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In the present paper we are interested to extend the Log-effect
from wave equations with time-dependent coefficients to 2 by 2
strictly hyperbolic systems ∂t U − A(t)∂xU = 0. Besides the effects
of oscillating entries of the matrix A = A(t) and interactions
between the entries of A we have to take into consideration
the system character itself. We will prove by tools from phase
space analysis results about H∞ well- or ill-posedness. The precise
loss of regularity is of interest. Finally, we discuss the cone of
dependence property.
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1. Introduction

Recent papers have dealt with the Log-effect for strictly hyperbolic wave models with time-
dependent oscillating coefficients. Let us explain the results by the aid of two examples. Here and
in the following we are interested in the oscillating behavior of coefficients near t = 0. For this pur-
pose we may choose in the following the interval [0, T ] with a sufficiently small positive T .

Example 1.1. (See [5].) Let us consider the strictly hyperbolic Cauchy problem

utt − a(t)uxx = 0, u(0, x) = u0(x), ut(0, x) = u1(x), (1.1)

where the coefficient a satisfies the following conditions:
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• a ∈ C[0, T ] ∩ C2(0, T ], where

∣∣a(k)(t)
∣∣ � Mk

(
1

t

(
log

1

t

)γ )k

, γ � 0, k = 1,2, for all t ∈ (0, T ]. (1.2)

Then the Cauchy problem is H∞ well-posed (even C∞ well-posed due to the finite propagation speed)
with the (at most) loss of derivatives exp(C1(log〈Dx〉)γ ), C1 > 0, that is, the energy inequality

∥∥(ux, ut)(t, ·)
∥∥

Hs � C
∥∥exp

(
C1

(
log〈Dx〉

)γ )
(ux, ut)(0, ·)∥∥Hs (1.3)

holds for all s ∈ R. In the following we use C and C1 as universal constants.

Example 1.2. (See [7].) Let us consider the strictly hyperbolic Cauchy problem

utt + b(t)uxt − a(t)uxx = 0, u(0, x) = u0(x), ut(0, x) = u1(x). (1.4)

Then there exist coefficients a and b satisfying

• a,b ∈ C[0, T ] ∩ C2(0, T ], where both coefficients fulfill (1.2) with γ > 0, such that

∥∥(ux, ut)(t, ·)
∥∥

Hs � C
∥∥exp

(
C1

(
log〈Dx〉

)β)
(ux, ut)(0, ·)∥∥Hs (1.5)

holds for all s ∈ R with β = γ + 1, but the energy inequality (1.5) is in general not valid for
β < γ + 1.

Remark 1.1. Let us compare the statements of both examples. Example 1.1 describes the influence of
oscillations. If we choose γ = 0, γ ∈ (0,1), γ = 1, γ > 1 in (1.2), that is, we assume very slow, slow,
fast or very fast oscillations, respectively, then we obtain in (1.3) no loss, at most an arbitrary small, a finite
or an infinite loss of derivatives. In Example 1.2 we feel interactions of oscillations in a and b. Although
the oscillations in a and b are slow, the interaction implies an infinite loss of derivatives.

In the present paper we are interested to extend the Log-effect to 2 by 2 strictly hyperbolic systems.
Besides the effects of oscillating entries of the matrix A = A(t) and interactions between the entries of A
we have to take into consideration the system character itself.

Let us consider on [0, T ] × R the 2 by 2 strictly hyperbolic Cauchy problem

∂t U − A(t)∂xU = 0, U (0, x) = U0(x), where A(t) =
(

a(t) b(t)
c(t) d(t)

)
. (1.6)

We assume the following conditions:

strict hyperbolicity there exists a positive constant δ such that

(A1) �(t) = (
a(t) − d(t)

)2 + 4b(t)c(t) � δ for t ∈ [0, T ];

regularity we assume

(A2) A ∈ L∞(0, T ) ∩ C2(0, T ];



472 T. Kinoshita, M. Reissig / J. Differential Equations 248 (2010) 470–500
oscillating behavior we assume with a non-negative constant C the estimate

(A3)

∥∥∥∥A′(t) − 1

2
tr A′(t)I

∥∥∥∥
2

+
∥∥∥∥A′′(t) − 1

2
tr A′′(t)I

∥∥∥∥ � C

(
1

t

(
log

1

t

)γ )2

,

γ � 0, for t ∈ (0, T ].

To characterize interactions and the system character we assume two conditions. To formulate these
conditions we introduce the function

ψ = ψ(t) = (c − b − i
√

�)((a − d)(b + c)′ − (a − d)′(b + c))

2
√

�((b + c)2 + (a − d)2)(

ψ = 
ψ(t) = (c − b)((a − d)(b + c)′ − (a − d)′(b + c))

2
√

�((b + c)2 + (a − d)2)

)
. (1.7)

Then we suppose with non-negative constants C

(A4)

∣∣∣∣∣
T∫

t


ψ(s)ds

∣∣∣∣∣ � C

(
log

1

t

)α

, α � 0, for t ∈ (0, T ];

(A5)

T∫
t

∣∣
ψ(s)
∣∣ds � C

(
log

1

t

)β

, β � 0, for t ∈ (0, T ].

Remark 1.2. It is clear that α � β . In the following we will present concrete examples. Example 1.6
shows that in some sense both conditions (A4) and (A5) are independent. Both have their meaning in
explaining the structure of hyperbolic systems and interactions between the entries of A.

Example 1.3. Let us come back to Example 1.1. After transformation to a system of first order (1.6)
one gets 
ψ ≡ 0. Consequently, the conditions (A4) and (A5) are satisfied with α = β = 0 and C = 0.
The condition (A3) is satisfied with γ � 0.

Example 1.4. Let us come back to Example 1.2. After transformation to a system of first order (1.6)
one can show that both conditions (A4) and (A5) are satisfied with α = β = γ + 1. The condition
(A3) is satisfied with γ > 0.

Example 1.5. Let us choose the following entries in A(t):

a(t) = − cos
(
cosω(t)

)
, d(t) = cos

(
cosω(t)

)
,

b(t) = sin
(
cosω(t)

) − 1√
1 + (2 + sinω(t))2

, c(t) = sin
(
cosω(t)

) + 1√
1 + (2 + sinω(t))2

.

Here we take ω(t) = (log 1
t )p with p � 1. The condition (A3) is satisfied with γ = p − 1. Simple

calculations yield

a(t) − d(t) = −2 cos
(
cosω(t)

)
, b(t) − c(t) = − 2√

1 + (2 + sinω(t))2
,

b(t) + c(t) = 2 sin
(
cosω(t)

)
, �(t) = 4

(2 + sinω(t))2

2
.

1 + (2 + sinω(t))
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Hence, we get 
ψ(t) = − (cosω(t))′
2(2+sinω(t)) . Thus we have to consider

∣∣∣∣∣
T∫

t

− (cosω(s))′

2(2 + sinω(s))
ds

∣∣∣∣∣=
∣∣∣∣∣

T∫
t

ω′(s)

2

sinω(s)

2 + sinω(s)
ds

∣∣∣∣∣.
Using the strict monotonicity of ω(s), the last term can be reduced to

∣∣∣∣∣
ω(t)∫

ω(T )

sin x

2(2 + sin x)
dx

∣∣∣∣∣.

Taking account of

π∫
−π

− sin x

2 + sin x
dx = 4

√
3 − 6

3
π and ω(t) =

(
log

1

t

)p

gives us the estimate to below

∣∣∣∣∣
ω(t)∫

ω(T )

sin x

2 + sin x
dx

∣∣∣∣∣ � C

(
log

1

t

)p

.

We conclude immediately

T∫
t

∣∣
ψ(s)
∣∣ds � C

(
log

1

t

)p

.

Resume of this example: We understand from this example that both conditions (A4) and (A5) may
have the same priority. The condition (A3) is satisfied for γ = p − 1. The conditions (A1) and (A2) are
satisfied, too.

Example 1.6. Let us choose the following entries in A(t):

a(t) = − cos
(
ω(t)

)
, d(t) = cos

(
ω(t)

)
, b(t) = sin

(
ω(t)

) + 1√
2
, c(t) = sin

(
ω(t)

) − 1√
2
.

Here we choose ω(t) = (log 1
t )r(2 − cos((log 1

t )p)) with p > 0, r � 0 and p + r � 1. The condition (A3)
is satisfied for γ = p + r − 1. Simple calculations yield

a(t) − d(t) = −2 cos
(
ω(t)

)
, b(t) − c(t) = √

2, b(t) + c(t) = 2 sin
(
ω(t)

)
, �(t) = 2.

We have 
ψ(t) = ω′(t)
2 . Thus we have to consider

∣∣∣∣∣
T∫

ψ(s)ds

∣∣∣∣∣ =
∣∣∣∣∣

T∫
ω′(s)

2
ds

∣∣∣∣∣ = 1

2

∣∣ω(T ) − ω(t)
∣∣ � C

(
log

1

t

)r

.

t t
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Now let us devote to estimate

T∫
t

∣∣
ψ(s)
∣∣ds =

T∫
t

|ω′(s)|
2

ds

=
T∫

t

1

2s

∣∣∣∣r
(

log
1

s

)r−1(
2 − cos

(
log

1

s

)p)
+ p

(
log

1

s

)p+r−1

sin

(
log

1

s

)p∣∣∣∣ds.

For T small (this is sufficient) we define t2k , t2k−1 by

(
log

1

t2k

)p

= kπ + 3π

4
,

(
log

1

t2k−1

)p

= kπ + π

4
.

It is clear that on [t2k, t2k−1] the term with sin is the dominant one in the above sum. Thus we can
estimate

T∫
t

∣∣
ψ(s)
∣∣ds � C

N(t)∑
k=1

t2k−1∫
t2k

1

s

(
log

1

s

)p+r−1

ds

= C
N(t)∑
k=1

((
kπ + 3π

4

)1+ r
p

−
(

kπ + π

4

)1+ r
p
)

� C
N(t)∑
k=1

k
r
p � C N(t)1+ r

p .

Using N(t) ∼ (log 1
t )p we obtain the lower bound C(log 1

t )p+r for
∫ T

t |
ψ(s)|ds. The same we con-
clude for the upper bound.

