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Abstract

We consider the standard first-passage percolation in Zd for d ≥ 2 and we denote by φnd−1,h(n) the

maximal flow through the cylinder ]0, n]
d−1

×]0, h(n)] from its bottom to its top. Kesten proved a law of
large numbers for the maximal flow in dimension 3: under some assumptions, φnd−1,h(n)/nd−1 converges

towards a constant ν. We look now at the probability that φnd−1,h(n)/nd−1 is greater than ν + ε for
some ε > 0, and we show under some assumptions that this probability decays exponentially fast with
the volume nd−1h(n) of the cylinder. Moreover, we prove a large deviation principle for the sequence
(φnd−1,h(n)/nd−1, n ∈ N).
c© 2007 Elsevier B.V. All rights reserved.
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1. Definitions and main results

We will use generally the notation introduced in [6,7] but some changes will be made, for
example to obtain independent objects. Let d ≥ 2. We consider the graph (Zd ,Ed) having for
vertices Zd and for edges Ed the set of all the pairs of nearest neighbors for the standard L1 norm.
With each edge e in Ed we associate a random variable t (e) with values in R+. We suppose that
the family (t (e), e ∈ Ed) is independent and identically distributed, with a common distribution
function F . More formally, we take the product measure P on Ω =

∏
e∈Ed [0,∞[, and we denote
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its expectation by E. We interpret t (e) as the capacity of the edge e; this means that t (e) is the
maximal amount of fluid that can go through the edge e per unit of time. For a given realization
(t (e), e ∈ Ed) we denote by φEk,m = φB the maximal flow through the box

B(Ek,m) =

d−1∏
i=1

]0, ki ]×]0,m],

where Ek = (k1, . . . , kd−1) ∈ Zd−1, from its bottom

F0 =

d−1∏
i=1

]0, ki ] × {0}

to its top

Fm =

d−1∏
i=1

]0, ki ] × {m}.

Let us define this quantity properly. We recall that Ed is the set of the edges of the graph. An
edge e ∈ Ed can be written as e = 〈x, y〉, where x , y ∈ Zd are the endpoints of e. The edges of
Ed are unoriented; hence 〈x, y〉 = 〈y, x〉. We will say that e = 〈x, y〉 is included in a subset A of
Rd (e ⊂ A) if the segment joining x to y (except possibly its extremities) is included in A. Now
we define Ẽd as the set of all the oriented edges, i.e., an element ẽ in Ẽd is an ordered pair of
vertices. We denote an element ẽ ∈ Ẽd by 〈〈x, y〉〉, where x , y ∈ Zd are the endpoints of ẽ and
the edge is oriented from x towards y. We consider now the set S of all pairs of functions (g, o),
with g : Ed

→ R+ and o : Ed
→ Ẽd such that o(〈x, y〉) ∈ {〈〈x, y〉〉, 〈〈y, x〉〉}, satisfying:

• for each edge e in B we have

0 ≤ g(e) ≤ t (e),

• for each vertex v in B r Fm (remember that F0 ∩ B = ∅) we have∑
e∈B:o(e)=〈〈v,·〉〉

g(e) =

∑
e∈B:o(e)=〈〈·,v〉〉

g(e).

A couple (g, o) ∈ S is a possible stream in B: g(e) is the amount of fluid that goes through
the edge e, and o(e) gives the direction in which the fluid goes through e. The first condition on
(g, o) expresses only the fact that the amount of fluid that can go through an edge is bounded by
its capacity. The second one is a balance equation: it means that there is no loss of fluid in the
cylinder. With each possible stream we associate the corresponding flow

flow(g, o) =

∑
u∈BrFm ,v∈Fm :〈u,v〉∈Ed

g(〈u, v〉)Io(〈u,v〉)=〈〈u,v〉〉 − g(〈u, v〉)Io(〈u,v〉)=〈〈v,u〉〉.

This is the amount of fluid that crosses the cylinder B if the fluid respects the stream (g, o). The
maximal flow through the cylinder B from its bottom to its top is the supremum of this quantity
over all possible choices of streams in S:

φB = φEk,m = sup{flow(g, o) : (g, o) ∈ S}.

If φB = flow(g, o) we say that the stream (g, o) realizes the flow φB .
Kesten proved in 1987 the following law of large numbers for the maximal flow in dimension

3 (see [7]):
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Theorem 1. We consider a cylinder B((k, l),m) such that limk≥l→∞ m(k, l) = ∞ in such a
way that for some δ > 0 we have

lim
k≥l→∞

ln m(k, l)
k1−δ

= 0.

There exists a positive p0 with the following property: If F satisfies F(0) < p0 and∫
[0,∞[

eθx dF(x) is finite for some positive θ , then there exists a constant ν(F) < ∞ such that

lim
k,l→∞

φ(k,l),m

kl
= ν with probability one and in L1.

Actually, the constant ν(F) is defined as the limit of another object under weaker assumptions on
F (see [7] and (1) in the next section), and we rely on this definition to state the following result.
We are now interested in the deviations of the rescaled flow from its typical behavior. We will
show two results for dimensions d ≥ 2. The first one states the existence of a limit, and some of
its properties.

Theorem 2. We consider the maximal flow φ(n,...,n),h(n) through the cylinder B((n, . . . , n), h(n)),
where the function h : N → N satisfies

lim
n→∞

h(n)
ln n

= ∞.

For every λ in R+, the limit

ψ(λ) = lim
n→∞

−
1

nd−1h(n)
ln P

[
φ(n,...,n),h(n) ≥ λnd−1

]
exists and is independent of h. Moreover ψ is convex on R+, finite and continuous on the set
{λ | F([λ,+∞[) > 0}. If

∫
[0,+∞[

xdF(x) is finite, then ψ vanishes on [0, ν], where ν is defined
in (1). If

∫
[0,+∞[

eθx dF(x) is finite for some positive θ , then ψ is positive on ]ν,+∞[.

We say that a sequence (Xn, n ∈ N) of random variables with values in D ⊂ R satisfies a
large deviation principle with speed v(n) and governed by the rate function I if and only if:

• for any closed subset F ⊂ D, we have

lim sup
n→∞

1
v(n)

ln P [Xn ∈ F] ≤ − inf
F
I,

• for any open subset O ⊂ D, we have

lim inf
n→∞

1
v(n)

ln P [Xn ∈ O] ≥ − inf
O
I.

Now, with the help of the function ψ , we can state the following large deviation principle for
the rescaled flow:

Theorem 3. Let h : N → N be such that

lim
n→∞

h(n)
ln n

= ∞.

If there exists a positive θ such that∫
[0,+∞[

eθx dF(x) < ∞,
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then the sequence(
φ(n,...,n),h(n)

nd−1

)
n∈N

satisfies a large deviation principle, with speed nd−1h(n), and governed by the good rate function
ψ .

Remark 1. When the capacity t of an edge is bounded, we do not need the condition

lim
n→∞

h(n)
ln n

= +∞;

the results hold under the weaker condition

lim
n→∞

h(n) = +∞.

Actually, the role of the condition limn→∞ h(n)/ ln n = +∞ is not fully understood yet. For
example, when t is equal in law to the absolute value of a Gaussian variable this condition
can also be replaced by limn→+∞ h(n) = +∞. Unfortunately we could not find satisfactory
sufficient conditions (in particular on the moments of the law of t) to get rid of the condition
limn→∞ h(n)/ ln n = +∞.

A special aspect of the proof of Theorem 2 is the use of a discrete version of the model.
Indeed, we are confronted with a combinatorial problem: we need to look at boundary conditions
for streams to glue together streams in different cylinders, but when the capacity of an edge takes
its values in R+ we cannot count the number of possible boundary conditions. Our strategy
is to consider a discrete approximation of the capacity of the edges and the corresponding
maximal flow. We work with these objects. To handle the boundary conditions, we use a
technique introduced by Chow and Zhang [4]. We finally compare the real maximal flow to
this approximation.

