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Abstract

Given a birational normal extension O of a two-dimensional local regular ring (R,m), we describe all
the equisingularity types of the complete m-primary ideals J in R whose blowing-up X = BlJ (R) has some
point Q whose local ring OX,Q is analytically isomorphic to O.
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0. Introduction

A sandwiched surface singularity (X,Q) is a normal surface singularity that can be projected
birationally to a non-singular surface. From a more algebraic point of view, the local ring O
of any sandwiched singularity is a birational normal extension of a two-dimensional local reg-
ular ring R. Once a sandwiched surface singularity has been fixed, in this paper we address
the problem of describing the equisingularity classes of all its birational projections to a plane.
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The problem of classifying the germs of sandwiched surface singularities was already posed by
Spivakovsky. As he claims in [14] this problem has two parts: discrete and continuous. The con-
tinuous part is to some extent equivalent to the problem of the moduli of plane curve singularities,
while the main result of this paper solves completely the combinatorial part.

Any birational projection from a sandwiched singularity to a plane is obtained by the mor-
phism of blowing up a complete mO -primary ideal in the local ring of a regular point O on
the plane. Our goal is to give all the equisingularity types of these ideals. Namely, fixed a bi-
rational normal extension O of a local regular ring (R,mO), we describe the equisingularity
type of any complete mO -primary ideal J ⊂ R such that its blowing-up X = BlJ (R) has some
point Q whose local ring OX,Q is analytically isomorphic to O. In this case, we will say that
the surface X contains the singularity O for short, making a slight abuse of language. This is
done by describing the Enriques diagram of the cluster of base points of any such ideal J : such
a diagram will be called an Enriques diagram for the singularity O. Recall that an Enriques dia-
gram is a tree together with a binary relation (proximity) representing the topological equivalence
classes of clusters of points in the plane (see Section 1.3). Previous works by Spivakovsky [14]
and Möhring [12] describe a type of the Enriques diagram that exists for any given sandwiched
surface singularity (detailed in Section 2) and provide other types mostly in the case of cyclic
quotients (see [12, 2.7]) and minimal singularities (see [12, 2.5]).

The organization of the paper is as follows. Section 1 is devoted to recalling some definitions
concerning the language of infinitely near points, sandwiched surface singularities and graphs.
Fundamental for our purpose will be the notion of the Enriques diagram, introduced in [2]. In
Section 2, after some technical results, we introduce the concept of contraction for a sandwiched
surface singularity O. By a contraction we mean the resolution graph ΓO of O (a sandwiched
graph, as introduced in [14]) enriched by some proximities between their vertices, these proxim-
ities being compatible with the weights of the graph. Fixed a sandwiched graph, the problem of
finding the whole list of possibilities for such proximities is the hard part of our work. This is
achieved in Section 3, by proving that any contraction for ΓO may be recovered from some con-
traction of the graph obtained from ΓO by removing one end. This fact is the key result in order
to describe a procedure to obtain all the contractions for O. Finally, in Section 4, we explain how
to complete contractions in order to obtain any Enriques diagram for O.

1. Preliminaries

In this section, we fix notation and recall some of the facts concerning sandwiched surface
singularities and base points of ideals which will be used throughout this paper, and we focus on
our problem. A standard reference for most of the tools and techniques treated here is the book
by Casas-Alvero [1].

1.1. Infinitely near points and complete ideals

Let (R,mO) be a regular local two-dimensional C-algebra and S = Spec(R). A cluster of
points of S with origin O is a finite set K of points infinitely near or equal to O such that, for any
p ∈ K , K contains all points to which p is infinitely near. A subset of a cluster K is a subcluster
if it is a cluster (with origin some point of K). By assigning integral multiplicities ν = {νp} to the
points of K , we obtain a weighted cluster K = (K,ν); the multiplicities ν are called the virtual
multiplicities of K. A point p is said to be proximate to another point q if p is infinitely near to
q and lies on the strict transform of the exceptional divisor of blowing up q . We write p � q if p
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is infinitely near or equal to q , and p → q if p is proximate to q . The relation � is an ordering
of the infinitely near points, and it will be considered as their natural ordering. A point p ∈ K

is free if it is proximate to only one point, which is necessarily the immediate predecessor, and
p is satellite if it is proximate to two points; otherwise, the point is necessarily the origin of the
cluster. The number ρK

p = νp − ∑
q→p νq is the excess at p of K. Consistent clusters are those

weighted clusters with non-negative excesses at all their points. We write K+ for the set of the
dicritical points of K, that is, the points with positive excess.

If K = (K,ν) and K′ = (K ′, ν′), define the sum K + K′ as the weighted cluster whose set
of points is K ∪ K ′ and whose virtual multiplicities are νp + ν′

p for p ∈ K ∪ K ′ [1, 8.4]. This
operation is clearly associative and commutative, thus making the set of all weighted clusters
with origin at O a semigroup. Consider the set W of all consistent clusters with origin at O

with positive virtual multiplicities. Again, W equipped with the sum is clearly a semigroup.
A weighted cluster K ∈ W is called irreducible if it is so as an element of the semigroup W, that
is, K is not the sum of two elements of W. To any point p, p � O , we associate the irreducible
cluster K(p) in W which has virtual multiplicity one at p, which will be called the irreducible
cluster in W ending at p.

Two clusters K and K ′ are called similar if there is a bijection (similarity) ϕ : K → K ′ so
that both ϕ and ϕ−1 preserve ordering and proximity. Two weighted clusters K = (K,ν) and
K′ = (K ′, ν′) are called similar if there is a similarity between K and K ′ preserving virtual
multiplicities (see [1, 8.3]). An analytic isomorphism Φ defined in a neighborhood of O clearly
induces a similarity between each cluster K with origin O and its image Φ(K) [1, 3.3]. Further-
more, if Φ is only a homeomorphism, then K and Φ(K) are still similar [1, 8.3.12].