Resume of this example: We understand from this example that both conditions (A4) and (A5) may
have different priorities. On the one hand (A4) is satisfied for α = r � 0, on the other hand (A5) is
satisfied with β = p + r, p > 0. The assumption (A3) is satisfied for γ = p + r − 1. The conditions (A1)
and (A2) are satisfied, too.

Remark 1.3. The term


ψ = (c − b)((a − d)(b + c)′ − (a − d)′(b + c))

2
√

�((b + c)2 + (a − d)2)

is regarded as a very important term in the study of weakly hyperbolic systems (see [1,2,11] and
[13]). This paper explains its importance also in study of the Log-effect for strictly hyperbolic systems.
It seems to be interesting that our considerations for the strictly hyperbolic case derive the term
(c−b)((a−d)(b+c)′−(a−d)′(b+c))

2
√

�((b+c)2+(a−d)2)
in a different way than in the weakly hyperbolic case.

The content of this paper is organized as follows:
In Section 2 we present the main results and apply them to the above Examples 1.5 and 1.6. In

Section 3 we prove H∞ well-posedness with an (at most) arbitrary small or finite loss of derivatives.
Section 4 is devoted to the question if we have at least such a loss, in other words, if the loss of
derivatives really appears. The example of Section 5 explains the complexity of hyperbolic systems
and the difficulty to get general results for H∞ well-posedness or ill-posedness. In Section 6 we
discuss the question for the finite propagation speed of perturbations.
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2. The main results and examples

We will prove the following results for

∂t U − A(t)∂xU = 0, U (0, x) = U0(x). (2.1)

Theorem 2.1. Let us assume that A = A(t) satisfies the assumptions (A1), (A2), (A3) with γ ∈ [0,1] and
(A5) with β ∈ [0,1]. Then the Cauchy problem is H∞ well-posed with an (at most) loss of derivatives
exp(C1(log〈Dx〉)κ ), κ = max{γ ,β}. The following energy inequality holds:

∥∥U (t, ·)∥∥Hs � C
∥∥exp

(
C1

(
log〈Dx〉

)κ )
U (0, ·)∥∥Hs (2.2)

for all s ∈ R.

Theorem 2.2. Let us assume that A = A(t) satisfies the assumptions (A1), (A2), (A3) with γ ∈ [0,1]
and (A4) with α = 0. Then the Cauchy problem is H∞ well-posed with an (at most) loss of derivatives
exp(C1(log〈Dx〉)γ ). The following energy inequality holds:

∥∥U (t, ·)∥∥Hs � C
∥∥exp

(
C1

(
log〈Dx〉

)γ )
U (0, ·)∥∥Hs (2.3)

for all s ∈ R.

Theorem 2.3. Let us assume that A = A(t) satisfies the assumptions (A1), (A2), (A3) with γ = 0 and (A4)
both sided with α ∈ (0,1], that is,

C−1
(

log
1

t

)α

�
∣∣∣∣∣

T∫
t


ψ(s)ds

∣∣∣∣∣ � C

(
log

1

t

)α

(2.4)

with a positive constant C . Moreover, we assume that there exists a function θ = θ(t, ξ) satisfying


ψ + θ(t, ξ) � 0 for all (t, ξ) ∈ (0, T ] × {|ξ | � M
}
, (2.5)

and there exists a positive zero sequence {tk}k�1 such that

t2k−1∫
t2k+1

θ(s, ξ)ds = 0 for all |ξ | � M, (2.6)

∣∣∣∣∣
t2k−1∫
t

θ(s, ξ)ds

∣∣∣∣∣ � C for all t ∈ [t2k+1, t2k−1], t � N

|ξ | . (2.7)

Here M and N are large constants. Under these conditions the Cauchy problem is H∞ well-posed with an (at
least) loss of derivatives exp(C1(log〈Dx〉)α).

Remark 2.1. It is known that a finite loss of derivatives really appears for (1.1) if the coefficient
a = a(t) satisfies the log-Lipschitz condition or (1.2) with γ = 1 (see [3,6] and [10]). While a finite
loss of derivatives in Theorem 2.3 is caused from the structure of systems. Actually, we can deal
with coefficients consisting of t2 exp(t−2) sin(exp(t−2)) which satisfy a slightly better condition than
log-Lipschitz and (1.2) with γ = 0.
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Remark 2.2. The condition (A3) with γ = 0 implies the condition (A5) with β = 1. Thus we have from
Theorem 2.1 at most a finite loss of derivatives. Theorem 2.3 explains conditions under which we have
at least a loss of derivatives exp(C1(log〈Dx〉)α).

Remark 2.3. The function θ from Theorem 2.3 is an important auxiliary function. It is used in the
phase space analysis only in the interacting subzone. The main goal of this auxiliary function is to
control the oscillating behavior of 
ψ , to make 
ψ non-negative, that is to guarantee the inequality
(2.5) without having an essential influence in the Riemann integral over time intervals [t, T ] (see
assumptions (2.6) and (2.7)). At the beginning of the proof to Theorem 2.4 we explain one way how
to find for Example 1.5 the function θ . Setting p = 1 in Example 1.5 this construction can be used as
one example satisfying all assumptions from Theorem 2.3.

Theorem 2.4. There exists a matrix A = A(t) satisfying the assumptions (A1), (A2) and (A3) with γ ∈ (0,1)

such that the Cauchy problem is H∞ ill-posed.

Remark 2.4. From Example 1.5 we conclude, that α > 0 in (A4) cannot be used to prove a general
H∞ ill-posedness result. Example 1.6 tells us, that β > 1 in (A5) cannot be used to prove a general
H∞ ill-posedness result because α = p = 0 can be chosen in (A4). The following theorem shows that
there exist examples with γ ∈ (0,1) in (A3), with α ∈ (0,1) in (A4) and with β > 1 in (A5) such that
the Cauchy problem is H∞ well-posed.

Theorem 2.5. There exists a matrix A = A(t) satisfying the assumptions (A1), (A2), (A3) with γ ∈ (0,1),
(A4) with α < 1 and (A5) with β > 1 such that the Cauchy problem is H∞ well-posed.

Remark 2.5. An assumption as (A4) was used in [8] in connection with the influence of oscillations
on Levi conditions. Following the proposed strategy from [8] it would be interesting to understand
the interplay between the assumptions (A4) with α < 1 and (A5) with β > 1.

Remark 2.6. In the formulation of our main results we restricted to H∞ well- or ill-posedness. In
Section 6 we will study the property of finite propagation speed for systems (1.6). As a consequence
we obtain even C∞ well-posedness.

3. Proof of H∞ well-posedness

3.1. Proof to Theorem 2.1

After partial Fourier transformation the Cauchy problem (2.1) is transferred to

∂t Û = A(t)iξ Û , Û (0, ξ) = Û0(ξ).

We divide the extended phase space [0, T ] × {|ξ | � M} into the pseudo-differential zone Zpd(N, M)

and the hyperbolic zone Zhyp(N, M). Both zones are defined by

Zpd(N, M) := {
(t, ξ) ∈ [0, T ] × {|ξ | � M

}
: t|ξ | � N

(
log |ξ |)κ}

,

Zhyp(N, M) := {
(t, ξ) ∈ [0, T ] × {|ξ | � M

}
: t|ξ | � N

(
log |ξ |)κ}

,

where κ = max{γ ,β}. The separating line tξ = t(|ξ |) between both zones is defined by tξ |ξ | =
N(log |ξ |)κ .
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Considerations in Zpd(N, M). Here we define the micro-energy E(t, ξ) := |Û (t, ξ)|2. By application of
assumption (A2) we obtain after differentiation

E ′(t, ξ) = 2
(∂t Û , Û ) � C |ξ |E(t, ξ).

The Gronwall’s inequality yields

{
E(t, ξ) � E(0, ξ)exp

(
C |ξ |tξ

) = E(0, ξ)exp
(
CN

(
log |ξ |)κ )

,∣∣Û (t, ξ)
∣∣ �

∣∣Û0(ξ)
∣∣ exp

(
CN

(
log |ξ |)κ )

for all (t, ξ) ∈ Zpd(N, M),
(3.1)

respectively. Here and in the following C and CN are used as universal constants.

Diagonalization procedure in Zhyp(N, M). Let us introduce the notations μ±(t) := a(t)−d(t)±√
�(t)

2 . Then
we define the first (non-singular) globally invertible diagonalizer H = H(t) by

H(t) = (1 + i)

(
b(t) μ−(t)

−μ−(t) c(t)

)
+ (1 − i)

(
μ+(t) b(t)

c(t) −μ+(t)

)
.

It holds

det H(t) = 2
√

�(t)
(
c(t) − b(t) + i

√
�(t)

)
.

By assumptions (A1) and (A2) both matrices H and H−1 belong to L∞(0, T ) ∩ C2(0, T ]. Thus, putting
Û (t, ξ) = H(t)V (t, ξ) we have

∂t V = H−1(t)A(t)H(t)iξ V − H−1(t)H ′(t)V , V (0, ξ) = H−1(0)Û0(ξ).

Since H is a diagonalizer and the eigenvalues of A are μ± + d the above system simplifies to

∂t V −
(

μ+ + d 0

0 μ− + d

)
iξ V + H−1(t)H ′(t)V = 0.

We obtain for the entries hlm = hlm(t),1 � l,m � 2, of the matrix H−1 H ′ the following representa-
tions:

h11 = (det H)′

2 det H
+ (a − d)′(b + c) − (a − d)(b + c)′

det H
,

h22 = (det H)′

2 det H
+ (a − d)(b + c)′ − (a − d)′(b + c)

det H
,

h21 = det H

2�

(√
�(b + c + i(d − a))

det H

)′
,

h12 = det H

2�

(√
�(i(d − a) − (b + c))

det H

)′
.

Now we are able to carry out the second step of diagonalization (but only in Zhyp(N, M)) for the
system

∂t V −
(

μ+ + d 0
)

iξ V +
(

h11 h12
)

V = 0.

