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Abstract

We work in the big category of commutative multirings with 1. A multiring is just a ring with
multivalued addition.We show that certain key results in real algebra (parts of theArtin–Schreier theory
for fields and the Positivstellensatz for rings) extend to the corresponding objects in this category.
We also show how the space of signs functor A�Qred(A) defined in [C. Andradas, L. Bröcker, J.
Ruiz, Constructible Sets in Real Geometry, Springer, Berlin, 1996; M. Marshall, Spaces of Orderings
and Abstract Real Spectra, Springer, Berlin, 1996] extends to this category. The proofs are no more
difficult than in the ring case. In fact they are easier. This simplifies and clarifies the presentation
in [C. Andradas, L. Bröcker, J. Ruiz, Constructible Sets in Real Geometry, Springer, Berlin, 1996;
M. Marshall, Spaces of Orderings and Abstract Real Spectra, Springer, Berlin, 1996]. As a corollary
we obtain a first-order description of a space of signs as a multiring satisfying certain additional
properties. This simplifies substantially the description given in [M. Dickmann, A. Petrovich, Real
semigroups and abstract real spectra I, Cont. Math. 344 (2004) 99–119].
© 2005 Published by Elsevier B.V.

MSC: Primary 14P10

Spaces of signs [1, Chapter 3], also called abstract real spectra in [7, Chapters 6–8], arise
naturally in the study of semialgebraic sets, more generally, in the study of constructible
sets in the real spectrum of a commutative ring with 1.
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Spaces of signs are obtained by ‘patching together’ other more basic structures called
spaces of orderings [1, Chapter 4; 7, Chapters 2–4], reduced special groups [4] or reduced
quadratic form schemes [9]. These structures arise in the study of the reduced theory of
quadratic forms over a real field.

Let V be an algebraic set in Rn where R is a real closed field, e.g., R = R, and let A
denote coordinate ring of V, i.e., the ring of all polynomial functions f : V → R. Consider
f, g ∈ A to be equivalent if f and g have the same sign at each point of V. The space of signs
of A, denoted Qred(A), can be viewed as the set of all equivalence classes of elements of A
equipped with the structure inherited from the ring structure on A.

In this paper we work in the big category of multirings (commutative with 1) and show
how certain well-known results in real algebra (part of the Artin–Schreier theory for fields
and the Positivstellensatz for rings [3]) extend to the corresponding objects in this category.
We also show how the space of signs functor A�Qred(A) extends to multirings. The proofs
are no more difficult than in the ring case. In fact they are easier, because everything takes
place in a single category. As a corollary we obtain an elementary description of spaces of
signs as multirings satisfying certain additional properties. This is the goal of the paper.

A multiring is just a ring with multivalued addition. The idea of a multiring is very
natural, although there seems to be no reference to it in the literature. Some basic properties
of multigroups and multirings are established in Sections 1 and 2.

The simplest example of a real reduced multifield is Q2 := {−1, 0, 1}. Here addition
and multiplication are defined in the obvious way, by interpreting 1 to mean ‘positive’, −1
to mean ‘negative’, and 0 to mean ‘zero’, i.e., 0 · x = x · 0 = 0, (1)(1) = (−1)(−1) = 1,
(1)(−1)= (−1)(1)=−1, x +0 =0 +x =x, 1+1=1, (−1)+ (−1)=−1, and 1+ (−1)=
(−1) + 1 = {−1, 0, 1} (since ‘positive plus negative’ is indeterminate).

An ordering on a multiring A is just a multiring homomorphism � : A → Q2.A multiring
A has an ordering iff −1 /∈ ∑

A2. The real spectrum of A, denoted Sper(A), is the set of
all orderings of A. This has a natural topology giving it the structure of a spectral space.
Each a ∈ A determines a function ā : Sper(A) → Q2 defined by ā(�) = �(a). The
mapping a �→ ā defines a multiring homomorphism from A into Q

Sper(A)

2 . Copying what
is done in the ring case in [7, Chapter 5], we develop a version of the Positivstellensatz
for multirings, and use this to show that the image of A in Q

Sper(A)

2 , denoted Qred(A),2 is

itself a multiring, and is strongly embedded in Q
Sper(A)

2 . Actually, we prove a more general
result; see Proposition 7.3.

A multiring A with −1 /∈ ∑
A2 is called real reduced if the natural multiring homomor-

phism from A onto Qred(A) is an isomorphism. Corollary 7.6 provides a simple character-
ization of real reduced multirings. The functor A�Qred(A) is a reflection3 from the cate-

2 If A is the coordinating ring of an algebraic set V ⊆ Rn, R real closed, then V is embedded in Sper(A)
via x �→ �x where �x ∈ Sper(A) is defined by �x(f ) = sgn(f (x)). Applying a suitable version of Lang’s
homomorphism theorem, e.g., [7, Theorem 5.3.1], we see that sgn(f (x)) = sgn(g(x)) holds for all x ∈ V iff
�(f ) = �(g) holds for all � ∈ Sper(A). This shows that the definition of Qred(A) coincides with the previous one
in this case.

3 A functor F from a category C to a subcategory C′ of C is a reflection if F is left adjoint to the inclusion
functor.
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gory of multirings with −1 /∈ ∑
A2 onto the (full) subcategory of real reduced multirings.

A space of signs is nothing more or less than a real reduced multiring.
Simplifications occur when the multiring in question is a multifield, so we consider this

case first. In Sections 3 and 4 we show that part of the standard Artin–Schreier theory holds
for real multifields, extend the functor F�Qred(F ) to real multifields, characterize real
reduced multifields, and explain how these objects axiomatize spaces of orderings.

We remark that other first-order descriptions of a space of orderings are known, see [4,9].
Just recently, a first-order description of a space of signs was also given in [5]. At the same
time, it seems that the descriptions given here are the most natural and the most easily
understood.

One would expect many of the results presented here to extend to non-commutative multi-
rings and to orderings of higher level. The (non-reduced) special groups [4], called quadratic
form schemes in [9], provide additional examples of multifields. We do not consider these
topics in the present paper.

1. Multigroups

Multigroups are a natural generalization of groups.

1.1. Definition. A multigroup is a quadruple (G, �, r, �) where G is a non-empty set, � is
a subset of G × G × G, r : G → G is a function and � is an element of G satisfying:

(1) If (x, y, z) ∈ � then (z, r(y), x) ∈ � and (r(x), z, y) ∈ �.
(2) (x, �, y) ∈ � iff x = y.
(3) If ∃ p ∈ G such that (u, v, p) ∈ � and (p, w, x) ∈ � then ∃ q ∈ G such that

(v, w, q) ∈ � and (u, q, x) ∈ �.
A multigroup is said to be commutative if

(4) (x, y, z) ∈ � iff (y, x, z) ∈ �.

