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Abstract The guanine nucleotide exchange reaction catalyzed 
by elongation factor Ts is proposed to arise from the intrusion of 
the side chains of D80 and F81 near the Mg 2+ binding site in EF- 
Tu. D80A and F81A mutants of E. coli EF-Ts were 2-3-fold less 
active in promoting GDP exchange with E. coli EF-Tu while the 
D80AF81A mutant was nearly 10-fold less active. The D84 and 
F85 mutants of EF-Tsmt were 5-10-fold less active in stimulating 
the activity of EF-Tumt. The double mutation completely 
abolished the activity of EF-TSmt. 
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tion with E. coil EF-Ts. When EF-Tsmt is expressed in E. coli, 
it forms a tight complex with E. coli EF-Tu [10]. The proper- 
ties of this heterologous complex are similar to those of the 
mitochondrial EF-Tu'TSmt complex and, unlike the E. coli 
EF-Tu.Ts complex, the heterologous complex formed with 
EF-Tsmt is not dissociated detectably by guanine nucleotides. 
These observations suggest that EF'Tsmt confers several un- 
usual properties upon the EF-Tu.Ts complex. In the current 
manuscript, we have examined the roles of the conserved 
Asp and Phe residues in both E. coli EF-Ts and EF-Tsmt 
that are thought to facilitate the guanine nucleotide exchange 
reaction. 

1. Introduction 

During the process of protein biosynthesis, EF-Tu pro- 
motes the binding of aminoacyl-tRNA (aa-tRNA) to the A- 
site of the ribosome [1]. This reaction is mediated through a 
ternary complex [EF-Tu :GTP :aa-tRNA]. Following ribosome 
binding, the GTP is hydrolyzed and EF-Tu is released from 
the ribosome as an EF-Tu:GDP complex. GDP is then ex- 
changed for GTP in a process mediated by EF-Ts [2]. The 
structure of EF-Tu is known in both the GDP- and GTP- 
bound forms [3,4]. This protein folds into three domains. Do- 
main I, encompassing the first 200 residues, contains the gua- 
nine nucleotide binding site, while all three domains are in- 
volved in binding aa-tRNA [5]. The structure of the E. coli 
EF-Tu.Ts complex has recently been determined [6]. Examina- 
tion of this structure suggests that nucleotide exchange arises 
in part because the side chains of D80 and F81 of EF-Ts 
intrude near the site on EF-Tu where the Mg 2+ ion interacting 
with GDP is normally located. The resulting disruption of the 
Mg 2+ ion binding site is believed to reduce the affinity of EF- 
Tu for GDP. 

The mammalian mitochondrial factors equivalent to EF-Tu 
and EF-Ts have been purified from bovine liver mitochondria 
as a tightly associated complex (EF-Tu'Tsmt) [7,8]. This com- 
plex, unlike the corresponding complex from E. coli, is not 
dissociated by either GDP or GTP even at high concentra- 
tions of the guanine nucleotides. The cDNAs for both of these 
proteins have been cloned and sequenced [9,10]. EF-Tumt has 
55-60% identity to prokaryotic EF-Tu. In contrast, EF'Tsmt 
is less than 30% identical to the bacterial factors. Mammalian 
EF-Tsmt has residues corresponding to D80 and F81 postu- 
lated to be involved in the guanine nucleotide exchange reac- 
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2. Materials and methods 

2.1. Construction of clones and mutants 
The E. coli EF-Tu and EF-Ts genes were amplified from E. coli 

chromosomal DNA by PCR and cloned into pET24C(+) (Novogen). 
This vector provides a His-tag to facilitate purification of the ex- 
pressed proteins on Ni-NTA resins. Site-directed mutagenesis of the 
E. coli EF-Ts and EF-Tsmt genes was performed using a PCR-based 
'link scanning' method [11]. 