0 μ− + d h21 h22
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Let us define the diagonalizer K = K (t, ξ) by

K (t, ξ) :=
(

1 h12(t)
iξ

√
�(t)

− h21(t)
iξ

√
�(t)

1

)
.

The entries h12 and h21 depend on a − d,b, c and their first derivatives. Due to assumption (A3) we
may estimate

∣∣∣∣ h12(t)

ξ
√

�(t)

∣∣∣∣ +
∣∣∣∣ h21(t)

ξ
√

�(t)

∣∣∣∣ � C
1

t|ξ |
(

log
1

t

)γ

� C
1

tξ |ξ |
(

log
1

tξ

)γ

� C

N

(
log |ξ |)γ −κ � C

N
for all t ∈ [tξ , T ], |ξ | � M.

A large N guarantees the invertibility of K in Zhyp(N, M). Setting V (t, ξ) = K (t, ξ)W (t, ξ) in
Zhyp(N, M) we arrive at the system

∂t W − K −1
(

μ+ + d 0

0 μ− + d

)
K iξ W + K −1

(
h11 h12

h21 h22

)
K W + K −1 K ′W = 0,

W (tξ , ξ) = K −1(tξ , ξ)H−1(tξ )Û (tξ , ξ).

Direct computations show that after two steps of diagonalization we deduce the system

∂t W −
(

μ+ + d 0

0 μ− + d

)
iξ W +

(
h11 0

0 h22

)
W + J (t, ξ)W = 0,

W (tξ , ξ) = K −1(tξ , ξ)H−1(tξ )Û (tξ , ξ),

where the matrix J = J (t, ξ) is equal to

J = 1

det K

⎛
⎝ h12h21(h11−h22)

ξ2�
− 2h12h21

iξ
√

�
− h12

ξ2
√

�
( h21√

�
)′ − h12(h22−h11)

iξ
√

�
+ h2

12h21

ξ2�
+ 1

iξ ( h12√
�

)′

− h21(h22−h11)

iξ
√

�
+ h12h2

21
ξ2�

− 1
iξ ( h21√

�
)′ h12h21(h22−h11)

ξ2�
+ 2h12h21

iξ
√

�
− h21

ξ2
√

�
( h12√

�
)′

⎞
⎠ .

Denoting the entries of J by Jlm = Jlm(t, ξ),1 � l,m � 2, they depend on a − d,b and c, and due to
assumption (A3) we obtain the estimate

∥∥ J (t, ξ)
∥∥ � C

1

|ξ |t2

(
log

1

t

)2γ

for (t, ξ) ∈ Zhyp(N, M).

Energy estimate in Zhyp(N, M). Let us recall the structure of h11 and h22. Both consist of the term
(det H)′
2 det H , and the term

ψ = ψ(t) = (a − d)(b + c)′ − (a − d)′(b + c)

det H
which coincides with (1.7).

The influence of the imaginary part 
ψ is not important, but we are forced to control the real part


ψ . Introducing W = W (t, ξ) = (det H(t))− 1
2 Z(t, ξ) the above Cauchy problem for W is transferred

to
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∂t Z −
(

(μ+ + d)ξ + 
ψ 0

0 (μ− + d)ξ − 
ψ

)
i Z −

(
1 0

0 −1

)
(
ψ)Z + J Z = 0,

Z(tξ , ξ) =
√

det H(tξ )K −1(tξ , ξ)H−1(tξ )Û (tξ , ξ).

In Zhyp(N, M) we define the micro-energy E(t, ξ) := |Z(t, ξ)|2.
After differentiation with respect to t we conclude from the last Cauchy problem

E ′(t, ξ) = 2
(∂t Z , Z) � C

(∣∣
ψ(t)
∣∣ + 1

|ξ |t2

(
log

1

t

)2γ )
E(t, ξ).

Now we control the influence of |
ψ | by condition (A5). Together with (A3) and the definition of tξ
it follows

E(t, ξ) � E(tξ , ξ)exp

(
C

t∫
tξ

∣∣
ψ(s)
∣∣ds + C

t∫
tξ

1

|ξ |s2

(
log

1

s

)2γ

ds

)

� E(tξ , ξ)exp

(
C

(
log

1

tξ

)β

+ C

(
log

1

tξ

)γ )

� E(tξ , ξ)exp
(
C1

(
log |ξ |)κ )

for all (t, ξ) ∈ Zhyp(N, M).

The backward transformation yields immediately

∣∣Û (t, ξ)
∣∣ � C

∣∣Û (tξ , ξ)
∣∣exp

(
C1

(
log |ξ |)κ )

for all (t, ξ) ∈ Zhyp(N, M). (3.2)

Conclusion. From (3.1) and (3.2) we conclude

∣∣Û (t, ξ)
∣∣ � C

∣∣Û (0, ξ)
∣∣ exp

(
C1

(
log |ξ |)κ )

for all t ∈ [0, T ], |ξ | � M.

This a priori estimate implies the statement of Theorem 2.1.

3.2. Proof to Theorem 2.2

The proof to Theorem 2.2 is only a slight modification of that one to Theorem 2.1. Both proofs
coincide up to the second step of diagonalization (defining tξ = t(|ξ |), tξ |ξ | = N(log |ξ |)γ )

∂t W −
(

μ+ + d 0

0 μ− + d

)
iξ W +

(
h11 0

0 h22

)
W + J (t, ξ)W = 0,

W (tξ , ξ) = K −1(tξ , ξ)H−1(tξ )Û (tξ , ξ).

To derive the energy estimate in Zhyp(N, M) we introduce the transformation

W = W (t, ξ) = (
det H(t)

)− 1
2

(
exp(

∫ t
tξ


ψ(s)ds) 0

0 exp(− ∫ t
tξ


ψ(s)ds)

)
Z(t, ξ)

=: D(t, ξ)Z(t, ξ).

Then we obtain the following Cauchy problem
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∂t Z −
(

(μ+ + d)ξ + 
ψ 0

0 (μ− + d)ξ − 
ψ

)
i Z + J̃ Z = 0,

Z(tξ , ξ) =
√

det H(tξ )K −1(tξ , ξ)H−1(tξ )Û (tξ , ξ).

Due to assumption (A4) with α = 0 we conclude that the entries J̃ lm = J̃ lm(t, ξ),1 � l,m � 2, of the
matrix J̃ := D−1 J D fulfill the same estimates as those for J = J (t, ξ), that is, the matrix J̃ satisfies

∥∥ J̃ (t, ξ)
∥∥ � C

1

|ξ |t2

(
log

1

t

)2γ

for (t, ξ) ∈ Zhyp(N, M).

Defining the energy E(t, ξ) := |Z(t, ξ)|2 we arrive as in the proof to Theorem 2.1 at

E(t, ξ) � E(tξ , ξ)exp

(
C

t∫
tξ

1

|ξ |s2

(
log

1

s

)2γ

ds

)
� E(tξ , ξ)exp

(
C

(
log

1

tξ

)γ )

� E(tξ , ξ)exp
(
C1

(
log |ξ |)γ )

for all (t, ξ) ∈ Zhyp(N, M).

This implies (3.2), and together with (3.1) for κ = γ it gives

∣∣Û (t, ξ)
∣∣ � C

∣∣Û (0, ξ)
∣∣ exp

(
C1

(
log |ξ |)γ )

for all t ∈ [0, T ], |ξ | � M,

the estimate (2.3) of Theorem 2.2, respectively.

4. Does the loss of regularity really appear?

With Theorem 2.3 and its proof we present a general approach how to show for the Cauchy prob-
lem (2.1) which is H∞ well-posed that a loss of regularity really appears. This loss is coming from
interactions of oscillations.

4.1. The case of H∞ well-posedness

4.1.1. Proof to Theorem 2.3
We divide the extended phase space [0, T ] × {|ξ | � M} into the pseudo-differential zone and the

hyperbolic zone. Both zones are defined by

Zpd(N, M) := {
(t, ξ) ∈ [0, T ] × {|ξ | � M

}
: t|ξ | � N

}
,

Zhyp(N, M) := {
(t, ξ) ∈ [0, T ] × {|ξ | � M

}
: t|ξ | � N

}
.

The separating line tξ = t(|ξ |) between both zones is defined by tξ = N|ξ |−1.

Considerations in the pseudo-differential zone. As in the proof to Theorem 2.1 we obtain

∣∣Û (t, ξ)
∣∣ � CN

∣∣Û0(ξ)
∣∣ for all (t, ξ) ∈ Zpd(N, M). (4.1)

There is no loss of derivatives coming from this zone.
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Diagonalization procedure and an auxiliary transformation in Zhyp(N, M). As in the proof to Theorem 2.1
we have

∂t Z −
(

(μ+ + d)ξ + 
ψ 0

0 (μ− + d)ξ − 
ψ

)
i Z −

(
1 0

0 −1

)
(
ψ)Z + J Z = 0,

Z(tξ , ξ) =
√

det H(tξ )K −1(tξ , ξ)H−1(tξ )Û (tξ , ξ).

Introducing in Zhyp(N, M)

Z(t, ξ) =:
(

exp(− ∫ t
tξ

θ(s, ξ)ds − M3
∫ t

tξ
1

|ξ |s2 ds) 0

0 exp(
∫ t

tξ
θ(s, ξ)ds + M3

∫ t
tξ

1
|ξ |s2 ds)

)
Y (t, ξ),

where the large constant M3 will be chosen later, we get the Cauchy problem

∂t Y −
(

(μ+ + d)ξ + 
ψ 0

0 (μ− + d)ξ − 
ψ

)
iY −

(
1 0

0 −1

)(

ψ + θ + M3

|ξ |t2

)
Y + J̃ Y = 0,

Y (tξ , ξ) = Z(tξ , ξ).

Here we have to remark that due to the definition of Zhyp(N, M), (A3) with γ = 0 and assumptions
(2.6) and (2.7) the following estimates hold:

C−1
∣∣Z(t, ξ)

∣∣ �
∣∣Y (t, ξ)

∣∣ � C
∣∣Z(t, ξ)

∣∣, ∥∥ J̃ (t, ξ)
∥∥ � M4

1

|ξ |t2
for all (t, ξ) ∈ Zhyp(N, M).