1.2. Example. Suppose (G, ·, �) is a group. Define � := {(x, y, z) ∈ G×G×G : z=xy},
r(x) := x−1, the inverse of x. Then (G, �, r, �) is a multigroup. (1) asserts that z = xy ⇒
x = zy−1 and y = x−1z. (2) asserts that y = x� iff x = y. (3) asserts that if p = uv and
x =pw [i.e., x = (uv)w], then there exists q such that q =vw and x =uq, [i.e., x =u(vw)],
i.e., that the group operation is associative.

A multigroup is nothing more or less than a group with multivalued group operation. See
[2] for the more general notion of multigroupoid. We record basic properties.

1.3. Lemma. For any multigroup G:

(5) r(�) = �.
(6) r(r(x)) = x.
(7) (x, y, z) ∈ � iff (r(y), r(x), r(z)) ∈ �.
(8) (�, x, y) ∈ � iff x = y.
(9) If ∃ q ∈ G such that (v, w, q) ∈ � and (u, q, x) ∈ � then ∃ p ∈ G such that

(u, v, p) ∈ � and (p, w, x) ∈ �.
(10) For each a, b ∈ G there exists c ∈ G such that (a, b, c) ∈ �.



M. Marshall / Journal of Pure and Applied Algebra 205 (2006) 452–468 455

Proof.
(5) (�, �, �) ∈ � ⇒ (r(�), �, �) ∈ � ⇒ r(�) = �.
(6) (x, �, x) ∈ � ⇒ (r(x), x, �) ∈ � ⇒ (r(r(x)), �, x) ∈ � ⇒ r(r(x)) = x.
(7) (x, y, z) ∈ � iff (z, r(y), x) ∈ � iff (r(z), x, r(y)) ∈ � iff (r(y), r(x), r(z)) ∈ �.
(8) (�, x, y) ∈ � ⇔ (r(x), �, r(y)) ∈ � ⇔ r(x) = r(y) ⇔ x = y.
(9) This follows from (3), by applying r, using (6) and (7).

(10) (a, �, a) ∈ � and (b, r(b), �) ∈ � so by the associative property, there exists c ∈ G

such that (a, b, c) ∈ � and (c, r(b), a) ∈ �. �

2. Multirings

A multiring is a ring with multivalued addition. Every ring is a multiring. Here, we only
consider multirings which are commutative with 1.

2.1. Definition. A multiring is a system (A, �, ·, −, 0, 1) satisfying:

(1) (A, �, −, 0) is a commutative multigroup.
(2) (A, ·, 1) is a commutative monoid, i.e., · is a binary operation on A which is commutative

and associative and a1 = a for all a ∈ A.
(3) a0 = 0 for all a ∈ A.
(4) (a, b, c) ∈ � ⇒ (ad, bd, cd) ∈ �.

Property (4) is the distributive property; more precisely, it is the first half of the distributive
property. The second half is (ad, bd, e) ∈ � ⇒ ∃ c such that (a, b, c) ∈ � and e = cd. We
do not assume the second half. For a ring, the second half is automatic from the first half.

Since (A, �, −, 0) is a commutative group, we have −0 = 0, −(−a) = a. We also have
a(−b) = (−a)b = −(ab) and (−a)(−b) = ab.

Proof: (b, 0, b) ∈ � so (−b, b, 0) ∈ � so (a(−b), ab, a0) ∈ � so (−(ab), a0, a(−b)) ∈
�. Since a0 = 0 this implies a(−b) = −(ab).

Note: For a ring, (3) is a consequence of (4). It is not clear if this is true in general.

2.2. Definition. If A and B are multirings, a mapping f : A → B is called a multiring
homomorphism if, for all a, b, c ∈ A,

(1) (a, b, c) ∈ �A ⇒ (f (a), f (b), f (c)) ∈ �B ,
(2) f (−a) = −f (a),
(3) f (0) = 0,
(4) f (ab) = f (a)f (b) and
(5) f (1) = 1.

For multirings, there are various sorts of ‘substructure’ that one can consider. For rings,
these all coincide. If A, B are multirings, we say A is embedded in B by the multiring
homomorphism i : A → B if i is injective. We say A is strongly embedded in B if A is
embedded in B and, for all a, b, c ∈ A, (i(a), i(b), i(c)) ∈ �B ⇒ (a, b, c) ∈ �A. We
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say A is a submultiring of B if A is strongly embedded in B and, for all a, b ∈ A and all
c ∈ B, (i(a), i(b), c) ∈ �B ⇒ c ∈ i(A).

Given a multiring A and subsets S and T of A it is convenient to define S + T to be
the set {c ∈ A : there exists a ∈ S, b ∈ T such that (a, b, c) ∈ �}. This satisfies
S + T = T + S, (S + T ) + U = S + (T + U) and (S + T )U ⊆ SU + T U . We also define
S − T := S + (−T ) where −T := {−a : a ∈ T }. ∑

S denotes the union of the sets
S + · · · + S (k times), k�1.

Note: In particular, a + b = {c ∈ A : (a, b, c) ∈ �}. A submultiring of A is a subset S of
A satisfying S − S ⊆ S, SS ⊆ S, and 1 ∈ S.

Many concepts available in the category of rings extend naturally to the category of
multirings. We describe some of these now.

If Ai, i ∈ I are multirings then the product
∏

i∈IAi is a multiring in the natural (compo-
nentwise) way.

An ideal of A is a non-empty subset a of A such that a + a ⊆ a and Aa ⊆ a. The
kernel of a multiring homomorphism f : A → B is an ideal of A. The smallest ideal of A
containing the elements a1, . . . , ak of A is

∑
Aa1 + · · · + ∑

Aak . If the second half of the
distribute property holds, then

∑
Aa = Aa. An ideal p of A is said to be prime if 1 /∈ p and

ab ∈ p ⇒ a ∈ p or b ∈ p. The prime spectrum of A, denoted Spec(A), is defined to be the
set of prime ideals of A. As in the ring case we have the following:

2.3. Proposition. For any multiring A, Spec(A) has a natural topology giving it the struc-
ture of a spectral space [6]. Basic open sets have the form D(a) := {p ∈ Sper(A) | a /∈ p},
a ∈ A.

Proof. The standard argument in the ring case carries over. Consider the embedding � :
Spec(A) → {0, 1}A defined by p �→ fp where

fp(a) =
{

0 if a ∈ p,
1 if a /∈ p.

The topology on Spec(A) induced by � (giving {0, 1} the discrete topology and {0, 1}A the
product topology) is the so-called patch topology, i.e., the topology with subbasis consisting
of the sets D(a), Spec(A)\D(b), a, b ∈ A. It suffices to show that Spec(A) with the patch
topology is a Boolean space or, equivalently, that the image of � is closed in {0, 1}A. This
is easy to check. �

2.4. Proposition. For any multiring A, the intersection of the set of prime ideals of A is the
ideal of nilpotent elements of A.