2.2. Expression and purification of EF-Tu and EF-Ts 
The His-tagged form of E. coli EF-Tu was expressed and purified as 

described previously [9] except that 10 mM MgC12 and 10 ~tM GDP 
were included. E. coli EF-Ts was purified under three different con- 
ditions. (1) Extracts were prepared as described [9] in buffer contain- 
ing MgC12; (2) 10 ktM GDP was also included in the isolation buffer. 
This condition was used for the large-scale preparation of EF-Ts and 
its mutants; (3) no MgC12 was added to the extraction buffers and the 
cell extract was dialyzed twice against a 100,fold excess of buffer 
containing 10 mM Tris-HC1, pH 7.6, 40 mM KCI and 10% glycerol 
prior to purification of EF-Ts. Expression of EF-Tsmt was carried out 
as described [10]. When cell extracts were prepared under native con- 
ditions, EF-Tsmt was isolated as a 1:1 complex with E. coli EF-Tu 
(EF-TuEco'Tsm0. To purify EF-Tsmt free of E. coli EF-Tu, the EF- 
Tu~zo'Tsmt complexes were denatured. EF-Tsmt was then purified 
through a Ni-NTA column and renatured (Xin and Spremulli, in 
preparation). 

2.3. Assays 
The activities of E. coli EF-Ts and its mutated forms were deter- 

mined by measuring their ability to promote guanine nucleotide ex- 
change with E. coli EF-Tu:GDP and to stimulate the activity of EF- 
Tu in the poly(U)-directed polymerization of phenylalanine on E. coli 
ribosomes [12,13]. The activity of EF-TSmt was determined by the 
ability to stimulate the activity of EF-TUmt (Xin and SpremuUi, in 
preparation). 

3. Results and discussion 

3.1. Conserved D and F residues in E. coli EF-Ts 
Three mutants of E. coli EF-Ts (D80A, F81A and 

D80AF81A) were made by site-directed mutagenesis. When 
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Fig. 1. SDS-PAGE analysis of the expressed E. coli EF-Ts and its 
mutants. (A) E. coli EF-Ts and its mutants were purified using 
method (1). Lanes: 1, wild-type; 2, DSOA; 3, F81A; 4, D80AF81A. 
(B) Extracts were prepared using method (3). Lanes: 1, wild type; 
2, D80A; 3, F81A; 4, D80AF81A. 

a His-tagged derivative of wild-type EF-Ts is prepared from 
E. coli in buffer containing Mg 2+ and purified on Ni-NTA 
resin, a small amount of EF-Tu can be observed in the pur- 
ified preparation (Fig. 1A, lane 1). This observation suggests 
that most of the EF-Tu in the extract is complexed with GDP 
or in the ternary complex. Under similar conditions, no EF- 
Tu could be observed associated with the D80A, F81A or the 
D80AF81A mutated forms of EF-Ts (Fig. IA, lanes 2-4). 
This observation suggests that the mutation of the conserved 
D and F residues reduces the affinity of EF-Ts for EF-Tu 
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Fig. 2. Stimulation of GDP exchange by E. coli EF-Ts and its mu- 
tants. Nucleotide binding assays contained 3.6 ~tg of expressed E. 
coli EF-Tu and the indicated amount of wild-type or mutated forms 
of E. coli EF-Ts. Wt, wild-type; D, D80A; F, F81A; DF, 
D80AF81A. Incubation was at 0°C for 5 min. 
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Fig. 3. Stimulation of E. coli EF-Tu in poly(U)-directed polymeriza- 
tion: Reaction mixtures contained 0.75 pmol of E. coli EF-Tu and 
the indicated level of E. coli EF-Ts. Wt, wild-type; D, D80A; F, 
F81A; DF, D80AF81A. 

significantly. When extracts were prepared in buffers lacking 
Mg 2+ and dialyzed prior to purification on Ni-NTA, wild- 
type EF-Ts is purified as a 1:1 complex with EF-Tu (Fig. 
1B, lane 1). In contrast, the ratio of E. coli EF-Tu to the 
D80A and F81A derivatives of EF-Ts is less than 1:10 (Fig. 
1B, lanes 2,3). The ratio of E. coli EF-Tu to the D80AF81A 
form of EF-Ts is even lower and EF-Tu could barely be 
detected in these preparations (Fig. 1B, lane 4). These data 
again suggest that all three mutated derivatives of E. coli EF- 
Ts can interact with E. coli EF-Tu, but that the interactions 
are much weaker than that observed with wild-type EF-Ts. 