Lyapunov functional versus energy functional. We define in Zhyp(N, M) the Lyapunov functional Ẽ =
Ẽ(t, ξ) and the energy functional E = E(t, ξ) by

Ẽ(t, ξ) = ∣∣y1(t, ξ)
∣∣2 − ∣∣y2(t, ξ)

∣∣2
, E(t, ξ) = ∣∣y1(t, ξ)

∣∣2 + ∣∣y2(t, ξ)
∣∣2

, Y = (y1, y2)
T .

Differentiation of Ẽ with respect to t gives

∂t Ẽ(t, ξ) = 2
(∂t y1, y1) − 2
(∂t y2, y2)

= 2

((

(μ+ + d)ξ + 
ψ
)
iy1 +

(

ψ + θ + M3

|ξ |t2

)
y1 − J̃ 11 y1 − J̃ 12 y2, y1

)

− 2

((

(μ+ + d)ξ − 
ψ
)
iy2 −

(

ψ + θ + M3

|ξ |t2

)
y2 − J̃ 21 y1 − J̃ 22 y2, y2

)

� 2

(

ψ + θ + M3

|ξ |t2

)(|y1|2 + |y2|2
) − 6M4

1

|ξ |t2

(|y1|2 + |y2|2
)
.

If we choose M3 � 3M4, then

∂t Ẽ(t, ξ) � 2(
ψ + θ)E(t, ξ).

Using assumption (2.5) we can estimate to below in the last inequality the energy by the Lyapunov
functional. Hence,

∂t Ẽ(t, ξ) � 2(
ψ + θ)Ẽ(t, ξ).
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By Gronwall’s inequality we conclude

Ẽ(t, ξ) � Ẽ(tξ , ξ)exp

(
2

t∫
tξ

(
ψ(s) + θ(s, ξ)
)

ds

)
for all (t, ξ) ∈ Zhyp(N, M).

Finally, by using condition (2.4) with α ∈ (0,1], (2.6), (2.7) and the definition of tξ it follows

exp

(
2

T∫
tξ

(
ψ(s) + θ(s, ξ)
)

ds

)
� exp

(
C

(
log

1

tξ

)α)
� exp

(
C1

(
log |ξ |)α)

.

Consequently,

Ẽ(T , ξ) � Ẽ(tξ , ξ)exp
(
C1

(
log |ξ |)α)

.

Conclusion. Let us choose with a sufficiently large Q the data y1(tξ , ξ) = 〈ξ〉−Q and y2(tξ , ξ) ≡ 0,
thus Ẽ(tξ , ξ) = E(tξ , ξ) = 〈ξ〉−2Q . Then from the estimate of the Lyapunov functional in Zhyp(N, M)

we conclude

E(T , ξ) � Ẽ(T , ξ) � Ẽ(tξ , ξ)exp
(
C1

(
log |ξ |)α) = E(tξ , ξ)exp

(
C1

(
log |ξ |)α)

= exp
(
C1

(
log |ξ |)α)(√

det H(tξ )
∣∣K −1(tξ , ξ)H−1(tξ )Û (tξ , ξ)

∣∣)2
.

From (4.1) we get for the backward Cauchy problem in Zpd(N, M) the estimate |Û0(ξ)| � CN |Û (tξ , ξ)|.
All together yields

E(T , ξ) � CN exp
(
C1

(
log |ξ |)α)∣∣Û0(ξ)

∣∣2
.

Finally, using

E(T , ξ) = ∣∣Y (T , ξ)
∣∣2

=
∣∣∣∣∣
(

exp(
∫ T

tξ
(θ(s, ξ) + M3

|ξ |s2 )ds) 0

0 exp(− ∫ T
tξ

(θ(s, ξ) + M3
|ξ |s2 )ds)

)

× √
det H(T )K −1(T , ξ)H−1(T )Û (T , ξ)

∣∣∣∣∣
2

brings with (2.4), (2.6) and (2.7) the desired estimate

∣∣Û (T , ξ)
∣∣ � CN exp

(
C1

(
log |ξ |)α)∣∣Û0(ξ)

∣∣.
Summarizing, the Cauchy problem is H∞ well-posed with an (at least) loss of regularity
exp(C1(log〈Dx〉)α).
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4.2. The case of H∞ ill-posedness

One can be satisfied with Example 1.2 from [7]. But our goal is to have an example with interac-
tions of oscillations and with system character “far away from systems” appearing after transformation
of second order equations. Let us come back to Example 1.5. We will show that p ∈ (1,2] implies an
example for A = A(t), that the corresponding Cauchy problem (2.1) is H∞ ill-posed. Taking p ∈ (1,2],
then (A3) is satisfied for γ = p − 1 ∈ (0,1].

4.2.1. Proof to Theorem 2.4
We choose the matrix A from Example 1.5 and get


ψ(t) = sin((log 1
t )p)dt(log 1

t )p

2(2 + sin((log 1
t )p))

.

With large constants N and M let us define for {|ξ | � M} the functions tξ and t̃ξ by

|ξ |tξ = N log
1

tξ
, |ξ |t̃ξ = N

(
log

1

t̃ξ

)2

.

Then we divide the extended phase space [0, T ] × {|ξ | � M} into

the pseudo-differential zone Zpd(N, M) = {
(t, ξ): t � tξ

}
,

the oscillations subzone Zosc(N, M) = {
(t, ξ): tξ � t � t̃ξ

}
,

the interacting subzone Zintac(N, M) = {
(t, ξ): t̃ξ � t � T

}
.

Both subzones form the hyperbolic zone Zhyp(N, M).

Some auxiliary functions and their properties. We introduce the sequence {tk}k�1 with tk :=
exp(−(kπ)

1
p ). Then there exists a function q = q(ξ) such that t2q+1 < t̃ξ � t2q−1.

We notice that 
ψ(t) � 0 for t ∈ [t2k, t2k−1] and 
ψ(t) � 0 for t ∈ [t2k+1, t2k]. Now let us introduce
the functions

ω(t, ξ) := L
(log 1

t )2

|ξ |t2
for (t, ξ) ∈ (0, T ] × {|ξ | � M

}
,

θ(t, ξ) := −
‖
ψ‖L1(t2[(k+1)/2]+1,t2[(k+1)/2]−1)

2‖
ψ‖L1(tk+1,tk)


ψ(t)

− ‖ω(·, ξ)‖L1(tk+1,tk)

‖
ψ‖L1(tk+1,tk)

∣∣
ψ(t)
∣∣ + ω(t, ξ) for t ∈ [tk+1, tk].

The large constant L will be determined later.

Lemma 4.1. It holds

T∫
t̃ξ

ω(t, ξ)dt � L

N
� 1

if N is chosen large enough in comparison with L.
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Proof. The statement follows from

T∫
t̃ξ

ω(t, ξ)dt = L

T∫
t̃ξ

(log 1
t )2

|ξ |t2
dt � L

(log 1
t̃ξ

)2

|ξ |t̃ξ = L

N
� 1. �

Lemma 4.2. We have for t ∈ [t2k, t2k−1] the relation


ψ(t) + θ(t, ξ) − ω(t, ξ) =
( t2k−1∫

t2k+1


ψ(s)ds − 2
∥∥ω(·, ξ)

∥∥
L1(t2k,t2k−1)

)
|
ψ(t)|

2‖
ψ‖L1(t2k,t2k−1)

.

Proof. Choosing the above introduced definitions for ω and θ we have for t ∈ [t2k, t2k−1]


ψ(t) + θ(t, ξ) − ω(t, ξ) =
(

1 − ‖
ψ‖L1(t2k+1,t2k−1)

2‖
ψ‖L1(t2k,t2k−1)

)

ψ(t) − ‖ω(·, ξ)‖L1(t2k,t2k−1)

‖
ψ‖L1(t2k,t2k−1)

∣∣
ψ(t)
∣∣.

Taking account of

t2k−1∫
t2k+1


ψ(s)ds = ‖
ψ‖L1(t2k,t2k−1) − ‖
ψ‖L1(t2k+1,t2k)

we conclude


ψ(t) + θ(t, ξ) − ω(t, ξ)

= (‖
ψ‖L1(t2k,t2k−1) − ‖
ψ‖L1(t2k+1,t2k)
)

2‖
ψ‖L1(t2k,t2k−1)

∣∣
ψ(t)
∣∣ − ‖ω(·, ξ)‖L1(t2k,t2k−1)

‖
ψ‖L1(t2k,t2k−1)

∣∣
ψ(t)
∣∣

=
( t2k−1∫

t2k+1


ψ(s)ds − 2
∥∥ω(·, ξ)

∥∥
L1(t2k,t2k−1)

)
|
ψ(t)|

2‖
ψ‖L1(t2k,t2k−1)

. �

In the same way we are able to prove the following statement:

Lemma 4.3. We have for t ∈ [t2k+1, t2k] the relation


ψ(t) + θ(t, ξ) − ω(t, ξ) =
( t2k−1∫

t2k+1


ψ(s)ds − 2
∥∥ω(·, ξ)

∥∥
L1(t2k+1,t2k)

)
|
ψ(t)|

2‖
ψ‖L1(t2k+1,t2k)

.

Corollary 4.4. We have for t ∈ [tk+1, tk] the relation


ψ(t) + θ(t, ξ) − ω(t, ξ) =
( t2[(k+1)/2]−1∫

t2[(k+1)/2]+1


ψ(s)ds − 2
∥∥ω(·, ξ)

∥∥
L1(tk+1,tk)

)
|
ψ(t)|

2‖
ψ‖L1(tk+1,tk)

.

Proof. Setting k = 2n or k = 2n + 1 the statement follows from those ones of Lemmas 4.2 and 4.3. �
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Lemma 4.5. We have the following relations:

t2k−1∫
t2k+1


ψ(s)ds � M5 > 0,

t2k−1∫
t2k+1

∣∣
ψ(s)
∣∣ds � π for all k � 1.

