 

From (5.16), (5.24), (5.27) and (5.31), we have 

4(t) = g-1’2[1 + n-l{@.0 + g-loll} + ?z-“{CYa + g-lols + g-%4} + O(n-s)], (5.33) 

where the coefficients CQ’S are given by 

01~ = K - A, - r, al = K(T~’ - 1) + r, 

m2 = L/6 - A, - KA, + s + 912 - KY + Air, 

and 
a3 = r(K - A,) - r2 + (T;’ - l)(N - rK - A,K), 

a4 = (L7F2 - M)/6 - NT;~ - s + r2/2 $ rK(T;l - 1). 

(5.34) 

By inverting the characteristic function in (5.33), using the fact that (g)-“2 
is the characteristic function of xf2, a chi square variable with f degrees of free- 
dom, we obtain the following asymptotic expansion for the distribution of 
-2 log w. 

q-2 log w  < 2) = P(X’” < 2) + n-ycY&‘2 < 2) (5.35) 

+ %&;+2 < 2>> + n-2{%P(xr” d ‘@ + a3p(x;+2 d 2, 

+ a,JYx;, < 41 + OF3>, 

where ails are defined in (5.33). 

(ii) Asymptotic expansion of the distribution of -2p log W. Here we shall 
derive the asymptotic expansion for -2p log W here p is given by (5.6). Put 
m = pn and let m tend to infinity instead of n. From (5.2), the characteristic 
function f  (t) of -2p log W can be written as 

f(t) = E(e-2p It log “) = C4(t) C6(t), (5.36) 

where C4(t) and C&t) are given by 

c4w = 

rpcn,2j r, [ 4 ; W) 1 rD [ n2U ; 2itd 1 

rll 
[ 

n” A2Pit) ] ~DhP) ~&2/2) (5 37) 



108 PILLAI AND NAGARSENKER 

and 

C&) = / A I--(T1’2)(m+2a)2Fl 
( 
7 + 01, F + cm1 ; F + 01, M), 

(5.38) 
g and a: being as defined in (5.19) and (5.6), respectively. Now the first factor 
C4(t) in (5.36) can be expanded asymptotically (See Anderson [l, p. 2551) as 
follows: 

G(t) = gq1 + (A/m2)( g-2 - 1) + O(??+)], (5.39) 

where 

f = P(P + 1)/a A = MP + 1)/481[(~ - l)(~ + 2)(G2 + G2 - 1) - 671 

and 
(5.40) 

y = (711 + Tp - 1)“(2p2 + 3~ - 1)2/36(p + 1)2 = 4ar2. 

Now as stated before, let 

I - A-l = (2/m)P, 

where P is a fixed matrix. We then have 

c&) = 1 I - ; p I(T1’2)(m+2a)2Fl ($- + (II, y + o171 ; F + o1, ;p). 

(5.41) 

Using the asymptotic expansion (5.15) to (m/2 + a),, (mTlg/2 + UT& and 
(vi2 + 4, we have 

(‘42 + ‘+ (mT,g/2 + C++‘@ + + 
= (mTl/2)k [l + m-l (2ak + &(K)) + ?r2 {A62 + A262 + 8&(K) 

+ +%(K) + +2(K) + S,(UI(K))~> + O(m-‘)I, (5.42) 

6, = 1 + (T;’ - I)&‘-‘, 6, = -2a’ + [l + (T;” - 1)g-2]/6, 

6, = 2012, 
(5.43) 

84 = -2a + 2‘Xg-2(l - T;‘), 8, = 201 + 2‘X(T;l - l)g-‘, 

6, = ((1 - TT2) g2 - 1)/6 and 6, = (1 + (T,’ - 1) g-1}2/2. 
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From (5.42) and Lemma 5.1., it then easily follows that, 

$1 ++.,~+q;~+a,;P) 
( 

= eTIT”[l + m-‘(2aa + bS,) (5.44) 

+ m-2(as2 + a(~ + 1) 6, + bS, + cS, + dS, + es,) + O(m-“)I, 

where the constants a, b, c, d and e are given by 

d = 4~~3 Tr P3 + 3T,2 Tr P2 + h12(Ti’ P)” -I- TV Tr P (5.45) 

and e = T14(Tr P2)2 + 47,’ Tr P3 -I- -r12[Tr P2 + (Tr P)“]. 