Proof. Again, the argument in the ring case carries over. Suppose a ∈ A, an 	= 0 for all
n�0. Let S ={an |n�0}. Use Zorn’s lemma to pick an ideal p of A maximal subject to the
condition p ∩ S = ∅. Suppose b, c ∈ A, bc ∈ p, b, c /∈ p. Consider the ideals p + ∑

Ab,
p + ∑

Ac. Thus, ak ∈ p + ∑
Ab, a� ∈ p + ∑

Ac, for some integers k, ��0. Then
ak+� ∈ (p+ ∑

Ab)(p+ ∑
Ac) ⊆ p (using bc ∈ p), a contradiction. This proves the ideal

p is prime. �
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For any ideal a and any multiplicative set S, A/a and S−1A are again multirings and the
natural maps A → A/a, A → S−1A are multiring homomorphisms.

Let a be an ideal in A. Elements of A/a are the cosets ā = a + a, a ∈ A. �̄ consists of
all triples (ā, b̄, c̄) such that (a, b, c) ∈ �. − : A/a → A/a is defined by −ā = −a. The
zero element of A/a is 0̄. Multiplication on A/a is defined by āb̄ = ab.

Let S be a multiplicative set in A. Elements of S−1A have the form a/s, a ∈ A, s ∈
S. a/s = b/t iff atu = bsu for some u ∈ S. (a/s)b/t = ab/st · ((a/s, b/t, c/u) ∈
S−1� iff (atuv, bsuv, cstv) ∈ � for some v ∈ S.

A multifield is a multiring F with 1 	= 0 such that every non-zero element has a multi-
plicative inverse.

Note: For multifields, the second half of the distributive property does hold. If D is a
multidomain, i.e., {0} is a prime ideal of D, then one can form the multifield of fractions
ff(D) := (D\{0})−1D. Unlike what happens in the domain case, the natural homomorphism
D → ff(D) need not be injective.

The theory of multirings is more complicated than the theory of rings. Every multiring
homomorphism f : A → B factors through A/awhere a is the kernel of f but the induced
multiring homomorphism f̄ : A/a → B need not be injective. Even if f̄ is injective, the
embedding A/a ↪→ B need not be a strong embedding.

2.5. Example. (1) Let A be the coordinate ring of an algebraic set V in Rn, R real closed,
and consider the multiring Qred(A) mentioned in the introduction. Denote by f̄ ∈ Qred(A)

the image of f ∈ A under the natural homomorphism A → Qred(A). By definition,
f̄ = ḡ iff sgn(f (p)) = sgn(g(p)) holds for all p ∈ V . Addition in Qred(A) is defined by
f̄ ∈ ḡ + h̄ iff there exist f1, g1, h1 ∈ A such that f̄ = f1, ḡ = g1, h̄ = h1 and f1 = g1 + h1.
Multiplication is defined by f̄ ḡ = fg. For the proof that Qred(A) is indeed a multiring see
[7, Chapter 5] or (which is no harder) look ahead to the general result in Section 7. The
homomorphism A → Qred(A) has kernel zero but is obviously not injective. For example,
f̄ 3 = f̄ , but f 3 	= f in general.

(2) Suppose now that V is irreducible. Then A is a domain and D := Qred(A) is a
multidomain. The natural homomorphism D → ff(D) is not injective in general. For
example, suppose V is the elliptic curve y2 =x(x +1)2 in R2. Since (x +1)x and (x +1)x2

have the same sign on V, x + 1 · x̄ = x + 1 · x̄2 in D. Since x + 1 	= 0 in D this implies
x̄ = x̄2 in ff(D). But x̄ 	= x̄2 in D (since x and x2 have different signs at the isolated point).
Suppose now that V =R (so A is the polynomial ring R�x). In this case the homomorphism
D → ff(D) is injective. Since 1 ∈ 1+1 holds in D and x̄2 =1 holds in ff(D) (since x̄3 = x̄

holds in D and x̄ 	= 0), we see that x̄2 ∈ 1 + 1 holds in ff(D). But x̄2 ∈ 1 + 1 cannot hold
in D (because x vanishes at the origin but 1 is positive at the origin). Thus, the embedding
D → ff(D) is not a strong embedding.

We make frequent use of the following construction.

2.6. Example. Fix a multiring A and a multiplicative subset S of A. Define an equivalence
relation ∼ on A by a ∼ b iff as = bt for some s, t ∈ S. Denote by ā the equivalence
class of a and set A/mS = {ā | a ∈ A}. A/mS is given the structure of a multiring by
defining �̄ = {(ā, b̄, c̄) | (as, bt, cu) ∈ � for some s, t, u ∈ S}, −ā = −a and āb̄ = ab.
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(A/mS, �̄, −, 0̄, ·, 1̄) is a multiring and the map a �→ ā from A to A/mS is a multiring
homomorphism.

Note: If 0 ∈ S then A/mS = {0}.

A special case of this construction appears already in quadratic form theory. Let F be
a field of characteristic 	= 2, F 	= F3, F5, and consider the multifield Q(F) := F/mF ∗2

where F ∗2 denotes the subgroup {a2 | a ∈ F ∗} of the multiplicative group F ∗ = F\{0} of
F. (Q(F3) and Q(F5) are also defined, but the definition is not quite the same.) Q(F) is
nothing more or less than the special group of F [4] (also called the quadratic form scheme
of F [9]) with zero adjoined. If ai ∈ Q(F), ai 	= 0, i = 1, . . . , n then a1 + · · · + an is
precisely the value set of the associated diagonal quadratic form. If F ∗2 has finite index in
F ∗ then Q(F) = F ∗/F ∗2 ∪ {0} has order 2n + 1 where 2n = (F ∗ : F ∗2). The possible
structures of Q(F) (as F varies) have been computed for n�5; see [9]. For n = 0 there
is just one possibility, namely Q1 := {0, 1} with addition and multiplication defined by
x · 0 = 0 · x = 0, 1 · 1 = 1, 0 + x = x + 0 = x, 1 + 1 = {0, 1}. For n = 1 there are three
possibilities (the multifield Q2 defined earlier and 2 others). For n = 2 (resp., 3, 4, 5), there
are six (resp., 17, 51, 155) possibilities.

If the field F is real, i.e., −1 is not a sum of squares in F, one can also form the multifield
Qred(F ) := F/m

∑
F ∗2 which is the reduced special group of F [4] (also called the reduced

quadratic form scheme of F [9]) with zero adjoined. Qred(F ) is a rather complicated object
even in relatively simple cases (e.g., if F is the rational function field R(x), R real closed)
but, at the same time, it is better understood than Q(F). Reduced special groups play an
important role in real algebraic geometry; see [1,7].