Proof. It holds

t2k−1∫
t2k+1


ψ(s)ds =
t2k−1∫

t2k+1

sin((log 1
s )p)ds(log 1

s )p

2(2 + sin((log 1
s )p))

ds =
(2k+1)π∫

(2k−1)π

− sin θ

2(2 + sin θ)
dθ

by using the definition of tk . From the calculations in Example 1.5 the first statement follows. The
second statement can be concluded from

t2k−1∫
t2k+1

∣∣
ψ(s)
∣∣ds � −

t2k−1∫
t2k+1

1

2
ds

(
log

1

s

)p

ds = π. �

Corollary 4.6. In the interacting subzone Zintac(N, M) it holds 
ψ(t) + θ(t, ξ) −ω(t, ξ) � 0 for p � 1 in the
definition of the matrix A from Example 1.5.

Proof. Let us choose without loss of generality T = t2k0−1. To a given ξ : |ξ | � M there exists an index
q = q(ξ) such that t2q+1 < t̃ξ � t2q−1. For (t, ξ) ∈ [t2q−1, T ] × {|ξ | � M} the statement follows from
those of Lemmas 4.1, 4.5 and Corollary 4.4. It remains to prove it for (t, ξ) ∈ [t̃ξ , t2q−1] × {|ξ | � M}.
First we estimate

t2q−1∫
t2q+1

ω(s, ξ)ds � L
(log 1

t2q+1
)2

|ξ |t2q+1
.

There exists a constant M6 such that t2q−1 � M6t2q+1, where M6 is independent of q. This follows
from

t2q−1

t2q+1
= exp

((
(2q + 1)π

) 1
p − (

(2q − 1)π
) 1

p
)

(4.2)

and from

(
(2q + 1)π

) 1
p − (

(2q − 1)π
) 1

p � C

q
p−1

p

� M6 for p � 1. (4.3)

Consequently,

(log 1
t2q+1

)2

|ξ |t2q+1
�

(log M6
t2q−1

)2M6

|ξ |t2q−1
�

M7(log 1
t2q−1

)2

|ξ |t2q−1
� M7

N

for q � k0 by taking into consideration the definition of Zintac(N, M). Hence, a sufficiently large N in
the definition of the zones implies
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t2q−1∫
t̃ξ

ω(s, ξ)ds �
t2q−1∫

t2q+1

ω(s, ξ)ds � CN with CN → 0 if N → ∞. (4.4)

Together with the first statement from Lemma 4.5 we obtain the desired statement. �
Finally, let us study properties of θ = θ(t, ξ).

Lemma 4.7. We have the following properties:

t2k−1∫
t2k+1

θ(s, ξ)ds = 0 for k0 � k � q,

∣∣∣∣∣
t2q−1∫
t

θ(s, ξ)ds

∣∣∣∣∣ � M8 for (t, ξ) ∈ [t̃ξ , t2q−1] × {|ξ | � M
}
,

where the constant M8 is independent of (t, ξ).

Proof. We use the definition of θ in [t2k+1, t2k], [t2k, t2k−1], respectively, and get

t2k−1∫
t2k+1

θ(s, ξ)ds =
t2k∫

t2k+1

(
−‖
ψ‖L1(t2k+1,t2k−1)

2‖
ψ‖L1(t2k+1,t2k)


ψ(s) − ‖ω(·, ξ)‖L1(t2k+1,t2k)

‖
ψ‖L1(t2k+1,t2k)

∣∣
ψ(s)
∣∣ + ω(s, ξ)

)
ds

+
t2k−1∫
t2k

(
−‖
ψ‖L1(t2k+1,t2k−1)

2‖
ψ‖L1(t2k,t2k−1)


ψ(s) − ‖ω(·, ξ)‖L1(t2k,t2k−1)

‖
ψ‖L1(t2k,t2k−1)

∣∣
ψ(s)
∣∣ + ω(s, ξ)

)
ds.

Simple calculations give together with the positiveness of ω, with 
ψ � 0 on [t2k, t2k−1] and with

ψ � 0 on [t2k+1, t2k]

t2k−1∫
t2k+1

θ(s, ξ)ds = 1

2
‖
ψ‖L1(t2k+1,t2k−1) − 1

2
‖
ψ‖L1(t2k+1,t2k−1) − ∥∥ω(·, ξ)

∥∥
L1(t2k+1,t2k)

− ∥∥ω(·, ξ)
∥∥

L1(t2k,t2k−1)
+ ∥∥ω(·, ξ)

∥∥
L1(t2k+1,t2k)

+ ∥∥ω(·, ξ)
∥∥

L1(t2k,t2k−1)
= 0.

By (4.4) and Lemma 4.5 we have

∣∣∣∣∣
t2q−1∫
t

θ(s, ξ)ds

∣∣∣∣∣ �
t2q−1∫
t2q

∣∣θ(s, ξ)
∣∣ds +

t2q∫
t2q+1

∣∣θ(s, ξ)
∣∣ds

� ‖
ψ‖L1(t2q+1,t2q−1) + ∥∥ω(·, ξ)
∥∥

L1(t2q+1,t2q)
+ ∥∥ω(·, ξ)

∥∥
L1(t2q,t2q−1)

� ‖
ψ‖L1(t2q+1,t2q−1) + 2
∥∥ω(·, ξ)

∥∥
L1(t2q+1,t2q−1)

� M8. �
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Considerations in the interacting subzone. We follow the proof to Theorem 2.3. After two steps of diag-
onalization we obtain the Cauchy problem

∂t Z −
(

(μ+ + d)ξ + 
ψ 0

0 (μ− + d)ξ − 
ψ

)
i Z

(
1 0

0 −1

)
(
ψ)Z + J Z = 0,

(t̃ξ , ξ) =
√

det H(t̃ξ )K −1(t̃ξ , ξ)H−1(t̃ξ )Û (t̃ξ , ξ).

Introducing in Zintac(N, M)

Z(t, ξ) =:
(

exp(− ∫ t
t̃ξ

θ(s, ξ)ds) 0

0 exp(
∫ t

t̃ξ
θ(s, ξ)ds)

)
Y (t, ξ), Y = (y1, y2)

T ,

we get the Cauchy problem

∂t Y −
(

(μ+ + d)ξ + 
ψ 0

0 (μ− + d)ξ − 
ψ

)
iY −

(
1 0

0 − 1

)
(
ψ + θ)Y + J̃ Y = 0,

Y (t̃ξ , ξ) = Z(t̃ξ , ξ),

where the matrix J̃ is given by

J̃ =
(

J11 exp(2
∫ t

t̃ξ
θ(s, ξ)ds) J12

exp(−2
∫ t

t̃ξ
θ(s, ξ)ds) J21 J22

)
, J =

(
J11 J12

J21 J22

)
.

Here we have to remark that due to Lemma 4.7 we have C−1|Z(t, ξ)| � |Y (t, ξ)| � C |Z(t, ξ)| for all
(t, ξ) ∈ Zintac(N, M). Moreover, we have

∥∥ J̃ (t, ξ)
∥∥ � M9

(log 1
t )2(p−1)

|ξ |t2
for (t, ξ) ∈ Zintac(N, M).

We define the Lyapunov functional Ẽ(t, ξ) = |y1(t, ξ)|2 −|y2(t, ξ)|2. Then we conclude as in the proof
to Theorem 2.3

∂t Ẽ(t, ξ) � 2

(

ψ + θ − M9

(log 1
t )2(p−1)

|ξ |t2

)(∣∣y1(t, ξ)
∣∣2 + ∣∣y2(t, ξ)

∣∣2)
� 2(
ψ + θ − ω)

(∣∣y1(t, ξ)
∣∣2 + ∣∣y2(t, ξ)

∣∣2)
if we choose p ∈ (1,2] and the constant L � M9 in the definition of ω. Now Corollary 4.6 is of impor-
tance. It allows to estimate to below the energy functional on the right-hand side by the Lyapunov
functional, and the application of Gronwall’s inequality implies

Ẽ(t, ξ) � Ẽ(t̃ξ , ξ)exp

(
2

t∫
t̃ξ

(
ψ(s) + θ(s, ξ) − ω(s, ξ)
)

ds

)

for all (t, ξ) ∈ Zintac(N, M). Applying systematically Lemmas 4.1, 4.7 and the computations from Ex-
ample 1.5 brings
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exp

(
2

t∫
t̃ξ

(
ψ(s) + θ(s, ξ) − ω(s, ξ)
)

ds

)
� C exp

(
C1q(ξ)

)
.

From t̃ξ ∼ t2q it follows q(ξ) ∼ (log 1
t̃ξ

)p . With the definition of t̃ξ we conclude

Ẽ(T , ξ) � Ẽ(t̃ξ , ξ)exp
(
C1

(
log〈ξ〉)p)

, (4.5)

that is, the desired estimate of the Lyapunov functional in Zintac(N, M).

Considerations in oscillations subzone. We are interested in the backward Cauchy problem for t ∈
[tξ , t̃ξ ]

∂t Z −
(

(μ+ + d)ξ + 
ψ 0

0 (μ− + d)ξ − 
ψ

)
i Z −

(
1 0

0 −1

)
(
ψ)Z + J Z = 0,

Z(t̃ξ , ξ) =
√

det H(t̃ξ )K −1(t̃ξ , ξ)H−1(t̃ξ )Û (t̃ξ , ξ).

Differentiation of the energy E = E(t, ξ) = |z1(t, ξ)|2 + |z2(t, ξ)|2, Z = (z1, z2)
T , gives

∂t E(t, ξ) � −C
(∣∣
ψ(t)

∣∣ + ∥∥ J (t, ξ)
∥∥)

E(t, ξ)

� −C

(
1

t

(
log

1

t

)p−1

+ 1

|ξ |t2

(
log

1

t

)2(p−1))
E(t, ξ).

Gronwall’s inequality yields

E(t̃ξ , ξ) � E(tξ , ξ)exp

(
−C

t̃ξ∫
tξ

((
1

s
log

1

s

)p−1

+ 1

|ξ |s2

(
log

1

s

)2(p−1))
ds

)

= E(tξ , ξ)exp

(
−C p

(
log

1

s

)p∣∣∣∣
tξ

t̃ξ

− C

t̃ξ∫
tξ

1

|ξ |s2

(
log

1

s

)2(p−1)

ds

)
.