2. Max-flow min-cut theorem

It is difficult to work with the expression of the maximal flow that we have seen in the
previous part, this is why we will use the max-flow min-cut theorem to express the maximal
flow differently. First we need some definitions. A path on a graph (Zd for example) from v0 to
vn is a sequence (v0, e1, v1, . . . , en, vn) of vertices v0, . . . , vn alternating with edges e1, . . . , en
such that vi−1 and vi are neighbors in the graph, joined by the edge ei , for i in {1, . . . , n}. Two
paths are said to be disjoint if they have no common edge. A set E of edges of B(Ek,m) is said to
separate F0 from Fm in B(Ek,m) if there is no path from F0 to Fm in B(Ek,m)r E . We call E an
(F0, Fm)-cut if E separates F0 from Fm in B(Ek,m) and if no proper subset of E does. With each
set E of edges we associate the variable

V (E) =

∑
e∈E

t (e).

The max-flow min-cut theorem (see [2]) states that

φB = min{V (E) | E is an (F0, Fm)− cut in B}.
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Remark 2. In the special case where t (e) belongs to {0, 1}, let us consider the graph obtained
from the initial graph (not necessarily Zd ) by removing all the edges e with t (e) = 0. Menger’s
theorem (see [2]) states that the minimal number of edges in B(Ek,m) that have to be removed
from this graph to disconnect F0 from Fm is exactly the maximal number of disjoint paths that
connect F0 to Fm . By the max-flow min-cut theorem, it follows immediately that the maximal
flow in the initial graph through B from F0 to Fm is exactly the maximal number of disjoint open
paths from F0 to Fm , where a path is open if and only if the capacity of all its edges is 1. Such a
set of φB disjoint open paths from F0 to Fm corresponds obviously to a stream (g, o):

• g(e) =

{
1 if e belongs to one of these paths
0 otherwise,

• o(e) =

{
〈〈x, y〉〉 if e = 〈x, y〉 is crossed from x to y by one of these paths
〈〈y, x〉〉 if e = 〈x, y〉 is crossed from y to x by one of these paths
ô(e) otherwise,

where ô is some determined orientation (ô(〈x, y〉) ∈ {〈〈x, y〉〉, 〈〈y, x〉〉}) which does not matter.
The stream (g, o) realizes the maximal flow φB (whatever ô).

We come back to the general case. We will also need the definition of a cut over a hyper-
rectangle. Let S =

∏d−1
i=1 ]ki , li ] be a hyper-rectangle, with ki ≤ li , ki , li in Z. We say that a set

E of edges in S × R separates −∞ from +∞ over S if there exists no path in (S × R)r E from
S × {−N } to S × {+N } for some N > 0. Similarly, we call E a cut over S if E separates −∞

from +∞ over S, but no proper subset of E does. Let ∂ in(S × R) be the inner vertex boundary
of the cylinder S × R:

∂ in(S × R) = { x ∈ S × R | ∃y 6∈ S × R, 〈x, y〉 ∈ Ed
}.

We define the corresponding set of edges

E(∂ in(S × R)) = {〈x, y〉 | x, y ∈ ∂ in(S × R)}.

We say that an edge e is vertical if e = 〈x, x + (0, . . . , 0, 1)〉; e is said to be horizontal otherwise.
We denote by (∗) the condition on E

(∗) E ∩ E(∂ in(S × R)) ⊂ {e ∈ Ed
| e is vertical, e ⊂ Rd−1

× [0, 1]},

which means in a way to say that the boundary of E is fixed on the perimeter of the rectangle
S × {0}. We define the variable τ by

τ(S) = inf{V (E) | E is a cut over S and E satisfies (∗)}.

For simplicity, we denote by τkd−1 the variable τ(]0, k]
d−1). If S1, S2 are two disjoint hyper-

rectangles having a common side (so S1 ∪ S2 is a hyper-rectangle too), then we have

τ(S1 ∪ S2) ≤ τ(S1)+ τ(S2).

Indeed if E1 (respectively E2) is a cut over S1 (respectively S2) satisfying (∗) for S1 (respectively
S2) then E1 and E2 are both pinned at the boundary between S1 × {0} and S2 × {0} because they
both satisfy (∗), so they can be glued together and E1 ∪ E2 separates −∞ from +∞ over S1 ∪ S2.
By a subadditive argument (see [1]), the following limit exists almost surely:

ν(F) = lim
k→∞

τkd−1

kd−1 , (1)

where we know that ν(F) is a constant almost surely thanks to Kolmogorov’s 0–1 law. We will
denote it by ν when no doubt about F is possible. This is the “ν” in Theorems 1 and 2.
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3. Proof of Theorem 2

We take h : N → N such that

lim
n→∞

h(n) = +∞.

We will see during the proof where we need the stronger condition

lim
n→∞

h(n)
ln n

= +∞.

We will need to describe how the fluid goes in and out of a cylinder in order to glue together two
cylinders without losing any flow. The problem is that we need too much information to describe
this precisely. The feature of the proof is to consider a discrete approximation of the capacity
of the edges (see Section 3.1), to work with this discrete model (Sections 3.2–3.4) and then to
compare it to the original one (Section 3.5). The method used to prove the existence of the limit
was developed in [4]. We study then the properties of ψ as in [3].

3.1. Discrete version

Let k ∈ N (we will choose it later). We associate with (t (e), e ∈ Zd) a new family of
independent and identically distributed variables (tk(e), e ∈ Zd) by setting

∀e ∈ Ed tk(e) = bkt (e)c ×
1
k
,

and we denote by φk the maximal flow corresponding to these new variables.
Let us consider for a brief moment the graph G obtained by replacing each edge e by

p edges ẽ1, . . . , ẽp, where p = ktk(e). In this new graph the capacity of each edge is
simply 1. The Remark 2 also holds for G: the maximal flow φG

B for G from F0 to Fh(n) in
B = B((n, . . . , n), h(n)) is exactly the maximal number of disjoint paths connecting F0 to
Fh(n) in G. We have seen that we can associate with each such family of φB disjoint paths
in B a stream (g̃, õ) in G that realizes φG

B . Actually, we can always reduce to the case where
õ(̃e1) = õ(̃e2) if the edges ẽ1 and ẽ2 are replacing in G the same edge 〈x, y〉 ∈ Ed . Indeed, if
for such edges ẽ1 and ẽ2 we have g̃(̃e1) = g̃(̃e2) = 1 and õ(̃e1) 6= õ(̃e2), we know that there
exists a path l1 (respectively l2) from F0 to Fh(n) going through ẽ1 (respectively ẽ2) and crossing
this edge from x to y (respectively from y to x). We can create two new disjoint paths in G, la
which is equal to l1 from F0 to x and to l2 from x to Fh(n), and lb which is equal to l2 from
F0 to y and to l1 from y to Fh(n), that can replace l1 and l2 in the set of φB disjoint paths (see
Fig. 1). The corresponding stream (g̃′, õ′) is equal to (g̃, õ) except in ẽ1 and ẽ2 where we have
g̃′(̃e1) = g̃′(̃e2) = 0 and õ′(̃e1) = õ′(̃e2) = ô(〈x, y〉). Then we just have to deal with the case
g̃(̃e1) = 1 and g̃(̃e2) = 0. The definition of ô is arbitrary; we can change the orientation of ô(̃e2)

to have õ(̃e2) = ô(̃e2) = õ(̃e1). We obtain thus a stream such that õ(̃e1) = õ(̃e2) if the edges ẽ1
and ẽ2 are replacing in G the same edge 〈x, y〉 ∈ Ed . Moreover we can assume that each path
of a family of φB disjoint open paths has only its first vertex in F0 and its last vertex in Fh(n);
otherwise we can restrict the path to obtain such a path. Thanks to a good choice of ô, we can
thus suppose that if ẽ ⊂ B has one endpoint x in Fh(n) (respectively F0) and one endpoint y not
in Fh(n) (respectively F0) then õ(̃e) = 〈〈y, x〉〉 (respectively õ(̃e) = 〈〈x, y〉〉), and if ẽ has both
endpoints in Fh(n) then g̃(̃e) = 0.
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Fig. 1. Description of paths in G.