2.7. Example. Suppose V is an irreducible algebraic set in Rn, R real closed, A is the
coordinate ring of V, and F is the function field of V, i.e., F = ff(A). The reduced special
group Qred(F ) is naturally identified with the multifield of fractions of the multidomain
Qred(A). (But to obtain a better understanding of Qred(A) it is also necessary to consider
reduced special groups of function fields of irreducible algebraic subsets of V.)

In [1,7] the space of signs Qred(A) is defined for an arbitrary ring A with −1 /∈ ∑
A2.

Again, this is a multiring. Abstract versions of spaces of signs, special groups and reduced
special groups are also defined; see [1,4,7,9]. These objects provide additional examples of
multirings and multifields.

2.8. Remarks. (1) For any multiring A, prime ideals p of A correspond bijectively to mul-
tiring homomorphisms � : A → Q1, where Q1 is defined as above. The correspondence is
given by p= ker(�).

(2) If A is a ring, A 	= {0}, the prime subring of A is isomorphic to either Z or Z/(m) for
some positive integer m. One can similarly define the prime submultiring of a multiring A
to be the smallest submultiring of A, but this is a very complicated object in general. For
example, if F is a field of characteristic 	= 2, F 	= F3, F5, then the subset 1 + (−1) of
Q(F) is all of Q(F), i.e., the prime submultiring of the multifield Q(F) is all of Q(F).
Similarly, for any ring A (more generally, for any multiring A) with −1 /∈ ∑

A2, the prime
submultiring of the multiring Qred(A) is all of Qred(A).
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(3) Every ring is expressible as a factor ring of a polynomial ring over Z in suitably many
variables. There is no known analog of this result for multirings. It is not even known if a
multiring homomorphism Z → A exists, for a general multiring A.

3. Artin–Schreier theory

We show how part of the standard Artin–Schreier theory for fields extends to multifields.
Let F be a multifield. A subset P of F is called an ordering if P + P ⊆ P , PP ⊆ P ,

P ∪−P =F and P ∩−P ={0}. Orderings on a field F correspond to order relations on F

defined by a�b iff b − a ∈ P . For multifields this is not true in general. The real spectrum
of a multifield F , denoted Sper(F ), is defined to be the set of all orderings of F .

3.1. Proposition. Sper(F ) has a natural topology giving it the structure of a Boolean space.
The sets U(a) := {P ∈ Sper(A) | a /∈ − P }, a ∈ F , are a subbasis for the topology.

Proof. The proof is the same as the proof of Proposition 2.3, except that now the patch
topology and the spectral topology coincide:

Sper(F )\U(a) =
{

U(−a) if a 	= 0,

U(1) if a = 0. �

A preordering of F is defined to be a subset T of F satisfying T + T ⊆ T , T T ⊆ T and
F 2 ⊆ T . Here, F 2 := {a2 | a ∈ F }. Every ordering is a preordering.

∑
F 2 is the unique

smallest preordering of F . For any preordering T , T ∗ := T \{0} is a subgroup of F ∗ (using
1 = 12 and 1/t = (1/t)2t). A multifield F is said to be real if −1 /∈ ∑

F 2. If F is real, then
−1 	= 1. A preordering T of F is said to be proper if −1 /∈ T .

3.2 Lemma. Suppose F is a multifield with −1 	= 1. For a preordering T of F, the following
are equivalent:

(1) T is proper.
(2) T 	= F .

Proof. Suppose −1 ∈ T . Let a ∈ F . If a = 0, then a ∈ T . Suppose a 	= 0. Fix b ∈ 1 + a.
Then b2 ∈ 1 + a + a + a2, so b2 ∈ 1 + u + a2, u ∈ a + a. Then u ∈ b2 − 1 − a2 ∈ T .
u/a ∈ 1 + 1, so u/a ∈ T , u 	= 0 (since −1 	= 1) and a = (a/u)u ∈ T . �

3.3. Lemma. A preordering which is maximal proper is an ordering. F has ordering iff F
is real.

Proof. The second assertion follows from the first by Zorn’s lemma. Let P be a preordering
of the multifield F which is maximal proper. Let a ∈ F . Consider the preordering P − aP .
If −1 ∈ P − aP , then −1 ∈ s − at , s, t ∈ P . If t = 0, then −1 = s ∈ T , a contradiction.
Thus t 	= 0. Then at ∈ 1 + s, so a ∈ 1/t + s/t ⊆ P . If −1 /∈ P − aP , then by maximality
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of P , −a ∈ P . This proves P ∪ −P = F . If s ∈ P ∩ −P , s 	= 0, then s = −t , t ∈ P , so
−1 = s/t ∈ P , a contradiction. This proves P ∩ −P = {0}. �

For a preordering T of F , denote by XT the set of all orderings P of F with T ⊆ P .

3.4. Proposition. For any proper preordering T, T = ⋂
P∈XT

P .

Proof. One inclusion is clear. For the other, fix a ∈ F , a /∈ T . T −aT is a preordering of F

and the argument in the proof of Lemma 3.3 show that −1 /∈ T − aT . Use Zorn’s lemma to
pick a maximal proper preordering P lying over T − aT . By Lemma 3.3, P is an ordering,
and −a ∈ P , so a /∈ P . �

4. Real reduced multifields

Suppose F is a real multifield. For any proper preordering T of F , we can build the
multifield QT (F) := F/mT ∗, see Example 2.6. In particular, we can build Q∑

F 2(F )

which we denote simply by Qred(F ). If T1, T2 are preorderings with T1 ⊆ T2 then the
multiring homomorphism F → QT2(F ) factors through QT1(F ).

Consider the multifield Q2 defined earlier. {0, 1} is an ordering of Q2. For any ordering P

of a multifield F , QP (F)�Q2 by a unique multiring isomorphism. Orderings of a multifield
F correspond bijectively to multiring homomorphisms � : F → Q2 via P = �−1({0, 1}).
Sper(Qred(F )) is naturally identified with Sper(F ). Sper(QT (F )) is naturally identified
with XT . This is clear.

4.1. Proposition. For a real multifield F the following are equivalent:

(1) The multiring homomorphism F → Qred(F ) is an isomorphism.
(2)

∑
F 2 = {0, 1}.

(3) For all a ∈ F , a3 = a and, for all a ∈ F , (1, 1, a) ∈ � ⇒ a = 1.

Proof. Assume (3). Then a2 = 1 if a 	= 0 and, by induction on n, 1 is the only element of
1 + · · · + 1 (n times) for any n�1. It follows that

∑
F 2 = F 2 = {0, 1}. Everything else is

clear. �

A real reduced multifield is defined to be a real multifield satisfying the equivalent
conditions of Proposition 4.1.

