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Abstract

This work analyses the mechanical behaviour of polycrystalline structures with intergranular cracks, leading to a reduction of

stiffness and material strength. The 2D polycrystalline structure is generated using an average grain size through the Voronoi tes-

sellation method and simulated with random crystalline orientation. Polycrystalline materials demand fracture mechanics analysis

in the grain interfaces. This paper presents this analysis using the multi-domain Boundary Element Method (BEM) with anisotropic

fundamental solution and applying the Multiscale Cohesive Zone Model (MCZM) to characterize the onset and growth of cracks

in the grain interfaces, considering the atomistic behaviour inside the interfaces. Comparisons of the results of BEM are performed

through simulations in ABAQUS in order to validate the response of the method and comparisons of results with the literature are

made to validate the present technique.
c© 2014 The Authors. Published by Elsevier Ltd.

Selection and peer-review under responsibility of the Norwegian University of Science and Technology (NTNU), Department of

Structural Engineering.

Keywords: Boundary element method, Polycrystalline materials, Interface crack growth, Multiscale Analysis;

1. Introduction

Over recent year the study of failure and behaviour of polycrystalline materials have been growing specially due to

the multiple number of industrial applications of these materials. Due to the characteristic of the crystalline structures,

the failure generally is presented in the microscale such as free zones, voids, cracks and impurity particles, that will af-

fect the effective mechanical properties in the macroscale. The BEM has the ability to model high gradients problems,

as those found in fracture mechanics applications. BEM has been applied to computer modeling in micromechanics

by Czyz et al. (2013). Sfantos and Aliabadi (2007a), used the BEM for polycrystalline structure analysis. The authors

investigated 2D crack propagation along grain boundaries using a linear cohesive law, and mixed mode failure condi-

tion. Sfantos and Aliabadi (2007b), proposed a multi-scale BEM modeling for material and degradation fracture using

a conventional cohesive zone model. Turon et al. (2007). They proposed a methodology to determine the constitutive

parameters for the simulation of progressive delamination using cohesive zone models for mixed-mode of fracture.
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Fig. 1. Artificial structure generated with randomly distributed material orientation for each grain

Benedetti and Aliabadi (2013), analyzed a 3D micro-mechanical failure and degradation using cohesive zone model

in polycrystallyne material. These works mentioned are based in conventional cohesive zone models. The MCZM

was developed by Zeng and Li (2010) for the analysis of fracture and damage problems, that take into account the

atomistic scale in order to obtain the cohesive forces as a fracture criterion using colloidal physics and microme-

chanics homogenization techniques. In this paper is proposed the (MCZM) using the implementation of multidomain

formulation of BEM by Kane (1994) with anisotropic fundamental solution Sollero and Aliabadi (1993) performed

over polycrystalline structure generated in order to simulated and predict the crack propagation. Finally, conclusions

are pointed out.

2. Polycrystalline Structure Modeling

The material modeling technique used in this work is the generation of a random artificial structure with the Voronoi

tessellation method as in Sfantos and Aliabadi (2007a) and Okabe et al. (2000). This approach defines the behavior

of the structure with random orthotropic material and crystalline orientation.

Due to the formulation used in this paper, the material orientation coordinated axes 123 coincides with the geomet-

rical coordinate system xyz, that means θ = 0. Different cases are taken into consideration when each axis coincides

with the axis z of the geometry coordinated system; thus case 1 ≡ z, case 2 ≡ z and case 3 ≡ z. These cases are

presented in three different colors in Fig. 1.

Grain material properties are modeled for plain strain and plain stress analyses with the following constitutive

relations, Eq. 1.

σi j = ci jklεkl, εi j = si jklσkl (1)

where ci jkl is the stiffness tensor and si jkl is the compliance tensor using the Voigt notation as presented by Sfantos

and Aliabadi (2007a) and Rousselier et al. (2009), given by

s =
[
si j

]
, (i, j = 1, 2, ..., 6) (2)

In this work the formulation was adapted to implemented the material constants in the plane z = 3, Galvis et al.

(2013).

3. Multiscale Cohesive Zone Model

To develop the implementation of the MCZM it is proposed a new approach: the use of the BEM to model the

behaviour of polycrystalline materials. In order to analyse intergranular cracks, a modification over the boundary

element mesh is necessary, the MCZM requires the creation of an additional grain boundary zone or the cohesive

zone, Qian and Li (2011), as shown in Fig. 2.



1930   A.F. Galvis and P. Sollero  /  Procedia Materials Science   3  ( 2014 )  1928 – 1933 

Grain C

Grain A

Interface

Grain B

New grain
 boundary

zones

Fig. 2. Cohesive interface zone in the (BEM) mesh

Fig. 3. Deformation gradient in cohesive zone

The cohesive zone has a finite thickness Ro related to the characteristic length scale of specific defects, Qian and

Li (2011). In this work the value of Ro is among S o × 10−3 ≤ Ro ≤ S o × 10−1 where S o is the length between two

nodes of the boundary element.

By constructing the finite width cohesive zone and computing the deformation gradient using the displacement

information from the BEM, it is possible to use the Cauchy-Born rule in order to get a simplification of the deformation

in the cohesive zone and finally apply the interfacial potential theory, Zeng and Li (2012).

3.1. Effective Deformation Gradient in Cohesive zone

The global non-uniform deformation field can be represented as a piecewise uniform deformation in each boundary

element and they are connected to each other by the interface cohesive zone with highly non-uniform deformations,

Zeng and Li (2012) and Qian and Li (2011). The deformation field inside the cohesive zone, is used the Eq. 3, Zeng

and Li (2012), that represents the efective deformation gradient, that will be used in the Cauchy-Born rule, see Fig. 3.
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (3)

where a = X+l+1
− X−l , b = Y+l+1

− Y−l , c = X+l − X−l+1
and d = Y+l − Y−l+1

, following the scheme in Fig. 3.