Coming back to the graph Zd , we remark that the maximal flow φk
B between F0 and Fh(n)

in B is equal to φG
B /k, and it can be realized by the stream (g, o) defined as follows. Let e be

an edge of Ed . If there is no edge in G associated with e, we set g(e) = 0 and o(e) = ô(e).
Otherwise, we define

g(e) =

∑
ẽ∼e

g̃(̃e)
k

where the sum is over the edges ẽ that replace e in G, and o(e) = õ(̃e) for some edge ẽ associated
with e (recall that if ẽ1 ∼ e and ẽ2 ∼ e then õ(̃e1) = õ(̃e2)). We will call such a stream, built
from the graph G, a discrete stream. A discrete stream has three particular properties: g takes its
values in N/k, o(〈x, y〉) = 〈〈x, y〉〉 as soon as we have x ∈ F0 and y ∈ B (y 6∈ F0) or y ∈ Fh(n)
and x ∈ B r Fh(n), and g(e) = 0 if e has both endpoints in Fh(n).

Let λ be in R+. For a discrete stream (g, o) and h ∈ Z we define the truncated projection of
g on the vertical edges that intersect the hyper-plane {(x1, . . . , xd) ∈ Rd

| xd = h + 1/2} by

∀x ∈ Zd−1
∩ ]0, n]

d−1 π
λ,n
h (g, x) = g (〈(x, h), (x, h + 1)〉) ∧

(
bλnd−1

c + 1
)
.

Thanks to the properties of discrete streams, we can state the following lemma:

Lemma 1 (Junction of Two Boxes). Let B1 = ]0, n]
d−1

×]0, h(n)], B2 = ]0, n]
d−1

×]h(n),
2h(n)]. If there exist a discrete stream (g1, o1) in B1 and a discrete stream (g2, o2) in B2 such
that

flow(g1, o1) ≥ λnd−1 and flow(g2, o2) ≥ λnd−1

and

∀x ∈ Zd−1
∩ ]0, n]

d−1 π
λ,n
h(n)−1(g1, x) = π

λ,n
h(n)(g2, x),

then φk
B1∪B2

≥ λnd−1.
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Proof. To prove this lemma, we consider two cases:

1. If for all e = 〈(x, h(n) − 1), (x, h(n))〉 with x ∈ Zd−1
∩ ]0, n]

d−1 we have g1(e) ≤ λnd−1,
then we can define the following discrete stream (gtot, otot):

• gtot(e) =

{
g1(e) if e ⊂ B1
g2(e) if e ⊂ B2
0 otherwise,

• otot(e) =

{
o1(e) if e ⊂ B1
o2(e) if e ⊂ B2
ô(e) otherwise,

where ô is still some arbitrarily determined orientation. We can check that (gtot, otot) is
a discrete stream thanks to the properties of (g1, o1) and (g2, o2); in particular if e1 =

〈(x, h(n) − 1), (x, h(n))〉 and e2 = 〈(x, h(n)), (x, h(n) + 1)〉 with x ∈ ]0, n]
d−1, we have

g(e1) = g(e2), g(e) = 0 for all other edges e = 〈(x, h(n)), ·〉, o(e1) = 〈〈(x, h(n) −

1), (x, h(n))〉〉 and o(e2) = 〈〈(x, h(n)), (x, h(n) + 1)〉〉, and hence the balance equation is
satisfied. Moreover flow(gtot, otot) = flow(g1, o1) = flow(g2, o2) so φk

B1∪B2
≥ λnd−1.

2. Suppose there exists an edge e = 〈(x, h(n) − 1), (x, h(n))〉 such that g1(e) > λnd−1.
The discrete stream (g1, o1) corresponds to k × flow(g1, o1) disjoint paths from F0 to
Fh(n) in B1 for the modified graph G. The inequality g1(e) > λnd−1 implies that at least
q = dλnd−1ke of these paths, that we will denote by l1, . . . , lq , go out of B1 through
e. The equality πλ,nh(n)−1(g1, x) = π

λ,n
h(n)(g2, x) implies that g2( f ) > λnd−1 where f =

〈(x, h(n)), (x, h(n)+1)〉. By the same argument, we can find at least q disjoint paths l ′1, . . . , l
′
q

from Fh(n) to F2h(n) in B2 for G, all going in B2 through the edge f . Now we can glue
together these q paths l1, . . . , lq in B1 with the q paths l ′1, . . . , l

′
q in B2 because e and f

are adjacent. In this way we obtain q disjoint paths from F0 to F2h(n) in B1 ∪ B2 for G,
and by considering the corresponding discrete flow (gtot, otot) in the initial graph we obtain
φk

B1∪B2
≥ flow(gtot, otot) = dλnd−1ke/k. �

We define the boundary conditions of the discrete stream (g, o) in the cylinder
B((n, . . . , n), h(n)) as

Π λ,n(g) =

(
Π λ,n

1 (g),Π λ,n
2 (g)

)
=

((
π
λ,n
0 (g, x), x ∈ Zd−1

∩ ]0, n]
d−1
)
,
(
π
λ,n
h(n)−1(g, x), x ∈ Zd−1

∩ ]0, n]
d−1
))
.

The number N k
λ,n of possible boundary conditions for discrete streams satisfies

N k
λ,n ≤

(
k
(
bλnd−1

c + 1
)

+ 1
)2nd−1

.

3.2. Existence of the limit for φkn
nd−1,h(n)

In this section, we will prove the existence of the limit appearing in the Theorem 2 with φk

instead of φ. We denote φ(n,...,n),h(n) by φnd−1,h(n), and we define

µ = sup{λ | F([0, λ[) < 1}.

We will prove the following result:

Theorem 4. For every pair (h, (χn, n ∈ N)) with h : N → N a function such that
limn→+∞ h(n) = +∞ and (χn, n ∈ N) a non-decreasing sequence of integers such that
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limn→+∞ χn = +∞, satisfying

lim
n→+∞

χn ln n
h(n)

= 0, (2)

for every λ in R+ r {µ} (or in R+ if µ is infinite), the limit

ψ̃(λ, h, (χn)) = lim
n→+∞

−
1

nd−1h(n)
ln P

[
φ2χn

nd−1,h(n) ≥ λnd−1
]

exists. Moreover ψ̃ is independent of such a pair (h, (χn)), i.e., if (h, (χn)) and (h′, (χ ′
n)) satisfy

all the previous conditions, then ψ̃(λ, h, (χn)) = ψ̃(λ, h′, (χ ′
n)) for all λ in R+ r{µ} (or in R+).

We will thus denote this limit by ψ̃(λ).

We now prove Theorem 4 by considering different cases.

• λ > µ: Then

∀k ∈ N,∀n ∈ N P
[
φk

nd−1,h(n) ≥ λnd−1
]

= 0,

so for every sequence (χn) we have

ψ̃(λ, h, (χn)) = lim
n→∞

−
1

nd−1h(n)
ln P

[
φ2χn

nd−1,h(n) ≥ λnd−1
]

= +∞ = ψ̃(λ).

• λ < µ: We take N , n ∈ N with n ≤ N and let N = nm + r be the Euclidean algorithm. We
consider two functions h, h̃ : N → N, with limn→∞ h(n) = limn→∞ h̃(n) = +∞, and let
h̃(N ) = h(n)m̃ + r̃ be the Euclidean algorithm. We take k ∈ N which will be chosen later.
We want to compare φk

N d−1 ,̃h(N )
and φk

nd−1,h(n).

The idea is to divide B((N , . . . , N ), h̃(N )) into md−1 boxes which are disjoint translates
of B((n, . . . , n), h̃(N )), then to cut again B((n, . . . , n), h̃(N )) into m̃ disjoint translates of the
elementary box B((n, . . . , n), h(n)) and to use here the lemma of the junction (see Fig. 2).