4.2. Corollary. A multifield F is a real reduced multifield iff the following conditions hold
(for all a ∈ F ):

(1) a3 = a.
(2) (1, 1, a) ∈ � ⇒ a = 1.

Proof. Assume (1) and (2). As explained above, this implies
∑

F 2 ={0, 1}. If −1 ∈ {0, 1},
then −1=0, so 1=0, or −1=1, so 0 ∈ 1+1 which, by (2), implies 1=0. This contradicts



M. Marshall / Journal of Pure and Applied Algebra 205 (2006) 452–468 461

1 	= 0. Thus −1 /∈ ∑
F 2, so F is real, and F is a real reduced multifield by Proposition

4.1. The converse is clear. �

For any proper preordering T of a real multifield F , QT (F) is a real reduced multifield.
In particular, Qred(F ) is a real reduced multifield. If p : F1 → F2 is a multiring homomor-
phism of real multifields, then p(

∑
F 2

1 ) ⊆ ∑
F 2

2 , so p induces a multifield homomorphism
Qred(F1) → Qred(F2). In this way, Qred defines a functor (a reflection) from the category
of real multifields onto the subcategory of real reduced multifields.

4.3. Lemma. Let F be a real reduced multifield, T = ∑
F 2. For any a, b ∈ F ∗,

(a + b)∗ = (T a + T b)∗ = {c ∈ F ∗ | ∀� ∈ Sper(F ), �(c) = �(a) or �(c) = �(b)}.

Proof. Since F is a real reduced multifield, T = {0, 1}, so T a + T b = {0, a, b} ∪ (a + b).
In particular, F = T − T = {0, 1, −1} ∪ (1 − 1). To prove (a + b)∗ = (T a + T b)∗, it
remains to show a, b ∈ a + b. By symmetry, it suffices to show a ∈ a + b. If a 	= ±b, then
b/a 	= ±1 so b/a ∈ 1 − 1, i.e., b ∈ a − a, i.e., a ∈ a + b. Suppose a = b. Since 1 ∈ 1 + 1,
a ∈ a + a = a + b. Suppose a = −b. Since −b ∈ −b − b, a ∈ a − b, i.e., a ∈ a + b. This
proves (a + b)∗ = (T a + T b)∗. If c ∈ T a + T b then �(a) = �(b) ⇒ �(c) = �(a). Thus,
�(c) = �(a) or �(c) = �(b) for any � ∈ Sper(F ). Conversely suppose this holds for any
�. Then �(b/a) = 1 ⇒ �(c/a) = 1 for any �, so by Proposition 3.4, c/a ∈ T + T (b/a).
Multiplying by a, this yields c ∈ T a + T b as required. �

Real reduced multifields have a natural representation in terms of functions.

4.4. Corollary. For any real reduced multifield F, the natural embedding F ↪→ Q
Sper(F )

2
is a strong embedding.

Proof. It follows from Proposition 3.4 that the multiring homomorphism from F to Q
Sper(F )

2
defined by a �→ (�(a))�∈Sper(F ) is injective. It remains to show that if (�(a), �(b), �(c)) ∈
�� for all � ∈ Sper(F ) then (a, b, c) ∈ �. If a = 0 then �(b) = �(c) for all � ∈ XT so by
Proposition 3.4, b = c. Similarly, if b = 0 then c = a and if c = 0 then b = −a. Suppose
now that a, b, c are not zero. Then (a, b, c) ∈ � by Lemma 4.3. �

Real reduced multifields and spaces of orderings are essentially the same thing: if F

is a real reduced multifield, then the pair (Sper(F ), F ∗) is a space of orderings in the
terminology of [7, Section 2.1], and every space of orderings is of this form, for some
unique multifield F . This is clear. It follows from the theory of spaces of orderings that
finite real reduced multifields (more generally, real reduced multifields having finite chain
length) are completely classified recursively [7, Theorem 4.22].

Suppose F is an arbitrary real reduced multifield. For each proper preordering T of F we
have a natural multiring homomorphism from F to the real reduced multifield QT (F). In
view of the above-mentioned result, we are especially interested in the T such that QT (F)

is finite, i.e., T ∗ has finite index in F ∗. A major question is the following: which positive
primitive formulas in the language of multifields with parameters in F have the property
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that they hold in F iff they hold in QT (F) for each preordering T of F such that T ∗ has
finite index in F ∗ [8]?

5. The Positivstellensatz

We define the real spectrum of a multiring and prove an abstract version of the Posi-
tivstellensatz.

Let A a multiring. A subset P of A is an ordering if P + P ⊆ P , PP ⊆ P , P ∪ −P = A

and P ∩ −P is a prime ideal of A (called the support of A). Orderings of a multiring A
correspond bijectively to multiring homomorphisms � : A → Q2 via P = �−1({0, 1}). For
a prime ideal p of A, orderings on A having support contained in p (resp., containing p,
resp., equal to p) correspond bijectively to orderings on the localization of A at p (resp., on
A/p, resp., on ff(A/p)). The real spectrum of A, denoted Sper(A), is the set of all orderings
of A.

5.1. Proposition. Sper(A) is endowed with a natural topology making it a spectral space.
The sets U(a) := {� ∈ Sper(A) |�(a) = 1}, a ∈ A, are a subbasis for the topology.

A preordering of a multiring A is a subset T of A satisfying T + T ⊆ T , T T ⊆ T and
A2 ⊆ T , where A2 := {a2 | a ∈ A}. A preordering T of A is said to be proper if −1 /∈ T .
Every ordering is a proper preordering.

∑
A2 is a preordering, and is the unique smallest

preordering of A. A multiring A is said to be semireal if −1 /∈ ∑
A2.

Fix a preordering T of A. Define XT := {� ∈ Sper(A) : �(T ) = {0, 1}}. A T-module in
A is defined to be a subset M of A satisfying M + M ⊆ M , T M ⊆ M , and 1 ∈ M (so
T ⊆ M).

5.2. Proposition. Suppose T is a proper preordering of A and M is a T-module in A which
is maximal subject to −1 /∈ M . Then M ∩ −M is a prime ideal of A, and M ∪ −M = A.