If πK :SK → S is the composition of the blowing-ups of all points in K , write EK for
the exceptional divisor of πK and {Ep}p∈K for its irreducible components. We denote by
AK = (Ep · Eq)p,q∈K the intersection matrix of EK : if p = q , its coefficient is just the self-
intersection of Ep , and equals −rp − 1, where rp is the number of points in K proximate to p;
if p �= q , Ep · Eq = 1 in case Ep ∩ Eq �= ∅, and Ep · Eq = 0 otherwise. It can be easily seen that
Ep ∩Eq �= ∅ if and only if p is maximal among the points of K proximate to q or vice-versa (cf.
[1, 4.4.2]). Notice that AK is an invariant of the similarity class of K .

If K is a weighted cluster, there is a well-established notion for a germ of a curve to go through
K (which is a linear condition, see [1, 4.1]), and the equations of all curves going through K
define a complete mO -primary ideal HK in R (see [1, 8.3]). Any complete mO -primary ideal
J in R has a weighted cluster of base points, denoted by BP(J ), which consists of the points
shared by, and the multiplicities of, the curves defined by generic elements of J . Moreover,
the maps J �→ BP(J ) and K �→ HK are reciprocal isomorphisms between the semigroup IR of
complete mO -primary ideals in R (equipped with the product of ideals) and the semigroup W
(see [1, 8.4.11] for details). If p � O , denote by J (p) the ideal in IR corresponding by the
preceding isomorphism to the irreducible cluster K(p) ∈ W ending at p, that is, J (p) = HK(p).

A couple of ideals J , J ′ in IR are equisingular if BP(J ) and BP(J ′) are similar [1, 8.3]. Notice
that two equisingular complete ideals in IR have equisingular (that is, topologically equivalent)
generic germs and equal codimensions [1, 8.3.9].

1.2. Sandwiched surface singularities

The main references here are [3,14]. If I ∈ IR , we denote by πI :X = BlI (R) → S the
blowing-up of I . The surface X is not regular in general, and its singularities are sandwiched
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singularities. Moreover, if K is the set of base points of I , we have a commutative diagram

SK

f

πK

X

πI

S

(1.1)

where the morphism f , given by the universal property of the blowing-up, is the minimal res-
olution of the singularities of X [14, Remark 1.4]. Let O be any singularity of X; then we say
that I is an ideal for O. It follows that the exceptional divisor EO associated with the minimal
resolution of O is a connected subset of the exceptional divisor EK . There is a bijection between
the set of irreducible components of π−1

I (O) and the set of dicritical points of K = BP(I ) (see
[5,11]). This allows to write {Lp}p∈K+ for the set of these components on X. Because of this,
we may think of O as a singularity obtained by contracting a connected curve (which will be
called EO) of EK containing no component with self-intersection −1 (such a component Ep

is necessarily the exceptional divisor of the blowing-up of some maximal point of K and thus,
a dicritical point).

For any ideal J = ∏
p∈K+ J (p)α(p) with positive α(p), we have an analytic isomorphism X ∼=

BlJ (R) (cf. [14, Corollary I.1.5]). Since we are interested in sandwiched singularities modulo
analytic isomorphism, the relevant information we need to retain about K = BP(I ) is, on one
hand, its set of points K and, on the other, knowing which of the points of K are dicritical (the
rest being non-dicritical, of excess zero).

1.3. Enriques diagrams and dual graphs

We introduce the Enriques diagrams and the weighted dual graphs related to them. The En-
riques diagrams are combinatorial objects that enclose the topological information of the clusters
of infinitely near points in S, namely they represent the similarity classes of clusters.

A tree is a finite graph with a partial order relation � between the vertices, without loops,
which has a single initial vertex, or root, and every other vertex has a unique immediate prede-
cessor. The vertex q is said to be a successor of p if p is the immediate predecessor of q . If p

has no successors then it is an extremal vertex. The set of vertices of a graph will be denoted by
the same letter as the graph itself. An Enriques diagram D ([2, Enriques IV.I], [1, Casas 3.9];
see also [6,8] for a combinatorial presentation) is a tree with a binary relation between vertices,
called proximity and denoted by →D , which satisfies:

1. Every vertex but the root is proximate to its immediate predecessor; the root is proximate to
no vertex.

2. If p →D q , then p > q and there is at most one other vertex in D proximate to both of them.
3. Any vertex is proximate to at most two other vertices. The vertices which are proximate

to two points are called satellite, the other vertices, but the root, are called free. If q is the
immediate predecessor of p, and p →D q ′, then q →D q ′.

If p is a vertex in D, we write rD(p) for the number of vertices in D proximate to p. A satellite
vertex is said to be satellite of the last free vertex that precedes it. In order to express graphically
the proximity relation, Enriques diagrams are drawn according to the following rules:
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1. If q is a free successor of p then the edge going from p to q is smooth and curved and, if p

is not the root, it has at p the same tangent as the edge joining p to its predecessor.
2. The sequence of edges connecting a maximal succession of vertices proximate to the same

vertex p are shaped into a line segment, orthogonal to the edge joining p to the first vertex
of the sequence.

If K is a cluster, there is an Enriques diagram DK naturally associated with it by taking one
vertex for each point of K and the proximity of the cluster as the proximity of DK ; conversely,
for any Enriques diagram D there is some cluster K with origin O whose Enriques diagram DK

is D. If no confusion may arise, we will label the points in K and their corresponding vertices
in DK with the same symbol. A connected subtree of an Enriques diagram D is a subdiagram if
it is an Enriques diagram with a root some vertex of D and whose proximity is the restriction of
the proximity of D. Observe that K ′ is a subcluster of K if and only if the associated Enriques
diagram DK ′ is a subdiagram of DK . If D is the Enriques diagram associated with K and p ∈ K ,
we denote by D(p) the Enriques diagram of the irreducible cluster K(p) ending at p. If p is
extremal, D(p) is called a branch of D.