Also 

I I+ 
(qm/2)+arrl 

(5.46) 

and using (5.26) and (5.27) to the factor on the right hand side of (5.46), it can be 
easily checked that 

I-iPI 
(Tgn/2)+q 

= (?-“yl - m-16, + mw2S, + O(mv3)], (5.47) 

where 

and 

6, = T1{Tr P2 + 2a Tr P}, 

6, = ss2/2 - Tl{4 Tr P3/3 + 2ar Tr P2}. 

We therefore have 

C5(t) = [l + m-l(2aa + bS, - 6,) + m-2(aS2 + a(a + 1) 6, + bS4 + cS, 

+ dS, + es, + 6, - 2aorS, - bS,S,) + O(m-3)] (5.48) 

and finally from (5.36), (5.39) and (5.48) we have 

f(t) = g+12[l ++h + alg-l} + m-2(A + Ag-l + B2g-“} + O(m-3)], (5.49) 
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q, = 2aa + b - 6, , “1 = b($ - l), 

/?,, = -A + 2aza2 + (a - 416 - 2a(b - c + at&) + e/2 + 6, - b6, , 
(5.50) 

A = (6’ - 1)(2co1 + e - b6,) 

and 

/3, = A + (T;” - l)(a - d)/6 + 2bol(l - 7;‘) + e(7;’ - 1)2/2. 

Inverting the characteristic function in (5.49), we have the asymptotic expansion 
of the distribution of -2p log Win the form, 

P(-2p log w < z) 

6. ASYMPTOTIC EXPANSION OF THE DISTRIBUTION OF Y,a = 1 AND b = 0 

For this case putting a = 1 and b = 0 in (2.6) we can easily see that 

E(Yn) = j$$;‘$$-&;; 1 A I-” 2F&z/2, q/2 + h; n/2 + h, M). 
2, 9 

(6.1) 

We assume (5.3) and obtain the asymptotic expansion of L, where 

L, = d/n log( Y/q”) (6.2) 

in terms of tr increasing with 7r and r2 fixed assuming that M = [I - n-r] = 
(2/n) P where P is a fixed matrix. Let x(t) be the characteristic function of L, . 
Then 

x(t) = E(eitL1) = C&t) C,(t), (6.3) 

where 

C&t) = (l/Q)itq‘/” T&/2) r&z,/2 + it fi)[r,(n/2 + it 1/;) r,(n,/2)]-1 
(6.4) 
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and 

c,(t) = 1 A I-‘@ ,F,(n/2, n,/2 + it 6; 42 + it 6, M). (6.5) 

Using the formula (5.18) to each gamma function on the right hand side of (6.4), 
we have 

C&) = e-“=lta[l - n-‘12{fTl(it) + 2~T,(it)~/3} + n-‘{(fT, + f2T12/2)(it)2 

+ @( T3 + fT,T~)(it)~/3 + ~P~T,~(WV’) + O(n-3’2)], 66) 

where 

Tl = (T;’ - l), T2 = 7y2 - 1, T3 = ~~~ - 1 and f = p(p + 1)/Z. 
(6.7) 

Now using Lemma 5.2 to (n/2)~, (n/2 + it d/n)K and (n,/2 + it d/n)K we have 

WLW2 + it vQ/(~P + it vq, 
= (%/2)k[l + n-li22 it AT, + n-l 

* {T&(K) + 2(it)2(k2T,2 - AT,)} + O(n-3’2)]. (f-5.8) 

As before let M = (2/n)P where P is a fixed matrix. Then from (6.8) and Lemma 
5.1, we have after a little simplification, 

2Fl(n/2, nJ2 + it 162; n/2 + it ~42, (2/n) P) 

where 

= e’lT”[l - ?~-l/~(it) A, + &{(zI)” A, + q} + O(~Z-~/~)], (6.9) 

and 
A, = -2T, Tr(T,P), q = TrTrPa 

A, = 2{T12[(Tr 7rP)” + Tr(T,P)] - T2(~1 Tr P)}. (6.10) 

Also from (5.27) we have 

IAI -%‘2 = ] 1 _ ;p /V/2 = e-‘~np[l _ n-1q + o(,+)] (6.11) 

and thus 

C,(t) = [I - n-l12(it) A, + n-l(iQ2 A, + O(n-a/2)]. (6.12) 
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From (6.3), (6.6) and (6.12) we, obtain the following asymptotic expansion 
for x(t). 