Proof. First we show thatp=M∩−M is an ideal. Let M ′={a ∈ A | (a+a)∩M 	= ∅}. Then
M ′ ⊇ M and M ′ is a T-module. If −1 ∈ M ′, then (−1−1)∩M 	= ∅, say a ∈ (−1−1)∩M .
Then −1 ∈ 1 + a ⊆ M , a contradiction. Thus −1 /∈ M ′. By maximality of M, M ′ = M .
Clearly p+ p ⊆ p, −p= p, and T p ⊆ p. Suppose a ∈ A, b ∈ p are given. Fix c ∈ 1 + a.
Then c2 ∈ 1+a +a +a2, so c2 ∈ 1+d +a2 for some d ∈ a +a. Then d ∈ c2 −1−a2, so
db ∈ c2b−b−a2b ⊆ p ⊆ M .At the same time, db ∈ (a+a)b ⊆ ab+ab. This proves ab ∈
M ′=M .A similar argument shows that ab ∈ −M . Thus ab ∈ M∩−M=p. This proves that
p is an ideal of A. Next we show p is prime. Suppose ab ∈ p, a /∈ p, b /∈ p. Replacing a by
−a and b by −b if necessary, we can assume a /∈ M, b /∈ M . Thus −1 lies in the T-module
M+∑

aT and also in the T-module M+∑
bT . Then −b2 ∈ Mb2+∑

ab2T ⊆ M (using
the fact that ab ∈ p), so b2 ∈ p. Writing −1 ∈ q + c, q ∈ M , c ∈ ∑

bti , ti ∈ T , we have
−c ∈ 1 + q, so c2 ∈ 1 + q + q + q2. On the other hand, c2 ∈ ∑

b2ti tj ⊆ p. This implies
−1 ∈ −c2 + q + q + q2 ⊆ M , a contradiction. This proves that p is a prime ideal. Suppose
now that a ∈ A, a /∈ M , a /∈−M . Then −1 ∈ M+∑

aT , −1 ∈ M−∑
aT . Multiplying by

a2, and noting that a(
∑

aT ) ⊆ T , this yields −a2 ∈ M + t1a, −a2 ∈ M − t2a, t1, t2 ∈ T .
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Then −t1a ∈ a2 + M ⊆ M and t2a ∈ a2 + M ⊆ M , so t1t2a ∈ p. This is not possible. If
either of t1 or t2 is in p, then −a2 ∈ M , so a ∈ p. If a ∈ p, then a ∈ M (and also a ∈ −M)
which contradicts our assumption. This proves A = M ∪ −M . �

5.3. Corollary. Sper(A) 	= ∅ iff − 1 /∈ ∑
A2. For a preordering T of A, XT 	= ∅ iff T is

proper.

Proof. The first assertion follows from the second. If XT 	= ∅ then clearly T is proper.
Suppose now that T is proper. Use Zorn’s lemma to choose a maximal proper preordering
P in A with T ⊆ P , and a P-module M of A maximal subject to −1 /∈ M . If P 	= M then for
any a ∈ M\P , P +∑

aP is a preordering and P +∑
aP ⊆ M , so P +∑

aP is proper.
This contradicts the maximality of P . It follows that P = M . Proposition 5.2 implies that
P is an ordering. �

For a fixed preordering T of A we have a multiring homomorphism a �→ ā from A to the
product multiring Q

XT

2 defined by ā(�) = �(a) for each � ∈ XT .

5.4. Proposition. Suppose c, d ∈ A. Then c̄�0 ⇒ d̄ = 0 holds on XT (i.e., ∀� ∈ XT ,
�(c)�0 ⇒ �(d) = 0) iff − d2k ∈ T + ∑

A2c for some integer k�0.

Proof. Let B=S−1A, T ′=S−1T , where S := {d2k | k�0}, and consider the T-module T +∑
A2c and the T ′-module T ′+∑

B2c. If −S∩(T +∑
A2c)=∅, then −1 /∈ T ′+∑

B2c,
so there is a T ′-module M in B containing T ′+∑

B2c and maximal subject to −1 /∈ M . By
Proposition 5.2, p := M ∩−M is a prime ideal. Also, T ′ ⊆ M , so (T ′ +p)∩−(T ′ +p)=p.
It follows that the preordering T ′′ := {(a + p)/(b + p) | a, b ∈ T ′, b /∈ p} is a proper
preordering in the multifield F := ff(A/p). Since d /∈ p (d is invertible in B), it follows
from our assumption that c + p /∈ P for all orderings P of F containing T ′′. According to
Proposition 3.4, this implies that c + p ∈ −T ′′. This yields elements s, t ∈ T ′ + p with
s, t, /∈ p such that −sc = t . Then st ∈ T ′ + p ⊆ M and −st = s2c ∈ ∑

B2c ⊆ M , so
st ∈ M ∩ −M = p, a contradiction. �

5.5. Corollary.

(1) ā = 0 on XT iff − a2k ∈ T for some k�0.
(2) ā = 1 on XT iff − 1 ∈ T − ∑

A2a.
(3) ā�0 on XT iff − a2k ∈ T − ∑

A2a for some k�0.
(4) Fix a ∈ b2 + c2. Then b̄ = c̄ on XT iff − a2k ∈ T − ∑

A2bc for some k�0.

Proof. Apply Proposition 5.4 as follows: (1) take c = 0, d = a. (2) Take c = −a, d = 1. (3)
Take c = −a, d = a. (4) Take c = −bc, d = a. �

6. Real ideals

We indicate briefly how the theory of real ideals and real prime ideals extends to
multirings. An ideal a in a multiring A is said to be real if (

∑
a2
i ) ∩ a 	= ∅ ⇒ ai ∈ a
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for each i. Every real ideal is radical in the sense that a2 ∈ a ⇒ a ∈ a, i.e., a is the
intersection of prime ideals of A. The converse is not true, in general.

6.1. Proposition. For a prime ideal p in a multiring A, the following are equivalent:

(1) p is real.
(2) The residue multifield ff(A/p) is real.
(3) p is the support of some ordering of A.

Proof. This is clear. �

The real radical of an ideal a in A is

R
√
a :=

{
a ∈ A | ∃ bi ∈ A and k�0 such that

(
a2k +

∑
b2
i

)
∩ a 	= ∅

}
.

6.2. Proposition. R
√
a is the intersection of all real prime ideals of A containing a.

Proof. One inclusion is clear. For the other inclusion, use Corollary 5.5(1). Suppose a ∈
p for each real prime p with a ⊆ p. Consider T = ∑

A2 + a (the preordering in A
generated by a). Then ā = 0 on XT so, by Corollary 5.5(1), −a2k ∈ T for some k�0. Then
(a2k + ∑

b2
j ) ∩ a 	= ∅ for some bj , so a ∈ R

√
a. �

6.3. Proposition. For an ideal a of a multiring A, the following are equivalent:

(1) a is real,
(2) R

√
a= a.

(3) a is the intersection of real prime ideals.
(4) a is radical and every minimal prime ideal over a is real.