By assigning to an Enriques diagram D a marking map ρ :D → {+,0}, we obtain a marked
Enriques diagram D = (D,ρ). Any consistent cluster K induces a marking map ρ :DK → {+,0}
by taking ρ(p) = + if p corresponds to a dicritical point of K (in this case, p is called a dicrit-
ical vertex), and ρ(p) = 0 otherwise. A marked subdiagram D′ = (D′, ρ′) of D is a marked
Enriques diagram where D′ is a subdiagram of D and ρ′ is the restriction of ρ to D′. Observe
that the extremal vertices of a marked Enriques diagram associated with some K ∈ W are always
dicritical.

If O is a sandwiched surface singularity, we say that D is an Enriques diagram for O if it is
the marked Enriques diagram of BP(I ), for some ideal I ∈ IR for O. Under this framework, the
goal of this paper is to describe all the Enriques diagrams for a given O.

Incidence between the irreducible components of a divisor E on a surface is usually rep-
resented by means of the weighted dual graph of E. It is defined by taking a vertex for each
component of E, and by joining two vertices by an edge if and only if the corresponding
components of E meet; each vertex is weighted by taking minus the self-intersection of the cor-
responding component. If D is the Enriques diagram of a cluster K , the (weighted) dual graph
of D, denoted by ΓD , is the weighted dual graph of the exceptional divisor EK (which has no
loops). Since the information enclosed in the weighted dual graph is the same as that contained
in the intersection matrix of K , this definition is consistent.

Remark 1.1. The similarity class of a cluster may be represented either by its Enriques dia-
gram or by its weighted dual graph, since from the intersection matrix the ordering � (of being
infinitely near) and the proximity may be inferred. In fact, this is also true for rational surface sin-
gularities. From the intersection matrix A of a rational surface singularity, the fundamental cycle
Z may be computed (see [10, Theorem 4.2]) and from it, the order of the blowing-ups performed
to resolve the singularity: the negative entries of AZ correspond to the exceptional components
having appeared in the last blowing-up (cf. Theorem 1.14 of [13]). It is worth noticing that the
proximity of D cannot be recovered in general only from its dual graph without weights (see
[1, 4.4]).

A non-singular graph is the weighted dual graph of some Enriques diagram (cf. [14]). The
vertex in ΓD corresponding to p in D will be denoted by p, written in the typewriter font.
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By the (weighted) dual graph of a marked Enriques diagram D = (D,ρ) we mean the dual graph
of D and it will also be denoted by ΓD . The vertices of ΓD corresponding to dicritical vertices
(non-dicritical, respectively) of D will be called dicritical (non-dicritical, respectively), too. If
I is a complete mO -primary ideal in R, we will write DI and ΓI to mean the marked Enriques
diagram and the weighted dual graph of its cluster of base points BP(I ), respectively.

Remark 1.2. The weighted dual graph ΓD can be constructed as follows: take one vertex in
ΓD for each vertex of D, and connect two vertices in ΓD by an edge if and only if one of
the corresponding vertices in D is maximal among the vertices in D proximate to the other.
Moreover, if p is a vertex of ΓD , its weight ω(p) is rD(p) + 1 (cf. §4.4 of [1] for details).
A vertex p ∈ ΓD has weight ω(p) = 1 if and only if p is extremal in D.

A chain chΓ (q,p) of a graph Γ without loops is the subgraph composed of all vertices and
edges between the vertices q,p ∈ Γ ; it will be described by the ordered sequence of vertices
between q and p, and dΓ (q,p) will denote its length. Two vertices q,p ∈ Γ are adjacent if
dΓ (p,q) = 1; a vertex is an end if it is adjacent to only one vertex. A weighted subgraph of a
weighted graph Γ is a subgraph of Γ whose vertices have the same weights as Γ .

The following result describes the proximity relations between the vertices of a chain:

Lemma 1.3. Let q � p be two vertices of an Enriques diagram D, and consider the non-singular
graph Γ of D.

(a) If u ∈ chΓ (q,p), then q � u; if u �= p, either u � p or p � u. Moreover, all the vertices of
chΓ (q,p) correspond to vertices in the same branch of D.

(b) Write chΓ (q,p) = {u0 = q,u1, . . . ,un,un+1 = p}. There exists some i0 ∈ {0, . . . , n + 1}
satisfying uk+1 →D uk for k ∈ {0, . . . , i0 − 1}, and uk →D uk+1 for k ∈ {i0, . . . , n}. Fur-
thermore, if j � i0, uj is proximate to some uσ(j) with σ(j) � i0 − 1.

Proof. The first assertion of (a) is just Lemma 3.2 of [4]. Now, if u,v ∈ chΓ (q,p), either u ∈
chΓ (q,v) or v ∈ chΓ (q,u); in any case, either u is infinitely near to v or vice-versa, and hence
u and v cannot belong to different branches of D. Now, we prove (b). First of all, note that for
any i ∈ {0, . . . , n} either ui is proximate to ui+1 or vice-versa (cf. 1.2). By (a), u1 is necessarily
infinitely near to u0 and so, proximate to it. If each ui+1 is proximate to ui , the first claim
is obvious by taking i0 = n + 1. Assume that there exists some i ∈ {1, . . . , n} such that ui is
proximate to ui+1, and take i0 to be minimal with this property. We claim that uk+1 →D uk for
k ∈ {0, . . . , i0 − 1}, and uk →D uk+1 for k ∈ {i0, . . . , n}. To show this, assume that there exists
some j � i0 + 1 such that uj+1 →D uj and take j0 to be minimal. Then, both uj0−1 and uj0+1
are proximate to uj0 and, since they are adjacent to it, they are maximal among the vertices of D

proximate to uj0 . However, by (a) they are in the same branch of D, so they must be equal, which
is impossible. Note that ui0 is the maximal point in D among the vertices belonging to chΓ (q,p).
By (a) we know that every uj , j � i0, is infinitely near to q . Write uσ(j) for the maximal vertex
in D among the vertices belonging to chΓ (q,ui0−1) such that uj is infinitely near to it. By (a)
applied to chΓ (uσ(j),uj ) and the maximality of uσ(j), necessarily uσ(j)+1 is infinitely near to
uj and, because uσ(j)+1 is proximate to uσ(j), so is uj . This completes the proof. �

The resolution graph of a sandwiched singularity O is the weighted dual graph of the ex-
ceptional divisor of the minimal resolution of O. These graphs are called sandwiched graphs
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and they are characterized as the weighted subgraphs of some non-singular graph containing no
vertices of weight 1 (see [14, Proposition II.1.11]; cf. forthcoming 1.4). In particular, the graph
obtained from a sandwiched graph by removing an end is still a sandwiched graph.