We define two quantities that will allow us to deal with the edges belonging to the part of
φk

N d−1 ,̃h(N )
that does not enter in any translate of φk

nd−1,h(n). On one hand, by the definition of µ,
λ < µ implies that F([0, λ]) < 1, so there exists a positive η such that

F([0, λ+ η]) < 1, i.e., p(η) = P[t (e) ≥ λ+ η] > 0.

It follows that there exists k0 such that

∀k ≥ k0 P
[
tk(e) ≥ λ+

η

2

]
≥ p(η) > 0.

On the other hand, if we define

γk = max{p ∈ N | P[t (e) ≥ pk] > 0} ∧

(
bλknd−1

c + 1
)
,

then we have

pk = P [t (e) ≥ γkk] > 0.

Let k ≥ k0 in N. For i1, . . . , id−1 in {0, . . . ,m}, we define

Bi1,...,id−1 =

d−1∏
j=1

]i j n, (i j + 1)n]×]0, h̃(N )]
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Fig. 2. Comparison between φk
Nd−1 ,̃h(N )

and φk
nd−1,h(n)

.

and

Bmd−1+1 = B((N , . . . , N ), h̃(N ))r
m−1⋃

i1,...,id−1=0

Bi1,...,id−1 .

Remark 3. It is easy (and very useful) to see that if Ci×]0, h], i = 1, 2, are two cylinders with
disjoint bases C1, C2 ⊂ Rd−1 having a common side and with maximal flows φi , i = 1, 2, the
maximal flow through (C1 ∪ C2)×]0, h] is at least φ1 + φ2.

We deduce from this remark that if for every i1, . . . , id−1 in {0, . . . ,m − 1} we have
φk

Bi1,...,id−1
≥ λnd−1 and if all the vertical edges e in Bmd−1+1 satisfy t (e) ≥ (λ+ η), we have

φk
N d−1 ,̃h(N )

≥ λN d−1.

By independence we obtain

P
[
φk

N d−1 ,̃h(N )
≥ λN d−1

]
≥

m−1∏
i1,...,id−1=0

P
[
φk

Bi1,...,id−1
≥ λnd−1

]
× p(η)(d−1)N d−2r h̃(N )

≥ P
[
φk

nd−1 ,̃h(N )
≥ λnd−1

]md−1

× p(η)(d−1)N d−2r h̃(N ).

We study next φk
nd−1 ,̃h(N )

. We define for j in {0, . . . , (m̃ − 1)}

B ′

j = ]0, n]
d−1

×] jh(n), ( j + 1)h(n)]
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and

B ′

m̃ = B((n, . . . , n), h̃(N ))r
m̃−1⋃
j=0

B ′

j .

The probability of the boundary conditions Π ∈ {0, 1/k, 2/k, . . . , (bλnd−1
c + 1)/k}

2nd−1
in

B is the probability that there exists a discrete stream (g, o) in B satisfying Π λ,n(g) = Π .
Remember that every discrete stream (g, o) must satisfy the balance equation, so once we
know that such a discrete stream exists, flow(g, o) is just given by the projection of g on
the vertical edges that intersect the hyper-plane {(x1, . . . , xd) ∈ Rd

| xd = h(n) − 1/2},
so Π λ,n(g) contains enough information for us to know whether flow(g, o) is bigger than
λnd−1 or not. We denote by Π k

λ,n = (Π k
λ,n,1,Π

k
λ,n,2) one of the boundary conditions of

highest probability in B((n, . . . , n), h(n)) which corresponds to a discrete stream (g, o) such
that flow(g, o) ≥ λnd−1 and we define (Π k

λ,n)
∗

= (Π k
λ,n,2,Π

k
λ,n,1). The model is invariant under

reflections in the coordinate hyperplanes or translates of these hyperplanes, so by symmetry we
have P[Π k

λ,n] = P[(Π k
λ,n)

∗
]. Using the lemma of junction (Lemma 1), we know that if:

• we can define a discrete stream in B ′

0 with boundary conditions Π k
λ,n ,

• we can define a discrete stream in B ′

1 with boundary conditions (Π k
λ,n)

∗,
• we can define a discrete stream in B ′

2 with boundary conditions Π k
λ,n ,

• · · ·,
• and all the vertical edges e in B ′

m̃ satisfy t (e) ≥ γkk,

then φk
nd−1 ,̃h(N )

≥ λnd−1.

Remark 4. It is not sufficient to impose here that all the vertical edges e in B ′

m̃ satisfy t (e) ≥ λ,
because the amount of fluid that goes out of B ′

m̃−1 at its top through one fixed edge f can exceed
λ – we have no information about Π k

λ,n – and we cannot accept to lose fluid at the exit of f ,
unless it exceeds λnd−1. This is why we introduced γk .

Now by independence we obtain

P
[
φk

nd−1 ,̃h(N )
≥ λnd−1

]
≥ P

[
Π k
λ,n

]m̃
× pnd−1r̃

k , (3)

whence

P
[
φk

N d−1 ,̃h(N )
≥ λN d−1

]
≥ P

[
Π k
λ,n

]md−1m̃
× pnd−1r̃md−1

k p(η)(d−1)N d−2r h̃(N ). (4)

Let 5 be the set of all the boundary conditions corresponding to a discrete stream (g, o) such
that flow(g, o) ≥ λnd−1. We have seen that a maximal flow φk is always realized by a discrete
stream, so we have

P
[
φk

nd−1,h(n) ≥ λnd−1
]

≤ P

[ ⋃
Π∈5

Π

]
≤

∑
Π∈5

P[Π ]

≤ N k
λ,n × P

[
Π k
λ,n

]
,

where we recall that N k
λ,n is the number of possible boundary conditions for discrete streams.
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To obtain later a result independent of k, we need to consider two sequences (kn, n ∈ N) and
(̃kn, n ∈ N) such that limn→∞ kn = limn→∞ k̃n = +∞. We want to get rid of N k

λ,n . We recall
that

N kn
λ,n ≤

(
kn

(
bλnd−1

c + 1
)

+ 1
)2nd−1

.

Under the condition

lim
n→∞

ln(knn)
h(n)

= 0 (5)

we have

lim sup
n→∞

1
nd−1h(n)

ln P
[
φ

kn
nd−1,h(n) ≥ λnd−1

]
≤ lim sup

n→∞

1
nd−1h(n)

ln P
[
Π kn
λ,n

]
. (6)

Consider (4) again. This equation is satisfied for every k ≥ k0, so it is true for kn with a fixed
n not too small. We need to compare tkn with t k̃N , but the relation is simple only if k̃N is divisible
by kn . That is why from now on we will consider only sequences (kn, n ∈ N) and (̃kn, n ∈ N)
such that

∀n ∈ N kn = 2χn and k̃n = 2χ̃n

where (χn, n ∈ N) and (χ̃n, n ∈ N) are non-decreasing sequences of integers. Of course the
condition limn→+∞ kn = limn→+∞ k̃n = +∞ implies limn→+∞ χn = limn→+∞ χ̃n = +∞. In
that case for large N we have χ̃N ≥ χn , so k̃N is divisible by kn and then t k̃N ≥ tkn , whence

φ
k̃N
N d−1 ,̃h(N )

≥ φ
kn
N d−1 ,̃h(N )

. (7)

We use (4) with k = kn = 2χn and (7) to obtain for n and N large enough

1
N d−1h̃(N )

ln P
[
φ

k̃N
N d−1 ,̃h(N )

≥ λN d−1
]

≥
1

N d−1h̃(N )
ln P

[
φ

kn
N d−1 ,̃h(N )

≥ λN d−1
]

≥
md−1m̃

N d−1h̃(N )
ln P

[
Π kn
λ,n

]
+

nd−1md−1̃r

N d−1h̃(N )
ln pkn

+
(d − 1)N d−2r h̃(N )

N d−1h̃(N )
ln p(η).