Proof. Clearly (1) ⇔ (2). (2) ⇔ (3) by Proposition 6.2. If a is radical, then a is the
intersection of the minimal prime ideals over a, so (4) ⇒ (3). It remains to show (3) ⇒
(4). Suppose q is a minimal prime ideal over a which is not real. Thus, for every real prime
p of A with a ⊆ p, there exists ap ∈ p, ap /∈ q. By the compactness of Sper(A) in the patch
topology, there exist finitely many elements a1, . . . , an of A such that ai /∈ q for each i, and
for each real prime p with a ⊆ p, ai ∈ p, for some i. Let a = a1, . . . , an. Then a ∈ p for
each real prime p containing a so, by (3), a ∈ a. This contradicts a /∈ q. �

A multiring A (with 1 	= 0) is said to be real if the ideal {0} is real. If a is a real proper
ideal of A, then A/a is real. In particular, if −1 /∈ ∑

A2, then A/ R
√{0} is real.

7. Real reduced multirings

We assume that A is a multiring with −1 /∈ ∑
A2 and T is a proper preordering of A. We

use the notation introduced in Section 5. We prove that the image of A in Q
XT

2 is a multiring
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which is strongly embedded in Q
XT

2 . We develop a first-order axiomatization of the spaces
of signs (also called abstract real spectra) introduced in [1,7].

We introduce notation as in [7]: For a1, . . . , an ∈ A, define the value set of � =
(a1, . . . , an) to be

D(�) = D(a1, . . . , an) =
{
b̄ | b ∈

∑
T a1 + · · · +

∑
T an

}
.

We say b̄ is represented by � if b̄ ∈ D(�).

7.1. Lemma.

(1) D(ā) = {b̄2ā | b ∈ A} = {t̄ ā | t ∈ A, t̄�0} = {b̄ | for each � ∈ XT either b̄(�) =
0 or ā(�)b̄(�) > 0}.

(2) D(ā, b̄) = {c̄ | for each � ∈ XT , either c̄(�) = 0 or ā(�)c̄(�) > 0 or b̄(�)c̄(�) > 0}.
(3) If n�3, D(a1, . . . , an) = ⋃

c̄∈D(a2,...,an)D(a1, c̄).
(4) D(a1, . . . , an)depends only on a1, . . . , an (not on the particular representatives a1, . . . ,

an).

Proof. See [7, Proposition 5.5.1]. (1) is clear. (2) If c ∈ ∑
T a + ∑

T b, then c2 ∈∑
T ac + ∑

T bc. It is clear from this that for any � ∈ XT , either c̄(�) = 0 of one of
ā(�)c̄(�), b̄(�)c̄(�) is strictly positive, so c̄ belongs to the second set. Now pick c such that
c̄ belongs to the second set. Denote by A′, the localization of A and the multiplicative set
S={c2k | k�0} and let T ′ be the preordering in A′ defined by T ′={t/c2k | k�0}. Let a′=ac,
b′ = bc. On XT ′−∑

T ′a′ , b′ > 0so, by Corollary 5.5(2), −1 ∈ T ′ − ∑
T ′a′ − ∑

A′2b′.
Multiplying by c2m+1, m sufficiently large, −c2m+1 ∈ T c − ∑

T a − ∑
T b. This yields

c1 ∈ (∑
T a + ∑

T b
) ∩ (

c2m+1 + T c
)
. It follows that c̄ = c1 ∈ D(ā, b̄). (3) This follows

from (2).
Note: by (2), D(a1, c̄) depends only on c̄, not on the particular representative c. (4) For

n = 1 and 2, this is immediate from (1) and (2). For n�3, it follows by induction on n,
using (3). �

7.2. Lemma. For a0, . . . , an ∈ A, the following are equivalent:

(1) There exist a′
i ∈ A such that a′

i = ai and 0 ∈ a′
0 + · · · + a′

n.
(2) −ai ∈ D(a0, . . . , ai−1, ai+1, . . . , an) for i = 0, . . . , n.

Proof. See [7, Proposition 5.5.3] (1) ⇒ (2). By symmetry, it suffices to show −a0 ∈
D(a1, . . . , an). Since 0 ∈ a′

0 + · · · + a′
n, −a′

0 ∈ a′
1 + · · · + a′

n, so −a0 = −a′
0 ∈

D(a′
1, . . . , a

′
n) = D(a1, . . . , an), using Lemma 7.1(3). (2) ⇒ (1). We have a′

i with a′
i =

ai such that 0 ∈ a′
i +

∑
j 	=i

∑
T aj . Then 0 ∈ 0+· · ·+0 ⊆ ∑n

i=0(a
′
i +

∑
j 	=i

∑
T aj )=∑n

i=0(a
′
i + ∑

T ai), so there exist a′′
i ∈ a′

i + ∑
T ai such that 0 ∈ a′′

0 + · · · + a′′
n . Clearly,

a′′
i = ai . �

Denote the image of A in Q
XT

2 by QT (A). Addition on QT (A) is defined by �̄ =
{(ā, b̄, c̄)| a, b, c ∈ A, (a, b, c) ∈ �}. āb̄ := ab, −ā := −a. The zero element of QT (A)

is 0̄.
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7.3. Proposition. Suppose T is a proper preordering of A. Then

(1) QT (A) is a multiring.
(2) QT (A) is strongly embedded in Q

XT

2 .

Proof. (1) Everything is clear except the associativity of �̄. Suppose x, u, v, w, p ∈ A

are such that (ū, v̄, p̄) ∈ �̄ and (p̄, w̄, x̄) ∈ �̄. Then x̄ ∈ D(p̄, w̄) and p̄ ∈ D(ū, v̄), so
x̄ ∈ D(ū, v̄, w̄). Also (−x̄, p̄, −w̄) ∈ �̄ so −w̄ ∈ D(−x̄, p̄), i.e., −w̄ ∈ D(−x̄, ū, v̄).
Also (−p̄, v̄, −ū) ∈ �̄ and (−x̄, w̄, −p̄) ∈ �̄, so −ū ∈ D(−p̄, v̄) and −p̄ ∈ D(−x̄, w̄),
i.e., −ū ∈ D(−x̄, v̄, w̄). Similarly, (ū, −p̄, −v̄) ∈ �̄ and (−x̄, w̄, −p̄) ∈ �̄, so −v̄ ∈
D(−x̄, ū, w̄). According to Lemma 7.2 this implies there exist x′, u′, v′, w′ ∈ A such that
x′ = x̄, u′ = ū, v′ = v̄, w′ = w̄, and x′ ∈ u′ +v′ +w′. Pick q ∈ v′ +w′ such that x′ ∈ u′ +q.
Then (v̄, w̄, q̄) ∈ �̄ and (ū, q̄, x̄) ∈ �̄. This completes the proof of (1).

