Alperin–McKay Implies Brauer’s Problem 21

B. Külshammer

Institut für Mathematik, Universität Augsburg, 86135 Augsburg, Germany

and

Geoffrey R. Robinson

Department of Mathematics and Computer Science, University of Leicester, Leicester LE1 7RH, England

Communicated by Walter Feit

Received March 15, 1995

There are several outstanding open problems in modular representation theory, including several on Brauer’s famous list [B]. One such conjecture is the Alperin–McKay conjecture (e.g., [A1], [F]): Whenever B is a p-block of a finite group G and B has defect group D, then the number $k_0(B)$ of irreducible characters χ in B with $\left[G : D\right]_p \| \chi(1)$ is the same as the corresponding number $k_0(b)$ for the unique p-block b of $N_G(D)$ with $b^G = B$. Another is R. Brauer’s Problem 21 (see [B], [F]): Let B be a p-block with defect group D and containing $k(B) = k$ irreducible characters. Is $|D|$ bounded in terms of k?

We prove here that a positive answer to Brauer’s question follows if the Alperin–McKay conjecture is correct, by virtue of Zelmanov’s solution of the restricted Burnside problem (see [Z1], [Z2]), and the positive solution of Brauer’s problem in the case of p-solvable G by the first author [K]. Our main result is:

THEOREM. Let B be a p-block with defect group D of a finite group G, b be the p-block of $N_G(D)$ with $b^G = B$. If $k_0(b) = k_0(B)$, then $|D|$ is bounded in terms of $k(B)$ alone. In particular, if the Alperin–McKay conjecture is true, then Brauer’s Problem 21 has a positive answer.

*Current address: Mathematisches Institut, Friedrich Schiller Universität, D 07740 Jena, Germany.
Proof. By Corollary 7 of [Ro] (for example), there is a unique p-block \overline{b} of $N_G(D) = N_G(D)/\Phi(D)$ with defect group $D/\Phi(D)$ whose irreducible characters “belong” to b. Evidently, $k(\overline{b}) = k_0(\overline{b}) \leq k_0(b) = k_0(B) \leq k(B)$. We may, and do, suppose that $|D| > 1$.

By results of W. F. Reynolds [Re], there is a p-closed group H and a p-block \overline{b} of H with $k(\overline{b}) = k(b)$, and having defect group $(e \text{ Syl}_p(H))$ isomorphic to $\overline{D} = D/\Phi(D)$. By [K], $|\overline{D}|$ is bounded in terms of $k(\overline{b})$, so also of $k(B)$. Hence both p and the number of generators of D are bounded in terms of $k = k(b)$. By Zel'manov’s solution of the restricted Burnside problem (see [Z1], [Z2]), it only remains to prove that the exponent of D is bounded in terms of k.

By Brauer’s well-known formula, $k(B) = \sum_x \sum_{b} l(b)$, where x runs over elements of D (up to G-conjugacy) and b runs through p-blocks of $C_G(x)$ with $b^G = B$. For each $x \in D$ there is at least one such b, and $l(b) \in \mathbb{N}$ for this b. Let D have exponent p^e. Then evidently $k(B) \geq e + 1$, so $p^e < p^k$, and since p is already bounded in terms of k, we have bounded the exponent of D in terms of k, as required to complete the proof.

Remarks. Although the Alperin–McKay conjecture remains open, there has been recent progress in reducing it to a question about simple groups. E. C. Dade has announced (see [D1, D2]) that he can reduce a conjecture which, partly thanks to the work in [KR], may be viewed as a simultaneous generalization of Alperin’s weight conjecture [A2] and the Alperin–McKay conjecture, to a question about simple groups. The equality predicted by the Alperin–McKay conjecture has been shown to hold in several special cases (e.g., [A1], [BM], [MO]).

REFERENCES