Remark 1.4. If D is an Enriques diagram for O and Γ 0
D is the weighted subgraph of ΓD com-

prising only the non-dicritical vertices, then ΓO equals one of the connected components of Γ 0
D ,

whose vertices (and their corresponding vertices in D) will be called non-dicritical vertices rel-
ative to O.

2. Sandwiched singularities and their Enriques diagrams

In Remark 1.4 we have observed that if D is an Enriques diagram for a sandwiched surface
singularity O, then its dual graph ΓD contains the resolution graph ΓO as a weighted subgraph.
Given any Enriques diagram D, the following proposition shows that this combinatorial condi-
tion is sufficient to infer a result of geometrical nature: suitable marking maps ρ can be chosen
so that (D,ρ) becomes an Enriques diagram for O.

Proposition 2.1. Let O be a sandwiched surface singularity and let D = (D,ρ) be a marked
Enriques diagram. Then, D is an Enriques diagram for O if and only if

1. The dual graph ΓD contains ΓO as a weighted subgraph.
2. ρ(p) = 0 if p ∈ ΓO ; and ρ(p) = + if p ∈ ΓD \ ΓO and it is adjacent to some vertex of ΓO .

Proof. The “only if” part follows from 1.4, and, since D = (D,ρ) is an Enriques diagram for O,
the marking map ρ must satisfy the statement in order to assure that the non-dicritical vertices
of D relative to O correspond exactly to the vertices of ΓO . For the “if” part, consider the
reduced exceptional divisor EO of the minimal resolution of O. Using plumbing (see [10], [14,
Remark I.1.10]), we can glue smooth rational curves in order to obtain a configuration EΓD

containing EO , having dual graph ΓD and being contained on a smooth surface S′. Since ΓD

is a non-singular graph, by Castelnuovo’s criterion EΓD
contracts to a non-singular point O

[14, II.1.10] on a surface S. This contraction factors into a composition of point blowing-ups
[9, Theorem 5.7], so it determines a cluster with origin at O and having Enriques diagram D

[1, 4.4]. It is clear that S′ is the surface obtained from S by blowing up all points in K . Consider
a system of virtual multiplicities ν = νK for K in such a way that all the points have positive
excess except for those corresponding to the vertices of the subgraph ΓO ⊂ ΓD , which have
excess 0 (such a system exists by [1, 8.4.1]). Notice that no maximal point of K corresponds to
a vertex of ΓO , since any vertex of the resolution graph ΓO has weight strictly greater than 1.
Hence K = (K,ν) is a consistent cluster with positive virtual multiplicities. Let I = HK and X =
BlI (R). The morphism f :S′ → X given by the universal property of blowing up is the minimal
resolution of the singularities of X [14, II.1.4] and its exceptional components correspond to
those points of K having excess 0. Therefore, EO is the exceptional divisor of f and so, the
singularity on X given by its contraction is isomorphic to O [9, Theorem 3.13]. �

Given a sandwiched surface singularity O, there is not a unique non-singular graph Γ con-
taining ΓO as a weighted subgraph (see Example 2.5). In fact, it is possible to construct infinitely
many non-singular graphs Γ containing a given sandwiched graph ΓO , as Example 2.2 shows.
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Example 2.2. If I ∈ IR is an ideal for O and X = BlI (R), by choosing any non-singular point in
the exceptional locus of X, and blowing up this point, we obtain a new surface X′ containing O,
as well. This X′ is the blowing-up of a complete mO -primary ideal J1 = II1 ⊂ R, where I1
has codimension one in I (Theorem 3.5 of [3]), and the dual graph ΓJ1 contains a vertex more
than ΓI . In this way, an infinite chain of ideals in IR

· · · ⊂ Jn ⊂ · · · ⊂ J1 ⊂ I ⊂ R

for O can be constructed, and each ΓJn contains ΓO as a weighted subgraph. Moreover, for any
n the Enriques diagram DJn−1 is a marked subdiagram of DJn .

Lemma 2.3. Let D be an Enriques diagram for O. Consider the set C of non-dicritical vertices
of D relative to O.

(a) There is a tree structure on C induced by the natural ordering � of D.
(b) For any p,q ∈ C define p →C q if and only if p →D q . Then, →C is a proximity, which

turns C into an Enriques diagram.

Proof. To exhibit the tree structure of C, we will prove that

1. There is a unique minimal element of C by �, which is taken as the root of C;
2. For any p ∈ C, its immediate predecessor in C is the maximal element of {q ∈ C: q < p}.

Suppose that p and q are two different minimal vertices in C, and write w for the maximal vertex
in D(p) ∩ D(q) (this is the maximal vertex which both q and p are infinitely near or equal to).
Then, as ΓD contains no loops,

chΓD
(q,p) = chΓD

(q,w) ∪ chΓD
(w,p),

and, by the connectivity of ΓC , we infer that w ∈ C, contradicting the minimality of q and p. We
denote by OC the minimal vertex of C, which is set as the root of C. On the other hand, if p ∈ C,
p �= OC , the vertices in D(p) are totally ordered by the natural ordering � of D. Hence, there
exists a unique immediate predecessor of p, which is the maximal element of {q ∈ C | q < p},
and this proves (a).

