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We model physical systems with ``hard constraints'' by the space Hom(G, H) of
homomorphisms from a locally finite graph G to a fixed finite constraint graph H.
Two homomorphisms are deemed to be adjacent if they differ on a single site of G.
We investigate what appears to be a fundamental dichotomy of constraint graphs,
by giving various characterizations of a class of graphs that we call dismantlable.
For instance, H is dismantlable if and only if, for every G, any two homomorphisms
from G to H which differ at only finitely many sites are joined by a path in
Hom(G, H). If H is dismantlable, then, for any G of bounded degree, there is some
assignment of activities to the nodes of H for which there is a unique Gibbs
measure on Hom(G, H). On the other hand, if H is not dismantlable (and not too
trivial), then there is some r such that, whatever the assignment of activities on H,
there are uncountably many Gibbs measures on Hom(Tr , H), where Tr is the
(r+1)-regular tree. � 2000 Academic Press

1. INTRODUCTION

Continuing a theme begun in our earlier paper [4], we investigate
models which exhibit what physicists sometimes call ``hard con-
straints''��forbidden configurations, in which (for example) adjacent par-
ticles are not permitted to have certain pairs of spins. In the classical
(ferromagnetic) Ising model, adjacent particles are discouraged from hav-
ing opposing spins, since such opposition increases the energy of a con-
figuration, making it a less likely state; this is a ``soft'' constraint. In con-
trast, the hard-core lattice gas model studied e.g., by Dobrushin [5] and
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Van den Berg and Steif [3] strictly forbids configurations in which adja-
cent sites are both occupied. The Widom�Rowlinson model, introduced in
[12], has two types of particle, with different types not permitted on adja-
cent sites. In a combinatorial setting, the condition that a graph be
properly n-colored is another example of a hard constraint��as a physical
system, this is the n-state antiferromagnetic Potts model at zero tem-
perature.

Suppose we are given a (possibly infinite) locally finite graph G (the
board) whose nodes represent particles, or ``sites.'' We model hard con-
straints by means of a finite graph H (the constraint graph), whose nodes
may be thought of as different spins, or, as we prefer, different ``colors.''
Adjacent sites of G may receive colors i and j only if i and j are adjacent
nodes of H; in particular both sites may have color i only when in H there
is a loop at node i. Thus a legal coloring is no more or less than a
homomorphism from G to H: that is, a map , from the sites of G to the
nodes of H such that if u is adjacent to v in G (written utv) then
,(u)t,(v) in H.

The constraint graph for the hard-core model is simply the graph with
two adjacent nodes, one looped: coloring a site with the unlooped node
corresponds to the site being occupied by a particle, and the constraint that
adjacent sites may not be occupied is modeled by the absence of a loop on
that node. The constraint graph for the Widom�Rowlinson model consists
of three looped nodes 1, 0, and &1, with only the pair (1, &1) non-

adjacent. For n-coloring, the constraint graph is the unlooped complete
graph Kn .

Among legal configurations, relative likelihood is determined by positive
reals, called ``activities,'' assigned to the colors. Thus, suppose two legal
configurations differ only at site u; if the activity of the color of u in the first
configuration is twice that of the color of u in the second, then the first con-
figuration is twice as likely. A Gibbs measure is, slightly loosely, a probabil-
ity measure on the set Hom(G, H) satisfying such ``local'' conditions on its
conditional probabilities. We shall be more precise shortly.

Dobrushin [5] proved that, provided Hom(G, H) is non-empty, there is
always a Gibbs measure, for any set of activities. Frequently there is more
than one Gibbs measure, even for very simple constraint graphs and
boards. For instance, the hard-core model on a 3-regular tree admits more
than one Gibbs measure, provided the ratio of the activity of the unlooped
node to the activity of the looped node is sufficiently high (see e.g., [8] or
[4]).

It can be seen (using, e.g., Van den Berg's ``paths of disagreement''
criterion [2]��see Theorem 7.1 below) that, in both the hard-core and
Widom�Rowlinson models on any board of bounded degree, there is some
set of positive activities giving rise to a unique Gibbs measure. However,
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this is not the case for n-colorings. The purpose of this paper is to identify
a distinction between two classes of constraint graphs. For a dismantlable
constraint graph, we always get uniqueness of Gibbs measures for some
choice of the activities, whereas for a non-dismantlable constraint graph we
do not.

This distinction between the two classes of constraint graph seems to us
to be quite fundamental, and we give several other ways in which their
behavior differs. Our main result is Theorem 4.1 below, giving a large
number of equivalent characterizations of dismantlable graphs, in terms of
homomorphisms, Gibbs measures, and even pursuit games.

The next two sections introduce all the concepts required to state
Theorem 4.1, and most of the rest of the paper is devoted to its proof. One
more equivalent condition is discussed in the final section.

2. NOTATION AND PRELIMINARIES

We begin with an introduction to, and formal definitions of, the concepts
we are studying. This is a slightly shortened version of material from our
earlier paper [4].

We will frequently abuse notation by confusing a graph with its set of
nodes. There are two roles for graphs in our framework: the board G and
the constraint graph H. Each is an undirected graph, possibly with some
loops (edges with both ends at the same node), but no multiple edges.

For the most part, we use standard graph theory notation and terminol-
ogy. In particular, |G| denotes the number of nodes of a (finite) graph G,
and, for a set U of nodes of G, G"U is the graph obtained by deleting all
nodes of U and incident edges. The set of neighbors of a node x is denoted
N(x), and we also write

Nm (x)=[ y # G : d(x, y)�m]

where d(x, y) is the length of a shortest path between x and y, and m is a
non-negative integer. Similarly, for a set U of vertices of G, we set

Nm (U)=[ y # G : d(u, y)�m for some u # U].

Note that, if U is finite and G is locally finite, then each set Nm (U) is finite.
We constrain a board to be a countable, connected, locally finite,

loopless graph with at least two nodes. We will study homomorphisms
from boards, which we will always denote G, to constraint graphs, which
will always be denoted H. In the most commonly studied settings, G is an
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infinite, highly symmetric graph like the d-dimensional cubic lattice Zd or
the regular r-branching tree Tr , uniquely defined by being connected,
(r+1)-regular and cycle-free. The nodes of the board G will be called
``sites'' to distinguish them from the nodes of H. We will tend to use letters
u, v, w to denote sites of G. A finite set U of sites of G will be called a patch
and, again, we will deliberately confuse U with the subgraph of G induced
by U. The (exterior) boundary �U of U is the set of sites G"U which are
adjacent to at least one site of U.

In contrast to the board, the constraint graph H will be finite and
usually small, with nodes 1, 2, ..., n represented by variables i, j or k. The
constraint graph H will often have loops at some or all of its nodes; the
loops are important.

We denote by Hom(G, H) the graph whose nodes are homomorphisms
from G to H, with :t; when : and ; differ on at most one site of G.
(There is no requirement that the two values at that site be adjacent in H.)
We denote the image under : of u by :(u), so that for : # Hom(G, H), utv
in G implies :(u)t:(v) in H.