(2) Let a, b, c ∈ A. According to Lemma 7.2, (ā, b̄, c̄) ∈ �̄ iff c̄ ∈ D(ā, b̄), −ā ∈
D(−c̄, b̄) and −b̄ ∈ D(−c̄, ā). According to Lemma 7.1(2), this occurs iff for all � ∈ XT ,
c̄(�)ā(�) > 0 or c̄(�)b̄(�) > 0 or ā(�)b̄(�) < 0 or ā(�) = b̄(�) = c̄(�) = 0, i.e., iff for all
� ∈ XT , (ā(�), b̄(�), c̄(�)) ∈ ��. This completes the proof of (2). �

The real spectrum of QT (A) is naturally identified with XT . Now that we know that
addition is a well-defined associative operation on subsets of QT (A), we have another
more intrinsic description of value sets.

7.4. Corollary. Let T̄ = {t̄ | t ∈ T } = {t̄ | t ∈ A, t̄�0}. Then

(1) T̄ a1 + · · · + T̄ an = {b̄ | b ∈ ∑
T a1 + · · · + ∑

T an}.
(2) 0̄ ∈ a0 + · · · + an ⇔ −ai ∈ ∑

j 	=i T̄ aj for i = 0, . . . , n ⇔ ∃ a′
0, . . . , a

′
n such that

0 ∈ a′
0 + · · · + a′

n and a′
i = ai , i = 0, . . . , n.

Proof. (1) follows from Lemma 7.1, by induction on n. (2) is clear from Lemma 7.2. �

We restrict our attention now to the case where T = ∑
A2 and consider the multiring

homomorphism a �→ ā from A into Q
Sper(A)

2 . We denote Q∑
A2(A) by Qred(A) which

we refer to as the real reduced multiring associated to A. The multirings A such that the
multiring homomorphism a �→ ā from A onto Qred(A) is an isomorphism are obviously of
special interest.

7.5. Proposition. For a multiring A with −1 /∈ ∑
A2, the map a �→ ā from A onto Qred(A)

is an isomorphism iff A satisfies the following three properties (for all a, b ∈ A):

(1) a3 = a.
(2) a + ab2 = {a}.
(3) a2 + b2 contains a unique element.

Proof. If c ∈ a2+b2, then c2 ∈ (a2+b2)(a2+b2) ⊆ a4+a2b2+a2b2+b4=(a2+a2b2)+
(b2 + a2b2). Since a2 is the unique element of a2 + a2b2, and b2 is the unique element
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of b2 + a2b2, this implies c2 ∈ a2 + b2. Consequently, c2 = c, i.e., the unique element
of a2 + b2 is necessarily a square. It follows by induction that, for any a1, . . . , an ∈ A,
a2

1 + · · · + a2
n contains a unique element, which is a square. In particular,

∑
A2 = A2.

Let T =∑
A2 =A2. Suppose ā= b̄. Let c ∈ a2 +b2. Thus −c2k ∈ A2 −∑

A2ab. Since
c3 = c, c2k = c2. Thus, there exists d ∈ ∑

A2ab with d ∈ c2 + A2. ac ∈ a(a2 + b2) ⊆
a3+ab2=a+ab2=a, soac=a. Similarly,bc=b and cd=c.Thus,ad=(ac)d=a(cd)=ac=a

and, similarly, bd = b. Say d ∈ ∑
e2
i ab. Then ab = abd ∈ ∑

e2
i a

2b2 ⊆ A2. This implies
ab ∈ A2, so ab=a2b2. Thus, a2 =a2d ∈ ∑

e2
i a

3b=∑
e2
i ab=∑

e2
i a

2b2 and, similarly,
b2 ∈ ∑

e2
i a

2b2. Since
∑

e2
i a

2b2 is a singleton set, this implies a2 = ab = b2. Finally,
a = a3 = aa2 − ab2 = (ab)b = b2b = b3 = b, as required. �

A multiring satisfying −1 /∈ ∑
A2 and the equivalent conditions of Proposition 7.5 will

be called a real reduced multiring.

7.6. Corollary. A multiring A is a real reduced multiring iff the following properties hold
(for all a, b, c, d ∈ A):

(1) 1 	= 0.
(2) a3 = a.
(3) (a, ab2, c) ∈ � ⇒ c = a.
(4) (a2, b2, c) ∈ � and (a2, b2, d) ∈ � ⇒ c = d.

Proof. As noted above, (2), (3), (4) imply
∑

A2 = A2. If −1 ∈ ∑
A2, then −1 = a2 for

some a, so 0 ∈ 1 + a2. By (3), 0 = 1. This contradicts (1). Thus, −1 /∈ ∑
A2. Now apply

Proposition 7.5 to conclude that A is a real reduced multiring. The converse is obvious. �

Real reduced multirings and spaces of signs are the same thing: if A is a real reduced
multiring, then the pair (Sper(A), A) is an space of signs in the terminology of [7, Section
6.1] , and every space of signs is of this form. This is clear.

If A is a multiring such that −1 /∈ ∑
A2, then for each proper preordering T of A, QT (A)

is a real reduced multiring. In particular, Qred(A) is a real reduced multiring. If A1, A2
are two such multirings, then any multiring homomorphism A1 → A2 induces a multiring
homomorphism Qred(A1) → Qred(A2). In this way, Qred is a functor (a reflection) from
the category of all such multirings onto the subcategory of real reduced multirings.

For a multiring A with −1 /∈ ∑
A2, and a proper preordering T of A, the primes of QT (A)

are the images under A → QT (A) of the supports of orderings in XT , equivalently, the
images under A → QT (A) of the primes p in A such that (T + p) ∩ −(T + p) = p. In
particular, the primes in Qred(A) are the images under A → Qred(A) of the real primes of
A. If p is a real prime of A such that (T + p) ∩ −(T + p) = p and p̄ denotes the image of p
in QT (A), and T ′ denotes the preordering in ff(A/p) induced by T, then ff(QT (A)/p̄) is
identified with the real reduced multifield QT ′(ff(A/p)). In particular, if p is a real prime of
A and p̄ is the image of p in Qred(A), then ff(Qred(A)/p̄) is identified with the real reduced
multifield Qred(ff(A/p)).

In a real reduced multiring A every ideal is real. Moreover, for each prime ideal p in A, the
residue multifield ff(A/p) is a real reduced multifield. As explained in [1,7], considerable
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information concerning the real reduced multiring A can be read off from the structure of
the real reduced multifields ff(A/p), p ∈ Spec(A). Additional information concerning A is
obtained from certain multiring homomorphisms (relating the residue multifields ff(A/p)

and ff(A/q) in case p ⊆ q) that arise from the specialization relation on Sper(A). In case
A is finite (or, more generally, has finite chain length), this local information suffices to
determine A completely [7, Section 8.5].
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