On the one hand we use

(
log

1

tξ

)p

−
(

log
1

t̃ξ

)p

� C p

(
log

1

tξ

)p−1

log
t̃ξ |ξ |
tξ |ξ | � C p

(
log

1

tξ

)p−1

log log
1

t̃ξ
.

But 1
t̃ξ

� |ξ |, 1
tξ

� |ξ |, so

(
log

1

tξ

)p

−
(

log
1

t̃ξ

)p

� C p
(
log |ξ |)p−1

log log |ξ |.

On the other hand
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t̃ξ∫
tξ

1

|ξ |s2

(
log

1

s

)2(p−1)

ds = − 1

|ξ |s
(

log
1

s

)2(p−1)∣∣∣∣
t̃ξ

tξ

− 2(p − 1)

tξ∫
t̃ξ

1

|ξ |s2

(
log

1

s

)2p−3

ds.

Hence, we conclude

t̃ξ∫
tξ

1

|ξ |s2

(
log

1

s

)2(p−1)

ds � 1

|ξ |tξ
(

log
1

tξ

)2(p−1)

= CN

(
log

1

tξ

)2p−3

� CN
(
log |ξ |)2p−3 � CN

(
log |ξ |)p−1

.

Summarizing we derived the following energy inequality in Zosc(N, M):

E(t̃ξ , ξ) � E(t, ξ)exp
(−C1

((
log |ξ |)p−1

log log |ξ | + (
log |ξ |)p−1))

,

E(t, ξ) � exp
(
C1

(
log |ξ |)p−1

log log |ξ |)E(t̃ξ , ξ) for all (t, ξ) ∈ Zosc(N, M), (4.6)

respectively.

Considerations in the pseudo-differential zone. We consider the backward Cauchy problem for t ∈ [0, tξ ]

∂t Û = A(t)iξ Û , Û (tξ , ξ) = 1√
det H(tξ )

H(tξ )K (tξ , ξ)Z(tξ , ξ).

As in the proof to Theorem 2.1 we get

E(t, ξ) � exp
(
CN log |ξ |)E(tξ , ξ) for (t, ξ) ∈ Zpd(N, M). (4.7)

Conclusion. Let us choose with a sufficiently large Q the data y1(t̃ξ , ξ) = 〈ξ〉−Q , y2(t̃ξ , ξ) = 0, thus
Ẽ(t̃ξ , ξ) = E(t̃ξ , ξ) = 〈ξ〉−2Q . Choosing p ∈ (1,2], then the energy estimate (4.7) gives an (at most)
finite loss of derivatives. But, the estimates (4.5), (4.6) for the Lyapunov functional, the energy func-
tional, respectively, imply

E(T , ξ) � Ẽ(T , ξ) � Ẽ(t̃ξ , ξ)exp
(
C1

(
log〈ξ〉)p) = E(t̃ξ , ξ)exp

(
C1

(
log〈ξ〉)p)

� E(tξ , ξ)exp
(
C1

(
log〈ξ〉)p)

,

that is, an infinite loss of derivatives in Zintac(N, M) ∪ Zosc(N, M). So, we have H∞ ill-posedness
for p ∈ (1,2]. The matrix A = A(t) from Example 1.5 satisfies assumptions (A1), (A2) and (A3) with
γ = p − 1 ∈ (0,1] if p ∈ (1,2]. This completes the proof of Theorem 2.4.

Remark 4.1. One can construct other examples, where γ in (A3) is independent of p in Example 1.5.
With the matrix A from Example 1.5 let us choose

Ã =
(

2 + sin

((
log

1

t

)γ +1))
A.

Then, 
ψ is independent of γ , and we can take any γ ∈ (0,1] in (A3).



490 T. Kinoshita, M. Reissig / J. Differential Equations 248 (2010) 470–500
5. The complexity of hyperbolic systems

With Theorem 2.5 and its proof we explain the complexity of hyperbolic systems and the difficulty
to find general results about H∞ well-posedness or ill-posedness as we did in Theorems 2.1 to 2.4.

5.1. Proof to Theorem 2.5

Choice of the matrix. We shall choose the matrix A(t) from Example 1.6 with

ω(t) =
(

log
1

t

)r(
2 − cos

((
log

1

t

)p))
, r ∈ (0,1), p > 1, and r + p � 2 − r.

Then, we know that A(t) satisfies (A3) with γ = p + r − 1 ∈ (0,1), (A4) with α = r ∈ (0,1) and (A5)
with β = r + p > 1. Moreover, 
ψ(t) = ω′(t)

2 =: φ1(t) + φ2(t), where

φ1(t) = − r

2t

(
log

1

t

)r−1(
2 − cos

((
log

1

t

)p))
, φ2(t) = − p

2t

(
log

1

t

)r+p−1

sin

((
log

1

t

)p)
.

Properties of auxiliary functions. We define tξ and t̃ξ by |ξ |tξ = N log 1
tξ

and |ξ |t̃ξ = N log 1
t̃ξ

×
exp(L(log 1

t̃ξ
)r), respectively, where the constant L will be determined later. We remark that tξ < t̃ξ ,

since f (t) = t/ log 1
t is an increasing function for small t > 0 and

f (t̃ξ )

f (tξ )
=

t̃ξ / log 1
t̃ξ

tξ / log 1
tξ

= exp

(
L

(
log

1

t̃ξ

)r)
> 1.

Now we introduce the sequence {tk}k�1 with tk := exp(−(kπ)
1
p ), a function q = q(ξ) such that

t2q+1 < t̃ξ � t2q−1 and the hyperbolic subzones (cf. with the proof to Theorem 2.4)

Zintac(M, N) = {
(t, ξ): t2q−1 � t � T

}
, Zosc(M, N) = {

(t, ξ): tξ � t � t2q−1
}
.

Finally, let us define the function θ∗(t) by

θ∗(t) = −
‖φ2‖L1(t2[(k+1)/2]+1,t2[(k+1)/2]−1)

2‖φ2‖L1(tk+1,tk)

φ2(t)

for t ∈ [tk+1, tk]. Taking account of
∫ t2k−1

t2k+1
φ2(s)ds = ‖φ2‖L1(t2k,t2k−1) − ‖φ2‖L1(t2k+1,t2k)

we have for t ∈
[t2k, t2k−1] the relation

φ2(t) + θ∗(t) =
(

1 − ‖φ2‖L1(t2k+1,t2k−1)

2‖φ2‖L1(t2k,t2k−1)

)
φ2(t) =

( t2k−1∫
t2k+1

φ2(s)ds

)
|φ2(t)|

2‖φ2‖L1(t2k,t2k−1)

.

Similarly, we have for t ∈ [t2k+1, t2k] the relation

φ2(t) + θ∗(t) =
( t2k−1∫

t

φ2(s)ds

)
|φ2(t)|

2‖φ2‖L1(t2k+1,t2k)

.

2k+1
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Consequently, we find for t ∈ [tk+1, tk] the relation

φ2(t) + θ∗(t) =
( t2[(k+1)/2]−1∫

t2[(k+1)/2]+1

φ2(s)ds

)
|φ2(t)|

2‖φ2‖L1(tk+1,tk)

.

From this identity we get the following estimate:

Corollary 5.1. It holds

t∫
t2q−1

∣∣φ2(s) + θ∗(s)
∣∣ds � C

(
log

1

t2q−1

)r

for all t ∈ [t2q−1, T ].

Proof. Let us choose without loss of generality T = t1. Then we can estimate

t∫
t2q−1

∣∣φ2(s) + θ∗(s)
∣∣ds

�
t1∫

t2q−1

∣∣φ2(s) + θ∗(s)
∣∣ds

�
∣∣∣∣∣

t1∫
t2q−1

φ2(s)ds

∣∣∣∣∣ =
∣∣∣∣∣

t1∫
t2q−1

p

2s

(
log

1

s

)r+p−1

sin

((
log

1

s

)p)
ds

∣∣∣∣∣

�
∣∣∣∣∣−1

2

(
log

1

s

)r

cos

((
log

1

s

)p)∣∣∣∣
t1

t2q−1

−
t1∫

t2q−1

r

2s

(
log

1

s

)r−1

cos

((
log

1

s

)p)
ds

∣∣∣∣∣
�

∣∣∣∣∣−1

2

(
log

1

s

)r

cos

((
log

1

s

)p)∣∣∣∣
t1

t2q−1

+ r

2p

(
log

1

s

)r−p

sin

((
log

1

s

)p)∣∣∣∣
t1

t2q−1

+
t1∫

t2q−1

r(r − p)

2ps

(
log

1

s

)r−p−1

sin

((
log

1

s

)p)
ds

∣∣∣∣∣
� C

(
log

1

t2q−1

)r

.

This is the desired estimate. �
Lemma 5.2. We have the following properties:

t2k−1∫
t

θ∗(s)ds = 0 for k � 1, (5.1)
2k+1
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t2k−1∫
t2k+1

∣∣φ2(s)
∣∣ds � C

(
log

1

t̃ξ

)r

for 1 � k � q, (5.2)

t2q−1∫
tξ

∣∣φ2(s)
∣∣ds � C log

1

tξ
if p > 1, 2r + p � 2, (5.3)

∣∣∣∣∣
t∫

t2q−1

θ∗(s)ds

∣∣∣∣∣ � C

(
log

1

t̃ξ

)r

for (t, ξ) ∈ [t2q−1, T ] × {|ξ | � M
}
. (5.4)

Proof. From the definition of θ∗(t) we compute

t2k−1∫
t2k+1

θ∗(s)ds =
t2k−1∫
t2k

θ∗(s)ds +
t2k∫

t2k+1

θ∗(s)ds

= −
t2k−1∫
t2k

‖φ2‖L1(t2k+1,t2k−1)

2‖φ2‖L1(t2k,t2k−1)

φ2(s)ds −
t2k∫

t2k+1

‖φ2‖L1(t2k+1,t2k−1)

2‖φ2‖L1(t2k+1,t2k)

φ2(s)ds = 0.