A set of activities for a constraint graph H is a function *: H � R+ from
the nodes of H to the positive reals, two such being regarded as equivalent
if they differ by a constant factor. The value *i of * at a node i is called its
``activity,'' and will represent the relative probability of i as an image.

When G is finite and H and * are given, we define the multiplicative
measure mG to be the probability measure on Hom(G, H) given by

Pr
mG

([:]) :=
1
Z

`
u # G

*:(u)

where Z is the necessary normalizing constant,

Z := :
, # Hom(G, H)

`
u # G

*,(u) .

If all the *i 's are equal then mG is the uniform distribution on
Hom(G, H).

The measure mG enjoys the following property, which we will call the
``one-site condition:'' if 9 is any event that fixes the colors (that is, images
of the homomorphism in H) of all neighbors of a site u, then

Pr
mG

(, : ,(u)=i | 9)=
*i

� j # J *j
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where J is the set of colors adjacent to all of the colors assigned by 9 to
the neighbors of u, and i # J. In other words, the conditional probabilities
for ``eligible'' colors of u are proportional to their activities.

Now suppose that we are given an infinite board G, along with a con-
straint graph H and a set * of activities as before. If U is a subset of G and
, # Hom(G, H), we denote by , � U the restriction of , to U; thus
, � U # Hom(U, H). If A is an event of the form

A=[, # Hom(G, H) : , � U # 8]

for some patch U and some 8�Hom(U, H), then we call A a ``patch
event.'' We equip Hom(G, H) with the _-field (denoted by F) generated
by the patch events, and consider henceforth only measures + on
(Hom(G, H), F) such that +(Hom(G, H))=1.

The following definition generalizes the notion of a multiplicative
measure to infinite boards, by asserting that the conditional behavior of a
measure on each patch is exactly what it should be. We fix but suppress
reference to G, H and *, and define U+ :=U _ �U for any patch U. (So
U+=N1 (U).)

Definition 2.1. A measure + on Hom(G, H) is a Gibbs measure (for *)
if for any finite U�G, and for +-a.e. � # Hom(G, H),

Pr
+

(, : ,=� | , � (G"U)=� � (G"U))

= Pr
mU

+
(, : , � U=� � U | , � �U=� � �U).

In other words, the probability distribution of a random , inside a patch
U, conditioned on its values outside U, depends only on its values on the
boundary of U. Furthermore, the conditional distribution is the same as for
the finite graph U+.

The one-site condition mentioned earlier is just the special case of the
Gibbs condition above where U consists of a single vertex. One problem
that we shall explore shortly is that of determining when the one-site condi-
tion suffices to ensure that a measure is a Gibbs measure.

Gibbs measures do exist for any G, H and *, as shown by the following
special case of a theorem of Dobrushin [5]. A (simple) proof of this special
case appears in [4].

Theorem 2.2. Let H be a constraint graph with a set of activities *, and
let G be a board for which Hom(G, H) is non-empty. Then there exists at
least one Gibbs measure for * on Hom(G, H).
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3. A POINT PROCESS, A PURSUIT GAME, AND
A STRUCTURAL PROPERTY

In this section, we introduce three more concepts which will turn out to
be relevant to our discussion.

We define a point process P=P(G, H, *) whose state space is
Hom(G, H) as follows: each site u of G ``fires'' independently and with an
exponential waiting time whose mean is the degree d(u) of u. Whenever a
site (say, u) fires, a node (say, i) of H is selected at random with probabil-
ity proportional to its activity. If i is permissible as the image of u, the
current homomorphism is altered accordingly; otherwise it is left
unchanged.

More formally, suppose the process P=P(G, H, *) is in state , at the
instant when site u is fired, and that node i is randomly selected, as above.
If N(i)�,(N(u)) and i is not already equal to ,(u), , is altered to ,$ where
,$(u)=i and ,$=, on G"[u]. Otherwise P remains in state ,.

The point of having the mean time between firings depend on the degree
of the site is that otherwise, in certain bizarre cases where G does not have
bounded degree, the state of the system might not be well defined. With the
definition above, however, it is easily checked that the states which fire in
some short interval of time do not ``percolate''��that is, there is no infinite
path consisting of fired states. In particular, given the state of the system
at time 0, the state of any site u at time 1

2 depends on only a finite number
of firings and is thus uniquely defined.

Of course, if the state ,t of the system is well defined for t # [0, 1
2] then

it is well defined for all t�0. We may thus speak of a distribution + on
Hom(G, H) being stationary if, when ,0 is drawn from +, the distribution
of ,t is again + for all t>0.

Let us suppose first that G is finite; then stationarity reduces to a condi-
tion we have already considered.

Lemma 3.1. If G is finite then a distribution + on Hom(G, H) is station-
ary if and only if it satisfies the ``one-site condition'' of Section 2.

Proof. We show first that if + satisfies the one-site condition (``1SC'')
then it is stationary; in fact this conclusion does not depend on the
mechanism which decides which site fires next, as long as sites fire one at
a time and in such a way that ``next'' is well defined, and firing times are
independent of state. We show that even given that the site next to fire is
u, that if the probability distribution of the state , before firing is + then
the distribution of the state ,$ after firing is again +.

This is easy because if J :=�vtu NH(,(v)) is the set of colors permitted
for u by the ,-colors of u's neighbors, then
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+$(,)= :
j # J

*,(u)

� j # J *j
+(,[u � j])

= :
j # J

*,(u)

� j # J *j

*j

*,(u)

+(,)

=+(,)

where ,[u � j](u) :=j and ,[u � j](v) :=,(v) for v{u.
To show that the 1SC is necessary for stationarity, we do need that each

state has positive probability of firing. Then, if C1 , ..., Ck are the connected
components of Hom(G, H) and the initial state of the process is in Cj , the
process constitutes an irreducible Markov chain with unique stationary
state mj . Since the multiplicative measure m on Hom(G, H), restricted to
Cj , satisfies 1SC, mj is precisely that measure.

It follows that any stationary measure for the point process on G is a
convex combination +=�k

i=1 :i mi of the mi 's, and therefore also satisfies
the 1SC. K

Now suppose that G is infinite, but that the set of sites S which fire
between times 0 and 1 does not percolate. Suppose + satisfies the 1SC and
let A be a patch event on the patch U. Let V#U be a finite patch for
which no site in �V fires between times 0 and 1. Then Pr1 (A)=Pr0 (A) by
applying the theorem to the finite graph V _ �V. Since such a V exists with
probability 1, and the patch events form a basis for Hom(G, H), we con-
clude that + is stationary.

We have not been able to prove the converse (that stationarity implies
the 1SC for infinite G) although this may well be true. When the issue of
stationarity arises later we will confine ourselves to the case of finite G.