We send first N to +∞ and then n to +∞; this gives us with the help of (6)

lim inf
N→∞

1
N d−1h̃(N )

ln P
[
φ

k̃N
N d−1 ,̃h(N )

≥ λN d−1
]

≥ lim sup
n→∞

1
nd−1h(n)

ln P
[
Π kn
λ,n

]
≥ lim sup

n→∞

1
nd−1h(n)

ln P
[
φ

kn
nd−1,h(n) ≥ λnd−1

]
.

By considering the case h = h̃ and kn = k̃n = 2χn , under the condition (5) on h and (kn) – i.e.,
the condition (2) on h and (χn) – we obtain the existence of the limit

ψ̃(λ, h, (χn)) = lim
n→∞

−
1

nd−1h(n)
ln P

[
φ2χn

nd−1,h(n) ≥ λnd−1
]
.
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For general h, h̃, χ and χ̃ we obtain that ψ̃(λ) is independent of the pair (h, (χn)) satisfying (2),
so Theorem 4 is proved.

Remark 5. Thanks to this independence, we can prove some properties of ψ̃ by studying the
behavior of the limit involved in Theorem 4 for specific choices of pairs (h, (χn)).

Moreover, still in the case λ < µ, we have immediately that for n sufficiently large

P
[
φ

kn
nd−1,h(n) ≥ λnd−1

]
≥ P

[
all the vertical edges e in B((n, . . . , n), h(n)) satisfy t (e) ≥ (λ+ η)

]
≥ p(η)n

d−1h(n),

and thus

ψ̃(λ) ≤ − ln p(η) < +∞.

If the capacity t of an edge is bounded by a constant M , we can simply define

∀x ∈ Zd−1
∩ ]0, n]

d−1 π
λ,n
h (g, x) = g (〈(x, h), (x, h + 1)〉)

without truncating g because g is already bounded by M . Then the number of possible boundary
conditions N k

n satisfies

N k
n ≤ (k(M + 1))2nd−1

so we can replace the hypothesis (5) by

lim
n→∞

ln kn

h(n)
= 0. (8)

Remark 6. We do not study the case λ = µ for the moment; it is more appropriate to study it
with the continuity of ψ̃ .

3.3. Convexity of ψ̃

Let λ1 ≤ λ2 < µ, and α ∈]0, 1[. We want to show that

ψ̃ (αλ1 + (1 − α)λ2) ≤ αψ̃(λ1)+ (1 − α)ψ̃(λ2). (9)

We know that ψ̃ does not depend on the couple (h, (χn)) satisfying (2), so we can take h(n) = n
to simplify the notation and we will take an adapted (χn). First we fix k in N; we will make it
vary later. We fix n, m in N, and take N = nm. We set u = bαmd−1

c. We keep the same notation
as in the previous section for Bi1,...,id−1 , i1, . . . , id−1 in {0, . . . ,m − 1}. We use the lexicographic
order to order {(i1, . . . , id−1), i j ∈ {0, . . . ,m − 1}, 1 ≤ j ≤ (d − 1)} and use this to rename
these cylinders (B j , 1 ≤ j ≤ md−1). On the event{

∀ j ∈ {1, . . . , u}, φk
B j

≥ λ1

}
∩

{
∀ j ∈ {(u + 1), . . . ,md−1

}, φk
B j

≥ λ2

}
we have (see Remark 3)

φk
N d−1,N ≥

(
uλ1nd−1

+ (md−1
− u)λ2nd−1

)
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≥ N d−1
( u

md−1 λ1 +

(
1 −

u
md−1

)
λ2

)
≥ N d−1 (αλ1 + (1 − α)λ2)

because λ1 < λ2, so

P
[
φk

N d−1,N ≥ N d−1 (αλ1 + (1 − α)λ2)
]

≥ P
[
φk

nd−1,N ≥ λ1nd−1
]u

× P
[
φk

nd−1,N ≥ λ2nd−1
]md−1

−u
.

As in the previous section (see (3)), we have

P
[
φk

nd−1,N ≥ λi nd−1
]

≥ P
[
Π k
λi ,n

]m
i = 1, 2

so

1
N d ln P[φk

N d−1,N ≥ N d−1 (αλ1 + (1 − α)λ2)]

≥
md−1

N d

( u
md−1 ln P

[
Π k
λ1,n

]
+

(
1 −

u
md−1

)
ln P

[
Π k
λ2,n

])
.

We now make k vary, kn = 2χn with (n, (χn)) satisfying the condition (2) (for example
χn = bn1/2

c), and we use the property φ2χN

N d−1,N ≥ φ2χn

N d−1,N for large N ; we first send N to
+∞ and then n to +∞. We proved in the previous section that

lim sup
n→∞

1
nd−1h(n)

ln P
[
Π 2χn
λ,n

]
= −ψ̃(λ),

so we obtain (9).

3.4. Continuity of ψ̃

We want to show that ψ̃ is continuous on [0, µ] when µ is finite or on [0,+∞[ when µ is
infinite (remember that ψ̃ is infinite on ]µ,+∞[). The function ψ̃ is convex and finite on [0, µ[,
so ψ̃ is continuous on ]0, µ[. We assume then that 0 < µ: ψ̃(0) = 0 and ψ̃ is non-negative on
R+, so ψ̃ is right continuous at 0. We assume then that 0 < µ < +∞ (there is nothing to prove
otherwise). The only point which remains to study is the left continuity of ψ̃ at µ. Remember
that we did not define ψ̃ at µ; we will do it now. We set

qµ = P[t (e) = µ].

Notice that qµ can be null. We remark that

P
[
φnd−1,h(n) ≥ µnd−1

]
= P

[
all the vertical edges e in B((n, . . . , n), h(n)) satisfy t (e) = µ

]
= qnd−1h(n)

µ ,

so

lim
n→∞

−
1

nd−1h(n)
ln P

[
φnd−1,h(n) ≥ µnd−1

]
= − ln qµ



1222 M. Théret / Stochastic Processes and their Applications 117 (2007) 1208–1233

is finite as soon as qµ > 0. Unfortunately, the existence of an atom for the law of t (e) at µ does
not imply the existence of an atom for the law of tk(e) at µ, so we can have qµ > 0 and

lim
n→∞

−
1

nd−1h(n)
ln P

[
φ

kn
nd−1,h(n) ≥ µnd−1

]
= +∞.

This is why we did not study ψ̃(µ) previously. We define (for every pair (h, (χn)) as in
Theorem 4)

ψ̃(µ) = − ln qµ,

which can eventually be infinite.
Now we want to check that ψ̃ is left continuous at µ (for qµ = 0 we will show that

lim ψ̃(λ) = +∞ when λ ≤ µ and λ → µ). The idea of the proof is simple: if the flow in
a cylinder is high, it must be high in each horizontal section of this cylinder. We fix ε > 0,
and we take h(n), kn →n→+∞ +∞, kn = 2χn , satisfying the condition (5). We define for i in
{0, . . . , (h(n)− 1)}

Ci = ]0, n]
d−1

×]i, i + 1]

and we denote by t1, . . . , tnd−1 the capacities of the nd−1 vertical edges in C0. We have

P
[
φ

kn
nd−1,h(n) ≥ (µ− ε)nd−1

]
≤ P

[
h(n)−1⋂

i=0

{φ
kn
Ci

≥ (µ− ε)nd−1
}

]

≤ P
[
φ

kn
nd−1,1 ≥ (µ− ε)nd−1

]h(n)
,

and we know that

φ
kn
nd−1,1 =

nd−1∑
j=1

tkn
j ≤

nd−1∑
j=1

t j ,

so we have

P
[
φ

kn
nd−1,h(n) ≥ (µ− ε)nd−1

]
≤ P

nd−1∑
j=1

(t j − µ) ≥ −εnd−1

h(n)

.

For every positive ρ we obtain

P
[
φ

kn
nd−1,h(n) ≥ (µ− ε)nd−1

]
≤ eρεn

d−1h(n)E[eρ(t−µ)]nd−1h(n).