Now, to prove (b), we show that →C defined as above is a proximity relation for C. Since
the root is the minimal vertex of C, it is clear that it is proximate to no other vertex of C. If
p �= OC , its immediate predecessor q0 in C is the maximal element of {q ∈ C | q < p}; hence
q0 < p and q0 ∈ C. Then (b) of 1.3 says that p is proximate to some vertex w of chΓD

(q0,p),
and (a) of 1.3 says that w is infinitely near or equal to q0. Since chΓD

(q0,p) ⊂ ΓC , this leads to
a contradiction. This proves the first condition of the proximity (see Section 1.3). The conditions
2 and 3 are clearly satisfied. �

An Enriques diagram C obtained as in Lemma 2.3 will be called a contraction for O (or
for ΓO) associated with D. Reciprocally, we will also say that D is associated with the contrac-
tion C.

Remark 2.4. Notice that, by virtue of 2.1, any Enriques diagram (respectively, any contraction)
for O is in fact an Enriques diagram (respectively, a contraction) for any sandwiched surface
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Fig. 1. Three different marked Enriques diagrams for the same singularity O and their corresponding dual graphs. Di-
critical vertices are represented with the white-filled dots.

singularity whose resolution graph is ΓO . A contraction for O may also be regarded as an enrich-
ment of the resolution graph ΓO by some proximities between their vertices, these proximities
being compatible with the weights of ΓO in the sense of Lemma 2.7 below.

Example 2.5. Figure 1 provides three distinct Enriques diagrams for the same sandwiched sin-
gularity: they are not apparently related, namely one is not a subdiagram of the other, as was
the case in Example 2.2. Notice that D1 and D3 give rise to the same contraction, which is the
Enriques subdiagram of D1 comprising the black dots.

Remark 2.6. If D is an Enriques diagram for O and C is the associated contraction, C is not,
in general, an Enriques subdiagram of D (see Enriques diagram D3 of Fig. 1). In particular, if
I ∈ IR is an ideal for O with Enriques diagram D, the set of points of K = BP(I ) corresponding
to the vertices of C does not constitute, in general, a subcluster of K.

Lemma 2.7. Let C be a contraction for ΓO associated with an Enriques diagram D. Then for
any vertex p ∈ C,

ωΓC
(p) � ωΓD

(p) = ωΓO (p), (2.1)

and the inequality is strict at the extremal vertices of C. In particular, ΓC is not a weighted
subgraph of ΓD .

Proof. The inequality comes from the definition of contraction, since the number of vertices
proximate to p in C is less or equal than in D. If p is extremal in C, ωΓC

(p) = 1, while
ωΓD

(p) > 1, since p is a non-dicritical vertex of D and hence necessarily non-extremal in D

(see 1.2). The last assertion follows by considering the weights at the extremal vertices of C. �
In [14, Corollary II.1.14], Spivakovsky introduced a type of birational projection into a plane

that could be achieved for any sandwiched singularity. Namely he showed that, once a sand-
wiched surface singularity O is fixed, an ideal I ∈ IR can be chosen in such a way that:
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(i) O is the only singularity of X = BlI (R);
(ii) the strict transform (by the minimal resolution of X) of any exceptional component of

π−1
I (O) is a curve of the first kind, that is, the strict transform by f (see diagram (1.1))

of any Lp with p ∈ BP(I )+ has self-intersection equal to −1.

An ideal satisfying the above conditions (i) and (ii) (cf. [12, 2.3]) will be called an S-ideal
for O. A marked Enriques diagram associated with an S-ideal for O will be called an S-Enriques
diagram for O. The following result describes what the equisingularity classes of S-Enriques
diagrams look like:

Lemma 2.8. An ideal I ∈ IR is an S-ideal if and only if the dicritical vertices of DI are free and
extremal.

Proof. Write D for the Enriques diagram of K = BP(I ). First of all, note that X = BlI (R)

has only one singularity O if and only if any non-dicritical vertex of ΓD belongs to ΓO . Let
p ∈ K+ and assume that there exists some q ∈ K infinitely near to p. We may assume that q is
an immediate successor of p. Then, ωΓD

(p) = rD(p) + 1 � 2 against condition (ii). Therefore,
p must be maximal in K . Now, assume that p is satellite, proximate to u1 and u2. Then, p ∈
chΓD

(u1,u2). Necessarily, u1 and u2 are not dicritical points of K and thus, u1,u2 ∈ ΓO . It
follows that p ∈ ΓO against the assumption p ∈ K+.

Conversely, if the dicritical vertices of D are free and extremal, the union of the non-dicritical
vertices of ΓD is connected and hence X has only one singularity. Moreover, as above, the self-
intersection of the strict transform on SK of any component Lp with p ∈ K+ is −1. �

A contraction C associated with an S-Enriques diagram will be called an S-contraction. Con-
trary to what happened for general contractions (recall 2.6), an S-contraction C is a subdiagram of
its associated S-Enriques diagram D; furthermore, any S-contraction is associated with a unique
S-Enriques diagram:

Proposition 2.9. If D is an S-Enriques diagram for O, then an S-contraction C associated with
D satisfies:

(a) C is a subdiagram of D;
(b) D can be recovered from C by adding at any vertex p ∈ C a number of ωΓO (p) − ωΓC

(p)

free successors; D = (D,ρ) is recovered by defining the marking map ρ as ρ(p) = 0 if
p ∈ C, and ρ(p) = + otherwise.

Proof. By virtue of 2.8, any dicritical point of D is free and extremal. Therefore, for any p ∈ C,
there are exactly ωΓO (p) − ωΓC

(p) of these vertices in the first neighborhood of p. This gives
both claims. �

Next result is a sort of converse of Lemma 2.7:

Corollary 2.10. Let C be an Enriques diagram and assume that the dual graph ΓC equals ΓO
and satisfies ωΓC

(p) � ωΓO (p) at each vertex p ∈ C. Then C is an S-contraction for ΓO .
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Proof. To any p ∈ C add exactly ωΓO (p) − ωΓC
(p) free successors to obtain from C a marked

Enriques diagram D whose dicritical vertices are the extremal ones. By construction the dicritical
vertices are also free, ΓO is a weighted subgraph of ΓD . Then invoking 2.1 and 2.8 we are
done. �

Let us end this section by showing that the family of contractions for a sandwiched surface
singularity equals the family of S-contractions:

Proposition 2.11. Any contraction for ΓO is an S-contraction.