The next concept we introduce is a cop-and-robber game studied by
Quilliot [11] and by Nowakowski and Winkler [9]. Two players, a cop
C and a robber R, compete on a fixed, finite, undirected graph H. The cop
begins by placing herself at a node of her choice; the robber then does the
same. Then the players alternate beginning with C, each moving to an
adjacent node. The cop wins if she can ``capture'' the robber, that is, move
onto the node occupied by the robber; R wins by avoiding capture
indefinitely. In doing so R is free to move (or even place himself initially)
onto the same node as the cop, although that would be unwise if the node
were looped since then C could capture him at her next move.

Evidently the robber can win on any loopless graph by placing himself
at the same node as the cop and then shadowing her every move; among
graphs in which every node is looped, C clearly wins on paths and loses on
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FIG. 1. Dismantlable and non-dismantlable graphs.

cycles of length at least 4. (In the game as defined in [9, 11], there is in
effect a loop at every node of H.)

It is convenient to say that the cop wins if the robber cannot move, i.e.,
if the robber begins on a loopless isolated point. Thus C wins when H has
only one node, looped or not, and on a pair of unconnected nodes, she
wins unless they are both looped.

The graph on which the game is played is said to be cop-win if C has a
winning strategy, robber-win otherwise.

Finally, we give a structural description of a class of graphs. We shall see
that this is exactly the class of cop-win graphs, as well as being the class
of constraint graphs for which every stationary distribution for the point
process P is always a Gibbs measure, and also the class of constraint
graphs for which there is always some set of activities yielding a unique
Gibbs measure.

Suppose that i and j are nodes of a graph H such that N(i)�N( j). Then
the map taking i to j, and every other node of H to itself, is a
homomorphism from H to H"[i]. We call this a fold of the graph H.
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A finite graph H is dismantlable2 if there is a sequence of folds reducing
H to a graph with one node (looped or not). The name is chosen (in
preference to ``cop-win'') in order to stress the structure, rather than the
game, and in fact appears already in the literature (see e.g., [1, 10]).
Relative to our usage, however, previous articles have considered only the
case where all nodes of the graph are regarded as having loops.

In fact, the only case where a sequence of folds reduces H to an
unlooped node is when H is a set of isolated unlooped nodes��in which
case we call H trivial. (In fact, we are most interested in connected graphs
H with at least two nodes.) If i is a looped node of H such that there is
a sequence of folds reducing H to i, then we call i a persistent node of H.

A finite graph H is stiff if it has more than one node, and no folds, i.e.,
no pair of nodes (i, j) with N(i)�N( j). It is of course quite possible for a
graph to be non-dismantlable without being stiff: we shall give a little more
information on the structure of a general non-dismantlable graph in the
next section. Figure 1 below shows some dismantlable and non-dis-

mantlable graphs, including stiff and non-stiff examples of the latter.

4. AN EQUIVALENCE THEOREM

We can now state our main result.

Theorem 4.1. The following are equivalent, for finite graphs H.

1. H is dismantlable.

2. H is cop-win.

3. For every finite board G, Hom(G, H) is connected.

4. For every board G, and every pair ,, � # Hom(G, H) agreeing on
all but finitely many sites, there is a path in Hom(G, H) between , and �.

5. There is some positive integer m such that, for every board G, every
pair of sets U and V in G at distance at least m, and every pair of maps
,, � # Hom(G, H), there is a map % # Hom(G, H) such that % agrees with ,
on U and with � on V.

6. For every positive integer r, and every pair of maps
,, � # Hom(Tr , H), there is a site u in Tr with ,(u){�(u), a patch U
containing u, and a map % # Hom(Tr , H) which agrees with � on Tr"U and
with , on u.
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7. For every board G and set * of activities, if + is a measure on
Hom(G, H) satisfying the one-site condition, then + is a Gibbs measure.

8. For every finite board G and set * of activities, every stationary
distribution for the point process P(G, H, *) is a Gibbs measure.

9. For every board G of bounded degree such that Hom(G, H) is
non-empty, there is a positive set * of activities such that there is a unique
Gibbs measure on Hom(G, H).

10. Either H has no edges or, for every r, there is a positive set * of
activities such that there is a unique Gibbs measure on Hom(Tr , H).

For instance, note that the constraint graphs for the hard-core and
Widom�Rowlinson models are dismantlable, whereas the unlooped com-
plete graph is not. Theorem 4.1 thus gives a wide variety of ways in which
the first two models will differ from the model of random graph coloring.

One could write down many other equivalent statements. For instance,
notice that (6) is a very weak version of a very special case of (5), so that
any statement intermediate between the two will also give a characteriza-
tion of dismantlable graphs. Yet another equivalent statement will be given
as Theorem 9.2 later.

We shall prove Theorem 4.1 in stages, stating the various results
separately as we go along, sometimes in slightly stronger forms. Note that,
if H is a trivial dismantlable graph, then it satisfies all the above conditions,
mostly vacuously, so we may always assume in what follows that H has at
least one edge or loop. Moreover, it is immediate that the addition or
removal of isolated, loopless nodes of H does not affect the truth or falsity
of any of the statements, and it is simple to check that all the statements
are false if H has more than one non-trivial component (for (4) and (7),
consider any finite board). Thus we may assume whenever it is convenient
that H is connected.

Some implications among (1)�(10) are instant. We noted above that (5)
implies (6), and it is also clear that (4) implies (3), and that (9) implies
(10). We have already seen, via Lemma 3.1, that (7) implies (8).

For the remainder of this section, we consider only (1) and (2). The
equivalence of these two conditions, providing a structural characterization
of cop-win graphs, generalizes the results of [9, 11], where cops and
robbers were permitted to remain at a current node; thus there, in effect,
all nodes were automatically looped.

Theorem 4.2. Let H be a finite, connected graph. Then H is cop-win if
and only if it is dismantlable.

Proof. Let us first assume that H is dismantlable, and show that H is
cop-win, by induction on the order of H. With our conventions C does win
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on one-node graphs. Suppose H has nodes i and j such that N(i)�N( j)
and H"[i] is cop-win: we need to prove that H is cop-win. Let S be a
strategy for C that is winning on H"[i]. We modify S for operation on H
as follows: whenever R is on i, C plays as if he were on j. Eventually she
will either capture the robber or move to j when he is on i, in which case
she will win on the next move.

The converse is equally easy. Since the game has only a finite number of
states, if H is cop-win then the cop can win in (say) s steps. Thus there is
a position (say, robber at i and cop at j) with robber to move from which
C can win in one step. This means that N(i)�N( j). We claim H"[i] is
also cop-win; if not, then a winning strategy for R on H"[i] also works
on H, as long as the robber regards a cop at i as if she were at j. K

The equivalence of (1) and (2) for disconnected graphs follows
immediately: isolated nodes do not affect the play, while if there are two
components each containing an edge, then R wins by moving to a different
component from that chosen by C on the first move.