This expectation is well defined, because (t − µ) ≤ 0. Let η > 0. Since

lim
ρ→+∞

E[eρ(t−µ)] = qµ,

then there exists ρ0 such that

∀ρ ≥ ρ0 E[eρ(t−µ)] ≤ (qµ + η).

It follows that
1

nd−1h(n)
ln P

[
φ

kn
nd−1,h(n) ≥ (µ− ε)nd−1

]
≤ ρ0ε + ln(qµ + η),
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so

ψ̃(µ− ε) ≥ −ρ0ε − ln(qµ + η),

whence

lim
ε→0

ψ̃(µ− ε) ≥ − ln(qµ + η).

This is true for every positive η, so

lim
ε→0

ψ̃(µ− ε) ≥ lim
η→0

− ln(qµ + η) = − ln qµ = ψ̃(µ).

If qµ = 0, we have the desired equality. Otherwise, we remark that for every positive ε we have

P
[
φ

kn
nd−1,h(n) ≥ (µ− ε)nd−1

]
≥ P

[
all the vertical edges e in B((n, . . . , n), h(n)) satisfy tkn (e) ≥ (µ− ε)

]
≥ P

[
tkn (e) ≥ µ− ε

]nd−1h(n)
.

Now for kn sufficiently large we have

P
[
tkn (e) ≥ µ− ε

]
≥ P

[
t (e) ≥ µ−

ε

2

]
≥ qµ,

and thus

∀ε > 0 ψ̃(µ− ε) ≤ − ln qµ = ψ̃(µ).

This ends the proof of the continuity of ψ̃ on [0, µ] (or [0,+∞[ if µ is infinite). We deduce
immediately from this continuity that ψ̃ is good.

3.5. Existence of the limit for φnd−1,h(n)

We come back to the existence of the limit involving φ in Theorem 2. We consider three
cases.

• λ > µ: Then

∀n ∈ N P
[
φnd−1,h(n) ≥ λnd−1

]
= 0,

so the limit involved in Theorem 2 exists and satisfies

ψ(λ) = lim
n→∞

−
1

nd−1h(n)
ln P

[
φnd−1,h(n) ≥ λnd−1

]
= +∞ = ψ̃(λ).

• λ = µ: As we saw by studying the continuity of ψ̃ , we have

ψ(µ) = lim
n→∞

−
1

nd−1h(n)
ln P

[
φnd−1,h(n) ≥ µnd−1

]
= − ln qµ = ψ̃(µ)

by definition of ψ̃(µ).
• λ < µ: We will compare φkn

nd−1,h(n) with φnd−1,h(n). We fix k ∈ N. We know that t (e) ≥ tk(e)

so φnd−1,h(n) ≥ φk
nd−1,h(n). For a set of edges E , we denote by V k(E) the quantity

∑
e∈E tk(e).
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Thanks to the max-flow min-cut theorem we obtain

φk
nd−1,h(n) = min{V k(E) | E is an (F0, Fh(n))-cut}.

Let E0 be an (F0, Fh(n))-cut realizing this minimum (it may depend on k). Then

φk
nd−1,h(n) = V k(E0)

=

∑
e∈E0

tk(e)

≥

∑
e∈E0

t (e)−
|E0|

k

≥ min{V (E) | E is an (F0, Fh(n))-cut} − nd−1 h(n)
k

≥ φnd−1,h(n) − nd−1 h(n)
k
.

We fix λ ≥ 0, and we now make k vary. We take kn = 2χn (with (χn) a non-decreasing sequence
of integers such that limn→+∞ χn = +∞) satisfying with h the condition (5). If the sequence
(kn) satisfies also the condition

lim
n→∞

h(n)
kn

= 0 (10)

then we have for every λ′ < λ the existence of n0 ∈ N such that

∀n ≥ n0 λ−
h(n)
kn

≥ λ′.

We deduce that under the condition (10) we have for all n ≥ n0

P

φkn
nd−1,h(n)

nd−1 ≥ λ

 ≤ P
[
φnd−1,h(n)

nd−1 ≥ λ

]
≤ P

φkn
nd−1,h(n)

nd−1 ≥ λ′

 .
We conclude thanks to the hypothesis (5) that

ψ̃(λ) ≥ lim sup
n→∞

(�) ≥ lim inf
n→∞

(�) ≥ ψ̃(λ′)

where

(�) = −
1

nd−1h(n)
ln P

[
φnd−1,h(n) ≥ λnd−1

]
.

Sending λ′ to λ, thanks to the continuity of ψ̃ in [0, µ[, we obtain the existence of the limit

ψ(λ, h) = lim
n→∞

−
1

nd−1h(n)
ln P

[
φnd−1,h(n) ≥ λnd−1

]
= ψ̃(λ).

Moreover we know that this limit is independent of h satisfying limn→+∞ h(n) = +∞ and such
that there exists a non-decreasing sequence of integers (χn), limn→+∞ χn = +∞ for which the
pair (h, (2χn )) satisfies (5) and (10): we denote it by ψ(λ). It is finally obvious that the existence
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of such a sequence (χn) is equivalent to the condition

lim
n→∞

h(n)
ln n

= +∞

(let χn = b2 ln h(n)/ ln 2c for example). This ends the proof of the existence of the limit ψ in
Theorem 2, and we have ψ = ψ̃ so the properties proved for ψ̃ still hold for ψ .

If the capacity t of an edge is bounded, we can replace the condition (5) by (8); in that case,
as soon as

lim
n→∞

h(n) = +∞

we can find a sequence (kn) = (2χn ) satisfying (8) and (10), so the limit exists.

3.6. The function ψ vanishes on [0, ν(F)]

This could be proved easily thanks to Theorem 1 in dimension 3 and with the hypothesis on F
required in Theorem 1, but we prefer to prove it directly in the general case without Theorem 1.

We suppose now that E[t] is finite. We suppose that ν > 0 (otherwise there is nothing to
prove), and we take λ = ν − ε, with a positive ε. Remark 5 holds for ψ too: we know that ψ
is independent of h satisfying limn→+∞ h(n)/ ln n = +∞ so we can make a specific choice of
function h and study the corresponding limit to show a general result on ψ . We take h → ∞

such that

lim
n→∞

h(n)
n

= 0 and lim
n→∞

h(n)
ln n

= +∞. (11)

We recall that

τnd−1 = τ(]0, n]
d−1) = inf{V (E) | E is a cut over]0, n]

d−1 and E satisfies (∗)},

where (∗) is defined at the end of the Section 2. We define for S a hyper-rectangle the variable

τ(S, k) = inf{V (E) | E is a cut over S, E satisfies (∗) and E ⊂ S×]−k, k]},

and

τnd−1,k = τ(]0, n]
d−1, k).

We define the set of edges F as

F = {〈x, y〉 | x ∈ B, y 6∈ B and 〈x, y〉 ∈ Rd−1
× [1, h(n)]}.

This is the set of the edges through which some fluid could escape from B somewhere other than
at its bottom or at its top. We denote by |F | the cardinality of F , |F | = 2(d − 1)nd−2h(n). We
consider the larger cylinder

B ′
= ]−1, n + 1]

d−1
×]0, h(n)],

and we define

τ ′

(n+2)d−1,h(n) = τ
(
]−1, n + 1]

d−1, h(n)
)
.

We finally define the set of edges

F ′
= {e ∈ B ′ r B | e is vertical, e ∈ Rd−1

× [0, 1]}
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of cardinality |F ′
| = 2(d − 1)(n + 1)d−2 (see Fig. 3 in dimension 2). We remark that if E

is an (F0, Fh(n))-cut in B((n, . . . , n), h(n)), the set of edges E ∪ F ∪ F ′ contains a cut over
]−1, n + 1]

d−1 satisfying the condition (∗) for S = ]−1, n + 1]
d−1, so

τ ′

(n+2)d−1,h(n) − φnd−1,h(n) ≤

∑
e∈F

t (e)+

∑
e∈F ′

t (e).