EF-Ts is very active in stimulating nucleotide exchange with 
E. coli EF-Tu:GDP (Fig. 2). The D80A mutant has about 2- 
fold lower activity than the wild-type EF-Ts at limiting con- 
centrations of EF-Ts while the F81A mutant has about 3-fold 
lower activity. The double mutant shows a somewhat sigmoi- 
dal response characteristic of a defect in the interaction of two 
proteins in a 2-component system. At lower concentrations, it 
is about 10-fold less active than the wild-type EF-Ts but has 
significant activity at higher concentrations. These observa- 
tions suggest that both D80 and F81 are important but not 
essential for the function of E. coli EF-Ts. 

The D80A mutant is almost as active as wild-type EF-Ts in 
stimulating the poly(U)-directed polymerization of phenylala- 
nine (Fig. 3). The FS1A and the double mutant are about 4- 
fold less active than wild-type EF-Ts in this assay. The poly- 
merization assay appears to be somewhat less sensitive than 
the GDP-exchange assay. The availability of aa-tRNA in this 
assay most likely pulls the nucleotide exchange reaction in the 
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Fig, 4. SDS-PAGE analysis of purified EF-TuEco'Tsmt complexes. 
Extracts were prepared under native conditions from ceils expressing 
wild-type and mutated forms of EF-Tsmt. Lanes: 1, wild-type EF- 
Tsmt; 2, D84A; 3, F85A; 4, D84AF85A. 

forward direction by the formation of the ternary complex 
and subsequent ribosome binding. Hence, the reduced ability 
of the mutated forms of EF-Ts to promote guanine nucleotide 
exchange may not be as apparent when coupled to the favor- 
able formation of the ternary complex. 

3.2. Role of  D84 and F85 & EF-Tsmt 
The corresponding mutants (D84A, F85A and D84AF85A) 

were prepared in bovine EF-Tsmt. When wild-type EF-Tsmt is 
prepared from E. coli under non-denaturing conditions, it is 
present as a 1:1 complex with E. cob EF-Tu (Fig. 4, lane 1 
and [10]). All three of the mutated forms of EF-Tsmt are able 
to form tight complexes with E. eoli EF-Tu (Fig. 4, lanes 2-4). 
This observation indicates that neither D84 nor F85 plays a 
crucial role in allowing the interaction of EF-Tsmt with EF- 
Tu. This observation is in contrast with those made with E. 
coli EF-Ts where mutation of either of these residues signifi- 
cantly weakens the interaction between EF-Tu and EF-Ts. 

The ability of EF-Tsmt to stimulate GDP exchange with 
EF-Tumt cannot be tested directly since no direct GDP bind- 
ing to this factor can be demonstrated. The ability of wild- 
type EF-TSmt and its mutated derivatives to stimulate the 
activity of EF-Tumt in poly(U)-directed polymerization was, 
therefore, tested. Both D84A and F85A derivatives of EF- 
Tsmt show significantly lower activity than wild-type EF- 
Tsmt (Fig. 5). The dose responses are sig,noidal, suggesting 
some defect in the interaction between these two proteins 
that was not apparent by the SDS-PAGE analysis. The 
D84AF85A variant is completely inactive. The combination 
of these residues appears to play a more essential role in EF- 
Tsmt than in E. coli EF-Ts. 
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Fig. 5. Stimulation of the activity of EF-Turnt in poly(U)-directed 
polymerization: reaction mixtures contained 2 pmol of EF-Tumt 
and the indicated amount of EF-Tsmt. Wt, wild-type; D, D84A; F, 
F85A; DF D84AF85A. 
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