The proof of Theorem 4.2 shows that to determine whether a given
graph H is cop-win, it suffices to identify any i, j pair with N(i)�N( j) and
remove i, repeating until only one node remains (in which case H is cop-
win) or until no such pair exists, i.e., we reach a stiff graph. Thus the cop-
win property, and hence dismantlability, is recognizable in polynomial time.

It may aid understanding later to consider the structure of a general non-
dismantlable graph, and it is convenient to do this here. Evidently a stiff
graph is non-dismantlable, but more generally there is some sequence of
folds that can be made before reaching a stiff graph, and this sequence of
folds will typically not be unique. However, we show that the stiff graph
eventually reached by a sequence of folds is unique up to isomorphism.

Accordingly, suppose that H is a non-dismantlable graph, and consider
some sequence of folds on H reducing it to a stiff graph J. Now define the
family of sets (C j) j # J recursively as follows.

(i) For every j # J, j # Cj .

(ii) For h # H and j # J, if h has a neighbor in Ci for every i # J with
itj, then h # Cj .

(iii) The Cj are the unique minimal sets subject to (i) and (ii).

Lemma 4.3. The sets Cj are disjoint. Furthermore, if j and j $ are not
adjacent in J, then there are no edges between Cj and Cj $ in H.

Proof. Consider the composition �: H � J of the folds in the sequence.
The map � is a retract, i.e., it is a graph homomorphism whose restriction
to J is the identity. We claim that Cj ��&1 ( j) for each j; this clearly
implies the result.
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Suppose that h has a neighbor gi in �&1 (i) for every i # J with it j.
Since � is a homomorphism, �(h)t�(gi)=i for each such i. Then
NJ ( j)�NJ (�(h)). Since J has no folds, this implies that j=�(h), i.e.,
h # �&1 ( j). Thus the sets (�&1 ( j))j # J satisfy (ii) and (since � is a retract)
also (i). By (iii), we have Cj ��&1 ( j) for each j, as desired. K

It is perhaps worth stressing that some vertices of H may be in none of
the Cj . For a simple example, consider the case of an unlooped triangle
with one pendant edge. Then J consists of the three vertices of the triangle,
but the other vertex does not belong to any of the Cj .

Theorem 4.4. Let H be a non-dismantlable graph. Then, up to
isomorphism, there is a unique stiff graph J that can be reached by a
sequence of folds from H.

Proof. Consider some specific sequence of folds from H resulting in a
stiff graph J, and let the sets Cj , j # J, be defined as above. We claim that
any sequence of folds from H preserves an isomorphic copy J� of J, with the
node }̂ of J� corresponding to j # J being in Cj , for each j. Indeed, suppose
that H can be folded to a graph L containing a suitable copy J� of J, but
that, in L, some node }̂ # J� can be folded to another node k, i.e.,
NL ( }̂)�NL (k). In particular, k is adjacent to all the neighbors of }̂ in J� , i.e.,
all the nodes @̂, for i a neighbor of j in J, and so k # Cj . Now, by
Lemma 4.3, k is not adjacent to those nodes of J� in some Cj $ with j not
adjacent to j $. Thus, replacing }̂ by k gives us a suitable copy of J in the
fold of L.

We have shown that any sequence of folds from H results in a graph
containing a copy of J. But this is true for any stiff graph that can be
obtained by a sequence of folds from H, so in fact we always obtain exactly
a copy of J, as required. K

The stiff graph J of Theorem 4.4 is reminiscent of the ``core'' of a graph
as defined in [7].

5. CONNECTEDNESS OF THE HOMOMORPHISM GRAPH

In this section, we show the equivalence of conditions (1), (3), and (4)
of Theorem 4.1, and we also show that (1) implies (5) and (6). As already
noted, it is immediate that (4) implies (3), and that (5) implies (6).

Our first result in this section shows that (3) implies (1).

Theorem 5.1. If H is non-dismantlable, then there is a finite board G for
which Hom(G, H) has at least two components.

152 BRIGHTWELL AND WINKLER



Proof. Let H be non-dismantlable, and suppose that nonetheless
Hom(G, H) is connected for all finite boards G; let n=|H| be minimal with
respect to these properties.

If there are nodes i and j of H with N(i)�N( j), then H"[i] is also non-
dismantlable. In this case, we claim that the connectivity of Hom(G, H)
implies connectivity of Hom(G, H "[i]). To see this, define, for , #
Hom(G, H), the map ,$ # Hom(G, H"[i]) by changing all i 's to j 's in the
image. If : and ; are two maps in Hom(G, H"[i]), then we may connect
them by a path ,1 , ..., ,t in Hom(G, H); now we observe that the not-
necessarily distinct sequence of maps ,$1 , ..., ,$t connects : and ; in
Hom(G, H"[i]). This contradicts the minimality of H, so we may assume
from now on that there is no such pair of nodes i and j, i.e., H is stiff.

We now break the proof into two cases, depending on whether or not H
has a looped node. Suppose first that the set L of looped nodes in H is
non-empty, and define a finite graph G as follows. The nodes of G are those
of H together with a second copy i $ of each node i # L, and the edges of
G are

[[i, j]: itj in H] _ [[i, i $]: i # L] _ [[i $, j]: itj in H and i # L].

Thus each looped node of H is replaced in G by two adjacent, unlooped
nodes connected as before. We let @ # Hom(G, H) be the ``pseudo-identity''
map sending i and i $ to i for i # L, and j to j for j � L.

We claim that @ is an isolated point of Hom(G, H); otherwise for some
u=i or u=i $ # G and i, j # H the alteration @$ of @ sending u to j instead of
i is a homomorphism. But then N(i)�N( j), a contradiction.

Observe that @ is not the only member of Hom(G, H), since the constant
map }: G � [k] is in Hom(G, H) for any k # L. Thus Hom(G, H) is discon-
nected after all.

Now suppose that our graph H has no loops, and let G be the ``weak''
square of H, that is, the graph whose nodes are ordered pairs (i1 , i2) of
nodes of H with (i1 , i2)t( j1 , j2) just when i1 tj1 and i2 tj2 . There are
two natural homomorphisms from G to H, the projections ?1 and ?2 ,
where ?1 (i1 , i2)=i1 and ?2 (i1 , i2)=i2 ; we claim that ?1 is an isolated point
of the graph Hom(G, H).

If not, there is a map ?$ taking (say) (i1 , i2) to k{i1 and otherwise
agreeing with ?1 . Let j2 be a fixed neighbor of i2 and j1 any neighbor of i1 .
Then (i1 , i2)t( j1 , j2) hence ktj1 . We have shown that every neighbor of
i1 is also a neighbor of k, contradicting the assumption that H is stiff.

This completes the proof of the theorem. K

Next, we prove a lemma about dismantlable graphs that will be used to
show that (1) implies (4) and (5), and later (7) and (9) as well. The lemma
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is stated so as to cover all the various uses to which we will put it, at the
expense of brevity.