3.2. Interfacial Atomistic Potential

Recently, Qian and Li (2011) implemented the MCZM using the Finite Element Method. The authors adopted

two different magnitudes for the potential, the first is the bulk potential, that are inside the bulk element used to

trangranular fracture and the second is called the depletion or cohesive potential, that is employee inside the cohesive

zones for intergranular fracture. In this work, only the depletion potential will be used due to the nature of the BEM
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mesh. Zeng and Li (2010) and Li et al. (2012) proposed the bulk potential, based on the Lennard-Jones (LJ) atomistic

potencial, as

φ (r) = 4 ∈
(

1

45

(
σ

r

)12

− 1

3

(
σ

r

)6)
(4)

The expression of the cohesive potential is given by the Eq. 19 that results from the integration of the LJ potential

over a rigid half space with several assumptions, see Sauer and Li (2007).

φcohe (r) =
π ∈√

2

(
1

45

( r0

r̄

)9
− 1

3

( r0

r̄

)3)
(5)

where ∈ is the depth of the potential, σ is the finite distance at which the LJ atomistic potential is zero and

r0 = σ21/6, is the equilibrium bond distance. The cohesive potential is considered weaker than the potential inside

the grains, Zeng and Li (2012), because different bonds presented in the microstructure may have been degenerated

to non-covalent bonds, and are presented inside the cohesive zone intermolecular interactions by the van der Waals

forces, Callister (1997).

3.3. Cauchy-born Rule

In the proposed Multiscale Cohesive Zone Model, in order to reduce the computational cost, the Cauchy-Born rule

has been adopted Zeng and Li (2010) to evaluate the elastic energy in each element. The Cauchy-Born rule says that

when the deformation in an element of the region is uniform, the gradient deformation in the element will be constant

Li et al. (2012). Then, it is possible to use the same deformation gradient, evaluated by Eq. 3 inside the cohesive zone,

in the fine scale.

In order to evaluate the potential energy for a crystalline solid it is used the same atomistic potential of a hexagonal

lattice structure found Zeng and Li (2010). This potential is used to deform the structure applying the deformation

gradient, Weinan and Pingbing (2007), as expressed by Eq. 6.

r̄i = F̄cRi (6)

where r̄i is the deformed bond vector, Ri is de undeformed bond vector and 1, 2, ..., nc are the number of total bonds

in the unit cell.

Since the deformation in the boundary elements are considered uniform, it is possible to use the Cauchy-Born rule

applying the average deformation gradient to simplify the computation of the non-uniform deformation field inside the

cohesive zone. The effective first Piola-Kirchhoff stress, Qian and Li (2011) tensor in each cohesive zone, is written

as

P̄ =
∂W
∂F̄c
=

1

Ωc
0

nc∑
i=1

∂φcohe

∂r̄i

r̄i ⊗ Ri

r̄i
(7)

The effective deformation field and the atomistic stress tensor in the cohesive zone can be evaluated by the nodal

displacement response from the BEM. To evaluate the cohesive traction along the boundary interface element, which

is the same boundary element with opposite normal, it is just required to compute the stress tensor by the out-normal

vector, as shown in Eq. 8.

Tcohe = P̄
(
F̄c
)
· n (8)

4. Numerical Results

Simulations performed in this work are for 7075-T7351 aluminum alloy, according to ASM (1990). Material is

generated with a virtual polycrystalline structure as abovementioned with the same plane (z ≡ 3), in Fig. 1, to use
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Fig. 4. Boundary conditions for polycrystalline structure
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Fig. 5. (a) Model in ABAQUS; (b) Displacement response.
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Fig. 6. (a) Fracture map; (b) Cohesive normal traction vs Normal separation

this material with the anisotropic BEM formulation. The mechanical properties are calculated as a quasi-isotropic

material, see Sollero (1994). The boundary conditions of the analyzed numerical example are shown in Fig. 4.

In this paper discontinuous quadratic boundary elements and anisotropic fundamental solution were applied to

model a polycrystalline structure generated with 60 grains. An incremental load is applied, with an initial value of

160 N.

To validate the BEM displacement response a simulation in ABAQUS was performed for a five grain anisotropic

polycrystalline structure, as shown in Fig. 6. The results show good approximation.

With the correct displacement response, the MCZM can be applied. In this work the multiscale analysis begins

when the Von Mises stress in the interface reaches the material strength. Results are presented in Fig. 6(a), where

the fracture interfaces zones are shown in red and in blue color the cohesive zones. Fig 6(b) shows the relationship

between cohesive normal traction and relative normal separation.

In Fig. 6(b) it is possible to see the reduction of the normalize separation force when unit increments of load are

applied over the specimen, that can be compared to the figure presented by Li et al. (2012) where the shape of the

curve is similar after the maximum separation force. If the separation force becomes zero the real separation between

atoms will take place and the propagation fracture is initiated in the material. In Fig. 6(a) it is shown the crack

propagation prediction for a set of applied load, see Fig. 4. The first set of elements that reached a zero cohesive
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separation force are in the center of the specimen. Due to the displacement restriction in the boundary conditions, the

fracture propagation are not totally perpendicular to the applied load.

5. Conclusions

In this work the Multiscale Cohesive Zone Model was applied in conjunction with the multidomain boundary

element method to model polycrystalline structure materials. Due to the fine discretization and the mesh structure,

see Fig. 2, new solvers are require to solve more efficiently the final BEM equations.

The developed method presents the ability to evaluate the cohesion forces without demand of internal interpolation

or high computational cost inside the cohesive zone.
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