ECONOMIC IMPACT OF A DEVICE FOR PREPARING STERILE SOLUTIONS IN THE MT. SINAI HOSPITAL PHARMACY
Ellegard B, Meyer J, Caliendo G, Herdman M, Romera B
1The Mount Sinai Medical Center, New York, NY, USA; 23D Health Research, Barcelona, Barcelona, Spain; 33D Health Research, Barcelona, Spain

OBJECTIVES: To investigate the economic impact of a device for automating the preparation of sterile solutions in the Mount Sinai Hospital Pharmacy. METHODS: The Gri-fill system (G-S) uses sterile filtration and a documented filter integrity test for each unit of sterile solution prepared. The present study examined the economic impact of the G-S in preparing 3 pain management solutions and 4 total parenteral nutrition (TPN) solutions. Costs were categorized in terms of staff time, drug, and disposable costs for the G-S versus the usual manual process. For each product type, a minimum of 30 units were prepared using each process. Material costs were calculated using Average Wholesale Prices (AWP) of drugs and disposables; staff costs were based on hospital administrative costs for pharmacist and technician time. RESULTS: The number of units prepared for each solution ranged from 24 to 129. Batch size was considerably larger with the G-S (mean of 30.7 units per batch with G-S, 4.9 units with the manual system). Production cost per unit was lower with the G-S for 5 of the 7 solutions studied. Main differences between the two systems were in terms of disposable costs, which were proportionally greater with the G-S (mean of $9.54 per unit with G-S compared to $6.05 manual, for all solutions), and staff costs, which were less with the G-S (mean of $0.82 per unit compared to $3.84 for the manual system, all solutions). CONCLUSIONS: The G-S produced cost savings for most of the solutions studied. The size of savings is dependent primarily on solution mix and batch size.

ECONOMIC COMPARISON OF TWO XENETIX® 300 SOLUTIONS IN THE MT. SINAI HOSPITAL PHARMACY

METHODS: The study was performed in two Spanish hospitals. Assessment was based on three measurements: time spent carrying out the injection, quantity of devices used, and disposable costs for the G-S versus the usual manual process. For each product type, a minimum of 30 units were prepared using each process. Material costs were calculated using Average Wholesale Prices (AWP) of drugs and disposables; staff costs were based on hospital administrative costs for pharmacist and technician time. RESULTS: The number of units prepared for each solution ranged from 24 to 129. Batch size was considerably larger with the G-S (mean of 30.7 units per batch with G-S, 4.9 units with the manual system). Production cost per unit was lower with the G-S for 5 of the 7 solutions studied. Main differences between the two systems were in terms of disposable costs, which were proportionally greater with the G-S (mean of $9.54 per unit with G-S compared to $6.05 manual, for all solutions), and staff costs, which were less with the G-S (mean of $0.82 per unit compared to $3.84 for the manual system, all solutions). CONCLUSIONS: The G-S produced cost savings for most of the solutions studied. The size of savings is dependent primarily on solution mix and batch size.

PHP3

PHP4

DRUG PRICE INDICES 1980–2004 IN FINLAND

Hahl J,1 Aaltonen S,2 Linden K,1 Jormanainen V1
1GlaxoSmithKline, Espoo, Finland; 2Pharma Industry Finland, Helsinki, Finland

OBJECTIVES: To describe the development of drug wholesale price indices in Finland in 1980–2004. METHODS: Price indices covering study period (The Helsinki Research Institute for Business Administration [1980–1990], IMS [1991–1994] and Statistics Finland [1995–2004]) were merged into two index clusters (1980 = 100 and 1990 = 100). The latter enables more precise classification according to reimbursement categories. Real price indices were produced by adjusting nominal indices with Consumer Price Index (CPI, Statistics Finland) and its sub-index Consumer Price Index for Health Care (CPI—H, Statistics Finland). RESULTS: In 2004, the index (1980 = 100) for all drugs was 167 (CPI adjusted 65; CPI—H adjusted 33) and for basic refund category 141 (55; 28), respectively. The respective figures in 1990 = 100 index were: all drugs 107 (84; 60), prescription based 101 (79; 57), reimbursed 96 (75; 54), Basic Refund (“50%”) 96 (76; 54), Lower Special Refund (“75%”) 91 (71; 51) and Higher Special Refund (“100%”) 102 (80; 58). CONCLUSIONS: Nominal drug wholesale prices have increased