Lemma 5.2. Let H be a non-trivial dismantlable graph with |H|=n, and
let j be a persistent node of H. Let G be any board, and U any subset of G.
Let , be any map in Hom(G, H). Then there is a homomorphism
% # Hom(G, H) such that % � (G"Nn&2 (U))=, � (G"Nn&2 (U)), %(v)= j for
every v # U, and ,&1 ( j)�%&1 ( j).

Furthermore, if U is finite, then there is a path in Hom(G, H) connecting
% and , all of whose intermediate elements agree with % and , on
G"Nn&2 (U). Finally, if in addition � # Hom(G, H) agrees with , on G"U,
then � is also connected to % by a path with this property.

Proof. Since j is a persistent node of the dismantlable graph H, we can
find a sequence of graphs H=Hn , Hn&1 , ..., H1=[ j], with |Hk |=k for
each k, and a sequence of pairs of nodes (in , jn) # Hn , (in&1 , jn&1) #
Hn&1 , ..., (i2 , j2) # H2 , such that N(ik)�N( jk) in Hk and Hk&1=Hk"[ik]
for each k, 1<k�n.

We define a sequence of maps ,=,n , ,n&1 , ..., ,1=% in Hom(G, H) with
the property that ,k (Nk&1 (U))�Hk for each k, as follows.

Suppose that ,k is already defined and that ,k (Nk&1 (U))�Hk . For
each u # Nk&2 (U) with ,k (u)=ik , we put ,k&1 (u)= jk ; for all
v � Nk&2 (U), and all v # G with ,k (v){ik , we let ,k&1 (v)=,k (v). Every
neighbor of a site in Nk&2 (U) is in Nk&1 (U) and thus its image under ,k

lies in Hk ; since N(ik)�N( jk) in Hk , the changes are legitimate and
,k&1 # Hom(G, H). Furthermore we have ,k&1 (Nk&2 (U))�Hk&1 and
,&1

k ( j)�,&1
k&1( j). If U is finite, then so are all the Nk (U); in this case the

necessary changes can be made one at a time, and there is a path between
,k and ,k&1 in Hom(G, H) which never makes changes away from the set
Nn&2 (U).

By the time we reach ,1=%, we have a map which is identically equal
to the single node j of H1 on N0 (U)=U, as desired. Also, the set ,&1

k ( j)
is non-decreasing throughout the process.

Finally, note that the value of %(v) on a fixed site v in G"U depends only
on the value of ,(v). Thus if � is another map agreeing with , on G"U,
then it too is connected to % by a path of the same form. K

It is an immediate consequence of Lemma 5.2 that every non-trivial
dismantlable graph H has property (4) of Theorem 4.1. It is also easy to
deduce that H has property (5) as well, as we now see.

Theorem 5.3. Let H be a non-trivial dismantlable graph with |H|=n.
Let G be any board, with subsets V and W such that d(v, w)�2n&1 for all
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v # V and w # W. Let , and � be any maps in Hom(G, H). Then there is
% # Hom(G, H) agreeing with , on V and with � on W.

Proof. Let j be a persistent node of U, and apply Lemma 5.2 with
U=G"Nn&1 (V) to get a homomorphism %1 that agrees with , on V, and
is identically j on G"Nn&1 (V). Similarly, there is a homomorphism %2 that
agrees with � on W, and is identically j on G"Nn&1 (W). Note that there
are no edges between Nn&1 (V) and Nn&1 (W), so the map % defined by
setting %(u)=%1 (u) if u # Nn&1 (V), and %(u)=%2 (u) otherwise, is a
homomorphism with the required properties. K

6. THE ONE-SITE CONDITION

We have already seen that condition (7) of Theorem 4.1 is at least as
strong as (8); we now show that (4) is equivalent to both (7) and (8).

Theorem 6.1. If the finite graph H is dismantlable then for any board G,
finite or infinite, and any set * of activities for H, every measure satisfying
the one-site condition is a Gibbs measure. If H is not dismantlable then there
is a measure on a finite board which satisfies the one-site condition but is not
a Gibbs measure.

Proof. Let us assume first that H is dismantlable and that G and * are
given, along with a measure + on Hom(G, H) satisfying the one-site condi-
tion. We wish to show that + is a Gibbs measure.

Accordingly, take any finite subset U/G. The definition of the one-site
condition allows for a +-null set of homomorphisms to misbehave at each
site. For u # U, let Eu denote the set of homomorphisms � such that, for
some homomorphism �$ agreeing with � except on u, we have

Pr+ (,: ,=� | , � (G"[u])=� � (G"[u]))
Pr+ (,: ,=�$ | , � (G"[u])=� � (G"[u]))

{
*� (u)
*�$ (u)

.

Then each Eu is +-null. Now let E denote the set of homomorphisms �
agreeing with some �$ in some Eu on G"Nn&2 (U). Then E is again a +-null
set.

We claim that, for any � � E,

Pr
+

(,: ,=� | , � (G"U)=� � (G"U))
= Pr

mU+
(,: , � U=� � U | , � �U=� � �U).
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This is equivalent to saying that, for any � � E, and any �$ # Hom(G, H)
agreeing with � on G"U, we have

Pr+ (,: ,=� | , � (G"U)=� � (G"U))
Pr+ (,: ,=�$ | , � (G"U)=� � (G"U))

= `
u # U

*�(u)

*�$(u)

.

The left-hand ratio here is equal to

Pr+ (,: ,=� | , � (G"Nn&2 (U))=� � (G"Nn&2 (U)))
Pr+ (,: ,=�$ | , � (G"Nn&2 (U))=� � (G"Nn&2 (U)))

,

since dividing numerator and denominator by Pr+ (,: , � (G"U)=
� � (G"U) | , � (G"Nn&2 (U))=� � (G"Nn&2 (U))) gives the original ratio.

Similarly, the one-site condition (or, more precisely, the definition of E)
tells us that we have

Pr+ (,: ,=: | , � (G"Nn&2 (U))=: � (G"Nn&2 (U)))
Pr+ (,: ,=:$ | , � (G"Nn&2 (U))=: � (G"Nn&2 (U)))

=
*:(u)

*:$(u)

,

whenever : and :$ differ only on u # U, and agree with � on G"Nn&2 (U).
By Lemma 5.2, � is connected by a path to �$ in Hom(G, H), with all

intermediate steps agreeing off Nn&2 (U). The result now follows by multi-
plying up the appropriate ratios along such a path.