We obtain for M > E[t]

P
[
φnd−1,h(n)

nd−1 ≥ λ

]
≥ P

[{
φnd−1,h(n)

nd−1 ≥ λ

}
∩

{
τ ′

(n+2)d−1,h(n) − φnd−1,h(n)

|F | + |F ′|
≤ M

}]

≥ P

[{
τ ′

(n+2)d−1,h(n)

nd−1 ≥ λ+ M
|F | + |F ′

|

nd−1

}

∩

{
τ ′

(n+2)d−1,h(n) − φnd−1,h(n)

|F | + |F ′|
≤ M

}]
.

We remark that τ ′

(n+2)d−1,h(n) is equal in law to τ(n+2)d−1,h(n), so

P
[
φnd−1,h(n)

nd−1 ≥ λ

]
≥ 1 −

(
P
[
τ(n+2)d−1,h(n)

nd−1 < λ+ M
|F | + |F ′

|

nd−1

]

+ P

[
τ ′

(n+2)d−1,h(n) − φnd−1,h(n)

|F | + |F ′|
> M

])

≥ 1 −

(
P
[τ(n+2)d−1

nd−1 < ν −
ε

2

]
+ P

[
1

|F | + |F ′|

∑
e∈F∪F ′

t (e) ≥ M

])
for n sufficiently large, thanks to (11) and the fact that τ(n+2)d−1,h(n) ≥ τ(n+2)d−1 . We know that
M > E[t] and limn→∞(τ(n+2)d−1/nd−1) = ν almost surely, so

lim
n→∞

P
[
φnd−1,h(n)

nd−1 ≥ λ

]
= 1,

which leads to

ψ(λ) = 0.

To conclude that ψ(ν) = 0 we need only to check that ψ is left continuous at ν, i.e., to be sure
that ν ≤ µ. Suppose that ν > µ; then P[t ≥ ν] = 0, so E[t] < ν, and we can find a positive ε
such that E[t] < ν − ε. Now if we denote by (̃ti , i = 1, . . . , nd−1) the capacities of the vertical
edges in ]0, n]

d−1
×]0, 1], we have

P
[τnd−1

nd−1 ≥ ν − ε
]

≤ P


nd−1∑
i=1

t̃i

nd−1 ≥ ν − ε

 −→
n→∞

0.
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Fig. 3. Comparison between φ and τ in dimension 2.

This is absurd because (τnd−1/nd−1) converges toward ν almost surely. We conclude that ν ≤ µ

and that ψ(ν) = 0.

3.7. The function ψ is positive on ]ν(F),+∞[

We suppose that there exists a positive θ such that
∫
[0,+∞[

eθx dF(x) is finite. The proof is
based on the Cramér theorem in R.

Let λ = ν + ε, for a positive ε. We fix k, N ∈ N; we will choose them later. We define

u =

⌊
h(N )

2k

⌋
.

Just as in the study of the continuity of ψ , by cutting B((N , . . . , N ), h(N )) into horizontal
sections of height 2k, we have

P
[
φN d−1,h(N ) ≥ (ν + ε)N d−1

]
≤ P

[
φN d−1,2k ≥ (ν + ε)N d−1

]u

≤ P
[
φB(k) ≥ (ν + ε)N d−1

]u
,

where B(k) = N d−1
×] − k, k], because φN d−1,2k and φB(k) are equal in law.

Now E[τ(S, k)] is subadditive in the sense that for disjoint hyper-rectangles S1 and S2 having
a common side, we have

τ(S1 ∪ S2, k) ≤ τ(S1, k)+ τ(S2, k).

Moreover E[τ(S, k)] is non-negative and finite (because E[t] < ∞), so by a classical subadditive
argument we have the existence of

νk = lim
n→∞

E[τnd−1,k]

nd−1
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and we know that

νk = inf
n

E[τnd−1,k]

nd−1 .

The sequence (νk, k ∈ N) is non-increasing in k and non-negative, so it converges; we denote by
ν̃ its limit: ν̃ = limk→∞ νk = infk νk . By the same subadditive argument, we have

lim
n→∞

E[τnd−1 ]

nd−1 = ν = inf
n

E[τnd−1 ]

nd−1 .

We obtain

ν̃ = inf
k

inf
n

E[τnd−1,k]

nd−1 = inf
n

inf
k

E[τnd−1,k]

nd−1 = ν,

and thus we can choose k0 such that νk0 ≤ ν + ε/4. Then we choose n0 such that

E[τnd−1
0 ,k0

]

nd−1
0

< νk0 +
ε

2
,

and we fix N = n0m, with m ∈ N. We have

φB(k0) ≤ τN d−1,k0
≤

m−1∑
i1,...,id−1=0

τ

(
d−1∏
j=1

]i j n0, (i j + 1)n0], k0

)
.

The variables (τ (
∏d−1

j=1]i j n0, (i j + 1)n0], k0), 0 ≤ i1, . . . , id−1 ≤ m − 1) are independent and
identically distributed, with the same law as τnd−1

0 ,k0
. Their common expectation is

E[τnd−1
0 ,k0

] ≤

(
νk0 +

ε

2

)
nd−1

0 .

Moreover for some positive θ we know that E[eθ t
] is finite so

E
[

e
θτ

nd−1
0 ,k0

]
≤ E

e
θ

nd−1
0∑
i=1

t̃i

 ≤ E
[
eθ t ]nd−1

0 < ∞,

where (̃ti , 1 ≤ i ≤ nd−1
0 ) are still the capacities of the vertical edges in ]0, n0]

d−1
×]0, 1]. We can

thus apply the Cramér theorem in R (see [5]), which states the existence of a negative constant
c(n0, k0, ε) such that

lim
m→∞

1
md−1 ln P

 1
md−1

m−1∑
i1,...,id−1=0

τ

(
d−1∏
j=1

]i j n0, (i j + 1)n0], k0

)
nd−1

0

≥ νk0 +
3ε
4


= c(n0, k0, ε).

It follows that for u = bh(N )/(2k0)c we have

1
N d−1h(N )

ln P
[
φN d−1,h(N ) ≥ (ν + ε)N d−1

]
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≤
u

N d−1h(N )
ln P

[
φB(k0) ≥

(
νk0 +

3ε
4

)
N d−1

]
≤

umd−1

N d−1h(N )
1

md−1

× ln P

 1
md−1

m−1∑
i1,...,id−1=0

τ

(
d−1∏
j=1

]i j n0, (i j + 1)n0], k0

)
nd−1

0

≥ νk0 +
3ε
4


−→

m→∞

c(n0, k0, ε)

2k0nd−1
0

< 0,

so ψ(λ) > 0. This ends the proof of Theorem 2.

Remark 7. The existence of a positive θ satisfying E[eθ t
] < ∞ is probably not a necessary

condition for having the positivity of the function ψ on ]ν,+∞[. However, a condition on the
moments of t is necessary. Indeed, if the tail of the distribution of t is too big, the probability
of having a vertical path of edges with big capacities (bigger than λnd−1) is large; thus the
probability of having φnd−1,h(n) ≥ λnd−1 cannot decay exponentially fast in nd−1h(n).

4. Proof of Theorem 3

This is an adaptation of the proof of a large deviation principle in [3]. We take h such that
h(n)/ ln n → ∞ (we can do this again without loss of generality because ψ is independent of h)
and we suppose that there exists a positive θ such that E[eθ t

] is finite. We define

β = inf{v | P[t (e) ≤ v] > 0}.

We remark that φ(n,...,n),h(n)/nd−1 takes its values in [β,+∞[. We have to prove that:

• for any closed subset F ⊂ [β,+∞[, we have

lim sup
n→∞

1
nd−1h(n)

ln P
[
φ(n,...,n),h(n)

nd−1 ∈ F
]

≤ − inf
F
ψ,

• for any open subset O ⊂ [β,+∞[, we have

lim inf
n→∞

1
nd−1h(n)

ln P
[
φ(n,...,n),h(n)

nd−1 ∈ O
]

≥ − inf
O
ψ.