Noting that q = q(ξ) ∼ (log 1
t̃ξ

)p from t̃ξ ∼ t2q we get

t2k−1∫
t2k+1

∣∣φ2(s)
∣∣ds �

t2k−1∫
t2k+1

p

2s

(
log

1

s

)r+p−1

ds = C

((
log

1

t2k+1

)r+p

−
(

log
1

t2k−1

)r+p)

= C
((

(2k + 1)π
)1+ r

p − (
(2k + 1)π

)1+ r
p
)
� Ck

r
p � Cq

r
p � C

(
log

1

t̃ξ

)r

.

Using (4.2) and (4.3) we conclude for p � 1 the inequalities

t2q−1 �
(
exp(M6)

)
t2q+1 <

(
exp(M6)

)
t̃ξ .

Hence, taking into consideration 2r + p − 1 � 1 and tξ < t̃ξ we get

log
t2q−1

tξ

(
log

1

tξ

)r+p−1

� C

(
1 + log

t̃ξ
tξ

)(
log

1

tξ

)r+p−1

� C L

(
log

1

tξ

)r(
log

1

tξ

)r+p−1

� C L

(
log

1

tξ

)2r+p−1

� C L log
1

tξ
.

This implies (5.3). By (5.1) and (5.2) with k = k(t) satisfying t2k+1 < t � t2k−1 we have

∣∣∣∣∣
t∫

t2q−1

θ∗(s)ds

∣∣∣∣∣ � C

t∫
t2k+1

∣∣φ2(s)
∣∣ds � C

t2k−1∫
t2k+1

∣∣φ2(s)
∣∣ds � C

(
log

1

t̃ξ

)r

.

In this way we obtain all estimates (5.1) to (5.4). �
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Estimate in Zintac(M, N). Putting in Zintac(M, N)

Z(t, ξ) =:
(

exp(− ∫ t
t2q−1

θ∗(s)ds) 0

0 exp(
∫ t

t2q−1
θ∗(s)ds)

)
Y (t, ξ), Y = (y1, y2)

T ,

we shall transform

∂t Z −
(

(μ+ + d)ξ + 
ψ 0

0 (μ− + d)ξ − 
ψ

)
i Z −

(
1 0

0 −1

)
(
ψ)Z + J Z = 0

into

∂t Y −
(

(μ+ + d)ξ + 
ψ 0

0 (μ− + d)ξ − 
ψ

)
iY −

(
1 0

0 −1

)
(
ψ + θ∗)Y + J̃ Y = 0,

where

J̃ =
(

J11 exp(2
∫ t

t2q−1
θ∗(s)ds) J12

exp(−2
∫ t

t2q−1
θ∗(s)ds) J21 J22

)
.

By (5.4) we have

‖ J̃‖ � C
(log 1

t )2(r+p−1)

|ξ |t2
exp

(
L

(
log

1

t̃ξ

)r)
for (t, ξ) ∈ Zintac(M, N).

We define in Zintac(M, N) the energy

E(t, ξ) = ∣∣y1(t, ξ)
∣∣2 + ∣∣y2(t, ξ)

∣∣2

and obtain with the definition of 
ψ the estimates

E ′(t, ξ) = 2
(∂t Y , Y ) � 2

(∣∣
ψ(t) + θ∗(t)
∣∣ + C

(log 1
t )2(r+p−1)

|ξ |t2
exp

(
L

(
log

1

t̃ξ

)r))
E(t, ξ)

� 2

(∣∣φ2(t) + θ∗(t)
∣∣ + C

(log 1
t )r−1

t
+ C

(log 1
t )2(r+p−1)

|ξ |t2
exp

(
L

(
log

1

t̃ξ

)r))
E(t, ξ).

Thus, by Corollary 5.1 the application of Gronwall’s inequality yields

E(t, ξ) � E(t2q−1, ξ)exp

(
C

(
log

1

t2q−1

)r

+ C

t∫
t2q−1

(log 1
s )2(r+p−1)

|ξ |s2
ds exp

(
L

(
log

1

t̃ξ

)r))
.

Since r < 1 and r + p � 2 − r � 2 by using tξ < t̃ξ < t2q−1 we have
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E(t, ξ) � E(t2q−1, ξ)exp

(
C log

1

t̃ξ
+ C

t∫
t̃ξ

(log 1
s )2

|ξ |s2
ds exp

(
L

(
log

1

t̃ξ

)r))

� E(t2q−1, ξ)exp

(
C log

1

t̃ξ
+ C

(
− (log 1

s )2

|ξ |s
∣∣∣∣
t

t̃ξ

−
t∫

t̃ξ

2 log 1
s

|ξ |s2
ds

)
exp

(
L

(
log

1

t̃ξ

)r))

� E(t2q−1, ξ)exp

(
C log

1

t̃ξ

)
� E(t2q−1, ξ)exp

(
C log

1

tξ

)
� |ξ |C E(t2q−1, ξ).

Estimate in Zosc(M, N). Using (5.3) we have the following estimate in Zosc(M, N):

E(t2q−1, ξ) � E(tξ , ξ)exp

(
C

t2q−1∫
tξ

∣∣
ψ(s)
∣∣ds + C log

1

tξ

)

� E(tξ , ξ)exp

(
C

(
log

1

tξ

)r

+ C

t2q−1∫
tξ

∣∣φ2(s)
∣∣ds + C log

1

tξ

)

� E(tξ , ξ)exp

(
C1 log

1

tξ

)
� |ξ |C1 E(tξ , ξ).

Combining the two estimates we get in the hyperbolic subzones

E(t, ξ) � |ξ |C1 E(tξ , ξ) for all
{
(t, ξ) ∈ [tξ , T ] × {|ξ | � M

}}
.

In the pseudo-differential zone we can repeat the estimate (3.1) with κ = 1. All together gives the
desired H∞ well-posedness with an at most finite loss of regularity.

6. About the C∞ well-posedness

The goal of this section is to prove the following result:

Theorem 6.1. Let us consider the strictly hyperbolic Cauchy problem for the 2 by 2 system

∂t U − A(t)∂xU = 0, U (0, x) = U0(x), U0 ∈ A′,

where the matrix A = A(t) ∈ C[0, T ] ∩ C2(0, T ] satisfies the assumption (A1). Then the solutions U ∈
C1([0, T0], A′) which are valued in the space of analytic functionals possess the domain of dependence prop-
erty in the following sense: If U0 ≡ 0 in B(ρ0), then U (t, ·) ≡ 0 in B(ρ−(t)) for all t ∈ [0, T0]. Here B(ρ)

denotes the ball around the origin with radius ρ and ρ−(t) := ρ0 − ct, where c is a constant depending on the
coefficient A and T0 is sufficiently small such that cT0 < ρ0 .

The statements of Theorems 2.1, 2.2, 2.3 and 6.1 allow us to draw the following conclusion.

Corollary 6.2. Let us assume additionally A ∈ C[0, T ]. Then the Cauchy problems from Theorems 2.1, 2.2
and 2.3 are C∞ well-posed.

Now let us devote to the proof of Theorem 6.1.
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Proof of Theorem 6.1. We know that without any new assumptions to A′(t) the only well-posedness
results we can expect for the above Cauchy problem are in spaces of analytic functions A or in spaces
of analytic functionals A′ with respect to x. For this reason our strategy is to follow the main steps
of the proof of finite propagation speed for the Cauchy problem

utt − a(t)uxx = 0, u(0, x) = u0(x), ut(0, x) = u1(x), a ∈ L1(0, T ),

from [4].
The key point for the proof to the above theorem seems to be the proof of a statement similar to

Lemma 2 from [4] which reads as follows in the system case:

Lemma 6.3. Let U belong to C1([0, T0], A′) as a solution to the strictly hyperbolic Cauchy problem from
Theorem 6.1. We define

ω(A,μ) = sup
0�τ�μ

T0−τ∫
0

∣∣A(t + τ ) − A(t)
∣∣dt, 0 < μ < T0.

Then we have for all |ζ | � 1, ζ = ξ + iη, and for all t ∈ [0, T0] the estimate

∣∣Û (t, ζ )
∣∣2 � M exp

(
c1ω

(
A,

T0

2|ζ |
)

|ζ | + c2t|η|
)∣∣Û (0, ζ )

∣∣2

with suitable constants c1, c2 and M.

Proof. It is sufficient to prove the result for a sufficiently small T0 > 0 because of the property A ∈
C2[T0, T ]. In the case A ∈ C2[T0, T ] Theorem 6.10 from [12] gives the cone of dependence property.
Let us suppose that t ∈ [0, T0].

Step 1: Regularization of the matrix A = A(t). Let us denote by a− := mint∈[0,T0] a(t), a+ :=
maxt∈[0,T0] a(t) and in the same way we may introduce b−,b+, c−, c+,d−,d+ . Due to the small-
ness of T0 and the continuity of the matrix on [0, T0] we are able to introduce instead of (A1) the
condition

(A1)′ �(t1, t2, t3, t4) = (
a(t1) − d(t2)

)2 + 4b(t3)c(t4) � δ for all t1, t2, t3, t4 ∈ [0, T0]

and with an eventually smaller, but positive constant δ. Now let us define the matrix Ã with entries
ã, b̃, c̃, d̃, where

ã(t) =
{

a(t) if 0 � t � T0,

ma if t > T0,
ma = 1

T0

T0∫
0

a(t)dt.

It is clear that there exists a time t0 ∈ [0, T0] with a(t0) = ma . In the same way we define b̃, c̃, d̃.
Now we are in position to define the desired regularization of A. It is the matrix B(t, ζ ) which is

defined as follows:

B(t, ζ ) :=
∞∫

0

Ã(t + τ )ρζ (τ )dτ , ρζ (t) =
{−140 t3(t − ε)3ε−7 if t ∈ [0, ε],

0 if t � ε,

where ε = T0(2|ζ |)−1. Among a lot of useful properties of the function ρζ we only mention that it
belongs to C2[0,∞).
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Step 2: Properties of B(t, ζ ). Let us denote by â, b̂, ĉ, d̂ the entries of B . Then due to the definition we
have for all t ∈ [0, T0]

a− � â(t, ζ ) � a+, b− � b̂(t, ζ ) � b+, c− � ĉ(t, ζ ) � c+, d− � d̂(t, ζ ) � d+.