It remains to show that if H is non-dismantlable then the one-site condi-
tion is strictly weaker, even on finite boards, than the Gibbs condition.
This is an easy task in view of Theorem 5.1. Let G be any finite graph for
which Hom(G, H) is disconnected, and let C be a component of
Hom(G, H). Fix a set of activities for H and let m be the corresponding
Gibbs measure. Now define a new measure mC by doubling the relative
probability of every map in C, i.e., put

Pr
mC

(,: ,=�) B K� `
j # J

*�( j)

where K�=2 for � # C and 1 otherwise. Then mC satisfies the one-site
condition but is different from the unique Gibbs measure +. K

7. UNIQUENESS OF GIBBS MEASURES

Now we show that (1) implies (9), and therefore also (10). The proof
uses Lemma 5.2 once more, and also the following very nice result of Van
den Berg [2], here stated in our hard-constraint context.
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Theorem 7.1 [Van den Berg (1993)]. Let G be any board, H any con-
straint graph and * any set of activities for H. Suppose that +1 and +2 are
two different Gibbs measures on Hom(G, H) and let ,i be drawn independ-
ently from +i , i=1, 2. Then with probability >0 there is an infinite path P
in G such that ,1 and ,2 disagree on every site of P.

Theorem 7.2. Let H be any dismantlable graph and G any board of
bounded degree. Then there is a set of activities for H for which there is only
one Gibbs measure on Hom(G, H).

Proof. Choose a persistent node j in H, set n=|H|, and set
r=max[2, 2(G)&1], where 2(G) is the maximum degree of G. We define
* by *j :=r4n4r n

, and *i :=1 for i{ j.
Now suppose there are two different Gibbs measures, +1 and +2 , and let

,1 and ,2 be selected from them as in the statement of Theorem 7.1. We
want to show that, in fact, with probability 1 there is no ``infinite path of
disagreement'' in G.

Let Pk be any path in G on k�2 sites; we claim that with high +1 -prob-
ability, more than half the sites of Pk are mapped to the persistent node j.

Let � be any map in Hom(G, H) such that �(v)= j for at most half of
the sites v of Pk. By Lemma 5.2, there is a map % # Hom(G, H) which
agrees with � on G"Nn&2 (Pk), is identically j on Pk, and satisfies
%&1 ( j)#�&1 ( j). Now the Gibbs property for +1 assures us that (except on
a null set of homomorphisms �)

Pr+1
(,: ,=% | , � (G"Nn&2 (Pk))=� � (G"Nn&2 (Pk)))

Pr+1
(,: ,=� | , � (G"Nn&2 (Pk))=� � (G"Nn&2 (Pk)))

�*k�2
j ,

so we have that, for a.e. �,

Pr
+1

(,: ,=� | , � (G"Nn&2 (Pk))=� � (G"Nn&2 (Pk)))�*&k�2
j .

Now, it follows on integration that, for any homomorphism : from the
finite set Nn&2 (Pk) to H that colors at most half of the sites of Pk with j,

Pr
+1

(,: , � Nn&2 (Pk)=:)�*&k�2
j .

The number of sites in Nn&2 (Pk) is no more than when G is the (r+1)-
regular tree Tr , so that

|Nn&2 (Pk)|�k+(kr&k+2)+r(kr&k+2)

+r2 (kr&k+2)+ } } } +rn&1 (kr&k+2)

=krn+2(rn&1)�(r&1)�2krn.
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It follows that the total number of maps in Hom(Nn&2 (Pk), H) is less
than n2krn

. Therefore the +1 -probability that at most half of the sites of Pk

are colored j is at most n2kr n*&k�2
j =r&2k.

The same reasoning applies to +2 , thus for any fixed path Pk of length
k�2n, with probability at least 1&2r&2k both ,1 and ,2 will map more
than half of Pk to node j and will thus agree on some site of Pk .

Since there are at most (r+1) rk&2 paths on k sites emanating from any
given site u, the probability that some Pk starting at u is a path of disagree-
ment tends to zero as k tends to infinity. Thus with probability 1 there is
no infinite path of disagreement starting at u. Summing over all u, we
deduce that there is no infinite path of disagreement anywhere, and now
application of Theorem 7.1 completes the proof. K

It is perhaps worth pointing out that a straightforward adaptation of the
proof gives us more concrete information about how to construct a set of
activities * for which there is a unique Gibbs measure on Hom(G, H)��we
say that such a * is forcing for Hom(G, H). Indeed, one can prove the
following result, via an almost identical proof.

Theorem 7.3. Let j be a persistent node in a dismantlable graph H, and
fix an integer 2. Then, for any set of activities * on H, there is a real value
x such that if *$ is a set of activities which agrees with * on H"[ j] and
satisfies *$j>x then, for any board G of maximum degree at most 2, *$ is
forcing for Hom(G, H).

This covers various known results about the hard-core and Widom�
Rowlinson models (see, e.g., [3]), proved in essentially the same manner.
In the hard-core model, the looped node is persistent, while all three nodes
are persistent in the Widom�Rowlinson constraint graph.

8. FROZEN GIBBS MEASURES

To complete our proof of Theorem 4.1, we need to show that each of (6)
and (10) implies (1). These results will follow from the existence of a rather
bizarre family of Gibbs measures on Hom(Tr , H), which in the case where
H is stiff are concentrated on a single homomorphism from the (r+1)-
regular tree Tr to H.

We define a frozen coloring of a board G by a constraint graph H to be
a homomorphism � # Hom(G, H) such that, for any patch U/G, the only
homomorphism , # Hom(G, H) such that , � (G"U)=� � (G"U) is ,=�
itself. This is equivalent to saying that the partial coloring � � �U deter-
mines � � U+.
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For � # Hom(G, H), define the probability measure +� on Hom(G, H)
by Pr+�

(,: ,=�)=1; i.e., +� is concentrated on the single homomorphism �.

Theorem 8.1. For � a frozen coloring in Hom(G, H), and * any set of
activities on H, the measure +� is a Gibbs measure on Hom(G, H).

Proof. Consider any finite subset U of G. Since � is frozen, � � U+ is
the only coloring of U+ consistent with � � �U, i.e.,

Pr
mU+

(,: , � U +=� � U+ | , � �U=� � �U)=1,

in agreement with +� . K

Theorem 8.2. Let H be a stiff graph of maximum degree 2�2. Let * be
any set of activities on H, and r be any integer �2. Then there are uncount-
ably many frozen colorings � # Hom(Tr , H).

Proof. We may assume that H is connected, since if not then we can
consider homomorphisms from some connected component of maximum
degree 2 to Tr . Since H is stiff and connected, with a node of degree at least
2, it does not contain any nodes of degree 1.

We construct a homomorphism � from Tr to H as follows. Start with
any node x0 of Tr , and color it with any node i0 of H. Then we color the
r+1 neighbors of x0 , in such a way that each neighbor of i0 in H is used
at least once. We continue to construct the coloring �, working out from
x0 . Having colored a site x of Tr , with �(x)=i, all the r neighbors of x not
on the unique path from x0 are still uncolored: color them in such a way
that each neighbor j of i is used on at least one neighbor of x. This will
always be possible, since x has r�2 such neighbors. Proceeding in this
way, we construct some homomorphism � # Hom(Tr , H). Obviously there
are uncountably many choices for �. We claim that � is frozen.