Proof. Let D be an Enriques diagram for O and let C be a contraction for ΓO associated with D.
Define a new Enriques diagram D′ from C by adding to each vertex p ∈ C as many free suc-
cessors as the number of vertices in D \ C that are proximate to p. Taking ρ(p) = 0 if p ∈ C

and ρ(p) = + otherwise, the resulting Enriques diagram D′ = (D′, ρ) for O is an S-Enriques
diagram associated with C (see 2.1). �
3. Contractions for a sandwiched surface singularity

In this section we describe all the contractions for a given sandwiched surface singularity O.
Observe that, by virtue of 2.9 and 2.11, this is equivalent to listing all the equisingularity classes
of the S-ideals for O.

Suppose that the resolution graph ΓO has n vertices and that v is an end of ΓO = Γn. The
weighted graph obtained by removing v is again a sandwiched graph and will be denoted by
Γn−1 (see Section 1.3). We want to detail a procedure to obtain all the contractions for Γn from
the contractions for Γn−1. Then, by induction on n, the whole list of contractions for a given
sandwiched singularity will be inferred just from its resolution graph.

The first result of this section describes how the vertex v looks like in any contraction:

Lemma 3.1. The vertex v (corresponding to the end v of ΓO) in any contraction C for O is
either the root or free. Furthermore, if v is not the root of C, then either v is extremal or v has a
unique successor, which is satellite of v.

Proof. Assume that v is satellite, proximate to the vertices u1 and u2 in C, and suppose that u2
is proximate to u1. We will show that v ∈ chΓC

(u1,u2), thus contradicting that v is an end, and
proving the first claim. Consider the Enriques subdiagram C(v) of C comprising all the points
preceding or equal to v. In particular, u1, u2 are both in C(v), and v is maximal among the points
of C(v) proximate to u1, and also to u2. Hence, as vertices of ΓC(v), v is adjacent to both u1 and
u2 and so, v ∈ chΓC(v)

(u1,u2). Now, the rest of vertices of C \ C(v) all lie after some vertex of
C(v), giving rise to blowing-ups of extra points. The combinatorial effect of these blowing-ups
is translated in the dual graph by the elementary modifications introduced in I.1.5 of [14], those
of the first kind corresponding to the blowing-ups of free points while those of the second kind to
the blowing-ups of satellite points. From their definition, it is immediate that these modifications
respect the property of being in the chain determined by two vertices already in the graph.

For the second claim, let q be the only vertex in ΓO to which v is adjacent, and assume that
v is not the root of C. We distinguish two cases. The first one is when v is maximal among the
points in C proximate to q . Since v is an end, there are no vertices in C proximate to v and v is
an extremal vertex of C. The second case is when q is maximal among the points in C proximate
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to v. Since v is an end, v must have a unique successor, say w, preceding q . Denote by u the
immediate predecessor of v. Since v is free and v is adjacent only to q, v cannot be the last point
in C proximate to u. Hence w must be proximate to u and so w is satellite of v. This completes
the proof. �

The following result shows how to construct a contraction for Γn from a contraction for Γn−1.
Moreover, any contraction for Γn can be obtained in this way.

Theorem 3.2. Suppose Γn−1 is obtained from a sandwiched graph Γn by removing an end v. Let
u be the unique vertex in Γn to which v is adjacent, and let C′ be a contraction for Γn−1. Define
a new Enriques diagram by taking C = C′ ∪ {v} and adding to C′ extra proximities relating v

according to one of the following rules:

1. If ωΓC′ (u) < ωΓn(u), set v in C as a free successor of u.
2. If u = qr →C′ qr−1 →C′ · · · →C′ q1 are free vertices in C′ with 1 � r < ωΓn(v) and

q1 →C′ q0, then set qi →C v for all i ∈ {1, . . . , r}, and either set q0 →C v, provided q0
is the root of C′ and r < ωΓn(v) − 1 (with v becoming the root of C), or set v →C q0,
provided ωΓn−1(q0) < ωΓn(q0).

Then C is a contraction for Γn. Moreover, any contraction C for Γn can be constructed from
some contraction C′ for Γn−1 as above.

Proof. Clearly C defined as above satisfies ΓC = Γn and ωΓC
(p) � ωΓn(p) at each vertex p ∈ C.

Thus, invoking 2.10 and 2.11, the first claim follows. By virtue of 3.1, the vertex v of C corre-
sponding to v is either free or the root of C. Since v is adjacent to u in Γn, there are only two
possibilities for their corresponding vertices in C:

Case 1. v is maximal among the vertices in C proximate to u. Hence v cannot be the root of C,
and by 3.1 v is free. Moreover, v is an extremal vertex of C: otherwise, 3.1 implies that v has a
unique successor, which is satellite of v and thus proximate to u, contradicting the maximality of
v among the vertices proximate to u. Therefore the set of vertices of C′ = C \ {v} is connected
and has a tree structure. By considering the restriction of the proximity of C to C′, C′ becomes
an Enriques diagram. Clearly the graphs ΓC′ and Γn−1 are equal (disregarding weights). Observe
that rC′(u) = rC(u) − 1 and that rC′(q) = rC(q) − 1 if q ∈ C, q �= u. Applying 1.2, we have

ωΓC′ (q) = ωΓC
(q) � ωΓn(q) = ωΓn−1(q),

for any q ∈ C′ \ {u} and

ωΓC′ (u) = ωΓC
(u) − 1 < ωΓC

(u) � ωΓn(u) = ωΓn−1(u) .

Thus, invoking 2.10 and 2.11, C′ is a contraction for Γn−1. Finally, notice that the Enriques
diagram C is obtained from C′ by the procedure of the first rule of the statement, and we are
done in this case.