Using the property (A1)′ we conclude the next statement:

Lemma 6.4. The entries of the matrix B satisfy the condition

(A1) �̂(t, ζ ) = (
â(t, ζ ) − d̂(t, ζ )

)2 + 4b̂(t, ζ )ĉ(t, ζ ) � δ for all t ∈ [0, T0]

and with a positive constant δ.

Moreover, we know that B(·, ζ ) is C2 on [0, T0]. As in Section 3.1 we are able to define the C2

functions (in t) μ̂±(t, ζ ) and Ĥ(t, ζ ) on the interval [0, T0].

Step 3: Diagonalization of our starting system. Setting A(t) = B(t, ζ ) + C(t, ζ ) we study instead of our
starting system ∂t U − A(t)∂xU = 0, U (0, x) = U0(x), the system

Dt V − B(t, ζ )ζ V − C(t, ζ )ζ V = 0, V (0, ζ ) = V 0(ζ ).

Introducing V (t, ζ ) := Ĥ(t, ζ )W (t, ζ ) we obtain for W the Cauchy problem

Dt W − Ĥ−1(t, ζ )B(t, ζ )Ĥ(t, ζ )ζ W + Ĥ−1(t, ζ )Dt Ĥ(t, ζ )W − Ĥ−1(t, ζ )C(t, ζ )Ĥ(t, ζ )ζ W = 0,

W (0, ζ ) = Ĥ−1(0, ζ )V 0(ζ ).

This is equivalent to

∂t W − iD(t, ζ )ζ W + Ĥ−1(t, ζ )∂t Ĥ(t, ζ )W − i Ĥ−1(t, ζ )C(t, ζ )Ĥ(t, ζ )ζ W = 0,

W (0, ζ ) = Ĥ−1(0, ζ )V 0(ζ ),

where

D =
(

d1(t, ζ ) 0

0 d2(t, ζ )

)
=

(
μ̂+(t, ζ ) + d̂(t, ζ ) 0

0 μ̂−(t, ζ ) + d̂(t, ζ )

)

is real.

Step 4: Estimates of different terms. First we estimate the term 
(iDζ W , W ). Using that D is real we
conclude with ζ = ξ + iη


(iDζ W , W ) = −
(ηD W , W ) = −(ηD W , W ),

and consequently,

∣∣
(iDζ W , W )
∣∣ � c2|η||W |2.

Now let us devote to the term
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(
Ĥ−1(t, ζ )∂t Ĥ(t, ζ )W , W

)
.

To estimate this term we have to estimate |∂t â(t, ζ )|, |∂t b̂(t, ζ )|, |∂t ĉ(t, ζ )| and |∂t d̂(t, ζ )|. For the first
term we obtain for all τ ∈ [0, ε]

T0∫
0

∣∣∂t â(t, ζ )
∣∣dt =

T0∫
0

∣∣∣∣∣
∞∫

0

(
ã(t) − ã(t + τ )

)
ρ ′

ζ (τ )dτ

∣∣∣∣∣dt

�
T0−τ∫
0

∣∣a(t) − a(t + τ )
∣∣dt

∞∫
0

∣∣ρ ′
ζ (τ )

∣∣dτ +
T0∫

T0−τ

∣∣a(t) − ma
∣∣dt

∞∫
0

∣∣ρ ′
ζ (τ )

∣∣dτ .

Using corresponding estimates for the other terms we conclude for all τ ∈ [0, ε]

T0∫
0

∣∣
(
Ĥ−1(t, ζ )∂t Ĥ(t, ζ )W , W

)∣∣dt

�
( T0−τ∫

0

∣∣A(t) − A(t + τ )
∣∣dt

∞∫
0

∣∣ρ ′
ζ (τ )

∣∣dτ +
T0∫

T0−τ

∣∣A(t) − A0
∣∣dt

∞∫
0

∣∣ρ ′
ζ (τ )

∣∣dτ

)
(W , W ),

where A0 denotes the matrix
( ma mb

mc md

)
.

Finally, let us estimate


(
Ĥ−1(t, ζ )C(t, ζ )Ĥ(t, ζ )ζ W , W

)
.

It is important to understand the estimate for C(t, ζ ) for all t ∈ [0, T0]. We have

C(t, ζ ) = A(t) −
∞∫

0

Ã(t + τ )ρζ (τ )dτ =
∞∫

0

(
Ã(t) − Ã(t + τ )

)
ρζ (τ )dτ .

As in the previous estimate we conclude for all τ ∈ [0, ε]

T0∫
0

∣∣
(
Ĥ−1(t, ζ )C(t, ζ )Ĥ(t, ζ )ζ W , W

)∣∣dt

�
( T0−τ∫

0

∣∣A(t) − A(t + τ )
∣∣dt

∞∫
0

ρζ (τ )dτ +
T0∫

T0−τ

∣∣A(t) − A0
∣∣dt

∞∫
0

ρζ (τ )dτ

)
|ζ |(W , W )

�
( T0−τ∫

0

∣∣A(t) − A(t + τ )
∣∣dt +

T0∫
T0−τ

∣∣A(t) − A0
∣∣dt

)
|ζ |(W , W ).

In this way we have estimates for all terms appearing in the energy estimate.
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Step 5: Estimate of the energy. To derive the energy estimate we define

ω(A,μ) = sup
τ∈[0,μ]

T0−τ∫
0

∣∣A(t + τ ) − A(t)
∣∣dt, μ ∈ (0, T0).

Defining the energy E(W )(t, ζ ) = (W (t, ζ ), W (t, ζ )) we conclude

∂t E(W )(t, ζ ) = 2
(∂t W , W ) = 2
(iDζ W , W ) − 2
(
Ĥ−1(t, ζ )∂t Ĥ(t, ζ )W , W

)
+ 2
(

Ĥ−1(t, ζ )C(t, ζ )Ĥ(t, ζ )ζ W , W
)
.

Using the above estimates from the previous step and a Gronwall argument implies immediately

E(W )(t, ζ ) � M exp

(
c1ω

(
A,

T0

2|ζ |
)

|ζ | + c2t|η|
)

E(W )(0, ζ )

with suitable constants c1, c2 and M . The backward transformation leads to the desired result. �
We denote the ball around the origin with radius ρ by B(ρ) and define ρ±(t) := ρ0 ± c2

2 t > 0,
where 2ρ0 > c2T0 (cf. with Theorem 6.1). An immediate consequence of Lemma 6.3 is the following
result:

Lemma 6.5. Let us consider the strictly hyperbolic Cauchy problem for the 2 by 2 system

∂t U − A(t)∂xU = 0, U (0, x) = U0(x).

If U0 ∈ A′ with support in B(ρ0), then there exists a unique solution U ∈ C([0, T0], A′). For all t ∈ [0, T0] the
solution has its support in B(ρ+(t)).

Proof. Due to Paley–Wiener theorem for all ε > 0 there exists a constant Cε such that for all |ζ | � 1
it holds

∣∣Û0(ζ )
∣∣2 � Cε exp

(
(2ρ0 + ε)|η| + ε|ζ |).

The solution U belongs to C1([0, T0], A′). By Lemma 6.3 we have

∣∣Û (t, ζ )
∣∣2 � M exp

(
c2t|η| + c1ω

(
A,

T0

2|ζ |
)

|ζ |
)∣∣Û0(ζ )

∣∣2

� Mε exp

((
2ρ+(t) + ε

)|η| +
(

c1ω

(
A,

T0

2|ζ |
)

+ ε

)
|ζ |

)
.

We remark that by Lebesgue’s convergence theorem lim|ζ |→∞ c1ω(A,
T0

2|ζ | ) = 0. Moreover, the func-

tion ω is increasing in |ζ |−1. Therefore, there exists an increasing function ϕ(p) satisfying ϕ(0) = 0
such that c1ω(A,

T0
2|ζ | ) � ϕ(|ζ |−1). Let Lε = 1

ϕ−1(ε)
, i.e., ε = ϕ(L−1

ε ). Then we get for 1 � |ζ | � Lε the

inequalities

∣∣Û (t, ζ )
∣∣2 � Mε exp

(
ϕ(1)Lε

)
exp

((
2ρ+(t) + ε

)|η| + ε|ζ |) � M̃ε exp
((

2ρ+(t) + ε
)|η| + ε|ζ |),

and for |ζ | � Lε the inequality
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∣∣Û (t, ζ )
∣∣2 � Mε exp

((
2ρ+(t) + ε

)|η| + 2ε|ζ |),
respectively. In conclusion, for all ε > 0 and for all |ζ | � 1 we have

∣∣Û (t, ζ )
∣∣2 � M̃ε exp

((
2ρ+(t) + ε

)|η| + 2ε|ζ |).
Using again Paley–Wiener theorem we see that U (t) belongs to A′(B(ρ+(t))) what we wanted to
prove. �

To complete the proof we recall a result from [9] about analytic functionals. If U0 ∈ A′ , then

U0 ≡ 0 in R \ B0(R)

for a positive R , where Bx0 (ρ) denotes the ball around x0 with radius ρ . We find that

supp U0 ⊂ B R+ρ0
2

(
R − ρ0

2

)
∪ B− R+ρ0

2

(
R − ρ0

2

)
.

Therefore, U0 can be written as

U0 = U (+)
0 + U (−)

0 ,

where

supp U (±)
0 ⊂ B± R+ρ0

2

(
R − ρ0

2

)
.

By Lemma 6.5 it follows that the strictly hyperbolic Cauchy problem for the 2 by 2 system

∂t U (±) − A(t)∂xU (±) = 0, U (±)(0, x) = U (±)
0 (x)

has a unique solution U (±) ∈ C([0, T0], A′) with support in

B± R+ρ0
2

(
R − ρ0

2
+ c2

2
t

)
.

Since U = U (+) + U (−) we conclude that U ∈ C([0, T0], A′) with

supp U ⊂ B R+ρ0
2

(
R − ρ0

2
+ c2

2
t

)
∪ B− R+ρ0

2

(
R − ρ0

2
+ c2

2
t

)
.

That is, U (t, ·) ≡ 0 in B0(ρ0 − c2
2 t) = B(ρ−(t)). �
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