It suffices (taking supersets if necessary) to show that for any connected
patch U containing x0 , the restriction to U of a homomorphism
� # Hom(Tr , H) is uniquely determined by � � �U. Suppose this assertion
to be false and let U be a minimum-size counterexample. Let x be a site in
U of maximum distance from x0 , so that all of x's ``children'' relative to the
root x0 lie in �U.

Let �, �$ # Hom(Tr , U+) agree on �U, but not on U, and let i=�(x). By
construction, for every neighbor j of i in H, there is a neighbor y of x in
�U with color j. Thus �$(x) has to be adjacent to every neighbor j of i, but
since H is stiff, this means that �$(x)=i. But then U"x is already a violat-
ing patch, contradicting the minimality of U. K
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If H is stiff with maximum degree 1, then it is a disjoint union of edges.
In this case, for any r, the choice of color of any single site of Tr determines
the entire homomorphism, so there are |H|�2 elements of Hom(Tr , H),
and all are frozen.

Theorems 8.1 and 8.2 show that stiff graphs do not satisfy property (10)
of Theorem 4.1. Moreover, they do not satisfy property (6) either: take any
frozen coloring � of Tr by a stiff graph H, and any ,{�. Then for any site
u with ,(u){�(u), and any patch U containing u, there is no common
extension of � � (Tr"U) and , � [u].

Now consider a general non-dismantlable graph H. Take a sequence of
folds reducing H to a stiff subgraph J. The composition : of folds in the
sequence is a retract from H to J, i.e., a homomorphism from H to J such
that : � J is the identity. Then every homomorphism , in Hom(G, H)
induces a homomorphism :, # Hom(G, J).

Now take � to be a frozen coloring of some Tr by J, and let U be any
patch of Tr . Suppose that , # Hom(Tr , H) has :, � �U=� � �U; then :, is
a homomorphism from Tr to J agreeing with � on �U, so it must also agree
with � on all of U+.

This already suffices to show that (6) implies (1) in general, in other
words that a non-dismantlable graph H never satisfies (6). Proceeding as
before, take a frozen coloring � of Tr by J, and a different , # Hom(Tr , J).
For any patch U, any extension % of � � (Tr"U) must have :%=�, so %
cannot agree with , on any site where � and , differ.

Now fix any set * of activities on H. We can now follow a standard
technique to construct a Gibbs measure giving probability 1 to the set S
of homomorphisms , # Hom(Tr , H) with :,=�. To do this, we construct
a sequence of measures (+k) from the fixed homomorphism �. Fix a ``root''
x0 of Tr , let U=[x0], and consider the sets Nk (U), for k a non-negative
integer. The measure +k gives positive probability only to homomorphisms
agreeing with � outside Nk (U); for such a homomorphism %, we set

Pr
+k

(,: ,=%)= Pr
mNk+1

(U)
(,: ,=% � Nk+1 (U) | , � �Nk (U)=% � �Nk (U))

(note that Nk+1 (U)=(Nk (U))+=Nk (U) _ �Nk (U)); in other words, we
fix ,=� on �Nk (U), and then select , according to the multiplicative
measure mNk+1(U) , conditioned on the boundary values. It is a well-known
result (see, e.g., [5] or [6]) that the limit of any convergent subsequence
of the +k, in the usual compact topology, is a Gibbs measure on
Hom(G, H).

The discrete measures +k are positive only on homomorphisms , agree-
ing with � outside a finite subset, all of which are in S; hence the limit +
of any convergent subsequence of the +k is a Gibbs measure such that
+(S)=1, as claimed.
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This shows that, for any non-dismantlable graph H, and any set * of
activities on H, there are multiple Gibbs measures, at least one for each
frozen coloring of the derived stiff graph J. This shows that (10) implies (1).

This completes the chain of implications required to prove Theorem 4.1.

9. BRANCHING RANDOM WALKS

If the constraint graph H is non-dismantlable, among the consequences
is the failure of property (6) of Theorem 4.1, which can be thought of as
showing the possibility of ``long-range influence.'' In this case, one can con-
struct a homomorphism � from some suitably highly branching Tr to H
such that, no matter how far from the root one goes, the values of � at that
distance convey ``hard'' information, sufficing to rule out some root color.

We conclude with one more characterization of dismantlable constraint
graphs, showing that this phenomenon is not so freakish as one might
think, and does not rely on our ability to construct homomorphisms care-
fully. We shall show that, in the natural setting of branching random
walks, we see long-range influence with high probability, provided the
branching number is large enough (in fact, the number required is only
modestly larger than that required for the existence of frozen homo-
morphsims).

Given a weight vector w=(w1 , ..., wn) assigning positive reals to the
nodes of H, a node-weighted random walk on H is a Markov chain whose
states are the nodes of H and whose transition probabilities are pij :=wj �zi

when jti and 0 otherwise, where zi :=�kti wk .
We may think of a random walk on H as a token which steps randomly

from node to node along the edges of H, with probabilities weighted by w.
If the token is replaced by an amoeba, which divides r ways before each
step, the result is an r-branching random walk on H. Each amoeba-child
steps independently of its siblings, and indeed of every other amoeba on H,
and many may occupy the same node simultaneously.

If we agree to place the initial amoeba at a node drawn from the station-
ary distribution, and divide r+1 ways at step 1 only and r ways thereafter,
then the branching random walk defines a probability measure +w on
Hom(Tr , H). To obtain a random , from +w , we fix a root u of Tr and let
,(u) be the position of the initial amoeba. That amoeba's r+1 children
determine the values of , on the neighbors of u, and so forth.

In fact, +w is a particularly nice Gibbs measure for a certain set of
activities. A measure on Hom(Tr , H) is said to be simple if whenever ,(v)
is fixed at some site v, the behavior of , on each of the r+1 components
of Tr"[v] is independent. It is invariant if it is unchanged by any of the
(many) automorphisms of Tr .
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Theorem 9.1. [4] Fix r and a constraint graph H with set of activities
*=(*1 } } } *n). Then the simple invariant Gibbs measures on Hom(Tr , H) are
precisely the measures +w arising from branching random walks on H with
weight vector w satisfying *i=wi �zr

i . Moreover, there is always at least one
such weight vector.

The main objective of [4] is to characterize the graphs H for which there
can be more than one simple invariant Gibbs measure for the same set of
activities. That will not be the issue here.

Unless H is bipartite an ordinary random walk on H exhibits no long-
range memory; in other words, all information about the state of the walk
at time 0 is lost as time advances. In a branching random walk memory
may persist (and does, with high probability, when r is large). When H is
non-dismantlable something even more startling occurs.

Theorem 9.2. Let H be a non-dismantlable graph with weight vector w.
Then there is an integer r, a real $>0 and a node i of H such that for any
t, the state of an r-branching random walk on H at time t is, with probability
>$, inconsistent with initial state i.