Case 2. u is maximal among the vertices in C proximate to v. Let p1, . . . , pj = u be the vertices
in C preceding or equal to u which are proximate to v. First of all, we define on the set of vertices
of C′ = C \ {v} a tree structure. We distinguish two cases:
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2.1. If v is the root of C, then take p1 as the root of C′, and for any q ∈ C′ \ {p1} declare that p

is the immediate predecessor of q in C′ if and only if p is the immediate predecessor of q

in C.
2.2. Otherwise, take the root of C as the root of C′; for any q ∈ C′ \ {p1} declare that p is the

immediate predecessor of q in C′ if and only if p is the immediate predecessor of q in C;
declare that the immediate predecessor of p1 in C′ is the immediate predecessor p0 of v

in C.

Restrict the proximity of C to C′, namely, for any q, q ′ ∈ C′ set q →C′ q ′ if and only if
q →C q ′. Let us check that it satisfies the properties 1 to 3 of a proximity (see Section 1.3). In
the first case (where v is the root of C) these properties are clearly satisfied. In the second case,
the only condition that must be checked is property 1 for the vertex p1, namely, that p1 →C p0.
Since p1 is a successor of v in C, by 3.1 we infer that p1 is satellite of v. Thus p1 is satellite in C:
p1 is proximate to its immediate predecessor in C, which is v, and to some point of C, say p;
moreover, v must be proximate to p, as well. Since v is proximate to p0, we infer that p = p0
and p1 →C p0, as desired. Therefore C′ is an Enriques diagram, whose dual graph ΓC′ equals
Γn−1 disregarding weights. Observe that rC′(p0) = rC(p0) − 1 and rC′(q) = rC(q) if q ∈ D,
q �= p0. Applying 1.2, we have

ωΓC′ (q) = ωΓC
(q) � ωΓn(q) = ωΓn−1(q),

for any q ∈ C′ \ {p0} and

ωΓC′ (p0) = ωΓC
(p0) − 1 < ωΓC

(p0) � ωΓn(p0) = ωΓn−1(p0).

Thus, invoking 2.10 and 2.11, C′ is a contraction for Γn−1.
Finally, it remains to show that the Enriques diagram C may be obtained from C′ by the

procedure of the second rule of the statement. Indeed, according to the proximity defined in C′,
notice first that {u = pj →C′ · · · →C′ p1} is a chain of free vertices in C′ preceding or equal
to u, and that p1 is the root of C′ if and only if v is the root of C. On the other hand, recall that
the proximity relations in C involving the vertex v are

p1 →C v, . . . , pj →C v,

and the further proximity relation v →C p0 must be added in case p1 is not the root of C′. This
is exactly what performs the operation of the second rule, and we are done. �

The whole list of contractions for ΓO are obtained by applying recursively the rules of 3.2. Let
us just sketch the main steps of an implementation of this procedure. Each step of this procedure
adds a new vertex keeping the proximities already defined. The idea is that the bigger the weights
of ΓO are, the more Enriques diagrams for O can be found.

Step 1. Choose any vertex of ΓO , say p1, and take Γ1 = (p1,ωΓO (p1)) and C1 = •p1 .

Step i. Assume that Γi−1, Ci−1 have been obtained, where Γi−1 is a subgraph of ΓO . Choose
a vertex pi adjacent to some q ∈ Γi−1. The graph Γi is obtained by adding pi with weight
ωΓO (pi ) to Γi−1, adjacent to q; the new Enriques diagram Ci is obtained from Ci−1 by adding
pi according to one of the rules of 3.2:
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1. If ωΓi−1(q) < ωΓO (q), pi can be added to Ci−1 as a free successor of q , pi →Ci
q .

2. If q = qr →Ci−1 qr−1 →Ci−1 · · · →Ci−1 q1 are free vertices in Ci−1 with 1 � r < ωΓO (pi )

and q1 →Ci−1 q0, then set qj →Ci
pi for all j ∈ {1, . . . , r}, and either set q0 →Ci

pi , pro-
vided q0 is the root of Ci−1 and r < ωΓO (pi ) − 1 (with pi becoming the root of Ci ), or set
pi →Ci

q0, provided ωΓi−1(q0) < ωΓO (q0).

The procedure stops at step n, the number of vertices of ΓO . At this point, the obtained weighted
graph Γn equals ΓO , and the Enriques diagram Cn is just a contraction for ΓO .

Remark 3.3. At any step of the procedure, there may be several choices to add a fixed new vertex
(for example, we may apply either rule 1 or 2 to add the vertex pi to Ci−1). In order to obtain the
whole list of all the contractions for ΓO , all these possibilities must be performed. It might also
happen that an Enriques diagram Ci−1 to which the new vertex cannot be added is reached. This
means that no Enriques diagram for O with the subset of proximities of Ci−1 exists.

Remark 3.4. Minimal singularities are rational surface singularities whose fundamental cycle
is reduced. They are characterized as those sandwiched singularities that can be obtained by
blowing up a complete ideal all whose base points are free (see [12, 2.5]; cf. [14]). As a conse-
quence of our results, a sandwiched surface singularity O is minimal if and only if there exists a
contraction for O that is obtained by applying the first rule at each step of the above procedure.

Example 3.5. Let O be a singularity whose resolution graph is shown at the bottom of Fig. 2.
By applying the procedure just described, we obtain the whole list of contractions for O. The
S-Enriques diagrams shown in Fig. 2 are obtained by adding free successors to them as explained
in (b) of 2.9.

4. Equisingularity classes of the ideals for a sandwiched singularity

In this section we address the problem of describing the equisingularity classes of the ideals
for a given sandwiched surface singularity O, that is, of describing all the possible Enriques dia-
grams for O. The (finite) family of contractions for O was inferred from the resolution graph ΓO
of O by the procedure explained in the preceding section. It remains to find out all the different
Enriques diagrams for O giving rise to the same contraction (an infinite family). Here we will
show how to complete contractions in order to describe all the different Enriques diagrams for O,
thus solving completely the problem we are concerned with.