By definition of β, for all positive η, we have

sβ(η) = P[t (e) ≤ β + η] > 0.

4.1. Upper bound

Let F be a closed subset of [β,+∞[, and a = infF . Clearly

P
[
φnd−1,h(n)

nd−1 ∈ F
]

≤ P
[
φnd−1,h(n)

nd−1 ≥ a
]
,
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so

lim sup
n→∞

1
nd−1h(n)

ln P
[
φnd−1,h(n)

nd−1 ∈ F
]

≤ −ψ(a) = − inf
F
ψ

because ψ is non-decreasing on R+.

4.2. Lower bound

We shall prove the following local lower bound:

∀α ∈ [β,+∞[,∀ε > 0

lim inf
n→∞

1
nd−1h(n)

ln P
[
φnd−1,h(n)

nd−1 ∈]α − ε, α + ε[

]
≥ −ψ(α). (12)

If (12) holds, we have the desired lower bound. Indeed, if O is an open subset of [β,+∞[, for
every α in O there exists a positive ε such that ]α − ε, α + ε[⊂ O, whence

lim inf
n→∞

1
nd−1h(n)

ln P
[
φnd−1,h(n)

nd−1 ∈ O
]

≥ lim inf
n→∞

1
nd−1h(n)

ln P
[
φnd−1,h(n)

nd−1 ∈]α − ε, α + ε[

]
≥ −ψ(α).

By taking the supremum over α in O, we obtain

lim inf
n→∞

1
nd−1h(n)

ln P
[
φnd−1,h(n)

nd−1 ∈ O
]

≥ − inf
O
ψ.

To prove (12), we have to consider again different cases.

• α ≥ ν: When ψ(α) = +∞, the result is obvious. For a finite ψ(α) we have ψ(α+ε) > ψ(α)

because the function ψ is convex on [ν,+∞[, ψ(ν) = 0 and ψ is positive on ]ν,+∞[ so ψ
is increasing on [ν,+∞[ (or infinite). Now

P
[
φnd−1,h(n)

nd−1 ∈]α − ε, α + ε[

]
≥ P

[
φnd−1,h(n)

nd−1 ≥ α

]
− P

[
φnd−1,h(n)

nd−1 ≥ α + ε

]
,

so

lim inf
n→∞

1
nd−1h(n)

ln P
[
φnd−1,h(n)

nd−1 ∈]α − ε, α + ε[

]
≥ −ψ(α).

• β ≤ α < ν: In our cylinder B = B((n, . . . , n), h(n)) we will isolate a smaller cylinder of
adequate proportions in which we will impose that the rescaled flow is around its typical value
ν, and we will control the amount of fluid that can circulate outside it (see Fig. 4). For that
purpose, we consider a function h′ such that

h′
: N → N, h′

≤ h, lim
n→∞

h′(n)
n

= 0 and lim
n→∞

h′(n)
ln n

= +∞

(then lim
n→∞

h′(n) = +∞).
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Fig. 4. Control of the flow.

We define the constants

v =

(
α − β

ν − β

) 1
d−1

, k = bvnc, 0 < η ≤
ε

4
,

the set B ′ and the corresponding event A

B ′
= B((k, . . . , k), h(n)), A = {φB′ ≥ (ν − η)kd−1

}.

For i ∈ N, 0 ≤ i ≤ (bh(n)/h′(n)c − 1), we finally define the sets Bi , Pi and Qi and the
corresponding events Ai , Ei and Fi , and the global events E and F as follows:

Bi = B ′
∩

(
Rd−1

×]ih′(n), (i + 1)h′(n)]
)
,

Pi = (B r B ′) ∩

(
Zd−1

×

{
1
2

+ ih′(n)
})

,

Qi =

d−1⋃
j=1

(
[0, k]

j−1
×

{
k +

1
2

}
× [0, k]

d−1− j
×]ih′(n), (i + 1)h′(n)]

)
,

Ai = {φBi ≤ (ν + η)kd−1
},

Ei = {all the (nd−1
− kd−1) vertical edges e of B r B ′ that intersect Pi

satisfy t (e) ≤ β + η},

E =

⋂
i

Ei ,

Fi = {all the (d − 1)h′(n)kd−2 horizontal edges e that intersect Qi satisfy t (e) ≤ β + η},
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F =

⋂
i

Fi .

Fix n0 ∈ N such that

∀n ≥ n0 (d − 1)(β + η)
h′(n)

n
≤
ε

8
and

∣∣∣∣∣bvnc
d−1

nd−1 − vd−1

∣∣∣∣∣ ≤
ε

8
.

On one hand, on the event A, we have for n ≥ n0

φB ≥ nd−1(ν − η)
bvnc

d−1

nd−1 + βnd−1

(
1 −

bvnc
d−1

nd−1

)
≥ nd−1

(
νvd−1

+ β(1 − vd−1)− 2
ε

8
−
ε

4

)
> nd−1(α − ε).

Here the term βnd−1(1 − bvnc
d−1/nd−1) is the minimal amount of fluid that crosses B r B ′

from its bottom to its top because the capacity of an edge cannot be smaller than β, by definition
of β. On the other hand, if for some i in {0, . . . , (b h(n)

h′(n)c−1)} the event Ai ∩ Ei ∩ Fi occurs then
we have

∀n ≥ n0

φB ≤ nd−1

(
(ν + η)

bvnc
d−1

nd−1 + (β + η)

(
1 −

bvnc
d−1

nd−1 + (d − 1)
bvnch′(n)

nd−1

))
≤ nd−1

(
α + 2

ε

8
+ 2

ε

4
+
ε

8

)
< nd−1(α + ε).

We obtain then that

∀n ≥ n0 P
[

1
nd−1φB ∈]α − ε, α + ε[

]
≥ P

[
A ∩

(⋃
i

Ai ∩ Ei ∩ Fi

)]

≥ P[E] × P[F] × P

[
A ∩

(⋃
i

Ai

)]
.

Now we know that

P[E] = sβ(η)
(nd−1

−kd−1)b h(n)
h′(n) c

and

P[F] = sβ(η)
(d−1)kd−2

b
h(n)
h′(n) ch′(n)

,

so

lim
n→∞

1
nd−1h(n)

ln P[E] = lim
n→∞

1
nd−1h(n)

ln P[F] = 0.

Moreover we have

P [A ∩ (∪i Ai )] ≥ P[A] − P
[
∩i Ac

i
]
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≥ P[A] − P[Ac
0]

b
h(n)
h′(n) c

≥ P
[
φkd−1,h(n)

kd−1 ≥ ν − η

]
− P

[
φkd−1,h′(n)

kd−1 ≥ ν + η

]b
h(n)
h′(n) c

,

which leads, thanks to our previous study concerning ψ , to

lim
n→∞

1
nd−1h(n)

ln P [A ∩ (∪i Ai )] = 0.

We conclude that

lim
n→∞

1
nd−1h(n)

ln P
[
φnd−1,h(n)

nd−1 ∈]α − ε, α + ε[

]
≥ 0 = −ψ(α).

This ends the proof of the lower bound.
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Notes in Mathematics, vol. 1180, Springer-Verlag, 1984.
[7] Harry Kesten, Surfaces with minimal weights and maximal flows: A higher dimensional version of first-passage

percolation, Illinois Journal of Mathematics 31 (1) (1987) 99–166.


	Upper large deviations for the maximal flow in first-passage percolation
	Definitions and main results
	Max-flow min-cut theorem
	Proof of Theorem 2
	Discrete version
	Existence of the limit for  phind- 1, h(n)kn 
	Convexity of  psi  
	Continuity of  psi  
	Existence of the limit for  phind- 1, h(n) 
	The function  psi vanishes on  [0, nu (F)] 
	The function  psi is positive on ] nu (F), + infty [ 

	Proof of Theorem 3
	Upper bound
	Lower bound

	Acknowledgments
	References