x(t/d2pT,) = e-t2/2[1 - n-1/zD, + n-IDa + O(C~/~)], 

where the coefficients D, and D, are given by 

(6.13) 

and 
D, = (2~7’1)“‘~ [(4(4 + fT,) + (3T,)-l T,(itM 
D, = (2PP 4P[(WW’z +f2T12/2 +fTA + A,) T12 (6.14) 

+ PI4 T,(T, + fTlT2 + AT,)/3 + (it)” T22/W 

By inverting the characteristic function (6.13) we have the following asymptotic 
expansion for L, * = dnmI log( Y/T~*) up to the order of n-3/2, 

W,* G 4 = Q(x) + (2~TrV’~((fT1+ 4) W) + (3T,)-l T2Q3(4) 

+ n-‘(W”,)-” ‘&“((fTz + f2T12/2 + f&T, + A,) TI*@~(~) 

+ Tl(T3 t-f TIT2 + A1T2) Q4(x)/3 + Ts2@6(x)/lg) + O(n-3’2), 
(6.15) 

where O’(X) denotes the r-th derivative of the standard normal distribution Q(X). 

7. ASYMPTOTIC EXPANSION OF THE DISTRIBUTION OF Y,a = 0 AND b = 1 

For this case, we have from (2.6) 

E(Yh) = 
( 
n. ?I. 
2,+;+bM). (7.1) 

We shall obtain the asymptotic expansion for L, where 

L, = z/n log(Y/Tz’) (7.2) 

under the same condition as in Section 6. Let H(t) be the characteristic function 
of L, . Then 

H(t) = E(e”&) = Cs(t) Cs(t), (7.3) 

where 

C*(t) = (T2)-itdzp r&/2) r, (+ + it h) [r” (5 + it 6) r,(n,/2)]-1 
(7.4) 
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and 

C6(t) = 1 A I-n1’22Fl 
( 
n/2, nJ2; : + it 6, M). (7.5) 

Using the formula (5.17) to each gamma function on the right-hand side of 
(7.4) we get 

C3(t) = ehoRlt*[ 1 - n-r~2{fRl(it) + 2$~R,(it)~/3} + n-l{(fR2 + f2R,2/2)(it)2 

+ 2#@, + fR,&)(it)4/3 + 2f’2R,2(it)S/9} + O(n-3’2)], (7.6) 

where the coefficients R, , R, , R, and R4 are given by 

RR, = T;’ - 1, R2=7;2-1, R, = r;I” - 1 and f = $0 + 1)/Z. 
(7.7) 

Using Lemma 5.1 and 5.2, we have, proceeding as in Section 6, 

3Fl (42, nl/2; i + 23 6, f P) 

=e 71Trp[l - n-l12(it) B, + n-l{B, + (it)” B3} + O(n-3’2)], (7.8) 

where B, = 2(Tr TOP), B, = 71 Tr P2 and B, = B,(4 + BJ2. 
Using (7.8) and (6.11), we can write Cs(t) as 

Cs(t) = [l - &I2 (it)B, + n-1 (it)2B3 + O(n-3/z)] (7.9) 
and thus we have the following asymptotic expansion for H(t). 

H(t/dG) = e-@j2[l - n-li2fl, + n-l/3, + O(n-3/2)], (7.10) 

and 
& = 2~(2R1,)“‘~ [(it) R,(fR, + 4) + (it)” 12,/3] 

B2 = 4~~(2R,$)-~ [(it)2R1”(fRz +f 2R,2/2 + f&B, + B3) 

+ (4" R,(& + qR,R, + B&)/3 + hV~)'Wl. 
By inverting the characteristic function we have the following asymptotic 
expansion for L,* = L,l d2pR1 up to the order of n-3/2 

P(L,* < x) = Q(x) + n-1/2(2pR,)-3/2 2p[R,( fR, + B,) W(x) + (R,/3) @3(x)] 
+ n-1(2pRl)-3 4p2[(fR2 +f 2W2 + B3 + fW4) %Q2(x) 
+ Rl(R3 +fR& + &R,) Q4(x)/3 + R22@6(~)/18] + O(n-3’2), 

(7.11) 
where W(x) is as defined earlier. 
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The special case for u = 1, b = - 1 has been already considered by 
Sugiura [A. 
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