Given a contraction C for O, our aim is to describe all the Enriques diagrams for O associated
with C. Consider the marked Enriques diagram C = (C,ρC) with ρC(p) = 0 for any p ∈ C, and
the number λC = ∑

p∈C(ωΓO (p) − ωΓC
(p)). By 2.7, λC > 0. Let us describe a procedure to

add vertices to C in order to reach an Enriques diagram for O. Write C0 = (C0, ρ0) = C. For
1 � i � λC , choose a vertex pi in C such that ωΓO (pi ) > ωΓCi−1

(pi ) and then define inductively
Ci = (Ci, ρi) by taking Ci = Ci−1 ∪ {qi} and ρi |Ci−1

= ρi−1, where the new vertex qi is set as a
successor of pi either

A. as a free successor of pi , qi →Ci
pi , and then set ρi(qi) = +;

or, if there is some free successor p′ of pi in Ci−1,
i



M. Alberich-Carramiñana, J. Fernández-Sánchez / Advances in Mathematics 216 (2007) 753–770 767
Fig. 2. The complete list of S-Enriques diagrams for a singularity O with resolution graph ΓO in Example 3.5. The
white-filled dots represent the dicritical points, added to the contractions.
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B. as a successor preceding p′
i , namely qi →Ci

pi and p′
i →Ci

qi are the only proximities
relating qi , and then set ρi(qi) = + in case ρi(p

′
i ) = 0 (otherwise ρi(qi) can be chosen no

matter 0 or +).

Notice that at step i the operation of type A may always be performed, independently of the
existence of a free successor of pi , which would offer the possibility to choose also an opera-
tion of type B. Observe that

∑
p∈C(ωΓO (p) − ωΓCi

(p)) = λC − i. Thus the procedure performs
effectively the λC steps. Any of such marked Enriques diagram CλC

, obtained from C by the
above procedure, will be called an extension of the contraction C. Clearly any extension of C is
an Enriques diagram for O associated with C.

Remark 4.1. Notice that any extension of C all whose vertices have been added performing
operation A at each step is an S-Enriques diagram for O (in fact, the unique S-Enriques diagram
for O associated with C).

The set of all extensions of C forms a family of Enriques diagrams for O associated with C

minimal in the following sense:

Theorem 4.2. Any Enriques diagram D for a sandwiched singularity O contains, as a marked
subdiagram, an extension of the contraction associated with D.

Conversely, if a marked Enriques diagram D contains, as a marked subdiagram, an extension
E of some contraction C for O and satisfies that any vertex of D \ E is proximate to no vertex
of C, then D is an Enriques diagram for O.

Proof. For the first assertion, we need to find a marked subdiagram E of D which is an extension
of C. Take F = {p ∈ D: p is proximate to some q ∈ C}, and define E = (E,ρE), where E =
C ∪ F and ρE is the restriction of ρD to E. Notice that E is a connected subtree of D since,
if p is proximate to some q ∈ C, then any vertex in D(p) infinitely near to q is also proximate
to q . Hence, E together with the proximities inherited from the proximity of D is an Enriques
subdiagram of D. Furthermore, E is a marked subdiagram of D.

Moreover, by 1.2, the cardinality of F equals λ := λC . Denote the vertices of F by
{p1, . . . , pλ} so that pi is not infinitely near to pj if j > i. Write Eλ := E and for 1 � i < λ,
define, recursively Ei as the marked Enriques diagram obtained from Ei+1 by deleting pi (and
keeping the restricted proximity and marking map; the successors of pi become successors of
the immediate predecessor of pi ). Notice that the Ei are the marked Enriques diagrams generated
by the procedure detailed above to reach E , proving that E is an extension of C, as wanted.

For the converse, let E = (E,ρE) be an extension of a contraction C for O. Thus, by 2.1,
ΓE ⊇ ΓO as weighted graphs, ρE(p) = 0 for any p ∈ ΓO and ρE(p) = + for any p ∈ ΓE \ ΓO
being adjacent to some vertex of ΓO . If D = (D,ρD) contains E as a marked subdiagram and
there any vertex of D \ E is proximate to no vertex of C ⊂ E, then ΓD ⊇ ΓO as weighted
graphs, and ρD satisfies the marking map hypothesis of 2.1, 2: ρD(p) = 0 for any p ∈ ΓO and
ρD(p) = + for any p ∈ ΓD \ ΓO adjacent to some vertex of ΓO . Hence, applying 2.1 to D we
are done. �

We have already pointed out that sandwiched singularities are normal birational extensions of
the regular ring R. If R ⊂ O is such an extension, there exists a complete ideal I ⊂ R such that
O = R[I/a]NQ

, where NQ is a height two maximal ideal in R[I/a] containing mR (the maximal
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Fig. 3. A complete list of extensions for a sandwiched singularity whose resolution graph is drawn in the top left corner.
At the top of the figure the contractions of O are shown. The white-filled dots represent dicritical vertices.
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ideal of R), and a is a generic element of I (see [7]). R is said to be maximally regular in O if
there is no other regular ring R′ such that

R � R′ ⊂ O.

Write DI for the marked Enriques diagram of the base points of I . Let E and C be the extension
and the contraction for O associated with DI . Then, by virtue of 4.2, DI can be thought as being
constructed from E by adding new vertices which are infinitely near to some dicritical vertex of
E and not proximate to any vertex of C, or preceding the root of C (notice that in any case, the
proximities of E , and hence also the proximities of C, are preserved). Moreover, R is maximally
regular in O if and only if the root of DI equals the root of E , i.e. no vertices have been added to
E preceding the root.

Example 4.3. Let O be a sandwiched singularity whose resolution graph is shown in the top
left corner of Fig. 3. The contractions for O are shown at the top of the figure, and below each
one of them, a complete list of the associated extensions is drawn. Any Enriques diagram for O
contains one of these extensions as a marked subdiagram.
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