Thus we have (with probability bounded away from 0) hard information
about the initial state of the branching random walk, even after an
arbitrarily large amount of time is past. This is much stronger than the
negation of conditions (5) or (6) of Theorem 4.1; in particular if we take
an r-branching random walk on a dismantlable graph then there is a time
t past which any initial state is always possible.

Proof of Theorem 9.2. Given the non-dismantlable constraint graph H
we define J and the Cj ( j # J) as in Section 4. Let Tt

r be the subtree of Tr

consisting of the root and all sites at distance at most t from the root. Thus
there are (r+1) rt&1 leaves in T t

r , and all other sites have degree r+1.
Given a coloring , # Hom(T t

r , H), consider the following labeling scheme,
using the vertices of J as labels.

(i) If a leaf has a color from Cj , it receives label j. Otherwise it is
unlabeled.

(ii) For each j # J, if a non-leaf x has successors yi labeled i, for each
i # J adjacent to j, then x receives label j. Otherwise x is unlabeled.

Lemma 9.3. If a site x receives label j, then ,(x) # Cj .

Proof. We verify this inductively, working back from the leaves. The
statement is certainly true if x is a leaf.

If a non-leaf x receives label j, then it has successors yi labeled i, and
thus��by the induction hypothesis��with ,( yi) # Ci , for each itj. The site
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x must have a color adjacent to all the colors ,( yi), and this color will
therefore be in Cj , by definition of Cj . K

We now take an r-branching node-weighted random walk on H (r to be
chosen later) in accordance with the scheme for generating a map
, # Hom(Tr , H) from the distribution +w . For each t, , � T t

r records the
history of the walk to time t, and on it we may carry out the labeling
described above. Clearly, if a site receives a label in the labeling of T t

r , then
it also receives a label in the labeling of Ts

r for each s<t. We can then label
Tr by giving a site a label j if it receives label j in the labeling of every T t

r .
Let L be the event that the root is labeled.

Unless H is dismissably uninteresting we cannot expect L to have prob-
ability 1, since if j is a vertex j of J of degree greater than 1 there is a
positive probability that the root is colored j and all its immediate suc-
cessors have the same color; this prevents the root being labeled.

We claim, however, that for r sufficiently large, L has positive probabil-
ity. Our estimates for how large an r is required will naturally depend on
the transition probabilities in the random walk. Accordingly, we choose
=>0, and subsets Aj of the Cj with the property that, whenever itj in J
and h # Ai , we have

1
zh

:
g # Aj , gth

wg�=.

In other words, whenever the random walk is in some state in Ai , and jti,
the probability that it will step to a state in Aj is at least =>0. (For
instance, we could take Aj=[ j] for every j, or we could take Aj=Cj for
every j, but it may well be that some intermediate choice allows a higher
value of =.)

Lemma 9.4. Let H, J, w, =>0 and the sets Aj , for j # J, be as above, and
let 2 be the maximum degree in J.

(i) Set :=:2 to be the unique root of

:e&:=
1

e2
.

Suppose that r�:�=. Then, for each j, the probability that the root is labeled,
conditional on it receiving a color from Aj , is at least 1&1�:.

(ii) For 2�3, and

r�
1
=

log 2+log log 2
1&1�log 2

,
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the probability that the root is labeled, conditional on it receiving a color
from some Aj , is at least 1&1�log 2.

In either case, Pr(L)>0.

Proof. For convenience, we ignore only branch of the tree leading from
the root, so that every site has forward-degree r. This clearly does not
increase the probability that the root is labeled.

Now, for t�0, we consider the labeling of the tree T t
r , generated from

the colors at its leaves. Let pt be the minimum, over all colors i in �j # J Aj ,
of the probability that the root is labeled in the labeling of T t

r , conditional
on its color being i. The probability that the root is labeled in Tr , condi-
tional on its color being from a given Aj , is then at least limt � � pt .

With all probabilities taken according to the branching random walk on
Tr

t , we have, for any i # J and h # Ai ,

Pr(root is labeled | root has color h)

�1& :
jti

Pr(no successor is labeled j | root has color h)

=1& :
jti

(1&Pr(given successor is labeled j | root has color h))r.

Now, if the root has a color h from Ai , then a given successor x has a color
from Aj with probability at least =, and the probability that x then actually
receives the label j is at least pt&1 , since the subtree rooted at x is a copy
of T t&1

r with one branch removed. Thus we have

Pr(root is labeled | root has color h)�1&|N(i) & J |(1&=pt&1)r,

for every i # J and h # Ai . Therefore

pt�1&2(1&=pt&1)r�1&2e&=pt&1r.

We need to check that this recursion gives the conclusion of the theorem
in the two cases. For (i), let us assume that : is as given, that r=�:, and
that pt&1�1&1�:. (This is certainly valid for t=1, since p0=1.) Now we
have

pt�1&2e&=pt&1r�1&2e&:(1&1�:)=1&e2 \ 1
e2:+=1&

1
:

.

Hence, by induction, pt�1&1�: for every t, as required.
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Now suppose that 2�3 and that r satisfies the bound of (ii). Again, we
have p0=1. If pt&1�1&1�log 2, then =pt&1 r�log 2+log log 2, so

pt�1&2e&log 2&log log 2=1&1�log 2.

Hence, by induction, pt�1&1�log 2 for every t. K

It is now easy to complete the proof of Theorem 9.2. If r is chosen large
enough, as in Lemma 9.4, then there is positive probability that the root
will receive a color from some Aj , and that it will then be labeled. In this
case, by Lemma 9.3, colors not in Cj are ruled out as colors of the root by
the colors of the sites at any given distance from the root. K

We note for convenience that :2 &2.68, :3 &3.29, :4 &3.69, :5 &3.99.
For higher values of 2, the bound in part (ii) of Lemma 9.4 indicates a
reasonable approximation.

To take a specific example, we return to the graph-coloring case where
H is an unlooped complete graph Kn , and all node-weights are equal (forc-
ing all activities to be equal as well). Then J=H, and each Cj��hence
necessarily each Aj��consists of the single vertex j. We can take
==1�2=1�(n&1), and hence there is positive probability that the root is
labeled provided that r�(n&1) :n&1 . For n>3, it suffices to have

r�(n&1)
log(n&1)+log log(n&1)

1&1�log(n&1)
.

For this example, it is easy to check that this bound on r is at least
asymptotically best possible (as n � �).

To be even more specific, the reconstruction strategy succeeds on H=K3 ,
with uniform activities, when r�6, with probability at least 0.6. Moreover, one
can write down the precise recursion for the pt in this case, namely

pt=h( pt&1)#1&2 \1&
pt&1

2 +
r

+(1& pt&1)r.

For r=5, the pt tend to the largest root of p=h( p), which is at
approximately p=0.8988. For r=3 or 4, there is no root of p=h( p), and
the pt tend to 0, so the probability of being able to reconstruct the root
with certainty tends to 0 for r�4.
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